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Abstract 
 
Soluble reactive phosphorus (SRP) concentrations in the River Thames, south east England, 

have significantly decreased from an annual maximum of 2100 µg l
-1 

in 1997 to 344 in 2010, 

primarily due to the introduction of phosphorus (P) removal at sewage treatment works 

within the catchment. However, despite this improvement in water quality, phytoplankton 

biomass in the River Thames has greatly increased in recent years, with peak chlorophyll 

concentrations increasing from 87 µg l
-1 

in the period 1997 to 2002, to 328 µg l
-1 

in 2009.  A 

series of within-river flume mesocosm experiments were performed to determine the effect of 

changing nutrient concentrations and light levels on periphyton biomass accrual.   Nutrient 
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enrichment experiments showed that phosphorus, nitrogen and silicon were not limiting or 

co-limiting periphyton growth in the Thames at the time of the experiment (August – 

September 2010).  Decreasing ambient SRP concentration from 225 µg l
-1 

to 173 µg l
-1 

had 

no effect on periphyton biomass accrual rate or diatom assemblage.  Phosphorus limitation 

became apparent at 83 µg SRP l
-1

, at which point a 25 % reduction in periphyton biomass 

was observed.  Diatom assemblage significantly changed when the SRP concentration was 

reduced to 30 µg l
-1

.  Such stringent phosphorus targets are costly and difficult to achieve for 

the River Thames, due to the high population density and intensive agriculture within the 

Thames basin.  Reducing light levels by shading reduced the periphyton accrual rate by 50 %. 

Providing shading along the River Thames by planting riparian tree cover could be an 

effective measure to reduce the risk of excessive algal growth.  If the ecology of the Thames 

is to reach the WFD’s “good ecological status”, then both SRP concentration reductions 

(probably to below 100 µg l
-1

) and increased shading will be required. 

 

 
 
 

1  Introduction 
 
 

The reduction of phosphorus (P) loading to UK rivers is seen as the key measure in reducing 

excessive algal growth and other problems associated with freshwater eutrophication, and thereby 

vital in delivering the “good ecological status” that is demanded by the European Union’s Water 

Framework Directive (WFD).  Many UK rivers have seen significant reductions in P concentration, 

due primarily to the introduction of phosphate removal at sewage treatment works (STW) (Bowes et 

al., 2009; Bowes et al., 2010b; Foy, 2007; Jarvie et al., 2002b; Neal et al., 2010a).  These reduced P 

loadings have delivered the intended improvements in ecology in some rivers (Bowes et al., In press; 

Kelly et al., 2009), but many others have seen no change in either algal biomass or community 

structure (Kelly and Wilson, 2004; Neal et al., 2010b), because the current P concentrations are still in 

excess, and therefore do not limit algal growth rate. 
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If algal growth in a particular nutrient-enriched river is to be controlled by reducing phosphorus 

concentration, it is vital that catchment managers and policy makers know the threshold phosphorus 

concentration at which the algae become P-limited. If nutrient mitigation results in a river phosphorus 

concentration below this threshold value (termed the  Phosphorus Limiting Concentration), algal 

growth will begin to decline, resulting in a potential shift in river ecology towards good ecological 

status (Hilton et al., 2006).   If the phosphorus concentration remains above the P Limiting 

Concentration following mitigation, algal growth rate will continue unabated, and there is unlikely to 

be a change in river ecology.  Previous studies have shown that Phosphorus Limiting Concentrations 

vary greatly from river to river, ranging from less than 20 µg l
-1  

SRP (Bothwell, 1985; Chambers et 

al., 2006; Popova et al., 2006; Welch et al., 1989) to ca. 100 µg l
-1  

or greater (Bowes et al., 2007; 
 

Matlock et al., 1999).   Although the reduction of phosphorus loadings to rivers is seen as the main 

tool being used by government environmental and conservation agencies to control algal growth and 

improve ecological status in UK rivers, there are other parameters that can also affect algal accrual 

rate; in particular flow-velocity and light.  Increasing river flow velocity can increase the scouring of 

epilithic and epiphytic biofilms from their substrates (Horner et al., 1990), thereby reducing shading 

of macrophyte leaves and ‘cleaning’ gravel substrates, thus increasing their utility as invertebrate 

habitat and potential fish spawning grounds.   Increased flow velocity will also decrease residence 

times for phytoplankton (autotrophic organisms that are suspended within a water body), meaning that 

they have less time in the river to proliferate (Hilton et al., 2006).  Light intensity within the river 

channel also affects the rate of algal growth (Hill and Fanta, 2008; Mosisch et al., 2001).  Recent 

modelling studies on the River Swale, northern England, have suggested that reducing light levels in 

river headwaters by increasing riparian shading could be a more effective means of reducing 

phytoplankton growth than reducing phosphorus concentration (Hutchins et al., 2010). 
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In this paper, phosphorus and suspended chlorophyll-a concentration data for the River Thames from 

 
1997 to 2010 are presented.  These data were used to test the hypothesis that the improvements in 

water quality observed in other studies (Kinniburgh and Barnett, 2010; Neal et al., 2010a) have 

reduced phytoplankton concentration in the Thames. This paper then aimed to identify the Phosphorus 

Limiting Concentration of periphyton (attached biofilm) for the River Thames near Oxford, using 

within-river flume mesocosms.  The flume mesocosms were also used to identify if the other major 

plant nutrients, nitrogen and silicon, were limiting or co-limiting biofilm development, and how 

increases in P, N and Si affect periphyton community structure.  Finally, this paper aims to determine 

if decreased light intensity (equivalent to shading from riparian tree cover) will decrease periphyton 

accrual rates. 

 

 
 
 

1.1  Catchment description 
 
 

The River Thames is the largest river that is wholly in England, with a total length of 354 km and a 

catchment area (to the tidal limit at Teddington in south west London) of 9948 km
2 

(Marsh and 

Hannaford, 2008).  The river rises at Thames Head in Gloucestershire, and flows in an easterly 

direction into the North Sea, east of London (Figure 1). The Thames basin not only contains the UK’s 

capital, London, but also many other major urban centres, including Swindon, Oxford, Slough, 

Maidenhead and Reading.  The many STW associated with this high human population density (ca. 

960 people km
-2 

(Merrett, 2007)) have a major impact on the water quality of the River Thames, with 

 
an estimated 50 % of the soluble reactive phosphorus (SRP) load derived from STW effluent between 

 
1997 and 1999 for the relatively rural middle reaches of the Thames at Wallingford (Bowes et al., 

 
2010b).   Tertiary treatment has been installed at the 36 largest STW (serving approximately 2.7 

million people) upstream of the tidal limit since 2003, resulting in an average 85 % reduction in 

phosphorus load from each sewage works (Kinniburgh and Barnett, 2010).  This has resulted in 

significant reductions in SRP concentration in the River Thames and its tributaries during the 2000s 

(Kinniburgh and Barnett, 2010; Neal et al., 2010a).  Over the coming decade, the population within 
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the Thames basin is likely to increase further, with the planned building of an extra 375 000 homes 

within the basin by 2016 (Environment Agency., 2009).  This will greatly increase pressures on 

drinking water supplies, wastewater treatment, water quality and river ecology (Evans et al., 2003; 

Neal and Jarvie, 2005).   These pressures are likely to be exacerbated by projected climate change 

scenarios that predict declining river flows and increasing water temperatures (Johnson et al., 2009). 

 

 
 
 
 

Despite  the  high  population density,  much  of  the  River  Thames  basin  upstream of  London  is 

relatively rural (Environment Agency., 2009), with ca. 45 % of land area being classified as arable, 

11 % woodland and 34 % grassland (Fuller et al., 2002).  Only ca. 6 % of the catchment land cover 

was urban or semi-urban development.  Agriculture is relatively intensive, and the resulting diffuse 

phosphorus, nitrogen and sediment losses will impact on water quality within the basin. 

 

 
 
 
 

1.2  Study sites 
 
 

The flume mesocosms experiments took place on the Seacourt Stream at Wytham, which is a small 

distributary / mill stream that is fed directly by the River Thames, just west of the city of Oxford 

(Figure 1).  The Seacourt Stream was chosen to carry out nutrient limitation and shading experiments, 

rather than the River Thames itself, as the Thames is too deep for fieldworkers to safely operate the 

flumes. The Thames is also extensively used by leisure boats, and the large flume mesocosms used in 

this study would pose a hazard to this boat traffic.  Twelve flumes (4 sets of 3 flumes) were installed 

ca. 50 – 80 m from the River Thames, along a relatively straight, uniform flowing section of river 

with a negligible amount of riparian shading.  Maximum average river depth and width were ca. 1 m 

and 5 - 6 m respectively. Land use at the site was grassland, with sheep and cattle grazing. 

Simultaneous water sampling and analysis of the Seacourt Stream and Thames (just upstream of the 

confluence) showed that there was no observable change in nutrient concentrations taking place 
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within the Seacourt Stream itself, due to interactions with bed sediments or biota, and so the flume 

experiments were carried out on unaltered River Thames water. 

