
Institute of
Hydrology

Natural Environment Research Council



HP



THE INFLUENCE OF SELECTED SOIL MINERALS ON THE

TRASE SYSTEM I TIME-DOMAIN REFLECTOMETER (TDR)

D.A. ROBINSON & C.H. BATCHELOR

INSTITUTE OF HYDROLOGY (INTERNAL REPORT)

SUSTAINABLE AGROHYDROLOGY SECTION

1994.



á



CONTENTS 


1 EXECUTIVE SUMMAR Y

1.1 INTRODUCHON

1:2 PRINCIPLES OF OPERATION

1.3 TDR WAVEFORM ANALYSIS

2 REVIEW OF TDR AND SOIL MINERALOGY.

3 MATERIALS AND METHODS

4 IRON MINERALS

5 TITANIUM MINERALS

6 ZIRCON

7 CONCLUSIONS

8 FUTURE WORK

9 REFERENCES



á



EXECUTIVE SUMMARY

Measurement of soil moisture content based on changes in dielectric constant has

become a standard approach in recent years. Time domain reflectrometry (TDR), in

particular, has gained rapid acceptance as a technique for treasuring soil moisture that can

be used in a wide range of applications. One factor that dielectric soil moisture determining

techniques have in common is the need for calibration. Early work in this field suggested soil

type independent calibration, this has since been shown to be an over simplification with more

recent work recommending in situ calibration.

Results presented from a series of experiments show the influence of selected iron,

titanium and zircon minerals on the calibration of the time domain reflectometer. Magnetite

showing the greatest effect by causing an uncertainty of up to 60% in the estimation of

Volumetric water content in the presence of 15% magnetite.

This work provides a preliminary look at the influence of some oxide minerals on

TDR. This has greatest relevance to soils in the Tropics which may be highly weathered and

contain a lot of oxides of iron, aluminium or titanium. These may also be the areas where

accurate and precise measurements of water contcnt are required as water may well be scarce.

The precision of TDR is very high but the relationship between dielectric constant and water

content has not been found to be straightforward. It is thus recommended that any work in

the field has its own calibration in situ for the best results.
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1.1 INTRODUCTION

Techniques such as Time Domain Reflectometry 0-DR) and the capacitance probe are

rapidly becoming recognised techniques for determining soil volumetric water content. The

commercial availability of such techniques as the TDR means relatively easy access to rapid

data acquisition, which is none radioactive and none destructive. The methods utilise the

large comparative difference in dielectric constant between water(80), air (1):and most soil

minerals(2-4). Information on the calibration of the techniques is .becoming available in the

literature, (Topp et al.1980; Roth et al. 1992; Jacobsen and Schjonning 1994 and Bell et

a/.1987) but still work is required to improve understanding of the effects of a variety of soil

components on these calibrations. It is becoming clear that a single calibration is not

satisfactory at present. Topp et al. (1980) and Roth et at (1992) have shown that different

TDR calibrations are required for mineral and organic soils. Jacobsen & Schonning (1994)

have indicated the effects of bulk density on TDR calibration.

This report aims to examine a different aspect of the calibration, the influence of soil

minerals. This is achieved through a series of experiments examining the influence of selected

iron, titanium and zircon minerals. Soil minerals have thus far been considered to have very

little influence on the calibrations of these techniques as the assumption is made that they all

have low dielectric constants. This report examines whether this is a justified assumption by

an examination of the literature followed with some exploratory laboratory experiments.

1.2 PRINCIPALS OF OPERATION

The TDR system is shown as a block diagram in Fig.l. It shows that the instrument

consists of four major components as described by Topp & Davies (1985). The TDR pulse

generator creates a fast rise time step voltage pulse in the order of 10 sec. This pulse travels

past the receiver into the transmission line, it propagates down the line and through the balun

which is there to achieve the maximum transmission of the pulse into the soil. The balun is

an impedance matching transformer used to balance the pulse for use with the two wire

waveguide design. At the soil-waveguide interphase there is an impedance mismatch which

means part of the pulse is reflected back toward the instrument the rest of the signal

propagates down the waveguide situated in thc soil to the end where it is reflected back

through the system and picked up by the sampling receiver.
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Fig. 1
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1.3 TDR WAVEFORM ANALYSIS

The TDR relics on the interpretation of a waveform to.calculate thedielectric constant.

