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Executive Summary

This report describes the first stage of the project to develop a national methodology for the
NRA regions to assessgroundwater recharge. This project is limited in its scope to considering

111 the mean annual recharge of the drift-free areas of the major aquifers of England and Wales.

The first activity was to carry out a review of the existing practices used by the NRA regions.
This showed that there was a remarkable variety of methods in use with more than one
method being used by some regions. MORECS data is used by several of the regions as at
least the starting point of calculations, whilst Penman-Grindley methods are also widely used,
particularly in distributed groundwater models. In addition, a hybrid model using MORECS
data with a Penman-Grindley soil moisture model is also in usc. The Thames NRA region is0 	 unique in having a single methodology for all applications of groundwater recharge. It is based

on a soil moisture accounting model and calibrated against streamflow hydrographs.

In addition to the NRA regions, a wide ranging consultation was carried out with other
organisations with an interest in groundwater recharge . These included the University of
Birmingham. WRC, BGS, ADAS and Mott Macdonalds. This showed general acceptance of
MORECS as the basis for estimating groundwater recharge but concern was expressed about
various aspects of the calculations. In particular, there was concern about the size of the
MORECS grid cells, 40x40 km, and some aspects of specific soils and land covers. The need
to incorporate land use information and lateral transfers of water were also emphasised.

A critical review of the soil moisture models has been carried out. The Penman-Grindley

model has the weaknesses of only implicitly including the surface resistance term and the root

constant being independent of soil type. The MORECS model suffers from the same weakness
as the Penman-Grindley in that the definition of the field capacity and soil moisture deficit are
implicit. MORECS has the advantage of using the physically based Penman-Monteith model.

The methodologies used for dealing with the unsaturated zone generally employ some form
of direct method, usually in the form of a transfer function covering both losses and lags. The
Thames model and Stanford Watershed model are both catchment models with the unsaturated
zone handled as one of the component models.

A conceptual framework has been developed which links the physical processes in
groundwater recharge with the component models. The next stage of the project will be to
develop the methodology but it is likely that a Penman-Monteith model will be used to
provide the evaporation component. The soil model is not so clearly defined but a form of the
Penman-Grindley model will be investigated and bypass flow will be incorporated in the
methodology.
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1. Introduction
•

The recent period of reduced winter rainfall in the southeast of the UK has highlighted the
vulnerability of groundwater resources to variations in recharge. Normally, the NRA do not
license more abstraction than recharge from an aquifer unit. As more units become totally
licensed there will be increasing pressure to ensure the groundwater recharge calculations are
as accurate as possible. There is also continuing concern about the threat of nitrate pollution
to groundwater supplies. A major source of this pollution is the leaching from fertilisers
applied to crops in the outcrop areas of the major aquifers, the Chalk and Permo-Triassic
Sandstones. This has resulted in •the need to define 'groundwater protection zones' within
which the use of nitrate fertilisers will be controlled. An accurate estimation of mean annual
groundwater recharge is an essential precursor to defining these zones on a scientific basis.

A variety of methods for estimating recharge are currently in use in the UK. There is clearly
a need for a robust, national methodology, founded on appropriate and accepted scientific
procedures such as were developed 20 years ago for flood estimation methods (IH Flood
Studies Report). This would avoid problems such as discontinuities across regional boundaries
and give clear guidelines for methodologies to be applied to different combinations of terrain,
geology, land use etc.

The requirement is for a management tool which can be used to investigate a variety of

scenarios at local and regional scales and also has an ability to provide geographic analysis

111 and data visualisation. A modem methodology using models based on process studies is
needed to predict recharge and a distributed model is required in order to include spatial
variations.

The solution is to provide a system capable of modelling groundwater recharge on the regional
and local scales consisting of a simple daily vegetation water use model coupled to an
unsaturated zone model with geographic analysis and data visualisation provided by linking
the models to a GIS. The system must be designed to be used at a number of temporal scales,
depending on the particular requirement. There is the operational time scale of a season where
the models can predict the amount of recharge in response to a range of rainfall scenarios in
the coming season. A strategic time scale of decades needs to be incorporated to explore the
long-term effects on groundwater recharge of changes such as land use and climate.

The development of a consistent and widely accepted method to estimate the amount and
timing of groundwater recharge can be achieved through two linked projects. The first will
review current NRA practices and develop a national framework procedure to estimate mean
annual groundwater recharge in drift-free areas. The second project would produce an
integrated software system to estimate both total recharge over an aquifer unit and its timing.

This report deals with the first stage of the first project, i.c. the development of a procedure

411 to provide a consistent method for estimating mean annual groundwater recharge. The
procedure will be applicable at drift-free sites over the unconfined portions of the Chalk and
Permo-Triassic Sandstone aquifers of England and Wales. The objectives covered by this
report are:

To assess the current methods of estimating groundwater recharge used by the NRA
regions.

411



To develop a conceptual framework of a procedure for estimating mean annual

groundwater recharge, at a range of scales, that can be consistently applied by the
NRA regions.

The first chapter of the report describes the existing methods of calculating groundwater
recharge in use currently by the NRA regions and also comments on methods in use by other
organisations. This is followed by critical descriptions of the soil moisture models and

unsaturated zone models, chapters 3 and 4. The bibliography compiled as part of the survey
is included as Annexe 2. This is not a fully comprehensive literature review of groundwater

recharge but documents the reports and papers collected during this first part of the project.

The development of a conceptual framework for a national method of calculating groundwater
recharge is described in chapter 5.
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2. Existing Practices
•

The first activity of the project has been to establish the existing methods of calculating
groundwater recharge being used currently within the NRA regions. This was achieved by
visiting each of the eight regional offices to obtain information from the relevant staff and also
to obtain copies of relevant reports, papers and other literature. The following section gives
a brief account of the results of this survey. In addition, other relevant organisations have been
contacted for their views on methods of calculating groundwater recharge and the results of
this are summarised in the final pan of this chapter.

•

2.1 ANGLIAN

The main aquifers of the region are the Chalk, Lincolnshire Limestone, the Spilsby Sandstones
and the Greensand as well as the Oolites and the Crag. Significant areas are covered by
Boulder Clay which has a tendency to be more sandy in Norfolk and clayey in Essex. A
variety of methods of calculating groundwater recharge are in use.

The crudest method is based on streamflow analysis. It is uscd for studies of regional strategy
with each unit's water balance being estimated to give the groundwater resource. The model
uses information from previous studies, with groundwater recharge related to basefiow, and
hence the methods used are inconsistent as they vary from area to area.

•
A series of lumped catchment models were developed in the early 1980s. These were used for

a wide range of applications and had various forms of the recharge component . The recharge

model was further developed with the objective of making it consistent with MORECS. It
takes as its input the potential evapotranspiration from MORECS and distributes it throughout
the catchment on the basis of geology and land use. A range of root constants are used to
obtain actual evapotranspiration. However, attempts to compare the results with the MORECS
real land use data have shown significant differences even in the simple caseof grass. Further
work on this model has been abandoned. In its place, the model used by Thames NRA
(Mander & Greenfield, 1978; Wilby, Greenfield & Glenny, 1994) is being used and has given
good results.

