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ABSTRACT
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e
This report is an extension of work carried out by P.H. Hosegood
at W.R.A. in a desk study of bias in dilution gauging due to
incomplete mixing. Linear and quadratic distributions of concen-
tration and streamflow are considered, and the variation of bias
with the distribtuion parameters is investigated. The sdjustment
of results for this bias permits the assignment of closer con-
fidence limits on the revised results.

A worked example is given in Appendix I, and Appendix II explains
the "DISTRIBUTION" messages of the DIFLO computer program for
dilution gauging results.
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BIAS IN DILUTIO& GAUGING RESULTS DUE TO SYSTEMATIC VARIATION OF CONCENTRATION
ACROSS THE STREAM

INTRODUCTION

|
In the analysis of dilution gauging results, the concentration of tracer at
the downstream samﬁlihg point is usually treated as a random variable, that
is its ap}thﬁ;;ic or its harmonic mean is taken as an estimate of its true
value,'ﬁﬁd its. standard error is evaluated by the statistical methods used

for random variables. (Gilman 1971).

It 1s often found, especially in gaugings of sluggish streams where mixing
processes are inefficient, that the distribution of tracer is not random, but
indicates a systematic variation across the stream, that is the concentration
is a function of distance across the stream. If the flow per unit width

across the stream were uniform, the use of unveighted means would be justified,
but this is usually not the casg. To give an accurate flow figure, the
concentration must be weighted with the flow distribution (Gilman 1971,
Appendix II). This presupposes a reliable estimate of this flow distribution,

which could be made by curreént metering.

An alternative approach is to take the harmonic mean of the sample,concen—
trations, and then to use an estimated flow distribution across the stream

to assess the systematic error, or bias, involved in calculating the flow
figure from this mean. This has the advantage that some of the necessary
data, including the biased flow figure, are already calculated by the com-
puter programs of the DIFLO suite, which assume a random distribution of .
tracer across the stream width. It is suggested that, if the coefficient of
variation of this distribution exceed2.5% the procedure outlined in this report

should be followed in order that a more accurate flow figure be obtained.

THEORY AND DEFINITIQNS

1.1 Basic techniques

Hosegood calculated the bias in the estimate of concentration for several
distributions of concentration and flow and for two sampling procedures, at
three points and at five points BCTOSS the stream. For the sake of simplicity

in calculation and a wider application, -thé ‘continuous case will be considered
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here instead of the discrete case. This makes it possible to use integration

instead of summation, and to chargctgrisé the transverse distributibnsuby:

one or two parameters. As much as possible of the calculation will be done by

simple algebra, borrowing some techniques from liﬁeér'algéb{9? and the results
will bé applied. in the final stage to the practical situation of discrete

sampling, particularly to the analysis of output from the DIFLO program.

1.2 Distribution functions

The transverse variation of flow and concentration may be characterised by

a mean value and a distribution ‘function, where the distribution function has

a mean of one.
For example in a stream of width'l , let the value of the concentration of

tracer at a distance y from the bank be:

C(y) = pay? + p1y + Do for 0<y<. (1)

The mean value C is given by
1 .
=1 fL (poy2 + D1y + pyldy {2)

L d

The distribution function may be-obtained by setting x = ¥ 5o that x goes
L

from O to 1, and assigning parameters Q2> q) and g, 80 that the mean of the

distribution function is one.

Thus C(x) = qox® + qyx + q, (3)

where Qo p2L2/C, q = pyL/C, 9 = Po/C

It should be noted that although the distribution functions defined here have
scme properties in common with probability distributions, they are distri-
butions in a spatial sense, and must not be confused with propability

distribution functions (pdf).

In the work that follows, only the spatial distribution functions will be used,
that is all streams will be of width one, and all concentrations and flows
will have means of one. This involves no loss of generality, and the trans-

ition back to dimensional quantities will be made in the final section.