The Trasc TDR contains software which does this automatically. The manual does not

describe how this is done but does however state that the trase waveguides contain a marker

point so the TDR knows where to place its time domain capture window to sample the

waveform. This is an excellent advantage ensuring that the TDR always measures from the

same start point. It also means that long cables can be used up to 30 in. The drawback from

an experimental point of view is that only the commercial waveguides can be used

successfully with the system.
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WAVEFORM INTERPRETATION

The importance of waveform analysis to the determination of dielectric constant cannot

be stressed enough. It is critical to the calculation of Ka and the subsequent estimation of

water content. The calculation of the dielectric constant conies from the travel time of the

pulse along the waveguide. The apparent dielectric constant, Ka, is determined from the

formula below:

tC  Ka=2
( — )

Where t is the travel time of the pulse in nanoseconds, c is the speed of light (29.979 cnVns)

and L is the length of the waveguides. A worked example of this is illustrated in Fig.2 .
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Fig.3 shows how idealised waveforms appear for water (A) and air (B), the diagrams show

Me start and reflection of the pulse off the end of the waveguide.

TDR WAVEFORM I N BULK WATER
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2. TUR AND SOIL MINERALOGY

This section reviews the dielectric behaviour of soil minerals. It begins with a brief

discussion of dielectric constant as applied to water and soil minerals. The assumption that

soil minerals have low dielectric constants is then critically examined on the basis of

published literature. The implications of this conclude the chapter with examples taken from

laboratory calibrations for clay minerals and iron rich soils.

Dielectric theory and the water molecule

"The dielectric properties of a substance arc interpreted in terms of the electric

moments, both permanent and induced, of the molecules which compose it." (Hastead, 1973)

The water molecule has both a permanent dipole moment and a polarizability which is

induced by an electric field and is proportional to its magnitude. Water is the only common

rock forming substance to have a marked molecular polarizability, (Carmichael, 1982). In

the presence of an electric field the dipoles of the molecule orientate within the field. If the

field alternates the water molecules realign with each cycle. Reorientation of the dipoles

occurs until the field reverses to rapidly for the molecule to keep up. At this point 'dielectric

loss' is said to occur and the dielectric constant reduces.

Dielectric constant ( c ) can be a misleading term. It is only constant over limited

frequency, temperature and pressure. The term permittivity is used in some of the literature

and is a less misleading term. The frequency dependence of the dielectric constant of water

is stable in the frequency range of the TDR 10 MHz - I GHz. The temperature dependence

is an important consideration, ice has a dielectric constant of 4. Free water is 80.37 at 20

°C and falls as the temperature rises so that at 25 t it is 78.54.

The static dielectric constant ( Es )

This is the dielectric constant where the dipole alignment with the electric field is

time-independent. The values are often high due to the influence of conduction processes.

Dielectric loss and dispersion ( jE" )

The presence of and alternating electric field may give the dipoles insufficient time

to realign with the field such that dielectric loss is said to occur. Dielectric loss is dependant

on frequency, the higher it becomes the more likely the dipoles are to be incapable of keeping

up with the reorientation. At these higher frequencies the orientation of the permanent dipoles

no longer contributes to the dielectric constant. In the case of water this does not occur until

17 GILL
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Dispersion in conductivity

Some dielectrics are found to display conduction which arises from actual charge

transport. An example of this is ionic conductivity in electrolyte solutions. This conduction

would usually be described by a volume conductivity ( S/rn ). The influence this has is to

contribute to the dielectric dispersion. The complex dielectric constant is thus as follows:

e = - jE"

e is the complex representation of the dielectric constant.