 

 
 
 
 

The water quality and chlorophyll-a concentration of the River Thames at Wallingford (Figure 1) has 

been monitored at weekly interval from 1997 to 2002, 2006 to 2007 (Neal et al., 2010a), and from 

February 2009 until present, as part of the Centre for Ecology and Hydrology’s Thames Initiative 

research platform.  Water quality was also monitored at weekly intervals since February 2009 for the 

River Thames at Swinford (ca. 2 km upstream of the Seacourt Stream study site) (Figure 1). 

 

 
 
 

2  Methodology 
 
2.1  Water quality analysis 

 
 

Samples of river water were taken manually at weekly interval from the main flow of the River 

Thames at Wallingford (1997 to 2010) and Swinford (2009 to 2010).  Subsamples were filtered 

immediately  in  the  field  (0.45  um  cellulose  nitrate  membrane  filter,  WCN  grade;  Whatman, 

Maidstone,  UK),  and  analysed  for  nutrient  concentration.     Soluble  reactive  phosphorus  was 

determined using the phosphomolybdenum blue colorimetry method of Murphy and Riley (1962), as 

modified  by  Neal  et  al.,  (2000).    Samples  were  analysed  within  24  hours,  to  minimise errors 

associated  with  sample  instability  (House  and  Warwick,  1998;  Jarvie  et  al.,  2002a).    SRP  is 

considered equivalent to bioavailable phosphorus (House, 2003).   Dissolved reactive silicon 

concentration was determined by reaction with acid ammonium molybdate, to form yellow 

molybdosilicic acids. These were then reduced using an acidified tin (II) chloride solution to form 

intensely coloured silicomolybdenum blues, which were quantified spectrophotometrically using a 

Descrete Analyser (Auto Analyser 2; Seal Analytical, Fareham, UK) (Mullin and Riley, 1955). 

Nitrate-N concentration was analysed by ion chromatography (Dionex DX500).   Chlorophyll-a 

concentration was determined by filtering a known volume of river water (ca. 500 ml) through a filter 
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paper (GF/C; Whatman, Maidstone, UK) and extracting the pigment using a solvent.  The quantity of 

chlorophyll-a was then determined spectrophotometrically. The River Thames samples from 1997 to 

2007 were extracted using ethanol (Neal et al., 2006), and from 2009 onwards, 90 % acetone was used 

for the pigment extraction (Marker et al., 1980).  Parallel testing of river samples by the two solvent 

extraction techniques showed there was no observable difference between the two chlorophyll 

methods. 

 

 
 
 

2.2  Flume mesocosm experiments 
 
 

Within-stream through-flow flumes were used in this study to produce a range of nutrient 

concentrations, flows and light levels, simultaneously, at a single point in the river (Bowes et al., 

2010a) (Figure 2), allowing the effect of these perturbations on biofilm accrual rate within each flume 

to be investigated.  The flumes were fabricated from polyvinyl chloride (PVC) sheeting.  Each flume 

was 5 m long and 0.3 m wide, with gates at the upstream end, to control the flow rate of river water 

entering them.  The flumes were grouped in sets of three, and secured within aluminium frames to 

minimise flexing.  Floats were attached along the sides of each set of three flumes, to maintain them 

at a constant water depth of 4 cm, irrespective of the changing water depth in the river.  Because the 

flumes are floating at a constant depth within the water column, approximately 0.5 m above the bed 

sediment, they were not colonised by invertebrates, which would have a major effect on the amount of 

biofilm accrual that is observed during the experiments, due to grazing.  The flumes were secured in 

place in the river by sliding them over metal poles that were driven into the river bed. Each flume had a 

3 cm deep and 15 cm long sump, two thirds of the way down the flume (Figure 2), to collect chemical 

precipitate (from phosphorus reduction treatments used during the Experiment 1 (described below)) 

and river debris that entered the flume, preventing it from entering the lower section of the flume.  

Unglazed ceramic tiles (7 cm x 7 cm) were placed in this downstream section of each flume, to act as 

substrates for periphyton growth.   Periphyton is a complex community of algae, cyanobacteria, 

heterotrophic microbes and associated detritus that produces a biofilm on within-river 
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surfaces.  The rate of periphyton colonisation on new surfaces such as macrophyte leaves has been 

identified as the key process in ecological community degradation, associated with stream 

eutrophication (Hilton et al., 2006). 

 

 
 
 

2.2.1 Effect of phosphorus concentration changes on periphyton 
 

 

(Experiment 1) 
 

 

A  phosphorus manipulation experiment was begun on the 18
th   

August 2010.   Six flumes were 

deployed in  the  Seacourt Stream at  Wytham, in  a  river  stretch  with  no  shading  from  riparian 

vegetation and relatively uniform flow.  The flumes were deployed in clusters of three, with a control 

and two nutrient treatments within each cluster.  The flow-control gates at the upstream end of each 

flume (Figure 2) were adjusted until a water velocity of 0.10 m s
-1 

(measured using a Valeport model 

801 electromagnetic flow meter (Valeport Ltd., Totnes, UK)) was produced in the middle section of 

 
each flume.  One flume in each cluster received no chemical additions, and therefore had unmodified 

Thames river water running through it.  These acted as experimental controls.  Treatments were 

randomly assigned to the four remaining flumes, to simultaneously produce a range of phosphorus 

concentrations, spanning the ambient river concentration at the time of the experiment (Table 1).  One 

of the flumes received a continuous addition of concentrated potassium dihydrogen orthophosphate 

solution into the upper section of the flume, to produce a ca. 60 % increase in the average ambient 

phosphorus concentration (which was 205 µg l
-1 

at the start of the experiment).  The three remaining 

flumes had the SRP concentration in the incoming river water reduced, using the P-stripping 

methodology developed by Bowes and co-workers (2007).   These flumes received continuous 

additions of a concentrated iron (II) sulphate solution.  This added iron solution reacted with the 

soluble, bioavailable phosphate in the incoming river water, forming a non-bioavailable precipitate of 

Fe3(PO4)2    (Reynolds  and  Davies,  2001;  Suschika  et  al.,  2001),  thereby  reducing  the  SRP 

concentration within the flume.  The iron addition rates were adjusted until the SRP concentrations in 

the incoming river water (measured in the lower part of the flumes, where the tile substrates were to 
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be positioned) were reduced to approximately 75, 30 and 20 % of the current ambient SRP 

concentration. These phosphorus and iron additions were delivered to the upstream end of the flumes 

(to allow the chemical treatments to fully mix with the incoming river water and to allow time for the 

iron  –  phosphorus  precipitation  reaction  to  occur  before  the  water  reached  the  downstream 

periphyton-monitoring section of the flumes) from stock solutions on the river bank via pipes, using a 

multi-channel peristaltic pump. 

 

 
 
 
 

When the required SRP concentrations were achieved, unglazed ceramic tiles were placed in the 

lower section of each flume, to provide substrates for periphyton growth.  The SRP concentrations 

were monitored two to three times per day.  Water samples (60 ml) were taken from the lower section 

of the flumes (where the ceramic tiles were positioned), immediately filtered through a 0.45 µm 

cellulose nitrate membrane filter (WCN grade; Whatman, Maidstone, UK) and analysed for SRP 

concentration (within 30 minutes of sampling) using a Micromac 1000 field autosampler / analyser 

(Systea Analytical Technologies, Anagni, Italy).  Parallel investigations during this experiment and in 

previous flume studies (Bowes et al., 2010a; Bowes et al., 2007) confirmed that filtering the iron- 

dosed river water stopped the phosphorus stripping reaction, thereby allowing the true SRP 

concentration overlying the periphyton to be quantified. A randomly allocated tile was removed from 

each flume at two day intervals, to determine periphyton biomass by chlorophyll-a analysis. 

 
 
 

 
After nine days (27

th 
August, 2009), most of the tiles had developed a thick periphyton biofilm layer, 

and sloughing appeared to be imminent.  The six remaining tiles in each flume and associated 

periphyton were carefully removed, and returned to the laboratory for chlorophyll-a analysis and algal 

community identification / quantification.  These replicate tiles were used to provide information on 

within-flume variability in periphyton accrual rates and algal community structure. 
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2.2.2 Effect  of  increasing  nutrient  concentrations on  periphyton 
 

 

(Experiment 2) 
 

 

On the 18
th  

August 2010, approximately 30 m upstream of the phosphorus manipulation experiment 

described above, a second flume experiment was undertaken, to investigate if periphyton in the River 

Thames was phosphorus, nitrogen or silicon limited / co-limited.  As with Experiment 1, this study 

was conducted in two clusters of three flumes, one flume in each cluster randomly assigned to receive 

no chemical additions to the incoming river water, serving as an experimental control.  The remaining 

four flumes had one or more of their P, N, and Si concentrations in the incoming river water 

increased, by the continuous addition of concentrated solutions of potassium dihydrogen 

orthophosphate (KH2PO4), sodium nitrate (NaNO3) and sodium silicate solution (Na2O7Si3) to the 

upstream end of the flume (Table 1).  The treatments in these four flumes were: N, P, P + N, and P + 

N + Si.   The nutrient enrichment treatments allocated to each flume are given in Table 1.  The P and 

N stock solutions were made by dissolving KH2PO4 and NaNO3 in deionised water. The silicon stock 

solution was produced by adding sodium silicate solution (dissolved in concentrated NaOH) to the 

alkaline river water from the study site, to minimise silicon precipitation within the stock solution. 