•
Eight distributed groundwater models have been acquired from a variety of contractors. Each
has a different method of calculating groundwater recharge although most embody some form
of the Penman-Grindley model and all include some form of lateral transfers. The most recent,
notably the South Lincolnshire Limestone model, use MORECS potential evapotranspiration
data as input to a the recharge model. The models are:

Northern and Southern Chalk

• Spilsby

e • South Lincolnshire Limestone

0 • Thetford

• Lark

e
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Lodes and Granta

Gipping

Pant

The Spilsby Sandstonc report (Anonymous, 1989) represents a rare case of direct validation
of groundwater recharge, here using soil moisture data..The most recent of the distributed
models has been produced by Birmingham University's Dept. of Civil Engineering for the
South Lincolnshire Limcstone. This incorporates bypass of the soil moisture store. The bypass
flow is taken as 15% of actual precipitation greater than 5 mm, implying that the source of
the bypass is runoff accumulating in ditches etc. and then directly feeding into the aquifer.
Two other mechanisms of groundwater recharge are incorporated in the model. The first
describes percolation through the beds overlying the aquifer, including the Boulder Clay. The
second is of runoff from the overlying beds to areas of the aquifer outcrop where some or all
of this water then recharges the aquifer.

2.2 NORTHWEST

The Northwest region has a wide range of aquifers although the dominant resource is from
the Permo-Triassic Sandstones. These are often covered with thick deposits of drift. The major
areas are the West Cheshire, Wirral and Mersey Basin, the Fylde and the Eden Valley. The
aquifer in the Eden Valley consists of two hydraulically separate units, the Penrith Sandstone
and the St. Bees Sandstone.

Little effort is made to calculate groundwater recharge in the hard rock areas or the Eden
Valley as the resources are generally considerably in excess of demand. For the Permo-Triassic
Sandstone values of 300-350 mm y-1 are used in the drift free areas and a value of 50 mm
in areas of thick drift cover. These values are obtained from several studies, particularly the
Saline Groundwater Study of the Mersey area (Anonymous, 1981; Anonymous, I984a), nitrate
investigations (Vines, Lucey & Brassington, 1980; Anonymous, I984b) and a study of
recharge through drift (Vines, 1984). For the Saline Groundwater study, potential recharge for
the drift free areas was calculated using a Penman-Grindley type model (Rushton & Ward,
1979; Howard & Lloyd, 1979) for a variety of land cover types. The spatial distribution of
recharge was calculated on the basis of an empirical regression of rainfall data against data
from a single climatic station at Widnes for the Lower Mersey Basin, and a second station at
the Rock for North Merseyside. The value for groundwater recharge through the Boulder Clay
was quantified from laboratory measurements of permeability and tritium from borehole cores
as well as a water balance study.

2.3 SEVERN-TRENT

The major aquifers of the region are the Permo-Triassic Sandstones of the Shropshire-Cheshire
Basin and Nottinghamshire. A single method of calculating groundwater recharge is used,
except in the case of distributed groundwater models.

The method was devised in 1979 (Anonymous, 1979). All the aquifers were divided into self
contained units of about 30 km'. This was done on the basis of aquifer boundaries and flow
lines while also attempting to ensure that rivers were within one unit. The Meteorological.
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Office was commissioned to calculate values, using the Penman-Grindley soil moisture model
(Grindley, 1967) and assuming a medium capacity soil for 15 selected units for the standard
period of 1941-70. The results were used to devise a regression equation of potential
evapotranspiration against rainfall, for different land use, to enable effective rainfall to be
estimated. The calculations were on a daily basis but the potential evapotranspiration estimates
were monthly and so had to be disaggregated to daily data. The rainfall and potential
evapotranspiration data were for the period 1941 to 1970. The land use data were based on
the Meteorological Office's coarse scale data but modified on the basis of local knowledge,
e.g. for urban areas.

Groundwater recharge is then estimated using a points scoring system, Table I, on the basis
of soil type, sandstone lithology, topography and stream density/thickness of the unsaturated
zone. For each area, the points were added up to produce a total score which was referred to
a lookup table to get the percentage of effective rainfall that goes to groundwater recharge.
The values are further modified if other conditions are present, e.g. drift cover. The figures
have been reviewed in the light of experience and found to generally work well. An exception
is in the area of the Nottinghamshire Sherwood Sandstones where the values are 25% less than
are expected. This has since been shown to be due to vertical flows from the overlying
Cowlick formation consisting of interbedded thin mudstones and sandstones.

Some short term calculations have been made using MORECS or the Penman-Grindley model.
In addition a model, HYSIM. has also been used. This is a fairly simple catchment based

rainfall-runoff model. MORECS data is used as the input effective rainfall.

•
There are also a number of distributed groundwater models, the most recent of which is for
the Nottinghamshire Sherwood Sandstone aquifer (Bishop & Rushton, 1993). This study used

spatially interpolated rainfall values based on five raingauges. The model area was divided into
eight zones and the daily rainfall estimated either directly from one of the raingauges or by
multiplying the data from the nearest raingauge by a factor determined from the long term
mean of the area. Weekly MORECS potential evapotranspiration values were obtained and
disaggregated to daily values. The soil moisture deficit was calculated using the Penman-
Grindley model (Grindley, 1969) with root constants and wilting points obtained from the
literature (Lerner, Issar & Simmers, 1990). Remotely sensed data from the LANDSAT satellite
were used to calculate the percentage of each land use type for each I km' and then the
groundwater recharge for each square was calculated as the sum of the recharge for cach land
use type within the square. Runoff is accounted for as an empirical relationship with rainfall
intensity and soil moisture deficit. Additional recharge from river/aquifer interaction, inputs
from overlying formations and urban leakage are also accounted for.

•
Severn-Trent have plans to update the system for calculating groundwater recharge: They have
approached the Meteorological Office for a long term average rainfall data, on a 1 km grid,
for 1961-1990. They also plan to acquire a similar data set for potential evapotranspiration for
each land use type given by MORECS. These will be used to establish a regression equation,
for each land use type, to estimate effective precipitation. Each 1 km grid cell will have its
percentages of land use determined from remotely sensed data. The soils will also be
classified, for each cell, as low, medium and high water availability. Negotiations with the Soil
Survey are underway to acquire the 1 km data set with selected soil parameters. The
methodology will be developed for Nottinghamshire and then applied to other areas.

•

•
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Table I Severn-Trent NRA's method of assessing the percentage of the effective
rainfall for recharge

Areas of a uder outcro

1 Award points to aquifer outcrop on the following basis:•

SOIL TYPE

SANDSTONE

LITHOLOGY

TOPOGRAPHY

STREAM DENSITY

/THICKNESS OF

UNSATURATED

ZONE

Thin sandy soils with little clay content. 3

Deeper sandy soils with noticeable clay content 2

Deep soils with significant clay content 1

No significant marl bands 3

Frequent thin, or infrequent thick marl bands, but

sandstone clearly predominant 2


Frequent marl bands, marl content equivalent

to sandstone content

No part of area higher than 200 m AOD. 2

Part of area higher than 200 rn AOD. 1

Low density of perennial streams, thick

unsaturated zone 2

High dcnsity of perennial streams, thin

unsaturated zone 1

2 Detennine appropriate percentage as follows:-

Points Sum

10

9

8

7

6

5

Percentaee

95

90

85

80
75

70

Areas covered b drift or urban &Nein tnent

3 Where the aquifer is overlain by permeable sands and gravels the percentages arc

determined as above.

4 Where the aquifer is overlain by mixed drift not exceeding 5 rn thick, 50% of effective
rainfall is considered to percolate to groundwater storage.

5 Where the aquifer is overlain by mixed drift greater than 5 m thick, 10% of effective
rainfall is considered to percolate to groundwater storage.

6 Where the aquifer is overlain by thick clays or is artesian, percolation to groundwater
storage is considered to be zero.

7 All the above factors are multiplied by 0.5 in suburban area and 0.1 in urban areas.

6
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2.4 SOUTHERN

The major aquifers of the region are the Chalk and the Lower Grecnsand whilst minor aquifers
include Hastings Beds, Tunbridge Wells Sands and the Ashdown Beds. Tertiary aquifers are
locally important.