E' is the real part of the dielectric constant (Static value)

jet is the imaginary pan of the dielectric constant (Dispersion)

The dielectric behaviour of the soil solution.

The dielectric constant of bulk water at 20 °C is 80.37. The soil solution however is

not bulk water it is a weak electrolyte subject to forces of attraction by mineral surfaces. The

presence of ions in water has a tendency to reduce the rotational mobility of the water

molecules and thus reduce the dielectric constant. As the concentration increases so the ionic

conductivity also increases adding to dielectric dispersion. Reduction of rotational ability

appears to be true of molecules close to mineral surfaces, this is discussed more fully under

the next section on clay minerals.

Clay minerals

Clay minerals are an important constituent of many mineral soils. The influence they

may have on the dielectric behaviour of a moist soil is therefore of great irnponance. The

low frequency (1kHz - 3 MHz) dielectric constant of clay minerals was examined by Ficai

(1959).



Table. 1

The influence of frequency on the dielectric constant of clay minerals

Clay mineral Frequency Temperature Dielectric constant




(kHz) ( °C )




Kaolinitc 45.58 75 6.45




2,879 75 5.24-

Halloysite 35.01 75 13.91




2,361.5 75 9.42

Montmorillonite 469.8 75 15.3




2,246.3 75 10.41

lllite 63.22 75 13.91




2,413.5 75 8.44
(Altered from Ficai, 1959)





The clay minerals were observed to have dielectric constants related to the presence of bound

water. Dielectric constants were observed to reduce both on drying and•with increasing

frequency.

The behaviour of water in contact with clay surfaces has been the focus of a study by

Hoekstra .8z Doyle, (1970). The general conclusions of this work were that surface bound

water behaves in a very structured manner almost like ice and hence has a low dielectric

constant ( 4 ) at the higher radio frequencies.

Ionic conduction is known to be an important contributor to dielectric dispersion.

Ionic conduction is also known to occur in clay minerals. The amount of conduction is

related to the surface density of charge and the surface area. These parameters are listed in

Table. 2 for a variety of clay minerals.
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Table. 2

Thc surface area. CEC and surface charge density of clay minerals

1:1

CEC

(mole ke)

Surface charge
density
(prnol, kg1)

Surface area

( ..n.2kg i)

Kaolinite 0.02-0.06 1-6 (1-2)8104

2:1




Smectite 1 1 8x105
Illite 0.3 3 lx105
Vermiculite 1.4 2 8x105

Fe and Al oxides 0.005 0.2 3xl0'

Amorphous to X-rays




Allophane0.8 1.5 (5-7)x105

The kaolinite has a low surface area and low exchange capacity and would be expected to be

associated with a low ionic conductivity. The interlayers of the 2:1 minerals provide space

into which cations can be adsorbed. In illite clays the interlayer contains potassium which

fixes the structure rigidly. The vermiculite has a partially expanding lattice, where as the

smectite has a fully expanding lattice. The high surface area of the smectite, its capacity to

swell and its ability to adsorb ions means it should create a reasonably electrically conductive

material. The consequences of this are likely to be that in heavy textured soils ionic

conduction is likely to be high adding significantly to dielectric dispersion.
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Other minerals

The dielectric constants of a variety of minerals are given in •able. 3. These were

compiled from Carmichael, (1982).