The openings in the gates at the upstream end of each flume were adjusted to give a standard flow 

velocity of 0.08 m s
-1  

in the middle of each flume.  Unglazed ceramic tiles were then placed in the 

lower part of each flume to act as periphyton growth substrates.  Water samples were taken from the 

lower section of each flume and immediately filtered through a 0.45 µm cellulose nitrate membrane 

filter (WCN grade; Whatman, Maidstone, UK).  SRP analysis was carried out daily on site (at the 

University of Oxford’s Wytham Field Station Laboratories) using a Micromac 1000 field nutrient 

analyser (Systea Analytical Technologies, Anagni, Italy).   Silicon and nitrate samples were taken 

every two to three days, returned to the Centre for Ecology and Hydrology (CEH) Wallingford 

laboratories and analysed within 24 hours. 
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A randomly selected tile was removed at 2 day intervals throughout the experiment, for chlorophyll-a 

analysis.  The experiment was terminated after 9 days, as some of the tiles were showing signs of 

having lost some periphyton biomass due to sloughing.   The remaining tiles (six per flume) were 

removed and analysed for chlorophyll-a concentration and algal composition analysis. 

 

 
 
 

2.2.3 Effect of light intensity on periphyton (Experiment 3) 
 

 
 

Light intensities were measured in direct sunlight, and a range of dappled tree shade and full tree 

shade, using a 1 metre long light probe (SunScan, model SS1), around midday on a sunny day in 

September 2010.  Dappled and full tree shade reduced the light intensity by 46 and 71 % respectively. 

Sheets of plastic mesh (greenhouse shading material) were then layered above the light meter, until 

shading levels equivalent to that of partial and full tree shading were obtained.  These numbers of 

mesh layers were then placed over the downstream sections of the flumes, to recreate the light 

intensities equivalent to these different levels of tree shading. Previous studies have successfully used 

similar approaches to investigate light limitation of periphyton (Hill et al., 2009).  Each set of three 

flumes contained an unshaded, intermediate shaded (equivalent to dappled tree shade) and fully 

shaded (equivalent to full tree canopy cover) flume.  The positions of these shading treatments within 

each set of three flumes were allocated randomly (Table 1). 

 

 
 
 

On 7
th  

September, 2010, twelve flumes (four clusters of three flumes) were deployed at two points 

along a 30 m stretch of the Seacourt Stream, as described in Experiment 2.  This third experiment 

aimed to examine the impact of light shading and flow velocity on periphyton biomass accrual and 

algal composition.  Six of the flumes (two clusters of three) had the flow velocity of the incoming 

water set to 0.10 m s
-1

,(same as in Experiment 1) and the remaining six (30 m downstream of the first 

six flumes) had a higher velocity of 0.15 m s
-1

, which was the highest consistent flow that could be 

 
achieved by opening up the flow control gates in each flume.  Fourteen unglazed ceramic tiles were 



12  

placed in the lower section of each flume, underneath the shading material.   Combined light / 

temperature loggers (HOBO pendent logger; Onset Computer Corporation, Massachusetts, USA) 

were placed alongside the tiles, to monitor levels of shading, and to determine if this shading reduced 

the water temperature within the flumes.  The loggers were cleaned at two day intervals, to remove 

the colonising periphyton that was covering the light sensor, as this would cause errors in light 

intensity readings. Only light intensity readings taken after sensor cleaning were used to infer the 

effect of shading in each flume.  Two tiles were removed from each flume at 2 day intervals, to 

determine chlorophyll-a concentration and algal community composition. The experiment was ended 

on the 17
th 

September, 2010 (after ten days), as sloughing of periphyton from the tiles appeared to be 

imminent. The remaining six tiles in each flume were removed for subsequent chlorophyll-a and algal 

composition analysis. 

 

 
 
 

2.3  Periphyton biomass analyses 
 
 

The periphyton biomass that had accrued on each tile was estimated by chlorophyll-a analysis.  The 

entire periphyton biofilm was washed and scraped from each tile, using 300 ml of deionised water. 

The resulting suspension was homogenised by vigorous stirring, and a 40 ml sub-sample was taken 

and filtered through a GF/C grade filter paper (Whatman Ltd., Maidstone, UK).  The filtered sub- 

samples were then extracted overnight at 4
o
C in 90 % acetone and the quantity of chlorophyll-a in 

each sub-sample was quantified spectrophotometrically (Marker et al., 1980).  The total quantity of 

chlorophyll-a on each tile was then back-calculated. 

 

 
 
 
 

The total mass of periphyton and sediment covering the tile substrates was also quantified, by filtering 

another 40 ml sub-sample of the 300 ml homogenised suspensions (described above) through ashed, 

pre-weighed GF/C filter papers. The filter papers were then dried overnight at 60°C before being 

cooled to room temperature in a desiccator and reweighed. The dry weight within each sub-sample 
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was then used to calculate the dry mass on each tile (g cm
-2

).  Following this, filter papers were ashed 

at 500°C for two hours in a muffle furnace (model AAF 1100; Carbolite Ltd., Hope, UK).   After 

cooling overnight at 60°C, filter papers were reweighed and the Ash Free Dry Mass (AFDM) on each 

tile back-calculated (which is equivalent to the organic content of the biofilm).  Autotrophic Index 

was calculated by dividing the AFDM by the chlorophyll-a concentration (APHA., 1995).  This gives 

an indication of the numbers of autotrophs in the biofilm, relative to heterotrophs and detritus. 

 

For Experiment 3 (where replicate treatments were employed), a one-way analysis of variance 

(ANOVA) was used to test whether the different shading treatments in each flume had a significant 

effect on chlorophyll-a concentrations. Post-hoc Tukey’s multi comparison test followed significant 

ANOVA (p < 0.05), to differentiate between mean chlorophyll-a concentrations.  If the chlorophyll 

concentration data were not normally distributed or the variances were unequal (tested using Levene’s 

test), the data were log-transformed prior to analysis. Differences in periphyton biomass under 

different flow conditions in Experiment 3 were analysed using a two sample t-test. 

 

 
 
 

2.4  Diatom community analysis 
 
 
 

Diatom  communities  were  investigated  on  three  tiles  per  flume,  sampled  at  the  end  of  each 

experiment.  The biofilm was scrubbed off each individual tile using a toothbrush and rinsed into a 

clean tray using deionised water. Samples were transferred to 50 ml plastic tubes, kept cold and dark 

in the field and then frozen immediately on return to the laboratory. Defrosted samples were 

thoroughly mixed, before ca. 10ml of sample was placed in a beaker and cleaned using the ‘hot 

peroxide method’ (Kelly et al., 2001). Hydrogen peroxide solution (30 %) was added to each sample 

and these were then gently heated on a hotplate until the samples had turned clear. A few drops of 10 

% hydrochloric acid were added to remove carbonates, before samples were rinsed three times in 

deionised water. Samples were mounted onto slides using Naphrax (refractive index of 1.73, Brunel 

Microscopes Ltd, Chippenham, UK). 
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Frustules were identified according to the methods described in Kelly et al., (2001), using the keys of 

Krammer & Lange-Bertalot (2004a, b, 2007a, b)   and Kelly et al. (2005). On each slide counting 

ceased once 300 frustules belonging to non-planktonic taxa had been identified. For Experiment 1, 

diatoms from all flumes were identified. In Experiment 2, diatoms from the N addition, N,P,Si 

addition and one control flume were identified (flumes 1 to 3; Table 1) and in Experiment 3, diatoms 

from flumes 4 to 12 were identified, to give three replicates of each level of shading (Table 1). 

 

 
 
 
 

To investigate the effect of nutrient concentration on diatom community composition, the trophic 

diatom index (TDI) was calculated for each sample in Experiments 1 and 2 using the nutrient 

sensitivity and indicator values and the formula given in Kelly et al., (2001).  Possible outcomes can 

range from 0 to 100, with a 100 indicating extremely high nutrient concentrations. In addition, the 

percentage of the diatom community composed of motile species was calculated. 