Recharge calculations were made using a program based on the Penman-Grindley model to

calculate the effective rainfall. This has mainly been superseded by MORECS data. The 40
km grid data is used, either in weekly values which include real land use,or monthly values
which are based on grass. Recharge is assumed to only occur in winter and the MORECS
effective rainfall value is taken to be the recharge value.

Distributed ground water models have been commissioned for several areas. The most recent
are:

•

River Meon and River Hamble, Hampshire - Over-abstraction Studies, 1994 (Mott
MacDonald Ltd.)

•
Chichester Chalk Investigation, 1993 (Sir William Halcrow & Partners Ltd.)

•
Water Resources Study of East Kent Aquifer, 1991 (University of Birmingham and
Acer Consultants Ltd.)

Darent Catchment Investigation, 1993 (Groundwater Development Consultants)

Wallop Brook and Bourne Rivulet, Hampshire - Over-abstraction Studies, 1991 (Mott
MacDonald Ltd.)

The studies carried out by Mott MacDonald use a modified Stanford Watershed Model
(Wardlaw, Wyness & Rippon, 1994) to estimate recharge whilst the other tend to use
MORECS potential evaporation data as input to a Penman-Grindley type model. Early studies
used a root constant of 25 mm but, following a study in Hampshire which incorporated soil
moisture measurements, higher values tend to be used. The values used tend to be around 75
mm for short vegetation and 200 mm for tall vegetation but seasonal or monthly profiles of
root constants can be applied, according to land use. Where appropriate, a bypass flow of
between 10 and 15% is used. This is applied to thc annual rainfall, effective rainfall or a
threshold can be applied. Both the bypass and direct flow are lagged through the unsaturated
zone using a distribution function that handles variable thicknesses.

•

2.5 SOUTHWEST

The major aquifers are the Permo-Triassic sandstones, Chalk, the Carboniferous Limestone in
thc Mendip area and the Jurassic Great and Inferior Oolites. Two methods of estimating
groundwater recharge are in use and a variety of methods am incorporated in the distributed
groundwater models.

In the west of the region, the resources are from hard rock areas which are of local importance
although the size of the resource is small. A simple calculation is done by subtracting the long
term average potential evaporation from the long term average rainfall and multiplying the
result by a factor, generally 20%, to take into account slope runoff. The long term average

•
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potential evaporation is read from a map compiled by the Meteorological Office for the period

1967-75. The long term average rainfall is obtained from a similar map.

In other areas, the Penman-Grindley equations are used. For the Otter valley, meteorological
data used to be obtained from the station at Exeter airport but this has since closed. Rainfall

data are used from an appropriate, nearby raingauge. The calculation is done for grass.

Distributed groundwater models are available for the Otter Valley, River Allen, River Piddle

and the Malmesbury area. These use a variety of methodologies to calculate the groundwater
recharge. The Penman-Grindley equations are again used for the Otter Valley model, produced

by MRM Partnership, with a single root constant of 75 mm. Mott Macdonald's modified
Stanford Watershed model is used to calculate the recharge input for the River Allen
groundwater model.

2.6 THAMES

A single methodology is used by the Thames NRA for the purposes of calculating
groundwater recharge. The region has been divided into 15areas, mainly on the basis of the

geology. No further action is taken for areas where the surface is considered impermeable, due
to urbanisation or the nature of the geology. For the remaining areas, representing the Chalk,
Greensand and Cotswold Limestone aquifers, a method of soil moisture accounting is used
(Mander & Greenfield, 1978; Wilby, Greenfield & Glenny, 1994; Greenfield, 1984).

The method takes as its input rainfall and potential evaporation data provided by the

Meteorological Office and is calibrated against streamflow hydrographs. The rainfall data are
daily data and are spatially averaged using the Meteorological Office's method by which the
rainfall for each gauge within the area is weighted according to ita long term annual mean
rainfall. The potential evaporation data are monthly and are based on the Penman-Grindley

model (Anonymous, I993a; Grindley, 1967). These data are used by Thames as their method
pre-dates MORECS. A distance weighting algorithm is used to interpolate areal data from the
station locations and the data are disaggregated to daily time step on the basis of a standard
annual distribution of daily values. These are used to calculate the effective rainfall.

The soil moisture model is a modified version of the Penman-Grindley model. The major
difference lies in the slope of the drying curve for which a value of 0.3 is used, compared to

that of 0.08 originally used by Penman (1949). The value of 0.3 was arrived at by experience
within the Thames region (Hyoms, 1980). A root constant of 75 - 100 rnm is used on the
Chalk. In the Cotswolds a lower value, around 30 mm, is used whilst a slightly higher value

is used in the Greensand areas There is also no maximum deficit Originally, four land cover
types were used but these wcre discarded as the areas were felt to be sufficiently large to be
assumed to be homogeneous. Direct recharge, i.e. allowing recharge to occur when there is
a soil moisture deficit, is handled by allowing between 15 and 20% of the effective rainfall

to bypass the soil moisture store.

The recharge is routed to the saturated zone using a linear store and, through the groundwater

zone, using a non-linear store, to the river to generate the streamflow hydrograph, Figure I.

The model parameters, such as the root constants and the percentage of direct recharge, have
been manually optimised, by inspecting the resultant hydrograph, with particular attention paid
to reproducing the time of onset of recharge. Some rivers show a response to heavy rainfall
even in dry conditions. This is thought to be due to the runoff coming from the riparian zone

8
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Figure 1 Comparison of observed and modelled hydrosraphs from the Thames NRA
model. Courtesy of Thames NRA

and/or paved areas. This response can be modelled by making an appropriate adjustment of
the soil moisture parameters. The river hydrograph is preferred to borehole hydrographs as it
represents the integrated response of the catchment. Inspection of the borehole hydrographs
has shown that the model sometimes underestimates recharge which may be due to localised
thunderstorms. Also some borehole hydrographs show double peaks, due to lateral transfer
effects, which are not reproduced by a simple model.

Thames NRA hydrogeologists make use of three distributed groundwater models. That for the
London Basin was developed by WRC whilst Birmingham University was responsible for the
models of the Kennet valley and the Cotswolds. In addition, MODFLOW is available and
FLOWPATH is used for defining nitrate protection zones. The values of recharge input to
these models are obtained from the values calculated for the 15 areas. These are spatially
distributed using weighting factors varying between 0.5 and 1.3. The weighting factors are
derived from a map of the long term average rainfall on a I km grid, obtained from IH, and
a map of the long term average potential evaporation on a 5 km grid, obtained from the
Meteorological Office. The potential evaporation was disaggregated to a I km grid by Thames
NRA personnel. Use is then made of a nomogram, Figure 2, produced from the soil moisture
model. A series of runs were made of the soil moisture model with +10% and -10% of the
long term average rainfall and potential evaporation which allowed the ratio of point,recharge
to the areal average recharge to be estimated.