Table. 3

MINERAL SOURCE & ORIENTATION DIELECIRIC CONSTANT
RADIO FREQUENCIES

Silicate Minerals
Quartz Across optic axis 4.96

Normal to optic axis 4.11

Plagioclase feldspar 5.58 - 7.15
Orthoclase feldspar Along a axis 5.5

Biotite mica 6.19 - 9.3
Muscovite mica 6.19 - 8

Zircon 8.5 - 12

Phosphate Minerals
Apatite 7.4 - 10.47

Carbonate Minerals
Calcite 7.8 - 8.5
Dolomite 6.8 - 8

Halide Minerals
Halite 5.7 - 6.2

Oxide Minerals
Hematite 25
Rutile 31 - 170
Anatase 425

SulphateMinerals
Anhydrite 5.7 - 6.3
Gypsum 5 - 11.5

(Altered from Carmichael, 1982)

The table indicates that many of these minerals which may appear in soils do not have

dielectric constants below 4 as assumed. The exact frequencies at which these measurements

were taken is not given such that they may be high or low radio frequencies. If they were
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taken at low frequencies there is scope for further dielectric loss which would reduce the

dielectric constant.

The most significant group in this table are the oxides which would appear to have

very high dielectric constants. These kinds of minerals are most likely to be found in tropical

soils and would suggest scientific investigation is required into the feasibility of applying

1DR principals to tropical soils.

TDR LABORATORY CALIBRATIONS

Quartz sand

Two TDR calibrations using quartz sand are compared to the Topp et al. (1980)

calibration in Fig.4. The Topp et al. (1980) calibration corresponds well with the calibration

of Zeglin et al. (1989) in quartz sand. The calibration of Roth et al. (1992) shows a distinct

difference from the other two calibrations. The difference in bulk density may be a

contributory factor, but more likely is the difference in instrument used. Both the Topp et

a/. (1980) and the Zeglin et al. (1989) calibrations were carried out with the same TDR

device. The work of Roth et al. (1992) was carried out using a 1DR miniprobe which may

account for the differences in calibration.
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Clay minerals

A selection of published calibrations in clay minerals are shown in Fig.5. It is

instantly apparent that therc is a significant difference between the calibrations in the different

clay minerals. The differences may be due to the useof different equipment. The difference

in bulk density appears to be a significant factor with a drop in measured dielectric constant

as the bulk density decreases for the same water content.

Fig.5.
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The montmorillonite/bentonite appear to have a very different calibration, this is due to the

way in which water is held within the crystal lattice. This certainly requires further

investigation.

Iron rich soils

Calibrations for iron rich soils are given in Fig.6. The calibrations are again quite

different in comparison with Topp et al. (1980). The literature suggests that oxide minerals
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of iron and aluminium which may be present in these soils may have high dielectric constants.

This does not appear to be the case for these soils as the measured dielectric constant when

dry was approximately 3 to 4 similar to both the sand, clay and Topp et al. (1980)

calibrations. The calibration differences observed tend to occur with increasing water content.

They could be due to a hysteresis effect caused by the experimental design which uses a

suction device to empty pores to give each volumetric water content. The problem With using

such devices is that the spatial distribution of water within the column is unknown. It also

means that a potential gradient exists down the column again altering the spatial distribution

of water throughout the column. The presence of minerals with a high dielectric constant

does not appear to be an influential factor in the case of the calibrations shown.

Fig.6
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3. MATERIALS AND METHODS

Time Dpmain Reflectometer

	

• The 1DR system used for the experimentation was the Trase system I manufactured

by Soilmoisture Equipment Corps, USA. and described by anon, (1990).

Instrument performance

The performance of the instrument was monitored over an experimental period of 8

weeks. This was achieved by checking the stability of the readings in air and deionised

water. Readings were also sampled before work was undertaken each day. This was carried

out at the constant temperature of 24°C. The performance achieved maintained a high level

of precision throughout the experimental period.

Trials in fine silica sand

The experimentation was carried out using oven dry fine silica sand. The sand was

oven dried at 105°C for 24 hours. The principal of the experimentation was to use the sand

as a matrix adding to it the ground minerals by mass. Two litres of sand were used with a

bulk density of 1.7g cm3. The sand used was settled by agitation of the container this was

then weighed so that the exact mass of sand was known. The mineral was added and mixed

by hand until a uniform colour was achieved. 2.65 g cm' was used for the mass of sand,

hence in 2 litres 53 g was taken to represent 1%.