 

 
 
 
 

To characterise any differences in community composition between treatments, multivariate analyses 

were performed using CANOCO version 4.5 (Ter Braak, 1988-2003). Exploratory detrended 

correspondence analyses (DCA) indicated that gradient lengths were short (less than 2) and this, 

together with an inspection of species responses, suggested that linear methods would be most 

appropriate  (Leps  and  Smilauer,  2002).  Redundancy  analysis  (RDA)  was  used  to  examine 

relationships between species and environmental data (SRP concentrations and levels of shading, 

input as nominal variables for Experiments 1 and 3 respectively and for Experiment 2 concentrations 

of SRP, N-nitrate and dissolved reactive silicon input as continuous variables) and Monte Carlo 

permutation tests were used to test the significance of the environmental variables. Principal 

components analysis (PCA) was used to show the variation in diatom community structure across the 

treatments. Changes in species diversity were also quantified using the Shannon diversity index. 
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3  Results and discussion 
 
3.1  Changes in River Thames water quality 

 
 
 

Phosphorus concentrations have decreased significantly in the River Thames at Wallingford since the 

late 1990s (Figure 3).  The maximum SRP concentrations observed in 1997 and 1998 were 2100 and 

1788 µg l
-1  

respectively, with mean annual concentrations of 1320 and 789 µg l
-1

.   The annual 
 

maximum and mean SRP concentrations declined to ca. 800 and 420 µg l
-1 

in each of the following 3 

years (1999 to 2001).  Maximum and mean total phosphorus (TP) concentrations also declined from 

2792 and 1461 µg l
-1 

in 1997 to 844 and 471 µg l
-1 

in 2001, respectively.  Similar sudden declines in 

SRP concentration in 1999 have also been observed in Environment Agency (EA) water quality data 

for a monitoring site 2 km downstream of Oxford at Radley, and was attributed to the introduction of 

phosphorus removal at Swindon STW (with a population estimate of 199 000) in the upper Thames 

catchment (Kinniburgh and Barnett, 2010).   Further reductions in SRP concentration have been 

observed from 2002 to 2010 (Figure 3), with maximum and mean concentrations in 2010 of 344 and 

202 µg l
-1 

respectively, and due principally to the introduction of P removal at 36 of the largest STWs 

 
in the catchment (Kinniburgh and Barnett, 2010).  There has also been a 26 % reduction in annual 

average NO3-N concentration during this monitoring period, decreasing from 8.9 mg l
-1 

in 1998 to 6.6 

mg l
-1 

in 2010. 

 

 
 
 
 

However, this major improvement in water quality and reduction in trophic status observed in this 

study has not delivered the expected reduction in phytoplankton concentration. In fact, there has been 

an  almost  four-fold  increase  in  chlorophyll-a  concentrations in  recent  years,  with  a  maximum 

observed concentration of 87 µg l
-1 

between 1997 and 2002, increasing to 328 µg l
-1 

in 2009 (Figure 

2).   This observation is at odds with the conclusions of Kinniburgh and Barnett (2010), who’s 

 
chlorophyll  concentration  data  from  the  years  1994  and  2006  implied  that  phytoplankton 
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concentrations had begun to decline in the Thames, despite the orthophosphate concentrations still far 

exceeding the values they thought to be limiting to algal growth.  The chlorophyll concentration in 

2006 was actually the lowest observed within this study, with a maximum of less than 12 µg l-1, 

 
despite the P concentration being similar to that in 2009.  By combining the observations from these 

CEH and Environment Agency (EA) studies, and in particular the nutrient and chlorophyll-a data 

from 2009-2010, it is now clear that declining SRP concentrations have not been reduced to algae- 

limiting levels, and other factors that control phytoplankton concentration (such as river ecology and 

food-web interactions, light, water temperature and flow) must be the cause of the low algal biomass 

observed in 2006 and the major algal bloom in 2009, rather than nutrient availability. 

 
 
 

 

3.2  Effect of phosphorus concentration changes on periphyton 
 
 

The SRP concentrations observed in each flume throughout the P manipulation experiment 

(Experiment 1) are shown in Figure 4. The SRP concentration of the two control channels (equivalent 

to the ambient concentration in the Seacourt Stream) throughout the nine days of the experiment 

varied between 203 and 260 µg l
-1

, with an average concentration of 225 µg l
-1

.  The flume receiving 

soluble phosphate additions varied from 297 to 480 µg l
-1

, with an average SRP concentration of 373 
 

µg l
-1

, which was equivalent to a 66 % increase in ambient SRP concentration over the course of the 

experiment.  The three flumes receiving the iron sulphate additions had the SRP concentration of the 

incoming river water reduced by 24, 63 and 87 %, giving average SRP concentrations throughout the 

experiment of 171, 83 and 30 µg l
-1 

respectively.   The nitrate-N concentration during this experiment 

was 5.2 mg l
-1

, giving N:P ratios ranging from 384:1 to 31:1 for the 30 and 373 µg l
-1  

respectively. 

The N:P ratio in the River Thames at the study site was 51 at the time of the experiment. 

 

 
 
 
 

The rates of periphyton accrual in each flume (estimated by chlorophyll-a concentration) through the 

course of the experiment are shown in Figure 5, and the final average concentrations of chlorophyll-a 
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produced at the range of average SRP concentrations at the end of the experiment (day 9) are shown 

in Figure 6.  Figure 5 shows that the amount of chlorophyll-a on the tiles in one of the control flumes 

had  started  to  decrease  between  day  8  and  9,  corroborating  the  field  observations  during  the 

experiment that periphyton biomass in some flumes had reached its maximum by day 9, and that 

biofilm sloughing was beginning to take place.  After nine days, the quantities of chlorophyll-a 

produced by the P-addition flume, one of the control flumes, and the iron-addition flume with its 

average SRP concentration reduced to 171 µg l
-1

were all similar, with chlorophyll-a concentrations 

ranging from 12.6 to 13.2 µg cm
-2  

(Figure 6).  The dry mass of periphyton and sediment that had 
 

accumulated in these flumes varied between 21 and 23 mg cm
-2

, with an organic content (quantified 

by AFDM) of 15 to 16 %.  The other control flume (with an SRP average of 225 µg l
-1

) had a lower 

quantity of periphyton biomass (chlorophyll-a concentration of 11 µg cm
-2

), due to the sloughing 

identified in Figure 5.  The two flumes that had their SRP concentrations reduced to 83 and 30 µg l
-1 

had average chlorophyll-a concentrations of 9.8 and 9.4 µg cm
-2  

respectively, equivalent to a 25 to 

30% reduction when compared to the ca. 13 µg cm
-2 

of the other treatments, and a reduced dry mass 

of ca. 18 mg cm
-2

.  Autotrophic Index (AI) values varied from 190 to 253, which indicate that the 

biofilm community is relatively well balanced between heterotrophic and autotrophic conditions 

(Ameziane et al., 2002). The highest AI value was from the flume with an average SRP concentration 

of 30 µg l
-1

., indicating that the algal population has been suppressed at this low phosphorus 

concentration. 

 

 
 
 
 

These results show that phosphorus is not limiting the rate of periphyton accrual in the River Thames 

at the time of this study.  A 60 % increase in ambient SRP concentration from ca. 225 to 373 µg l
-1 

did not increase the rate of periphyton accrual, showing that phosphorus is in excess for periphyton 

growth.   This explains why there has not been a reduction in phytoplankton biomass in the River 

Thames, despite a reduction in average annual SRP concentration from ca. 2000 µg l
-1  

in the late 

1990s to 202 µg l
-1 

in 2010.  Reducing the SRP concentration to 171 µg l
-1 

also had no effect on the 
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biomass of periphyton produced.  Phosphorus limitation was only observed in flumes with SRP 

concentrations of 83 and 30 µg l
-1

, but this only reduced the periphyton biomass by ca. 25 %. 

Therefore, the phosphorus limiting concentration in this part of the River Thames is between 83 and 

171 µg l
-1

.  Similar periphyton limitation studies on the River Frome, Dorset and the River Kennet (a 

major tributary of the River Thames) identified phosphorus limiting concentrations of ca. 90 and 60 

µg  l
-1   

SRP  respectively  (Bowes  et  al.,  2010a;  Bowes  et  al.,  2007).    As  a  reduction  in  SRP 

concentration to 83 µg l
-1  

only resulted in a minor reduction in the periphyton biomass and accrual 

rate, it is likely that River Thames SRP concentration will probably need to be reduced to below 100 

µg l
-1 

during the ecologically-active spring and summer period before a reduction in algal biomass and 

a potential improvement in ecological status would be observed. 

 

 
 
 
 

In contrast to the chlorophyll-a results, diatom community composition only significantly altered from 

that present at ambient SRP concentrations once SRP concentrations were reduced to 30 µg l
-1

, 

suggesting that the Phosphorus Limiting Concentration was between 30 and 83 µg l
-1

. This is 

illustrated in Figure 7, with the three replicate samples from the 30 µg SRP l
-1    

flume markedly 

separated (largely along axis 1) from the other samples. Further support is provided by the RDA in 

which this treatment was the only one which significantly explained any variation (variation explained 

 
32.4 %, F = 7.68, p = 0.002) in the diatom communities. This sudden shift in community composition 

at an SRP concentration of 30 µg l
-1 

is also apparent in terms of both diversity and the percentage of 

motile cells. This flume contained a greater diversity of diatoms and a reduced proportion of motile 

cells compared to all other flumes in this experiment (Table 3). The diatom community was 

characterised by an increase in the abundance of taxa in class 3 of the TDI, described as ‘species 

favoured by intermediate concentrations of nutrients’ (Kelly et al., 2001) and this was balanced by a 

slight reduction in taxa in sensitivity class 4 described as ‘species favoured by high concentrations of 

nutrients’. Taxa in sensitivity class 3 that were more common under the lowest P concentrations 

included Suriella brebissonii, Navicula capitoradiata and Cocconeis placentula,, whereas this flume 



19  

contained a lower relative abundance of Nitzschia acicularis and N. capitellata, which were taxa from 

sensitivity class 4 (Figure 7). 

