nerc.ac.uk

Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula

Roberts, Stephen J. ORCID: https://orcid.org/0000-0003-3407-9127; Hodgson, Dominic A. ORCID: https://orcid.org/0000-0002-3841-3746; Sterken, Mieke; Whitehouse, Pippa L.; Verleyen, Elie; Vyverman, Wim; Sabbe, Koen; Balbo, Andrea; Bentley, Michael J.; Moreton, Steven G.. 2011 Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula. Quaternary Science Reviews, 30 (25-26). 3603-3617. https://doi.org/10.1016/j.quascirev.2011.09.009

Full text not available from this repository. (Request a copy)

Abstract/Summary

The recent disintegration of Antarctic Peninsula ice shelves, and the associated accelerated discharge and retreat of continental glaciers, has highlighted the necessity of quantifying the current rate of Antarctic ice mass loss and the regional contributions to future sea-level rise. Observations of present day ice mass change need to be corrected for ongoing glacial isostatic adjustment, a process which must be constrained by geological data. However, there are relatively little geological data on the geometry, volume and melt history of the Antarctic Peninsula Ice Sheet (APIS) after Termination 1, and during the Holocene so the glacial isostatic correction remains poorly constrained. To address this we provide field constraints on the timing and rate of APIS deglaciation, and changes in relative sea-level (RSL) for the north-eastern Antarctic Peninsula based on geomorphological evidence of former marine limits, and radiocarbon-dated marine-freshwater transitions from a series of isolation basins at different altitudes on Beak Island. Relative sea-level fell from a maximum of c. 15 m above present at c. 8000 cal yr BP, at a rate of 3.91 mm yr−1 declining to c. 2.11 mm yr−1 between c. 6900–2900 cal yr BP, 1.63 mm yr−1 between c. 2900–1800 cal yr BP, and finally to 0.29 mm yr−1 during the last c. 1800 years. The new Beak Island RSL curve improves the spatial coverage of RSL data in the Antarctic. It is in broad agreement with some glacio-isostatic adjustment models applied to this location, and with work undertaken elsewhere on the Antarctic Peninsula. These geological and RSL constraints from Beak Island imply significant thinning of the north-eastern APIS by the early Holocene. Further, they provide key data for the glacial isostatic correction required by satellite-derived gravity measurements of contemporary ice mass loss, which can be used to better assess the future contribution of the APIS to rising sea-levels.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1016/j.quascirev.2011.09.009
Programmes: BAS Programmes > Polar Science for Planet Earth (2009 - ) > Chemistry and Past Climate
ISSN: 0277-3791
Additional Keywords: Sea-level, Ice sheets, Deglaciation, Holocene, Palaeolimnology, Antarctica, Satellite-gravity measurements, GRACE satellite
Date made live: 26 Jan 2012 11:37 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/16523

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...