For the future, Thames NRA personnel recognise the need to change from the Meteorological
Office potential evaporation estimates based on Penman-Grindley as these will be
discontinued. There is also a need to improve the areal distribution of recharge, probably
including variations in land use, for use in groundwater studies.
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Figure 2 Nomogram for the estimation of point recharge. Courtesy of Thames NRA

2.7 Northumbria & Yorkshire

This region has a range of aquifers with the major aquifers being the Sherwood Sandstones
and the Chalk. Minor aquifers include the Millstone Grit and Carboniferous Limestone. The
main method of calculating recharge is based on (he average effective rainfall and is simply
the rainfall minus the potential evapotranspiration. The rainfall values are the long term
average and were determined during a survey of water resources carried out in 1963. Tables

10
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•
are available for all the subcatchments, which are further subdivided on the basis of the
geology. The thickness and nature of the drift are used to form an opinion on the reduction
of the effective rainfall. The recharge is reduced to 50 mm if the drift is greater than 5 m thick
and 25 mm if the thickness exceeds 10 m. The Sherwood Sandstones in the Vale of York have
a thick drift cover and there is a tendency to overestimate groundwater recharge for this
area.However, the drift tends to surround the Chalk at outcrop so the situation is simpler and
the estimates of groundwater recharge more reliable. The information on the thickness and

nature of the drift was revised in 1987 based on the NRA's own work

•
Distributed groundwater models have been contracted from various organisations and the most
reliable is considered to be that for the Chalk by Birmingham University's Dept. of Civil
Engineering. This has since been extended to cover the _whole of the Chalk outcrop by
Aspinwall & Co. Ltd. In addition, there is an interest in the Sherwood Sandstones around
Doncaster. This area has been included in a model of the Nottinghamshire Sherwood
Sandstones, commissioned from Birmingham University's Dept. of Civil Engineering by
Severn-Trent NRA. This model makes use of the Penman-Grindley soil moisture model but
includes factors for surface runoff, distributed land use and the lag introduced by movement
through the unsaturated zone.

•

•
2.8 WELSH

•
The major groundwater resources within the region are the Triassic aquifers of North Wales,
whilst the Coal Measures and Quaternary and recent deposits are minor aquifers. The Lower
Palaeozoic units are exempt from licensing but are very important locally as they may be the
only source of supply.

MORECS data are used for groundwater recharge calculations. Monthly values for the 40 km

grid squares have been obtained for the period 1961 to 1991. The values used are for grass
as no land cover data is available at the office. To calculate the data at a specific site the
recharge is taken to be the difference between rainfall and the actual evapotranspiration. If
there are data from a local raingauge available then these are used to modify the value of
recharge as the proportion between the measured rainfall and that given for the MORECS
square.

2.9 OTHER ORGANISATIONS

The views of members of staff from other relevant organisations have beenelicited during this
phase of the project. The organisations concerned are:

•

WRC Ltd.
•

• Hydrogeology Unit, British Geological Survey

• ADAS

• Soil and Water Research Centre, ADAS

Soil Survey & Land Research Centre, Silsoc

•

I I



• Mott MacDonalds Ltd.

• School of Civil Engineering, University of Birmingham

• Dept. of Geological Sciences, University of Birmingham

Several general points were identified from visiting these organisations. The first was the
general acceptance of MORECS data as the starting point for groundwater recharge
estimations, although this was not without some reservations about aspects of the data,
particularly the coarse scale, 40x40 km, of the gridded data. There were also some concerns
expressed about the model applied to specific crops and soil types.

The importance of using realistic land use distribution data was also emphasised, confirming
the results given by Wheater (1981) . In particular the need to distinguish between winter and
spring cereals and to identify cereals and vegetables from grass. A good soil data set was also
required by some.

The need to take into account lateral transfers was of concern to some. These can occur both
in the soil and the unsaturated layers. In some areas the transfer of water from areas of
impermeable strata may be important. The ability to provide a mechanism for rapid recharge,
bypassing the soil store, was generally required.

There was a general consensus that calculations on a 1 km grid with a time step of a week or
10 days was acceptable although there was also the need to he able to aggregate up to coarser
spatial and temporal scales.

Another point made was that temporally variable data, such asrainfall, should cover an agreed
time period in order to ensure that the results are comparable between regions. Concern was
also expressed that rigorous algorithms should be used for spatially distributing data, an
example where this was required was with rainfall data where the procedure of Theissean
polygons makes no use of topographic data.
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3. Reviewof Soil MoistureModels

The visits to the different regions of NRA have indicated that there are three main methods
which are commonly used to estimate the evaporation component of ground water recharge.
These are based on Penman-Grindley (1969), The Meteorological Office Rainfall and
Evaporation Calculation System, MORECS, and a hybrid between these two i.e MORECS
potential evaporation with a root constant. Table 2 shows which methods arc in use with each
NRA region. A brief description of each method, its advantages and its weaknesses are
presented below.

•

•

Table 2 Soil moisture models in use with the NRA regions
•

NRA Region Penman- MORECS Hybrid

•
Grindley

Anglian

Northwest

Severn-Trent V

•
Southern .1

Southwest

Thames

Northumbria&
Yorkshire

Welsh

3.1 PENMAN-GRINDLEY MODEL, ESMD

•
This model calculates the potential ground water recharge rate as a difference between
measured rainfall, estimated actual evapotranspiration and the soil moisture deficit (Lemer,

•
Issar & Simmers, 1990). The latter is calculated as:

•
PSMD = SMD +AE -P (1)

•

GWR, - -PSMD, PSMD,.1<0 (2)

SMD = PSMD -GWR (3)

•
Where PSMD is the potential soil moisture deficit, AE is the actual evapotranspiration, P is
rainfall, GWR is the ground water recharge, i is the day index and SMD is the soil moisture

13
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deficit

The actual evapotranspiration, AE is calculated from the potentialevapotranspiration, PE under
different conditions as follows:

(4)AE, = PE,

Or _

AE PE1

AE, = Pi F(PE,-P,)

AE, = P

SAID5C

PPEI

D>SMD,C and 11,<PE,

SAID, = D and P,<PE,







Where C is a root constant, mm, D is SMD at wilting point, mm and F is an empirical
constant relating actual to potential evapotranspiration whendeficits are greater than the root
constant. Figure 3 illustrates the relationship between AE/PE ratio to SMD as well as the C,
D and F parameters.

A value of 8% for F has been adopted for UK application C and D are related to vegetation
cover and are not dependant on the soil characteristics. Table 3 shows C and D values for
various land covers over 12 months. These land covers are: cereals (Sept. harvest), cereals
(Aug. harvest),• cereals (July harvest), potatoes (Sept. harvest), potatoes (May harvest),
vegetables (May harvest), vegetables (July harvest), vegetables(Aug. harvest), vegetables Oct.
harvest), bare fallow, temporary grass, permanent grass, roughgrazing, woodland, riparian (not
shown in the Table 3; C and D are effectively infinite). C and D determine the shape of the
relation as shown in Figure 3.

14
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Table 3




Monthly root constant (C) and wilting point (D) values for the Penman-
Grindley model in the UK (mm) (After Lerner et al. 1990).