The container used for the experimentation was constructed from PVC pipe. The

dimensions were, diameter 10.2 cm and height 30 cm. The column was filled to 24.5 cm to

create a volume of 2 litres. The column was used like a weighing lysimeter.. It had a

perforated base so that the column could be wetted from the bottom by placing it in a bucket

of &ionised water avoiding the effects of air entrapment.

15



TDR measurements

The sand was transferred into the TDR measuring container. The 20 cm wave guide

was then inserted into the sand arid readings were taken. After five readings the column was

emptied, remixed and repacked with the same mixture and then five more readings were

taken. Waveforms for all the mixtures tested were stored and saved. The column had a

water content of 37.8% by volume of water added, the TDR readings reflecied this with

measurements of 37.7%. The dry column gave a volumetric water content of 1.1by the TDR

even though the sand had been oven dried this is because of the calibration used for Ka

against water content.

Mineral samples tested

The mineral samples used were a mixture of mineral ore samples. The rutile and

zircon minerals were prepared ground samples <0.05 mm and 95% assayand were provided

as samples by mineral companies. The ilmenite, magnetite, hematite and goethite were all

rock mineral samples which were crushed and ground to the same size asthe rutile and zircon

and then analyzed semi quantatively by X-ray diffraction analysis. The results are given in

Table 4.





TABLE.4





MAGNETITE HEMATITE GOETHITE

MAGNETITE 62%




HEMATITE




71%




GOETHITE




99%

QUARTZ 20% 29% I%

STILPNOMELANE 18%




ILMENITE > 95%

RUTILE > 95%

ZIRCON > 95%
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4. IRON MINERALS

Influence of Iron minerals on TOR

• - This section examines the influence of Iron minerals on TDR determination of

dielectric constant. A brief review of iron minerals in soils is followed by the results obtained

in experimental work. It examines the systems ability to assess dielectric constUnt Ka. and

then examines the relationship between Ka and volumetric water content.

Occurrence of Iron in soils

Iron minerals in a variety of different forms occur in a large proportion of soils world

wide. The more well known Iron minerals in soil are, goethite, hematite, ferrihydrite,

lepidocrocite, magnetite and maghemite. The most abundant of which are goethite and

hematite. There presence is often strongly visible through the yellow through brown to red

colours they impart on soils. They may occur in large quantities in Oxisols, Ultisols, Alfisols

and Inceptisols. Their large presence in Oxisols and Ultisols has led to the creation of ferritic

and oxidic families, (Soil Taxonomy, Soil Survey Staff, 1975). To enter the ferritic category

there must be over 40% iron oxide in the soil. These soils arc most abundant in the Tropics

and Sub Tropics through Africa, Asia and the Americas.

Magnetite and maghemite are both magnetic iron minerals. Magnetite is considered

lithogenic derived from parent materials of an igneous or metamorphic nature, where as

maghemite is a secondary mineral formed pedogenically in soils. Their presence in soils is

as accessory minerals and they sometimes make up a very significant proportion of the heavy

fraction especially on those soils derived on basic parent materials. The main occurrence is

in the highly weathered Oxisols and Ultisols, and the immature Inceptisols fonned on iron

rich parent material.

TOR dry sand and mineral mixtures

The waveforms produced by the TDR arc shown in Fig.8, magnetite Fig.8a had the

greatest influence as it increased in proportion. This is evidenced by the increased travel time

of the reflection as the magnetite proportion increased. Manual interpretation the travel time

increased from 1 ns in dry sand to 1.5 ns with a 15% proportion of magnetite mixed in. This

corresponded to an increase in dielectric constant of 2.5. The hematite showed a similar
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response in that the waveform moved to the right with the increased proportion of mineral,

but to a far lesser extent than that for magnetite. The goethite Figiic had no effect on

increasing the travel time of the pulse.

Fig.8
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The readings of dielectric constant generated by the Trase sometimes differed from

the manually intcrpreted waveforms. This was most apparent for the 15% magnetite mixture.