 

 
 
 
 

The TDI index values did not show any marked difference among treatments, which may suggest that 

this tool is relatively insensitive at SRP concentrations greater than ca. 50 µg l
-1

.  However, it should 

be noted that the communities examined here were relatively young (9 days old), and TDI is usually 

applied to more mature and established communities.  Despite this, the communities contained high 

algal standing crops and were sampled at a time at which sloughing appeared imminent, suggesting 

that the biofilm had reached its maximum biomass. The apparent lack of sensitivity of the TDI results 

to a magnitude change in SRP concentration may suggest that factors other than SRP concentration 

may control the diatom community composition at this site. These factors could include the deposition 

of algal cells from upstream, high propagule pressure, and the large amount of suspended sediment 

present within the river water (ca. 10 mg l
-1

). High rates of deposition of algal cells seems unlikely to 

account  for  the  differences  in  chlorophyll  concentrations  and  diatom  community  composition 

observed here as planktonic diatom species (mainly Cyclotella spp., Stephanodiscus spp. and 

Aulacoseira spp.), only accounted for 6.0 ± 0.4 % of all frustules identified across this study. These 

centric diatoms attained high abundances within the phytoplankton in the Thames at Wallingford at 

the time of this experiment. Greater differences in chlorophyll concentrations within the shading 

experiment (see below) also indicates that algal growth was taking place within the flumes and thus 

communities were not just a reflection of high rates of colonisation within a large river. 

 

 
 
 
 

Thus, chlorophyll-a concentrations responded more readily to the reduction in P concentrations than 

diatom community structure. Minor changes in algal community structure in response to a reduction 

in water P concentration has also been reported by Steinman et al. (1991), who attributed it to the 

relatively modest change in P concentration used in their study (from ca.7 to 3 µg l
-1

).  However, in 
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this study (as in a number of other studies e.g. Hill et al., 2009; Rosemond et al., 2000) a large range 

in P concentration was used, and it suggests that the diatom community is resistant to major changes 

in water phosphorus concentrations, at least over the short time scales investigated. Furthermore, it is 

likely that the species pool within the River Thames is dominated by taxa adapted to high nutrient 

concentrations. 

 

 
 
 
 

3.3  Effect of increasing nutrient concentrations on periphyton 
 
 

The nutrient concentrations observed in each flume during Experiment 2 are given in Table 2. Flumes 

receiving phosphorus additions had the SRP concentrations in the incoming river water increased 

from 235 to ca. 300 µg l
-1

; equivalent to an increase of between 25 and 30 %.   Nitrogen addition 

flumes had their average NO3-N incoming river water increased by 15 %, from 5.2 to ca. 6.0 mg l
-1

. 

The flume receiving additions of all three nutrients (Flume 2) also had its dissolved reactive silicon 
 

concentration increased by 15 %, from the average ambient river concentration of 3.05 mg l
-1  

to 3.5 

mg l
-1

.  A greater increase in ambient dissolved silicon concentration in this flume was not possible, 

due to rapid precipitation when the silicon stock solution entered the flume. 

 

 
 
 
 

The quantities of chlorophyll-a that had accrued on the tile substrates in each flume are shown in 

Figure 8.  There was no apparent difference between any of the nutrient-addition treatments and the 

controls.  Furthermore, the highest average quantities of chlorophyll-a were actually observed in the 

control flumes receiving unmodified river water.  This shows that periphyton at the study site are not 

limited, or co-limited by any of the three major plant nutrients; P, N or Si, during the experiment. 

From analysing the water quality monitoring data obtained from the River Thames at Swinford and at 

Wallingford, nitrate concentrations through 2010 were at their minimum concentration during late 

August (when the experiment took place).   Therefore, periphyton at  the study site will not be 

nitrogen-limited or  co-limited  throughout  the  entire  year.    In  contrast,  phosphorus  and  silicon 
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concentrations in the Thames at Swinford and Wallingford were approaching their annual maximums 

in August 2010, and were both at a minimum in April and May, and so there is a possibility that these 

nutrients may become limiting or co-limiting at other times of the year at the study site, and in 

particular during the spring period when concentrations are lowest and algal biomass (as measured by 

suspended chlorophyll-a) is usually at its highest. 

 

 
 
 
 

In agreement with the chlorophyll data, there was also no impact of increasing nutrient concentrations 

on the composition of the diatom communities; in the RDA, concentrations of P, N and Si were not 

significant (all canonical axes: F = 0.94, p = 0.54). Furthermore, TDI values were similar across 

treatments (river water = 77.07 ± 0.10; N addition = 77.81 ± 0.94; P, N and Si addition = 78.44 ± 

0.97) as were the percentage of diatoms that were motile (river water = 72.67 ± 0.51; N addition = 

 
73.78 ± 1.68; P, N and Si addition = 73.33 ± 3.08). 

 
 
 
 
 

3.4  Effect of light intensity on periphyton 
 
 

The effect that the shading materials had on light intensities reaching the ceramic tile substrates are 

shown in Figure 9.  The tiles in the unshaded flumes (in direct sunlight for most of the day) received 

maximum light intensities of between 26 000 to 58 000 Lx through the course of the experiment, with 

an average daily maximum of 44 000 Lx.  The average light intensity during daylight hours was 15 

700 Lx.  The flumes that had intermediate shading had maximum light intensities ranging from 16 

 
000 to 40 000, and an average daytime light intensity of ca. 10 000. This intermediate, partial shading 

reduced the maximum daytime light intensity in these flumes to ca. 27 000 and 10 000, equivalent to 

reducing direct sunlight by ca. 35 to 40 %.  The fully shaded flumes had maximum light intensities of 

between 7 000 and 19 000 Lx (Figure9), and an average daytime light intensity of 4500 Lx, which 

was equivalent to reducing direct sunlight by ca. 70 %.   These reductions in direct sunlight monitored 

within the flumes were closely comparable with those observed under partial and full tree canopy 
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cover  of  46  and  71  %  respectively, prior  to  the  start  of  the  experiment.    Flume  daily  water 

temperatures (measured at hourly interval) ranged from 14 to 17 
o
C throughout the study.   The 

shading treatments had little effect on water temperature within the flumes, with all flumes having an 

average temperature of 15.8 
o
C.   However, the unshaded flumes had their daytime maximum 

temperatures increased by ca. 0.4 
o
C. 

 

 
 
 
 

The flumes in direct sunlight accrued significantly more periphyton than the shaded flumes (F = 

 
12.16, p = 0.003) (Figure10).  Intermediate shading (equivalent to dappled tree shading) reduced the 

chlorophyll-a concentration by 30 % in water velocities of 0.10 m s
-1

, and by 20 % at 0.15 m s
-1

.  The 

fully shaded flumes (equivalent to full riparian tree canopy cover) reduced the accrued periphyton 

biomass by 34 to 56 %, compared to flumes in full sunlight.  The Autotrophic Index values for the 

unshaded flumes in the low and high flow velocity flumes (235 and190 respectively) were much 

lower than the two fully shaded flumes (380 and 358), suggesting that reduced light levels were 

limiting the algal population.  For all three shading treatments, there were no significant differences 

between high and low flow-velocities (unshaded; t = 0.03, p = 0.978), (partial shade; t = -1.51, p = 

0.182), (full shade; t = 0.86, p = 0.416), showing that this small difference in water velocity of 0.05 m 

s
-1 

had little effect on periphyton accrual rates.  Further studies are needed to investigate the impact of 

flow velocity on biofilm accrual rate, using more representative ranges of velocities that are 

experienced by epiphytic and epilithic biofilms within river channels. 

 

 
 
 
 

Light intensity also influenced diatom community composition (Figure11); the community growing in 

the full shade flumes were significantly different (RDA, F = 8.52, p = 0.002, 25 % of variance in 

species data explained) from that found at higher light intensities. However, there was no difference in 

the mean TDI scores for the three treatments (no shade: 76.30 %, intermediate shade: 77.73 %, full 

shade: 77.38 %).   Shaded flumes contained more diverse communities with a lower proportion of 
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motile diatoms (Table 4). Shading was also found to reduce the proportion of motile diatoms in a 

recirculating flume study by Lange et al., (2011). As in the current study (Figure11),  the   motile 

diatom Nitzschia palea was less abundant in the shaded treatments, whereas the adnate diatoms 

Cocconeis placentula and Achnanthidium minutissimum occurred at higher abundances under reduced 

light (Lange et al., 2011). Motile diatoms are generally at an advantage within thick biofilms (e.g. 

biofilms growing in full sunlight), where their motility allows them to access light and nutrients more 

effectively than attached diatoms. 