Crop type (see notes)




Month




1 2 3 4 5 6 7 8 9 10 II 12 13 14
•

Jan & Feb C 25 25 25 25 25 25 25 25 25 25 56 76 13 203

so




D 25 25 25 25 25 25 25 25 25 25 102 127 51 254




Mar C 56 56 56 25 25 56 25 25 25 25 56 76 13 203




D 102 102 102 25 25 102 25 25 25 25 102 127 51 254
• Apr C 76 76 76 76 56 56 56 25 25 25 56 76 13 203




D 127 127 127 102 102 102 102 25 25 25 56 76 13 203
• May C 97 97 97 56 56 56 56 56 25 25 56 76 13 203




D 152 152 152 102 102 102 102 102 25 25 102 127 51 254• Jun & Jul C 140 140 140 76 76 25 56 56 56 25 56 76 13 203




D 203 203 203 127 127 25 102 102 102 25 102 127 51 254

•
Aug C 140 140 25 97 97 25 25 56 56 25 56 76 13 203




D 203 203 25 152 152 25 25 102 102 25 102 127 51 254

•
Sept C

D
140
203

25

25

25

25

97
152

25

25

25

25

25

25

25

25

56
102

25

25

56
102

76
127

13
51

203

254




Oct C 25 25 25 97 25 25 25 25 56 25 56 76 13 203
•




D 25 25 25 152 25 25 25 25 102 25 102 127 51 254




Nov & Dec C 25 25 25 25 25 25 25 25 25 25 56 76 13 203
•




D 25 25 25 25 25 25 25 25 25 25 102 127 51 254




Notes











•
I. Values originally quoted in inchcs (1 in = 25.4 mm) and rounded to nearest mm for this table.
2. Vabd for England and Wales only
3. Crop types are:

I cereals, Sept harvest
2 cereals, Aug harvest
3 cereals, July harvest
4 potatoes, Sept harvest
5 potatoes, May harvest
6 vegetables, May harvest
7 vegetables, July harvest
8 vegetables. Aug harvest
9 vegetables, Oct harvest

10 bare fallow
I I temporary grass
12 permanent grass
13 rough grazing
14 woodland
15 riparian (not shown) - C and D effectively infinite

4. Based upon Grindley (1969).

•
•
•
•
•
•
•

I5••



AEy
PE

0

Soil Moisture Deficit (mm)

Figure 3 Actual/potential evapotranspiration ratio versus soil moisture deficit in Penman-
Grindley model (1969)

The PE is calculated from the Penman equation 1948 and 1949:

A1 +y E
°

PE = 	
A +y

where

= 0.026(0.54U +0.5)(e re) (9)

where Rn is the net radiation, A is the slope of the saturated vapour pressure curve, 7 is

psychometric constant. Es is the aerodynamic term of the Penman equation (mme), e, is

saturated vapour pressure at air temperature (mb), e is the prevailing vapour pressure (mb),

U is wind speed (msd) and A is latent heat of vaporization. The PE calculated hem is for short

well watered green grass. The net radiation is derived from standard meteorological

measurements using empirical formulae, such as given by Thompson, Barrie & Ayles, 1981.

The Penman equation is widely accepted because of its physical basis, despite some

drawbacks. The surface resistance is only implicitly included by underestimating the

aerodynamic term, as reported by Thom and Oliver (1977). This is only strictly applicable to

the short grass surface for which it was calibrated. However empirical relationships have been

developed between it and the evaporation from other vegetation types which have proved quite

successful.

Other uncertainties in Penman-Grindley model are related to the root constant being a single


parameter used to characterize each crop regardless of soil type. Also all crops are assumed


to behave in an identical manner once the deficit exceeds the appropriate root constant. -

(8)
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In this model, drainage only occurs from the soil after it has received enough rainfall to
increase its moisture content above field capacity. The drainage occurs instantaneously to
restore the soil moisture to the field capacity. Consequently, the soil moisture stays closer to
the field capacity during the winter and considerably below that during the summer when
evaporation exceeds rainfall. As a result, the drainage is assumed to cease abruptly at the
beginning of the growing season and does not start again until late autumn. This does not
reflect the real field conditions. Soil moisture distribution with depth is not taken into account,
only the total water of an unspecified depth is considered.

•

According to MacKenzie a aL (1991), the method does not operate satisfactorily where the
surface or the subsurface runoff is a significant component of the soil water balance. It is
recommended for studies requiring modest accuracy over long periods in extensive areas of
homogeneous land use, soil cover and shallow lithology.

The Penman-Grindley system was used by the Meteorological Office for regular bulletins of
PE and SMD since the early 1960s, the ESMD system. Calculations were made for the main
synoptic stations and issued as site values. This obviously is a serious disadvantage if areal
estimates are required. However the potential evaporation estimates can be used by the user
along with catchment specific rainfall, soil and vegetation data to produce a true areal average.
MORECS was designed to supersede the ESMD system and the routine issue of ESMD finally
ceased in April 1994.

•

In conclusion this method is a site specific and docs not offer areal estimates on a grid-square
basis. It uses the well known and widely used Penman equations. These equations have a
variety of limitations, particularly if estimates are required for a range of vegetation and soil
types.

3.2 METEOROLOGICAL OFFICE RAINFALL AND EVAPORATION
CALCULATION SYSTEM, MORECS

Meteorological Office Rainfall and Evaporation Calculation System, MORECS, provides

weekly and monthly averages of evaporation and soil moisture deficit over 40x40 km squares

(Thompson, Barrie & Ayles, 1981). Great Britain is covered by 190 grid squares and the
MORECS uses daily data of 140 synoptic weather stations as inputs. The potential
evapotranspiration, PE, is calculated by a modified form of the Penman-Monteith equation.
The PE is reduced to actual evapotranspiration, AE, as the available soil moisture decreases.
The calculations are made for soils with high, medium and low available water. The daily
water balance is calculated under various types of surface covers and a 'real land use' value,
using relative proportions of the various surfaces in each grid-square, is produced.

The combination equation used in MORECS, where R„ has been calculated assuming that the
bulk surface temperature is the same as the meteorological station's screen temperature, reads
as follows:

pe A (e - e)

P  (R- CO+p c '

XE
pep 4-hr

,
. P r (10)

r
0 r0

•

•
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where b is calculated as:

b = 40(273.1 -•7)3

Where G is the soil heat flux, p is the air density, e is the emissivity of the surface and a is
the Stefan-Boltzman's constant. The other terms arc as in Penman's equation.

The surface resistance, at hourly intervals, during the day time is calculated as:

1_

While for

1

5

or

1

I-, =

where

A = f

(I -A) A

53

time it is calculated as:

1

1

r







IC

night

2LAI

lAl

2500

where r„ is the surface resistance of the crop freely supplied with water and dense enough to
makc soil evaporation negligible, r„ is surface resistance of bare soil (assumed 100 s/rn for wet
soil), f value was found to be 0.7 for barley and assumed to apply for other crops. Day time
values of r„ for grass, riparian land, cereals, potatoes, sugar beet, deciduous trees, conifers,
upland, orchards, bare soil and water are given in Annexe 1,Table 1. The maximum leaf area
index for the above mentioned vegetation covers are given in Annexe I, Table 2. The leaf area
index (LAI) of cereals are assumed to increase linearly according to:

LAI = (
(dLAI-().1)

 0 1 de<d<df (16)
ci,)

Where d is the day of the year, cleis the day of emergence and di is the day of the maximum
height. The LAI between full development and harvest remains unchanged, however the effect
of senescence is included in the following equation:

	

d -d d -d
= r +50(!)+500(!)' (17)

dh-df- cif

Where dh is the harvest day. The value of r„ is close to 600 s/m at harvest. The effective
heights used in MORECS are given in Annexe 1, Table 3.

The system also computes the evaporation of intercepted rainfall using a relationship between
rainfall and leaf area index of different vegetation covers. •


In MORECS, for a dense crop fully intercepting the incident radiation, the surface resistance
remains constant until the first 40% of the available water is extracted (reservoir X, see
below). It increases progressively to a very large value when all available water is consumed.
A similar assumption is made for evaporation from bare soil. For the early growth stage, the
soil evaporation is accounted for by relating the r„ to soil moisture deficit, SMD and
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•

•
combining r„ with a correspondingly corrected r„. MORECS calculates the actual and potential
evaporation. The potential evaporation here being calculated with a constant, minimum surface
resistance (but including interception losses).

The soil water is divided into two reservoirs, X and Y with x mm and y mm of water
respectively. All the water in X reservoir is freely available while that in Y becomcs
increasingly difficult to extract as y decreases. The total maximum of available water,

+ y,„,, is distributed as 40% in X and 60% in Y.