A wide range of dielectric constants were given by the TDR ranging between 0 and 1117.

The waveforms of these readings are shown in Fig.9. The reason for this diverse set of

readings comes down to the way the Trase software interprets the waveform. As shown in

Fig.9 the waveforms are nearly identical as they were for all the readings. This is good

because it means that the precision of the system is good. The problem arises with the

softwares calculation of the Ka. The software finds it difficult to locate the point where the

signal was reflected off the end of the waveguides. This means that each time it may cho'ose

a different end point. This fault lies in the software and not the TDR system, the precision

of the software is low. It means that it is vital that one monitors the waveforms produced by

the TDR to ensure that the correct interpretation is given by the software which in 95% of

usage should be correct.
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Fig.9
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TDR saturated sand and mineral mixtures

The TDR waveforms produced from the saturated mineral mixtures are shown in

Fig.10. Fig.10a shows the influence of magnetite. In theory the waveforms should have

reduced in travel time and moved to the left indicating the reduced volume of water due to

the reduced porosity. It is immediately apparent that this was not the case in the presence of

magnetite. The waveforms very substantially increase in travel time and the magnitude of

the reflected signal dramatically decreases. The influence of 15% magnetite increases the Ka

to 70 from saturated sand which was about 23. In comparison the hematite and goethite did

not have such a marked effect. The magnitude of the reflected signal is decreased, most

substantially for the goethite. Ibis does not however dramatically increase the travel time of

the waves and hence the dielectric constant measured. The end point produced by the

hematite mix stays in the same place, it would appear that the hematite compensates for the

reduced water content in keeping the Ka about the same at 23 rather than allowing it to

reduce as one would expect when the water content is reduced. The sand goethite mix

follows the reduction in water content with reduced travel time of the wave as the proportion

of the goethite increases.
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Fig.10
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Possible mechanisms influencing the techniques

The following provides discussion and speculation as to possible reasons as to why

the instruments behave in a particular way. The greatest influence of the iron minerals.on

both of the techniques occurs when the mixtures are saturated. This would suggest that the

presence of the water some how exaggerates the influence of the minerals. The TDR is

sensitive to changes in electrical conductivity and this has been a proposed use for

simultaneous readings of water content and electrical conductivity Topp et al. (1988). The

TDR waveform is attenuated by increasing electrical conductivity of the medium, ie thc

magnitude of the reflected signal is reduced. Attenuation loss is visible for the magnetite

mixture waveforms and the goethite. Speculating it would appear that the addition of water

allows the flow of electrons reducing the resistance and increasing the electrical conductivity

of the system.

The electrical conductivity of the medium reduces the magnitude of the reflected

signal from the TDR however it is considered opinion that the travel time of the pulse

remains unaffected. The increase in the travel times of the waves in the magnetite mix and

to a certain extent the hematite mix may bc attributable to another mechanism. Roth et al.

(1992) examined the relationship between magnetic soils from Brazil and their influence on

TDR. They concluded that the magnetic permeability of a soil didn't influence the '1DR
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readings. The theory is that for soil water content measurements the TDR assumes dielectric

loss of the soil to be equal to zero, and the magnetic permeability to be equal to unity. Davies

and chudobiak, (1975). According to Roth et al. (1992), " This implies that the soil

approximates to a perfect dielectric and has no magnetic properties. The velocity of the pulse

propagation is inversely proportional to both the square root of the medium's,(soil) dielectric

constant and the square root of its magnetic permeability. Therefore the calibration function

of a soil that shows susceptibility to an extraneous magnetic field may differ from the one

that is valid for a non-magnetic soil, leading to an over estimation of readings of soil

moisture." The workers concluded from their work that magnetic minerals had no influence.

The chemical data for the work showed the presence of total Iron in the soil at 18% it didn't

show the form it was in, which this work has shown to be most important. The influence of

both a magnetic material and one with a higher dielectric constant should be independent of

the presence of water and thus any exaggeration shown in the presence of water must be due

to some other influence.