1.3 The coefficient of variation of a spatial distribution function

For each distribution, it.is possible to define a coefficient of variation
. "l




analogous to that of a random variatioq.(this is 8 close approximation to the
quantity which, for the discrete case, is calculated by the DIFLO program B
and printed out as "COEFF. OF VARIATION OF SAMPLE GROUP"). The coefficient

of variation is defined as
ol 5 5
Cvic) = ‘I {ec - 1)° ax for any distribution function c(x) (L}
L%

An. alternative form of (4) may be obtained by expansion and substitution,

using the fact that

1 .
¢ dx =1 (the mean of ¢ is 1)
o~

this gives -~
,/////

1 1
Cvle) =[f c? dx - l]: (5)

o}

1.4 Linear and bilinear functionals

This section makes use of certain concepts from the theory of linear algebra,
the precise definitions of which are outside the scope of this report. The
definitions used therefore will be restricted to the immediate application

and should not be considered as general definitions.

A mapping is an operation which associates with one object another unique
object. For example, a function is a mapping which associates with a variable

a unique quantity termed the value of the function at that point.

A functional is a specialised mﬁpping which maps a function on to p’point on
the real axis. For example, integration over a particular range of a function

will yield a result which is a real number.
Two notations can be used to represent a functionai: the operator notation,

which is normally used to represent integration, or the functional notation.

For example, an integral could be represented as
b
ff()c) dx or as I(f)
a

provided that the functional I vas properly defined elsewhere.



A functional F is linear if and only if it satisfies the condition

F(Af + pg) = AF(f) + uF(g) (6)

where f and g are functions, A and u are scalérs (real or complex numbers).
Two of the functionals used in’tHiS"féport will map pairs of functions on
to. real numbers. A functional F(f g} of -this type is bilinear if and only

if it satisfies -condition (6) in both 1ts variables, i.e.-
F(Af + ph, g) = AF(f, g) + pF(h, g) (7)
and a similar relation for the.second variable.
An example of a functional alrede encountered is Cv{c), defined in §2.3

Unfortunately Cv(c) is non-linear, which could make it difficult to handle,

but it may'be—writtéﬁ“in terms of a linear functional to be defined.pelow.

CALCULATION OF BIAS

2.1 Bias in using.unweighted means

This basic equation of dilution gauging may be stated as

Q = qc/C (3)

where qé‘is‘ﬁﬁe“rateuof injection of tracer, and C is the concentratiqﬁ‘of
tracer at the sampling point. 'If-C. is eétimated from the analysis:of &a.

set of n-samples the equation used is actually
= qc/Ch (9)
where Ch is the harmonic mean of the samples, given by

Ch=n/{1 +1+.....) (10)

Equation (8) is derived.from the continuity equatién

QC = qe (11)

which for the case of a systematic variation in flow and concentration may be

quoted in its general form



L
f VC dy = qc (12)

o]

where V is the flow per unit width and C is the concentration at distance

y from the bank.

At this point the harmonic mean must be discarded, because it cannot. easily
be carried over into the continuous case. It is aimpler to evaluate the
bias in using the arithmetic mean, and to consider separately the contri-
bution to this bias from the use of the harmonic meﬁn. Equation (9)

may be rewritten

Q€ qeft (13)

-~

where C is the arithmetic mean, given by

C = (C; +Cy+ .uviil)/n {1L)

~

To evaluate the bias in using.this mean, first of all the two estimates of

Q, using C and the weighted mean, must be calculated. From equation {12)

1
Jﬂ V(xL} ¢ (xL) L dx = qc (15)
o
from §).2, V{xL) = V v{x) (16)
1
So LVC I ve dx = qc (17)
o
But LV =g (18)
_ 1
$0 Q = qC/(Cf ve dx) (19)
cd

is the estimate of Q made from the weighted mean.
1

The absolute bias is the difference of these two estimates, and the relative
: , .
bias is the ratio of the absolute bias to the value of Q given by the weighted

mean.



1 1

: 1 .
Ti Bi = (7/3 ) / ()}
e ' ¢ ¢ fve ax Cfve ax
1
Bi = J' ve dx - 1 (20)
0

The bias Bi above is another functional Bi (v, ¢), but it is not bilinear.
If we define the functional
1,
A (v, ¢) =fo ve dx {21}

it is obvious, from the linear nature of integration, that A is bilinear.