 

 
 
 

3.5  Implications for future management of the River Thames 

catchment 

The water quality of the River Thames has greatly improved since the late 1990s, and this seems to be 

directly attributable to the STW improvements that have been introduced within the catchment. 

Phosphorus concentrations in the River Thames at Wallingford have been reduced ten-fold between 

1997 and 2010, and nitrate concentrations have also been reduced by 26 % during the same period. 

However, water quality monitoring within this study, in conjunction with earlier data sets (Neal et al., 

2010a), have shown that phytoplankton biomass has greatly increased in the late 2000s, with the 

summer of 2009 having a maximum chlorophyll-a concentration of 328 µg l
-1

,  a factor of ten higher 

than  those  seen  in  1997  to  2002.    Other  studies  have  regularly  observed  similar  maximum 

chlorophyll-a concentrations (of between 250 to 350 µg l
-1

) in this part of the River Thames in the 

period 1980 to 1994 (Kinniburgh et al., 1997), prior to STW improvements. This is of great concern, 

as the reduction of phosphorus concentration is seen by UK policy makers and catchment managers as 

one of the main tools in delivering the good ecological status required under the WFD, and algal 

biomass is seen as the key symptom of eutrophication. 
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This study has shown that despite the dramatic reductions in nutrient enrichment, phosphorus and 

nitrate concentrations in the River Thames are still too high to limit or co-limit both phytoplankton 

and periphyton biomass.   The use of the phosphorus stripping methodology within this study has 

shown that reducing the summer SRP concentration by a further 50 µg l
-1  

(to 171 µg l
-1

) would still 

have no effect on algal growth rates and  algal community composition.  It is also likely that such a P 

reduction would have no observable effect on the river’s macrophyte and invertebrate assemblages, 

which also need to be improved to comply with the WFD.  Some reduction in periphyton accrual rate 

would be observed at an SRP concentration of 83 µg l
-1

.  These observations fit with the suggested 

average annual SRP targets to achieve good ecological status in the UK of 120 µg l
-1  

(UKTAG., 
 

2008).   Average summer SRP concentrations approaching 30 µg l
-1 

would need to be attained before a 

change in algal community structure would be observed, but even this 87 % further reduction in 

SRP concentration would perhaps only reduce periphyton accrual rate by 25 %. 

 

 
 
 
 

The River Thames catchment (like most catchments in lowland southern Britain) has high human 

population densities and intensive agricultural land use, and it is highly likely that attaining these 

stringent phosphorus concentration targets will bedifficult and costly.  However, nutrient reduction is 

not the only tool available to catchment managers to improve ecological status.  This study has shown 

that providing riparian shading in the upper Thames perhaps offers an alternative tool to control 

nuisance algal growth and improve ecological status.  Periphyton growth rate could be reduced by ca. 

50 % if the river channel was shaded from direct sunlight by riparian tree-cover. Similar observations 

have been made from studies of forested and open streams in Queensland, Australia (Mosisch et al., 

2001) and USA (Greenwood and Rosemond, 2005; Jacobson et al., 2008).  Modelling studies of the 

River  Swale  and  River  Ure  in  northern  England  have  predicted  40  to  50  %  reductions  in 

phytoplankton biomass could be achieved by providing riparian shading (Hutchins et al., 2010). 

However, the response of algal communities to light and nutrients is often inter-dependent (Hill et al., 
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2009; Rosemond et al., 2000), and manipulating both factors simultaneously within the River Thames 

could potentially lead to still further decreases in algal biomass, and this requires further investigation. 

 

 
 
 
 

The large increases in chlorophyll-a concentrations observed in the River Thames in 2009 and 2010 

are clearly not related to increases in nutrient loading, as these particular years had the lowest 

phosphorus concentrations observed over the 13 year water-quality monitoring period.   The flume 

experiments within this study have also shown that nutrients do not currently limit or co-limit 

periphyton growth, and therefore, other factors that can control algal biomass (such as river ecology / 

food-web interactions, light, water temperature and flow velocity) must be the cause of both the low 

algal biomass observed in 2006 and the major algal blooms in 2009 and 2010, rather than nutrient 

availability.  Determining the causes of these huge annual fluctuations in algal biomass are key to 

understanding the process of eutrophication, and how we can effectively manage our rivers in the 

future. 
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Figure 1.  Map of Thames basin, showing location of flume experiments (Seacourt Stream, Wytham) 

 
and water quality monitoring sites 

 

 
 
 
 
 

Figure 2. Diagram of flume mesocosms. 
 

 
 
 
 
 

Figure 3. Water quality monitoring data for the River Thames at Wallingford from 1997 to 2010. 
 

 
 
 
 
 

Figure 4.   Soluble reactive phosphorus (SRP) concentrations observed in each flume during the 

phosphorus manipulation experiment (Experiment 1).  Solid line with filled symbol = flume receiving 

SRP addition.   Lines with no symbol = control channels containing unadulterated river water (i.e. 

receiving no  chemical additions).    Dashed lines  and  symbols =  flumes  receiving iron  sulphate 

additions to convert SRP to non-bioavailable P forms. 

 

 
 
 
 

Figure  5.     Chlorophyll-a  concentration  on  tiles  through  phosphorus  manipulation  experiment 

 
(Experiment 1).  Solid line with filled symbol = flume receiving SRP addition.  Lines with no symbol 

 
=  control  channels  containing  unadulterated  river  water  (i.e.  receiving  no  chemical  additions). 

Dashed lines and symbols = flumes receiving iron sulphate additions to convert SRP to non- 

bioavailable P forms.  The average SRP concentrations (in µg l
-1

) observed in each flume are given in 

the graph legend. 

 

 
 
 
 

Figure 6.   Chlorophyll-a concentrations on tile substrates at the end of Experiment 1 (9 days), 

resulting from a range of average SRP concentrations produced in each flume.  Data points are mean 

values ± 1 standard error, based on analysis of 3 tiles from each flume. 
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Figure 7. The PCA biplot of diatom communities across the SRP concentrations in Experiment 1 

(black circles = 30 µg l
-1

, grey circles = 83 µg l
-1

, black diamonds = 171 µg l
-1

, white diamonds and 

white circles = 225 µg l
-1  

and grey diamonds = 373 µg l
-1

). The primary axis explains 64.9 % of 

variation with the secondary axis explaining a further 18.7 %. Arrows indicate the direction of 

increase in abundance for the taxa with most influence ( Coc pla = Cocconeis placentula, Gom par = 

Gomphonema parvulum, Nav capr = Navicula capitatoradiata, Nav cryc = Navicula cryptocephala, 

Nav str = Navicula stroemii, , Nav trip = Navicula tripunctata, Nit cap = Nitzschia capitellata, Nit pal 

= Nitzschia palea, Nit palc = Nitzschia paleacea, Rho abb = Rhoicosphenia abbreviata, Sur bre = 

Surirella brebissonii, Sur min = Surirella minuta, Syn uln = Synedra ulna, Try lev = Tryblionella 

levidensis and Try hun = Tryblionella hungarica). 

 

 
 
 
 

Figure  8.    Chlorophyll-a  concentrations  on  tile  substrates  at  the  end  of  the  nutrient  addition 

experiment (Experiment 2) (9 days), resulting from nutrient enrichment treatments.  Data points are 

mean values ± 1 standard error, based on analysis of 3 tiles from each flume. 

 

 
 
 
 

Figure 9.  Light intensity reaching tile substrates in Flumes 1 to 3 during flume shading experiment 

(Experiment 3), using submerged light sensors.  Only data from alternate days (gathered following 

cleaning of the light sensor) are displayed.  Unshaded flume in full sunlight, Intermediate shading 

equivalent to dappled tree-canopy shading. Full shading equivalent to full tree-canopy shading. 

 

 
 
 
 

Figure 10.  Chlorophyll-a concentrations on tile substrates after 10 days under different shading and 

flow velocity conditions (Experiment 3).  Data points are mean values ± 1 standard error, based on 

analysis of 3 tiles from each flume.  Black bars = full shading (equivalent to full tree canopy cover); 
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Grey bars = intermediate shading (equivalent to dappled tree canopy shading; White bars = no 

shading (full direct sunlight).  Flumes 1 to 6 = 0.10 m s
-1 

water flow velocity.  Flumes 7 to 12 = 0.15 

m s
-1 

water flow velocity. 

 

 
 
 
 

Figure 11. The PCA biplot of diatom communities across the three shading levels in experiment 3 

(Black circles = full shading; Grey circles = partial shading; White circles = no shading). Scaling is 

focussed on inter-sample distances, and samples are labelled by flume number. The primary axis 

explains 33.4 % of variation with the secondary axis explaining a further 26.6 %. Arrows indicate the 

direction of increase in abundance for the taxa with most influence (Ach min = Achnanthidium 

minutissimum, Amp ova = Amphora ovalis, Amp ped = Amphora pediculus, Coc ped = Cocconeis 

pediculus, Coc pla = Cocconeis placentula, Fal mit = Fallacia mitis, Gom ang = Gomphonema 

angustatum, Nav cryn = Navicula cryptotenella, Nav lan = Navicula lanceolata, Nav trip = Navicula 

tripunctata, Nit aci = Nitzschia acicularis, Nit amp = Nitzschia amphibian, Nit cap = Nitzschia 

capitellata, Nit pal = Nitzschia palea, Nit sig = Nitzschia sigmoidea, Sur bre = Surirella brebissonii, 

Sur min = Surirella minuta and Syn par = Synedra parasitica). 