The exaggeration exhibited due to the presence of water was very significant. It is

most easily explained by suggesting that electrical conductivity is increased with the presence

of water and that this not only attenuates the wave but also increases the travel time. This

appears the most plausible and simple explanation but disagrees with the literature

Influence on water content readings

The relationship between dielectric constant and water content has been demonstrated

by a number of authors (Hoekstra and Delaney, 1975; Topp et al. 1980). The large relative

difference between the Ka of air (1), soil materials(2-4) and water (80) means that an increase

in dielectric constant corresponds to an increase in water content. On thc evidence provided

by the data one can no longer assume that the dielectric constant of a soil mineral will always

lie in the 2-4 range and hence the calibration supplied with the Trase TDR in the presence

of certain minerals will over estimate the water content of the soil. The presence of the

goethite at 15% is unlikely to alter readings of V.W.C.. The presence of 15% hematite may

alter readings by as much as 6%. The presence of 15% magnetite may raise water content

readings by 60%. The percentages of mineral quoted are those added by mass so that in

reality 15% magnetite is about 9% magnetite. This means that small quantities of magnetite

ie 1 or 2% will still have a considerable influence on V.W.C. readings if present in soil.
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Hematite, present in large quantities eg in ferric horizons may raise readings of water content

by ten or fifteen percent. The presence of maghemite in soil may create a similar influence

to magnetite. The influence of other iron minerals such as ferrihydrite or lepidocrocite is yet

to be assessed but is probably minimal for the TDR. This means that for some iron rich soils

the TDR will require its own in situ calibration, in a very few soils spacial variability of

minerals may rule out its use altogether.
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5. TITANIUM MINERALS

Influence of titanium minerals on TDR

This section briefly examines the occurrence of titanium minerals in soils. It then

presents the results obtained from experimental work on rutile and ilmenite.

The occurrence of titanium minerals in soils

The occurmnce of titanium minerals in soils is generally minor. Estimations of

amounts vary the majority of soils worldwide contain < 1% titanium. This is usually in the

form of anatase, brookite, nitile, ilmenite or sphene. Though quantities are usually small its

significance grows in certain soils, usually those which are formed on titanium rich parent

materials. Quantities of up to 25% (Ti02) have been reported for certain fractions from

Hawaiian soils (Sherman, 1952). Significant quantities have been reported in the A horizons

of peaty Podzols from Ireland and Scotland (Bain, 1976). The resistance of these minerals

to weathering means they will often be present in a variety of soils after the parent material

has been through a number of weathering cycles. The study examines rutile and ilmenitc as

anatase is difficult to obtain in large quantities in its mineral form.

TDR response in dry sand and mineral mixtures

The influence of the titanium minerals on the TDR waveforms is shown in Fig.11a.

In theory the pulses should remain in the same position as the dry sand, this is not the case

and they move to the right. The response moves the waves to the right increasing the travel

time of the pulse. Unlike the response to magnetite the increase in travel time on each

occasion is not as clear cut. The waveform created depended to an extent on the orientation

of the waveguide. This influence is very important as readings may differ according to the

orientation of the mineral fraction with the waveguide. This makes random readings across

an area containing rutile more difficult to have confidence in. Ilmenite appears to cause much

the same response as the rutile increasing the travel time of the pulse, Fig.11b.
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TUR response in saturated sand mineral mixtures

The two minerals examined exerted a substantial effect on the response of die TDR.

An examination of the waveforms in Fig.12a and b clearly shows an increase in the travel

times of the pulses in the presence of both of the minerals. It is interesting to note the

apparent increased strength of reflection in the waves generated in the presence of rutile. The

end points tend towards becoming more right angled ie the reflection off the end of the guides

is much sharper, Fig.12a. The Ilmenite creates a different waveform with a poor reflection

and much greater attenuation of the pulse, Fig.12b. The response due to increasing

proportions of mineral was to increase the Ka readings in both cases.