(20) may be rewritten
1
Bi = A -1 (22)

Also the coefficient of variation, Cv(c), defined in §1.3 can be written

in terms of A:
,
Cvie) = [A(C,g);f.l] 2 (23)
2.2 Properties of the bias functional Alv,c)

Three important properties of A{v,c)} may be proved simply:

i) A(l, e} =1
‘where ¢ is any distribution function as defined above
1i) Al{v,c) = A(c, v)

iii)  A(xm, xM) 1 (24)

m+n+1

where m, n are‘any—real'numberé such tﬁat m+n ¥ Tl

The bilinearity of A means that polynomials-in_x may be dealt with as

follows:
Alpyx® + piX'+ Dorc) = ppA(x2,c) + pia(x,c) +p,  (25)

2.3 Values of the bias functional for simple distributions;

Two distribution types will be considered: linear and quadratic. A linear
function would'normélly have two parameters, but one is defined by the

requirement that the mean is unity. Similarly, a parabolic or quadratic’



distribution function has only?two paremeters. The parameters chosen were
the gradient of the linear function, and the coefficient of x° and the
position of the turning point of the quadratic function. The distributions

are sketched and their equations and parameter values are given in fig. 1.

For the two distribution types, values of A were calculated, using the

properties (24) and (25).
The following results were obtained:

i} for a linear distribution of both flow and concentration, with parameters

&) and a, respectively,

A (vye) =1+ 35 as. (26)
12
1)

ii) for a linear distribution-of concentration and a quadratic distribution
of flow,

A(v,e) =1 + 3, as -.8) aom
- —11—22 ~.]._%.._L (27)

-~

-
where 8,.-1s the coefficient of x2in v '
mj) is the x-coordinate of the turning point of v

85 1s the gradient of ¢

1ii) for & quadratic distribution of both flow and concentration,

-1

Avie) = 1 + o) sy (——llgo— +3 (m - Dy - 1) (28)

where a), 8, are the coefficients of x2 in v and ¢ respectively
m), my are the x-coordinates of the turning points of v and ¢

-~

respectively.

! .
Thus the general form of the bias Bi(v,¢) for these distributions is

Bi{v,c).= a) ap
9 3

where k” is determined by the type of the distributions. (and the parameters

m in the case of the quadratic dlstrlbutlon) Values of k are 31Ven in Table 1.
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2.h Bias due to use of arithmetic mean

The harmonic.mean of a set of values C is always less than the arithmetic.
mean, by an smount which-is.dependent upon the scatter of the Values. This —-

amount can tbe shown to be approiimatelymggpal to

02 (C

c

where 02(C) is the variance (the mean of'squares.of deviations from the“mean).

of C. The error in taking the difference_equal £6 this amount is givén'by
= 2 o (c)

53

which is very small.

Thus-the bias in_using the.aritﬁmeﬁic mean is negative (a larger value fo:

C gives a smaller value for Q)yahd‘itsifeiative.maghitudehis

02§C).
P4

Ql

which is the square of the coefficient of variation of C, defined in §1.3

APPLICATION
3.1 Using the bias estimates

The output from a DIFLO program takes the following form:

SAMPLE GROUP 8 i

COEFF. OF VARIATION OF SAMPLE GROUP 8 IS 5.1%

DISTRIBUTION - MAXIMUM AT 0..4

FLOW 135.9 L/S PLUS OR MINUS 6.93 L/S AT 95% CONFIDENCE LEVEL (SUBJECT TO

BIAS CORRECTION).

The coefficient of variation 15 calculated from the reéiprocals of the sample
concentrations which are a discrete set, and it is the best estimate avall-
able of the coefficient of variation of the continuous distribﬁtion actuslly
present in the river, Cv(ec}. From the values of Cy(c) and my given in the

output (0.051 and 0.4 in the above example) the value of the parameter ap may

6e obtained.