 
 
 
 
 
 
 
 

Table 1. Nutrient and light treatments applied during flume experiments. 
 

 
 
 
 
 

Table  2. Average  nutrient  concentrations  produced  during  the  nutrient  addition  experiment 

 
(Experiment 2). 
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Table 3. The trophic diatom index, the percentage of diatoms that are motile and the diatom taxon 

diversity for each SRP concentration in experiment 1. Values quoted as mean ±1SE, n=3. 

 

 
 
 
 

Table 4. The taxon diversity (Shannon diversity index) and the percentage of diatoms that are motile 

in the three shading treatments in Experiment 3. Values are quoted as mean ±1SE, n=3. 

 

 
 
 

4 References 
 

Ameziane T, Garabetian F, Dalger D, Sauvage S, Dauta A, Capblancq J. Epilithic biomass in a large 
gravel‐bed river (the Garonne, France): a manifestation of eutrophication? River Res Appl 
2002;18(4):343‐354. 

APHA. Standard Methods for the Examination of Water and Wastewater. Washington D.C., USA, 
American Public Health Association, 1995. 

Bothwell ML. Phosphorus limitation of lotic periphyton growth‐rates ‐ an intersite comparison using 
continuous‐flow troughs (Thompson River system, British‐Columbia). Limnol Oceanogr 
1985;30(3):527‐542. 

Bowes MJ, Lehmann K, Jarvie HP, Singer AC Investigating periphyton response to changing 
phosphorus concentrations in UK rivers using within‐river flumes. British Hydrological 
Society International Conference, University of Newcastle‐upon‐Tyne, 2010a, pp. 6 

Bowes MJ, Smith JT, Hilton J, Sturt MM, Armitage PD. Periphyton biomass response to changing 
phosphorus concentrations in a nutrient‐impacted river: a new methodology for phosphorus 
target setting. Can J Fish Aquat Sci 2007;64(2):227‐238. 

Bowes MJ, Smith JT, Jarvie HP, Neal C, Barden R. Changes in point and diffuse source phosphorus 
inputs to the River Frome (Dorset, UK) from 1966 to 2006. Sci Total Environ 
2009;407(6):1954‐1966. 

Bowes MJ, Neal C, Jarvie HP, Smith JT, Davies HN. Predicting phosphorus concentrations in British 
rivers resulting from the introduction of improved phosphorus removal from sewage 
effluent. Sci Total Environ 2010b;408(19):4239‐4250. 

Bowes MJ, Smith JT, Neal C, Leach DV, Scarlett PM, Wickham HD, Harman SA, Armstrong LK, Davy‐ 
Bowker J, Haft M, Davies CE. Changes in water quality of the River Frome (UK) from 1965 to 
2009: Is phosphorus mitigation finally working? Sci Total Environ In press. 

Chambers PA, Culp JM, Glozier NE, Cash KJ, Wrona FJ, Noton L. Northern Rivers Ecosystem Initiative: 
Nutrients and dissolved oxygen ‐ Issues and impacts. Environmental Monitoring and 
Assessment 2006;113(1‐3):117‐141. 

Environment_Agency. River Basin Management Plan. Thames River Basin District. Environment 
Agency, Bristol, UK, 2009, pp. 89 

Evans SG, Spillett PB, Colphoun K. South‐East housing development ‐ The quest for sustainability: 
Water and sewerage needs. J Chart Inst Water Environ Manage 2003;17(4):257‐261. Foy 

RH. Variation in the reactive phosphorus concentrations in rivers of northwest Europe with 
respect to their potential to cause eutrophication. Soil Use Manage 2007;23:195‐204. 

Fuller RM, Smith GM, Sanderson JM, Hill RA, Thomson AG. The UK Land Cover Map 2000: 
Construction of a parcel‐based vector map from satellite images. Cartogr J 2002;39(1):15‐25. 



30  

Greenwood JL, Rosemond AD. Periphyton response to long‐term nutrient enrichment in a shaded 
headwater stream. Can J Fish Aquat Sci 2005;62(9):2033‐2045. 

Hill WR, Fanta SE. Phosphorus and light colimit periphyton growth at subsaturating irradiances. 
Freshw Biol 2008;53:215‐225. 

Hill WR, Fanta SE, Roberts BJ. Quantifying phosphorus and light effects in stream algae. Limnol 
Oceanogr 2009;54(1):368‐380. 

Hilton J, O'Hare M, Bowes MJ, Jones JI. How green is my river? A new paradigm of eutrophication in 
rivers. Sci Total Environ 2006;365(1‐3):66‐83. 

Horner RR, Welch EB, Seeley MR, Jacoby JM. Responses of periphyton to changes in current velocity, 
suspended sediment and phosphorus concentration. Freshw Biol 1990;24(2):215‐232. 

House WA. Geochemical cycling of phosphorus in rivers. Appl Geochem 2003;18(5):739‐748. 
House WA, Warwick MS. Intensive measurements of nutrient dynamics in the River Swale. Sci Total 

Environ 1998;210(1‐6):111‐137. 
Hutchins MG, Johnson AC, Deflandre‐Vlandas A, Comber S, Posen P, Boorman D. Which offers more 

scope to suppress river phytoplankton blooms: Reducing nutrient pollution or riparian 
shading? Sci Total Environ 2010;408(21):5065‐5077. 

Jacobson LM, David MB, Mitchell CA. Algal growth response in two Illinois rivers receiving sewage 
effluent. J Freshw Ecol 2008;23(2):179‐187. 

Jarvie HP, Withers PJA, Neal C. Review of robust measurement of phosphorus in river water: 
sampling, storage, fractionation and sensitivity. Hydrol Earth Syst Sci 2002a;6(1):113‐131. 

Jarvie HP, Neal C, Williams RJ, Neal M, Wickham HD, Hill LK, Wade AJ, Warwick A, White J. 
Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK. Sci 
Total Environ 2002b;282:175‐203. 

Johnson AC, Acreman MC, Dunbar MJ, Feist SW, Giacomello AM, Gozlan RE, Hinsley SA, Ibbotson AT, 
Jarvie HP, Jones JI, Longshaw M, Maberly SC, Marsh TJ, Neal C, Newman JR, Nunn MA, 
Pickup RW, Reynard NS, Sullivan CA, Sumpter JP, Williams RJ. The British river of the future: 
How climate change and human activity might affect two contrasting river ecosystems in 
England. Sci Total Environ 2009;407(17):4787‐4798. 

Kelly MG, Wilson S. Effect of phosphorus stripping on water chemistry and diatom ecology in an 
eastern lowland river. Water Research 2004;38(6):1559‐1567. 

Kelly MG, Haigh A, Colette J, Zgrundo A. Effect of environmental improvements on the diatoms of 
the River Axe, southern England. Fottea 2009;9(2):343‐349. 

Kelly MG, Bennion H, Cox EJ, Goldsmith B, Jamieson J, Juggins S, Mann DG, Telford RJ Common 
freshwater diatoms of Britain and Ireland: an interactive key. Environment Agency, Bristol, 
2005, pp. 

Kelly MG, Adams C, Graves AC, Jamieson J, Krokowoski J, Lycett EB, Murray‐Bligh J, Pritchard S, 
Wilkins C The trophic diatom index: a user's manual. Revised edition. Environment Agency, 
2001, pp. 146 

Kinniburgh JH, Barnett M. Orthophosphate concentrations in the River Thames: reductions in the 
past decade. Water and Environment Journal 2010;24(2):107‐115. 

Kinniburgh JH, Tinsley MR, Bennett J. Orthophosphate Concentrations in the River Thames. Water 
and Environment Journal 1997;11(3):178‐185. 

Krammer K, Lange‐Bertalot H. Bacillariophyceae, 4, Teil: Achnanthaceae kritische Ergänzungen zu 
Achnanthes s.l., Navicula s. str., Gomphonema, 2. Heidelberg, Spektrum Akademischer 
Verlag, 2004a, 468 pp. 

Krammer K, Lange‐Bertalot H. Bacillariophyceae, 3, Teil: Centrales, Fragilariaceae, Euntotiaceae, 2. 
Heidelberg, Spektrum Akademischer Verlag, 2004b, 598 pp. 

Krammer K, Lange‐Bertalot H. Bacillariophyceae, 1, Teil: Naviculaceae, 2. Heidelberg, Spektrum 
Akademischer Verlag, 2007a, 876 pp. 



31  

Krammer K, Lange‐Bertalot H. Bacillariophyceae, 2, Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 
2. Heidelberg, Spektrum Akademischer Verlag, 2007b, 610 pp. 