•
The soil water will be drawn first from X until it is completely depleted then extraction from
Y starts. Also, it is assumed that rainfall will recharge X till it is full and then replenish Y.

In MORECS, the values of X, are used as a critical SMD thresholds, similar to root
constants. The size of X and total available water (2.5 X ) vary according to the soil type.

•

Available water capacity for soils of medium capacity are given in Annexe 1, Table 4, for
various soil covers, grass, cereals, potatoes, sugar beet, deciduous trees, conifers, upland,
orchards and bare soil. Soils of high or low available water capacity are arbitrarily assigned
25% more or less than the medium soil respectively.

•
For spring barley and root crops thc available water is assumed to increase linearly at
emergence from twice that of bare soil to a maximum value when maximum cover is attained.
The surface is assumed to be bare soil after harvest. Winter cereals are treated similarly,
except that after harvest bare soil is assumed until the end of December. After that a sparse
crop of LAI=0.5, height=0.08 m and available water of 3.75 times that of bare soil is assumed
until the start of spring growth.

The calculations are made daily. However, weekly and monthly grid square average values are

calculated of PE, AE, SMD and HER (the hydrologically effective rainfall which can be
assumed to be synonymous with groundwater recharge) for 14 crops/surface covers on soils
with medium available water capacity, Annexe I, Table 5. The five basic meteorological
parameters of sunshine, temperature, vapour pressure, wind speed and rainfall for the 190
MORECS squares, are available as daily, weekly or monthly values.

As in Penman-Grindley, in MORECS, the definition of field capacity, FC, and SMD are
implicit. Soil drying below FC is assumed to take place only as a result of evapotranspiration.
This means that, drainage ceases 48 hrs for a medium soil after the soil has been wetted. In
reality, under field conditions, the drainage from lower part of the soil profile may cause a
deficit. The concept can not explain the deep percolation of rainfall which occurs in some soils
when they are relatively dry so that the upper layers are not necessarily restored to field
capacity following rainfall. Also soils with low hydraulic conductivity may continue draining
for weeks following a complete wetting and obviously the idea of field capacity is not
applicable in this case The concept implies that, drainage is assumed to cease abruptly at the
beginning of the growing season and does not start again until late autumn.

The only water input to the soil profile is rainfall and no account is made of lateral flow i.e
the surface runoff or runon during intense rainfall or on steep slopes. SMD due to topography
alone could be substantial. Also the capillary upward flux from shallow water tables at the
base of soil profile is not considered.

•

In reality, the soil factors that cause the AE to decrease below PE rate are the increase in soil

I 9
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moisture tension and the decrease in the unsaturated hydraulic conductivity as a result of the

decrease in soil moisture content. The soil moisture content or SMD is only an index of these

factors which are site dependent because the relations between these factors depends on soil

type. The effect of these factors on soil moisture extraction is beyond capability of the model.

MORECS is better at estimating SMD of sandy soil while it overestimates it for loamy soils.

Also it overestimates SMD in late summer and early autumn (Gardner, 1983). It was found

that MORECS tends to overestimate SMD for normal rainfall years (average years) but

underestimates SMD in dry years such a.s 1976.

The overestimation of SMD may be attributed to the inaccuracy of individual point

measurements of PE, the inadequacy of the model to derive AE from PE or, the inaccuracy

of rainfall measurements. MORECS uses standard rainfall gauges which are known to catch

less rain than the ground level ones. Also it might be attributed to integration of point

measurements over an area of (40x40 km') with varied rainfall input, crop cover and soil

water conditions.

Wheater (1981) reported that introducing an error of 10% in PE and rainfall data has a much

smaller effect on the calculated regional SMD than the inaccurate description of land use

distribution. Greenfield (1981) found that the root constant value for grassland varies from 25

mm to 75 mm according to the underlying geology and the drying curve slope (AE/PE) for

SMD values greater than the root constant has a constant value of approximately 0.30 for all

areas. Davis (1981) reported that MORECS significantly overestimated PE and AE and

underestimates the effective rainfall. Moreover, the estimated SMD returns to EC slightly later

than the catchment values. McGowan (1981) mentioned that, the root constant for the same

species growing on the same soil could differ.

MORECS uses the well known and physically based Penman-Monteith equation which takes

into account the surface resistance and rainfall interception, it has a more complex soil model

and produces areal estimates of different surface covers on 40x40 km' grid-squares. However,

for many catchment applications i.e rainfall-runoff models, the 40x40 km' grid is too coarse

as it does not reflect variations within the catchment. Also the soil model is crude and does

not account for lateral flows, macropore flow and drainage under deficit conditions, therefore

it is suitable for medium texture soils and is less suitable for chalk soils with rnacropore flow.

The method has not been updated since 1981. This update is now overdue, especially with

regard to soil model, soil classification and land use.

3.3 HYBRID MORECS PE + PENMAN-GRINDLEY ROOT CONSTANT

The method takes the potential evaporation of MORECS and Penman-Grindley root constant

adjusted for local conditions. It is flexible and allows for adjustment of the soil model to local

conditions, rainfall, drainage etc. There is however an inconsistency on this approach because

the MORECS potential evaporation contains an interception component which is calculated

form the 40x40 km areal rainfall. The practical effect of this inconsistency is probably small

but it needs to be checked.

This approach could be fruitful providing areal average potential evaporation combined with

rainfall, soil and vegetation distributions tailored to a particular catchment and more realistic

soil moisture models.
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4. Unsaturatedzone methodology
•

This chapter considers the techniques used by the regions for handling the unsaturated zone.
This is the zone of aquifer(s) below the base of the soil and root zone and above the regional
saturated groundwater zone.

•
This unsaturated zone occurs in NRA recharge methodologies in two contexts. First, it is
considered, implicitly if not explicitly, in catchment modelling of various types: such
modelling is used to determine values of the root constant or recharge by comparison of
simulated and observed streamflows or groundwater levels. Second, unsaturated zone processes
are considered separately in the direct routing of the base-of-soil drainage term to its
incrementation of the saturated zone. The recharge term thus derived is subsequently used in
resource assessment and saturated zone modelling. Specific methodologies of these two types

III are described in the following two sections of this chapter.

This chapter does not deal with saturated zone effects per se on the unsaturated zone transfer,
except in the sense of determining a mean unsaturated zone thickness. The question of lateral
transfers of water is considered, since such transfers can occur below soil and root zones but
above the major regional saturated zone.

•
4.1 THE UNSATURATED ZONE AS A CATCHMENT COMPONENT

Optimization of model parameters is frequently made against streamflow, or the baseflow

component of streamflow, and the purpose is to derive parameters which are otherwise

difficult to determine, particularly root constants and effective precipitation. The most
formalised of such approaches reported by the regions are the use of the Thames Catchment
Model and the Stanford Watershed Model.

•
4.1.1 Thames Catchment Model

•
As used by the Thames NRA region (Greenfield, 1984), the model is applied to sub-regions

of hydrologically distinct types to derive root constant values by optimization against river

baseflow. Beneath the soil, two reservoirs conceptually represent unsaturated and saturated
zone processes. The upper unsaturated zone reservoir is a linear reservoir, that is, outflow is
directly proportional to storage volume. The lower reservoir is non-linear, with flow
proportional to the square of storage volume. The model produces good baseflow fits. A
quickly responding 'riparian zone', clay zone or paved area can be invoked, without specific
reference to unsaturated zone behaviour, to match peaks.

•
Applications of this model are reported by, for example, Moore et al. (1993) who assess
rainfall input for flood forecasting, and Wilby a a/. (1994) who explore water resource issues
under climatic change.