From (23), (26) and (28)

8o =xCy{c) 435 if ¢ is- linear. (30j
aéf='.+.cv(c>l[§§3, .3 (mp - 5_)?} -t (31)

Values of the expression by which Cy(c) is multiplied in (31) are given in

Table 2.

The value of a)] is more difficult to establish. A current metering of

the stream will supply estimates of the flow through sections of the stream
whose centres are the sampling.points (see Fig. 2}. These estimates must
then be fitted with a quadratic or linear function by numerical methods,

as described by Lyon (1970) to obtain values of a) and m,.

Table 1 may then be used to give a value of k, which is used in formula
(29) to give Lhe bilas Bi. Bi is the bias invoked by using the arithmetic

mean of C rather than the weighied mean; the true value of the bias is

Bi + Mi
where Mi is Lhe bias invoked by, using the arithmetic mean rather than the
harmonic mean. Thus if Bi is positive, the true value of bias will be less

than Bi (Mi being negative); if Bi is negative, the true value will be

greater in magnitude than Bi.
Mi is given by

Mi =Ty2(C) (from §2.4)

Mi =-a22 “if ¢ is' linear
12
. 1 .
Mi =-622[___ 1 ) 2] . : .
6 *3 (m2 5)“ if ¢ is quadratic (32)

1
Values of the expression in brackets are given in Table 3.
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3.2 Quoting the final result

If C is taken as & random variable, th# systematic variation cen swamp

all other errors due to injection and analysis, and produce a set of
unrealistic confidence limits. By coﬂsidering C as a function of distance
across the stream, these confidence li@its can be reduced considerably, but

the process of estimoting bias can contain significant error.

.The parameter a,, calculated from the sample concentrations, is subject to
error, as the concentration at each point is a random variable. Its scatter
could be estimated by taking severai samples at each point across the stream,
‘and this would provide better values of ap and mp, but the errors in these
parameters are probably smaller than those in the values of a) and m;,
calculated from the results of current metering. Leaving aside the question
of the accuracy of current met;aring, l‘t is unlikely that the flow distri-
bution is as simple as haS been assumed here. In practice, the flow
distribution will not be determined fo{ every gauging, but will ve assumed
constant over a range of flows, This is another potential source of, error.
It seems wise, therefore, to agsign a étgndard error to the bias estimation
process of at least 2.5%. This standard error would be combined with the
errors from all other sources (except,gof course, the sample group error
caused by systématic,variation) to give confidence limits to the flow figure

of around *5%. This will be igcorporated into the DIFLO program.

An upper limit must also be set to avoid misuse of the technique. A
coefficient of variation in excess ofngo% indicates bad mixing of a serious
degree, and results with this mhgnitudg of error should be discarded. A
point to rememgpr,is'that althqugh ineificient mixing can exist in .a_steady-
state siﬁggtion, it is more usually a E?sult of failure to achieverp}ateau.
This means that the quantity of tracer flowing through the sample cross-
section is less than qc, and the flow éﬁgure is subject to a bias from this
source.

. ; .
Both the upper limit and the standard grror are arbitary, and subject to
revision, and all results cal%ulated by the bias estimation procedure must
be treated with a certain amount of cautlon. It is suggested that the
coefficient of variation be adqpted as an index of mixing, and should be

clearly stated with all resultg,obtalngd by this method.



3.3 Combining results of gaugihgs at the same point
' !

In normal practice, several sets of samples will be taken at each sampling
cross section (these are denoted by the term “sample group" in the DIFLO
pnogram)/pndrit-will be desirable to combine these results to give a single

value for the flow at this cross-section.

Given a set of results from n sample groups, each with its standard error,
the first step is to test for a significant difference between résults.