Lange K, Liess A, Piggott JJ, Townsend CR, Matthaei CD. Light, nutrients and grazing interact to 
determine stream diatom community composition and functional group structure. Freshw 
Biol 2011;56:264‐278. 

Leps J, Smilauer P Multivariate analysis of ecological data using CANOCO. Faculty of Biological 
Sciences, University of South Bohemia, Ceske Budejovice, 2002, pp. 175 

Marker AFH, Nusch EA, Rai H, Riemann B. The measurement of photosynthetic pigments in 
freshwaters and standardisation of methods: Conclusions and recommendations. Arch 
Hydrobiol Beih 1980;14:91‐106. 

Marsh TJ, Hannaford J UK Hydrometric Register. Hydrological data UK series. Centre for Ecology and 
Hydrology, 2008, pp. 210 

Matlock MD, Storm DE, Smolen MD, Matlock ME. Determining the lotic ecosystem nutrient and 
trophic status of three streams in eastern Oklahoma over two seasons. Aquatic Ecosystem 
Health and Management 1999;2:115‐127. 

Merrett S. The Thames catchment: a river basin at the tipping point. Water Policy 2007;9(4):393‐404. 
Mosisch TD, Bunn SE, Davies PM. The relative importance of shading and nutrients on algal 

production in subtropical streams. Freshw Biol 2001;46(9):1269‐1278. 
Mullin JB, Riley JP. The colourometric determination of silicate with special reference to sea and 

natural waters. Anal Chim Acta 1955;12:31‐36. 
Murphy J, Riley JP. A modified single solution method for the determination of phosphorus in natural 

waters. Analytica chemica acta 1962;12:31‐36. 
Neal C, Jarvie HP. Agriculture, community, river eutrophication and the water framework directive. 

Hydrol Process 2005;19(9):1895‐1901. 
Neal C, Neal M, Wickham H. Phosphate measurement in natural waters: two examples of analytical 

problems associated with silica interference using phosphomolybdic acid methodologies. Sci 
Total Environ 2000;251:511‐522. 

Neal C, Hilton J, Wade AJ, Neal M, Wickham H. Chlorophyll‐a in the rivers of eastern England. Sci 
Total Environ 2006;365(1‐3):84‐104. 

Neal C, Jarvie HP, Williams R, Love A, Neal M, Wickham H, Harman S, Armstrong L. Declines in 
phosphorus concentration in the upper River Thames (UK): Links to sewage effluent cleanup 
and extended end‐member mixing analysis. Sci Total Environ 2010a;408(6):1315‐1330. 

Neal C, Martin E, Neal M, Hallett J, Wickham HD, Harman SA, Armstrong LK, Bowes MJ, Wade AJ, 
Keay D. Sewage effluent clean‐up reduces phosphorus but not phytoplankton in lowland 
chalk stream (River Kennet, UK) impacted by water mixing from adjacent canal. Sci Total 
Environ 2010b;408(22):5306‐5316. 

Popova YA, Keyworth VG, Haggard BE, Storm DE, Lynch RA, Payton ME. Stream nutrient limitation 
and sediment interactions in the Eucha‐Spavinaw Basin. Journal of Soil and Water 
Conservation 2006;61(2):105‐115. 

Reynolds CS, Davies PS. Sources and bioavailability of phosphorus fractions in freshwaters: a British 
perspective. Biol Rev 2001;76(1):27‐64. 

Rosemond AD, Mulholland PJ, Brawley SH. Seasonally shifting limitation of stream periphyton: 
response of algal populations and assemblage biomass and productivity to variation in light, 
nutrients and herbivores. Can J Fish Aquat Sci 2000;27:66‐75. 

Steinman AD, Mulholland PJ, Kirschtel DB. Interactive effects of nutrient reduction and herbivory on 
biomass, taxonomic structure, and P uptake in lotic periphyton communities. Can J Fish 
Aquat Sci 1991;48:1951‐1959. 

Suschika J, Machnicka A, Poplawski S. Phosphates recovery from iron phosphates sludge. Environ 
Technol 2001;22(11):1295‐1301. 



32  

UKTAG. UK Environmental Standards and Conditions  (Phase 1). Technical Advisory Group on the 

Water Framework Directive, 2008, pp. 72 

Welch EB, Horner RR, Patman!CR. Prediction  of nuisance periphytic biomass: A management 

approach. Water Research 1989;23(4):401-405. 



33  

 
 
 
 
 
 
 

Figure 1 



34  

 
 
 
 
 
 
 

Figure 2 



35  

 
 

 
 

Figure 3 



36  

 
 

 
 

Figure 4 



37  

 

 
 
 

 
 

 
 

Figure 5 



38  

 
 

 
 

Figure 6 



39  

 
 

 
 

Figure 7 



40  

 
 

 
 

Figure 8 



41  

 
 

 
 

Figure 9 



42  

 
 

 
 

 
 

 
 

 
 

0 

i 15 

.. 
25 < Flow velocity = 0.10 m3 s.1 >< Flo'.>vvelocity = 0.15 m3 s·1  > 

i: 
"C')     20 
2: 
c:: 
0 
;:; 

"...'. 
.:1, 
"c:': 

1
"'  

10 

>. 
J:: 
Q. 

2 
0 

:;:  5 
(J 

 

 
0    

2  3  4  5 6 7  8  9 10 11 12 

Flume number 
 

 
 
 

Figure 10 



43  

 
 

11s Sm 

· I.S 

 

 
 

0... Sw 
' 

9s  4b 

0 0 4c 

0 

0 Sirpal
 

 
5b 

.A 
9b 

5c 0 
.A 

.&10s 

 

-1--- o-V.-a-,.a;;r:·;;m-;;fi':-fl:<.,' ;:;!:;·::.··:··,,····. "'""":::= 
6b+    - rrfp 

9!)£ 
0 
90 

 

011c 

 
.A 

10c 

· 
L--------- -------- --'--2e_ b -------- -------- ------ 

 

 

l.S 
 

 
 
 

Figure 11 



44  

 

Eap•rim•nt 

numb•r 
Dat•s 

(Duration) 
Flum• 

numb•r 
Tr•atm• nt Flow v•locit' 

(m s'1 
) 

Eap•rim•nt 1 18th to 27th August 2010 1 Conuol 0.10 
 (9 da!ls) 2 P addition (&Ox incrusininitialP 0.10 
   conc nuation)  
  3 Iron addition (30X d crusininitialP 0.10 
   conc  nuation)  

  4 Iron addition(70X d crusininitai lP 0.10 
   conc  nuation)  
  5 Iron addition(20X d crusinP 0.10 
   conc ntration)  
  s Control 0.10 

Eap•rim•nt  2 18th to 27th August 2010 1 Naddition 0.08 
 (9 da!ls) 2 P.NandSiaddition 0.08 
  3 Control 0.08 

  4 P andNaddition 0.08 
  5 Control 0.08 
  s P addition 0.08 

Eaperiment 3 7th to 17thSpt mbr 2010 1 No shading 0.10 
 (10 da!ls) 2 Fullshading 0.10 
  3 lnt rm diatshading 0.10 

  4 No shading 0.10 
  5 lnt rm diatshading 0.10 
  s Fullshading 0.10 

  7 Fullshading 0.15 
  8 lnt rm diatshading 0.15 
  9 No shading 0.15 

  10 lnt rm diatshading 0.15 
  11 No shading 0.15 

  12 Fullshading 0.15 

 
 
 
 
 
 
 

Table 1 
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Flume  number Treatment Soluble reactive Nitrate-N Dissolved reactive 
  phosphorus  silicon 

  9 r'  mg 1"1  mg 1"1  
 

 

1 N 238 6.05 3.05 
2 P, N, Si 303 5.85 3.50 
3 Control 235 5.19 3.06 
4 P,N 287 5.81 3.06 
5 Control 233 5.18 3.05 
6 p 302 5.18 3.05 

 
 

 

Table 2 
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Soluble reactive Flume Trophic diatom Motile diatoms Shannon 
phosphorus  index (o/o of frustules) diversity index 

 

 

 

r1 
 

30  4  76.15 ± 0.88 71.46 ± 0 24  3 03 ± 004 

83  3 78.04 ± 0.69 82.02 ± 2.52 2.65 ± 0 11 

171  5  81.59 ± 0.63 80.04  ± 2.22  2.49 ±0.04 

225"  1  77.45 ± 1.77 85.72 ± 1.15 2.27 ± 0.07 

225•  6  78.14 ± 0.85 80.49 ± 1.76 2.39 ± 0.08 

  373  2  79.67 + 0.41  83.00 + 2.03 2.45 + 0.09 

• river water concentration 
 
 

 
Table 3 
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Treatment   Shannon  Percentage  of 

diversity index diatoms that are 

motile 

 
Unshaded  2.85 ± 0.02  83.71 ± 0.54 

Intermediate shading  2.97 ± 0.06  81.48 ± 1.70 

Full shading  3.24 ± 0.10  69.48 ± 1.82 
 
 
 
 

Table 4 