•


•


•
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4.1.2 Stanford Watershed Model

This long-standing conceptual rainfall-runoff model (Crawford & Linsley, 1966) has been

modified by a number of users for particular applications (for example Fleming and

Mackenzie, 1982). It is used in consultants reports to estimate groundwater recharge and other

parameters, for example, for the Darent catchment in Kent (Anonymous, 1993b; Wyness,

Rippon & Wardlaw, 1994), the River Allen, Dorset (Wyness, Rippon & Wardlaw, 1994;

Wardlaw, Wyness & Rippon, 1994), the Meon and Harnble, Hampshire (Anonymous, 1993a),

the Wallop Brook and Bourne Rivulet, Hampshire (Anonymous, 1991a).

The unsaturated zone as defined in this chapter does not correspond exactly with the

conceptual definition of the original Stanford model: in the early documentation, the closest

concept is a 'lower zone store'. Water enters this from direct and delayed infiltration. From

the lower zone store water enters a groundwater store at a rate increasing, non-linearly, with

the water content of the lower zone store. This store is not exactly analogous to the

unsaturated zone of this chapter since, limited, evapotranspiration can occur from the lower

zone store. A criticism frequently cited of the Stanford model is that it has some thirty

parameters, of which four are commonly optimized: these govern infiltration, interflow and

store sizes.

Though essentially a lumped model, the Stanford model can be applied to zones differing with

respect to surface or subsurface characteristics to build up a semi-distributed system.

4.2 DIRECT UNSATURATED ZONE METHODS

In direct methods, the incoming flux is known and the outgoing flux to the saturated

groundwater zone is derived. A terminology often employed is that of potential recharge (that

is, after consideration of evapotranspirative losses) and actual recharge on arrival at the

saturated zone. Direct methods are not used in a number of the regions because of the

occurrence of unsaturated zones of limited thickness, or because emphasis is placed on the

long term estimation of recharge, in which the short term time distribution is not important,

if lateral transfers in this zone are not significant.

4.2.1 Losses

Lateral transfers of water can occur in the unsaturated zone although vertical movement

predominates. These can be modelled specifically in the unsaturated zone, as defined here, or

can be part of a general lateral flow term which does not distinguish the depth(s) at which the

transfers occur. The major processes of lateral transfer include surface flow, artificial drainage

transfers, fissure flow, and throughflow or interflow, for all depths above the regional saturated

zone. Topographic configuration, permeabilities, water contents and materials can give rise to

a significant non-venical component of flow.

An empirical but formal methodology for dealing with losses, which are implicitly largely

lateral losses and some of which are unsaturated zone losses, is used by Severn-Trent NRA

(Anonymous, 1979) for the Triassic sandstones. A coefficient is applied to effective rainfall

to derive the recharge reaching the saturated zone. This coefficient is determined on a points-

scoring basis and includes, on the grounds of general experience and from hydrograph

analysis, the effects of soil texture, aquifer lithology, unsaturated zone thickness, surface
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drainage density, drift thickness and urban development, Table I.

Similar but less detailed systems are reported elsewhere, for example, by the University of
Birmingham and Acer Consultants (Anonymous, 1991b) for the Chalk of East Kent and by
Wilson et al. (1994) for the Chalk of the Chichester area, where the principal determinant of

the 'recharge factor' is the presence and texture of superficial deposits. An extreme case is
afforded by the Thames Great Oolite study (Rushton, Owen & Tomlinson, 1992) where a
proportion of potential recharge above 40 mm per month passes directly to streamflow,
representing the effect of rapid lateral transfer via fissures.

•

4.2.2 Lags
•

A simple delay can be imposed on travel time to the regional water table. In parts of the Chalk
of East Kcnt, for example, earlier estimates of lags of 0.5 to 2 months based on the response
of observation wells have subsequently been modified (Anonymous, 1990; Anonymous,

1991b) to try to remove the effect of lateral saturated zone transfer.

•
The lag can be distributed in time. Thames, for example, use a distributed lag with the peak

response after 3-4 weeks for the Kennet but much less in the Cotswold areas. For the
Nottinghamshire Sherwood Sandstone (Bishop & Rushton, 1993), monthly distributions of
unsaturated zone lag are defined for four categories of unsaturated zone thickness. These are
estimated from the response of observation borehole rest levels in relation to precipitation
events. The maximum lag suggested is six months for an unsaturated zone thickness of greater
than 30 m.

These are in effect linear transfer function models, which, in a general way, integrate
unsaturated zone recharge processes. Generally, the precise form of the function is, in regional
practice, derived on the basis of experience and revised in that light. Oakes (1981), however,
provides an example of the derivation of a response function. For the Chalk of parts of the
Rhee and Cam catchments, south of Cambridge, a deconvolution against observed groundwater
levels provides a distribution of unsaturated zone transfer times which, in this case, cover up
to seven monthly intervals for thicknesses of unsaturated zone depth up to 70 m.

A number of additional issues concerning recharge are included in this chapter for convenience

though they are not necessarily wholly unsaturated zone features. They include percolation
recharge or leakage from overlying semi-permeable material, leakage from urban areas, and
river-aquifer transfers. In regional practice as a whole these are not major features of

methodology, but they are increasingly features of more detailed modelling, particularly of the
linked surface and groundwater type. Reports on the Sherwood Sandstone (Bishop & Rushton,

1993) and South Lincolnshire Limestone (Rushton, Bradbury & Tomlinson, 1993) provide

fib good examples of the handling of these issues in cases where NRA practice is to commission
detailed studies. River-aquifer flows are head-dependent transfers; sources of urban leakage

data are evaluated; principles and examples are given of flow from overlying semi-permeable

strata; and fast flow or by-pass mechanisms are explored, with reference to borehole logging
and tracer experiments in addition to more commonly-available hydrological data.

•

•
4.3 SYNTHESIS•

•
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The unsaturated zone is generally dealt with by inference in recharge estimation because of
the inherent difficulties of establishing its detailed behaviour.

If the estimate is required for the long term, the timing of flow through the unsaturated zone
is not significant, although any lateral transfers may be significant, depending on hydrological
and geological circumstances. For shorter term recharge estimation where time distribution is
important, much existing NRA practice falls into the category of response or transfer function
approaches of varying complexity. The linearity of these formulations is in general not
formally tested in, for example, recent drought conditions and the subsequent recovery.

The unsaturated zone can also be used in the deriving of catchment parameters which may
subsequently be used in recharge estimation. Here the methodology is primarily that of linear
or non-linear stores with various process linkages. The question arises, on occasion, of some
inconsistency in the method of handling the unsaturated zone. A parameter, for example a root
constant, may be derived assuming particular unsaturatcd zone behaviour. However, base-of-
soil drainage using that parameter may be subsequently routed through the unsaturated zone
which is treated in a different manner. Practical reasons for this type of approach are apparent,
particularly when diffcrent departments are involved in different stages of the methodology:
results may be acceptable but an awareness of their derivation is appropriate. Where spatial
variability of unsaturated zone behaviour is included for a particular aquifer, it is in terms of
its vertical thickness/extent. Methods are deterministic and conceptual: no stochastic
methodology has been reported, nor formal statements of error or uncertainty.

Full numerical modelling using flow equations in the unsaturated zone (for example, variably
saturated Darcian flow plus continuity considerations) is not reported as a feature of current
practice. This is pragmatic because such simulation is particularly subject to the complexity
of process representation and parameter uncertainty, despite the advantage of potential
continuity of modelling methodology with the soil above and, in some formulations, with the
saturated zone below. Unsaturated flow complexity is increased over that of the saturated zone
because of the dependence of both water content and hydraulic conductivity on pressure heads
which are transient and spatially variable. Dual or fracture flow models offer possibilities of
greater process matching in some aquifers, but at the cost of unwieldy parameterisation. The
role of very detailed unsaturated zone modelling in recharge estimation is perhaps more that
of establishing understanding of field behaviour, which one would then aim to approximate
adequately by a simpler formulation for routine determinations.