The presence of such a difference could stem from a genuine difference in

the flow through the section (aﬁ two different times, for instance} or from
a false value of the standard error in a result. When testing the difference
between two results one of the variableﬁ used in the calculation is the
number of samples used in the déterminaEion of the results. For the case

of dilution gauging results, it:is proppsed that the effective number of
samples be set equal to the numﬁer of gampleé in a group when bias estimation
has been used, and to infinity when the results have a coefficient of vari-

ation of less than 2.5%

The significance test used is Student's t test, which is used as followvs.
Let two results have values N and Qe,:gnd standard errors Sl and 82. Then
the standard error of @ ~ @, is

5 = /(52 1 5,2) (33)

and we now compare Q; - Q2 with;tS, where t is obtained from Table 4. If
Q -'Qe is greater than tS, theiresults,are significantly different at the

5% level, and cannot be combined.

If there is no significant différence thween the results, taken in pairs,
they may be combined to give a better éstimate of the flow. The method of
combination 1s not the arithmet%c mean;rwhich would take too much account
of the less reliable results, but a weighted mean, where the weighting of
each result is dependent upon tne‘standérd.error of the result. The
weighted mean is given by ’ .
.. . \
QI A1°Qp +7AoQ *+.....
ll,f Ay + .g..

(314)

where Ar = 1

Sre M
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and Sr is the standard error of the result Qr. The standard errors used in
this section are absolute standard errors, obtained by multiplying the

coefficient of variation of the Qr by Qr.

The standard error of the combined result is Sm, wherel

1
Si?/;_ %12 + 552 + - ="ll + 12 + .. (35)
This standard error may be doubled to give the 95% confidence limit on the

result.

CONCLUSIGONS

Stream discharges calculated from dilutlon gauging results can be adjusted

to allow for bias due to incomplete mixing resulting in a non-uniform distri-.
bution of tracer across the streem. Thé method is based on the assumption
that the concentrations of samples across the stream may be weighted according
to a transverse distribution of [flow whic¢h has a simple form and remains
sensibly constant for a range of discharges. This flow distribution may be

determined by current metering at the sampling section.

Results calculated by the bias éstimation procedure can be quoted with

much closer confidence limits than if the concentration were treated’'as a
) /
random varliable,
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TABLE 1
Values of k for calculation of Bi = EIEQQ

a) Linear/linear k = 12

b) Quadratic/linear

m 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k 12 15 20 30 60 = =60 =30 -20 -15 -12
¢) GQuadratic/quadratic
my 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
my, = 0 11.3 13.9 18.0 25.7 45.0 180 - 90.0 - 36.0 - 22.5 - 16.4 -12.9
0.1 17.0 22.0 31.0 52.9 180 “-129 - 7. -29.0 -20.9 -16.4
0.2 28.1 39.1 64.3 180 -225 - 69.2 - L0.9 - 29.0 -22.5
0.3 52.9 81.8 180 -900  -129 - 69.2 - UT.L =36.0
0.4 113 180 450  -900  -225  -129  -90.0
0.5 180 180 180 180 180 180
0.6 113 81.8 6h.3 52.9 45.0
0.7 52.9 39.1 31.0  25.7
0.8 28.1 22.0 18.0
0.9 i7.0 13.9
1.0 11.3
Table ¢ 1s symmetric, for example the value of k for mj = 0.4 and my = 0.9

1s -129, the same a5 the value for my = 0 9, mp = 0. b

1
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TABLE 2
21
Values of « = | * " % (mp = 512J 2
180 ‘
my= v 0.1 0.2 0.3 0.b 0,5 0.6 0.7 0.8 0.9 1.0
/

= 3.360 4.133 5.303 7.341 10.81 13.42 10.81 7.341 5.303,'4.133 3.360
TABLE 3

Values of B = I%b + % (mp - 3)2
m, = 0 0.1 0.2 0.3 0.4 0.5
8 0.0885 0.0586 0.0356 0:0186 0.00856 0.00556

Table 3 is symmetric: the value of B for my = 1 - A is the same as that
. .

for mp = A

TABLE L
Student's t for 5% significance level:

effective n 3 L 6 "8 10 =

C %

L.30 3.18 2.57 2.36 2.26 1.96
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APPENDIX 1 - A WORKED EXAMPLE

Gauging of R. Nailbourne

i)

ii)

Results of current metering carried out 10.1.72 at 0.6 of depth.