Fig.12a
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Possible mechanisms influencing the techniques

The titanium minerals follow a similar response pattern to that seen in the presence

of iron minerals. This is that the greatest influence occurs at saturation. The influence of the

minerals under saturation is possibly due to an increase in electrical conductivity in the

presence of water. The strength of the reflected waves in the presence of mtile would suggest

that the electrical conductivity was not increasing. It would therefore appear that the

influence of the rutile Was something other than this. The influence of rutile and ilmenite

creates more questions to be answered about their behaviour with TDR waveforms. An

important step would be to examine changes in electrical conductivity with the addition of

water.

Influence on water content readings

Increases in Ka due to the presence of titanium minerals will lead to errors in the

estimation of water content using a standard calibration. 20 % rutile will mean that an over

estimation of 20% water content is made, where as for ilmenite 10% would result in an over

estimation of 30%. The ilmenite can be clearly seen to have a much more significant

influence for the minerals studied.

2 8



6. ZIRCON

Influence of zircon on TDR

This section examines the influence of zircon on TDR. It gives a brief introduction

on the occurrence of zircon in soils, then presents the results of the experimental work

obtained from the TDR.

The occurrence of Zircon in soils

Zircon is the most common zirconium mineral in soils, (Allen & Hajek, 1989). It is

a lithogenic mineral which is exceptionally tough often surviving many weathering cycles.

The majority of soils are said to have at least traces of zircon, it tending to be most abundant

in the surface horizons of highly weathered soils.

TDR dry sand and mineral mixtures

The waveforms of dry sand and 10% zircon are shown in Fig.13. It is immediately

apparent that the two waves closely correspond giving the same value of Ka. In the dry

mixture the zircon has no influence on the waveform.

Fig.13
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TDR saturated sand and mineral mixtures

The waveforms in Fig.14 behave as considered opinion would predict. The addition

of 10% mineral reduced the water content and resulted in the wave moving to the left with

the travel time being decreased. It is interesting to note that the reflected wave in the

presence of the zircon appears to be much sharper than in the saturated sand suggesting a

decrease in electrical conductivity according to the thoery of the relationship between pulse

attenuation and electrical conductivity.

Fig.14
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The influence on water content readings

The zircon creates no apparent effect on the readings of the TDR and hence its

presence in soils should not alter the Ka value determined and hence have no effect on water

content readings.
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CONCLUSIONS

TDR is proving to be a very successful technique for soil moisture estimation. This

work has illustrated that to fully realise its potential some further work is required to give

understanding into the influence of certain mineral fractions. The major conclusions of the

report are listed below with recommended solutions.

Magnetite, hematite, rutile and ilmenite have high dielectric constants thereby requiring

differing calibrations to that of a standard such as Topp et al. (1980). This work would

suggest that for soils where these minerals may be present in large quantities in situ

calibration should be undertaken. The spacial distribution of these minerals may render the

TDR technique unusable. Electrical conductivity (Ec) within soils appears to be a highly

influential factor on TDR. This is already known and is used as a simultaneous measure of

Ec of soils. The precise role of minerals such as thoses described has not bccn examined and

may be important. TDR with subjective waveform analysis will mean that accurate water

content determination will not easily be achieved in all soils duc to the large variety of

influences on the way in which it measures and calculates water content. It would appear that

the minerals studied do not have a linear effect on the dielectric constant measured in the

presence of water. This may make them potentially difficult to calibrate for.

FUTURE WORK

To extend the range and capabilities of the TDR a few lines of futher investigation are

suggested.

The study of the influence of hematite on TDR. Hematite is a common mineral especially

in tropical soils where 30 - 40% may occur.

Comparison of different TDR equipment and their calibration as some of the reported

differences in the literature may be due to this.

Examination of the influence of minerals on electrical conductivity.

Investigation as to the influence of a magnetic field.

Investigation into the role of clay minerals, the influence of bound water and the effect on

electrical conductivity.
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