Distance from bank Depth Velogity  Flow/unit width

y m - h.m. U /s Y = Uh m3/s/m
REt.bank 4]
0.2 0.09 0.363 0.0327
0.6 0.10 0.248 " 0.02L8
1.0 0.08 0.241 0.0193
1.4 0.105 0.242 0.0254
1.8 0.095 0:215 0.0204
2.2 0.08 0.409 0.0327
2.6 0.07 0.211 0.01L48
3.0 0.05 0.277 0.0139
3.4 0.05 0.223 0.0112
3.8 0.05% 0.167. 0.0084
Lt .bank h.o

The equation of the parabola;fitted By the orthogonal polynomial
method (Lyon 1970) is '

v =/;;oo§505 (y - 2)'2 - .00728 (y - 2) + .0261%

- . - . . . . .
and the mean o1 v is 0.02036, From equation (3), the distribution

function parameter

a; = -.003505 x 42/0.02036 = -2.75k

The position of the maximum of v is ‘obtained by differentiation of the
-t .

equation for v. v reaches a maximum at y = 0.34, so for the distri-

bution function

m = Qtiﬁ = o.0§5

There is little loss of accuracy in agsuming m; = 0.1

1
4

The following is & table of eoncentration peak heights at six points
across the stream, assumed equally spaced, and reading from right bank

to left. "

38.5 39.5 35.5 34.5 . 33.5 33



The DIFLO output for these results reads as follows:

SAMPLE GROUP 7T

COEFF. OF VARIATION OF SAMPLE GROUP 7 is 6.7%

DISTRIBUTION < MONOTONE L.H.

FLOW 108.0 L/S PLUS OR MINUS 5.68 L/S AT 95% CONFIDENCE LEVEL
(SUBJECT TO BIAS CORRECTION)

The "coeff. of variation of sample group 7" is a good approximation to
Cv(C). The message "distribution - monotone L.H." means that the
distribution function is approximatély a straight line with negative

gradient (see Appendix II). The magnitude of the distribution parameter

a, is given by equation (30)
lap] = 0.067 Y12 = 0.232
The sign of 8y is negative
8y r = m0.232
i1i) The bias in the flow figure

From equation {32)

Mi = -a52 = -0.005
12

and from (29) Bi

ay 8p where k'is given by Table 1

K-
For m = 0.1, k = 15. So

Bi =  -2.754 x -.232 = 0.04
15

The net value of the bias

Bi + Mi = 0.037

Thus“the result quoted, 108.0 L/S, .is biased by +3.7%.



The true figure is’ 108. (1 - 0.037) = 10L.0 L/S

Tne confidence Yimit.is 5.68 (1 - 0.037) = 5.47 L/S.. Because of the
inaccuracy of the bias estidﬁtionhp;ocess, the confidence limit should de
quoted to two significant figures oni}?fﬁiZTFS,ihL/S

Corrected flowﬁfiépre-loh.o L/S plus or minus 5.5 L/S

——
-



APPENDIX II - DISTRIBUTION TYPES IK DIFLO OUTPUT

If the coefficient of yariation of a sample group exceeds 1% DIFLO will

displey a message starting "DISTRIBUTION - ", The distribution types are

explained below:

DISTRIBUTION - MONOTONE R.H.

The pattern analysis routine has found that the concentration exhibits
an increase from right bank to left bank. MONOTONE distributions ‘are’

treated as linear.

DISTRIBUTION - MONOTONE L.H.

“As .above, but a decrease from right hank to left

DISTRIBUTION - MAXIMUM AT
A quadratic distribution with a maximum’ at the.stated fraction of the width .

from the right bank.

DISTRIBUTION — MINIMUM AT

Similar to the above, but this message should be extremely rare.

DISTRIBUTION UNIFORM

The pattern analysis routine has found a zero trend in concentration.
This means that the points are very scattered, and the results should be

discarded, as mixing is obviously poor.
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