It is important to note that in the current emphasis on stores and transfers it is not always clear
whether in fact one is modelling the pulse of water or the transmission of the water itself. For
many purposes, this is a distinction which does not need to be drawn. However, there is a
potential danger that, if water quality considerations are added to NRA recharge estimation,
subsequent parameterisation may be more difficult in practice and may become further
removed from the process represented. It should perhaps be bome in mind that this
disadvantage can also apply, in some degree, to more complex modelling. A related point is
that no 'long-tailed' unsaturated zone transfer functions were reported from the regions which
would specifically account for slow background chalk matrix flow (see, for example, Smith
et aL, 1970; Foster, 1975).

In areas where NRA resources have been directed to the detailed study of surface/groundwater
behaviour, recharge assessments have been made taking practical account of a number of key
surface and subsurface hydrological processes, whether natural or man-induced, appropriate
to the area of concern. From such studies some degree of practical generalisation of process
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representation is beginning to emerge. The question of testing wider applicability remains, as
does the assessment of the trade-off between simple and more complex methodologies in terms
of efficiency of recharge estimates for particular NRA purposes.
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5. Conceptual Framework

This chapter develops the conceptual framework for the groundwater recharge model. The

conceptual framework is the necessary link between the physical processes involved in
recharge and a model that allows the recharge to be predicted from input parameters.

Figure 4 illustrates the processes occurring with groundwater recharge. For convenience, the

processes can be categorised as occurring in three zones; the surface/atmosphere zone, the soil
zone and the unsaturated zone. Processes occurring in the stniace/atmosphere zone include
interception of precipitation by the vegetation canopy as well as evaporation and transpiration.

In addition, surface runoff may occur which can result in concentration through ponding and
gains from surface runon and losses from surface runoff. The soil zone encompasses drainage

to the underlying unsaturated zone and root uptake. As such, it is a zone in which both upward
and downward watcr movements can occur. In addition, lateral flow through the soil layer can
result in gains and losses of water. The unsaturated zone is defined as the zone lying between
the soil zone and the regional saturated groundwater system. As such, it is a zone where no

upward movement of water occurs. A vertical profile through this zone might encounter
several lithologies with a range of hydraulic properties. It is in part due to this heterogeneity
that lateral flow can potentially occur in this zone.
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The groundwater recharge processescan be grouped together, in a convenient manner, as the

basis of the component models, Figure 5. In this project, only the models covering

evapotranspiration and the soil zone are being developed. However, to consider these without

also considering the other models may limit future developments of the procedure and so the

development of the conceptual framework has been carried out to encompass all the

component models.

In developing a model to enable groundwater recharge to be assessed,a modular approach has

several advantages. Firstly, it allows components of the model to be updated as the results of

both experience and research become available. Secondly, it allows a phased introduction of

the complete model. Thus, for this project, we have used a modular approach as the

specification for the model restricts its use to drift free areas of the major aquifers of England

and Wales and for estimating mean annual recharge. However, at a later date it will be

necessary to extend the model to increase the range of hydrological conditions it can handle.

Using a modular approach it will be possible to accomplish this by progressive enhancements

rather than a complete replacement of the model.

At this stage it is not possible to be definite about the models that will be used as this can

only be determined by verification against field data, i.e. the next stage of the project. The

following sections explore possible options for the methodology.

5.1 EVAPORATION COMPONENT

The evaporation schemes generally consist of three components: an equation to estimate


potential evaporation (PE), an equation to reduce the evaporation from potential depending on


the soil moisture and a set of equations to describe interception losses. In some schemes, such
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as the Penman equation, the interception losses are included irnplicity within the potential
evaporation equation.

There is a large range of possible potential evaporation equations but thc two most widely
used the Penman equation (Penman, 1948) and the Penman-Monteith equation (PM). The

Penman equation is the basis of the Penman-Grindley method whereas the PM equation
provides the basis for MORECS. At this stage it is not necessary to make a decision between
these two options but it can be said that the PM approach has a number of advantages:

it can handle different land covers explicitly, although the parameters for all land
cover typcs are not necessarily well known.

it is readily available through the MORECS system, although the Penman-Grindley
estimates have been available these have now been discontinued.

it is more physically realistic than the Penman system.

Within the PM equations there are a number of options on implementation. For example, the
actual evaporation output from MORECS can be used directly; or the MORECS PE, which
is independent of soil type and moisture, can be combined with a custom built soil (and
possibly interception) model. This latter course would seem the most fruitful, combining the
availability and acceptability of MORECS with the flexibility of soil models tailored to a

particular geological type. It is likely that updates in MORECS may be produced to
incorporate improvements suggested within this project.

The mode of introduction of the soil moisture stress term will depend on the model. Thus, for

the Penman model, this term must be introduced as a multiplicative factor to the potential
evaporation whereas for the PM equation the more physically correct way is for the factor to
operate on the surface resistance only, although for convenience many schemes do operate on
the PM potential evaporation directly. Details of possible soil models are discussed in the next

section.

The PM scheme requires an interception component to allow free water to gather on the
vegetation and be evaporated. MORECS does contain a simple, empirical interception model;
however this model almost certainly underestimates the true losses and could be improved

using studies which have taken place since MORECS was introduced. Many complex
interception models exist which make a running water balance on the canopy (see for example

Rutter, 1963). These models are very successful but are inappropriate in this case, requiring
at least hourly measurements. Gash (1979), Calder (1986) and Harding et al. (1992) have

described daily interception models which include a increased degree of empiricism, however,
being calibrated on UK data these models are well suited to be used within this project.

For operational reasons, it must be assumed that the evaporation models (and soil models) will
operate on a daily basis. It can be shown that the soil water accounting must be done on a

daily basis and realistically it is unlikely that hourly meteorological data will be readily
available for long-term estimates of ground water recharge. The Penman equation was
designed for use with daily data. The Penman-Monteith is generally uscd with hourly data,
with a diurnally varying surface resistance. It is, however, possible to use the PM equation

with daily data but the surface resistance is then an effective parameter.

Within the analysis phase of this project a limited range of evaporation models, coupled with
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soil water models outlined in the next section, will be tested against soil moisture
measurements from the test sites.

5.2 SOIL COMPONENT

The output of the soil model will be an estimate of surface runoff, by-pass flow, soil waterID
flow or deep percolation and actual evapotranspiration. This section outlines several possible
models which will be investigated.

The actual evapotranspiration is a reduced potential evapotranspiration with the reduction
factor an output of the soil model. In some models it is a combined effect of crop and soil.
The crop factor (or crop coefficient) changes with growth stages, being small at the beginning
and at harvest and maximum at the end of vegetative growth or when maximum leaf area
index is established. The crop coefficients for different crops are published by FAO
(Doorenbos & Pruitt, 1984) and are internationally recognised and used. The soil coefficient,
whether it is used alone or together with the crop coefficient, is associated with the soil water
stress. The latter can be expressed in different forms such as a ratio between either soil
moisture and soil moisture at field capacity or the available soil moisture and maximum
available soil moisture. FAO are currently dcvelping a method to supersede this method.

The soil moisture deficit, SMD, can also be used as a reduction factor. The SMD concept is

used in Penman-Grindley method. The shape of the relation of SMD versus thc actual/potential
evapotranspiration is controlled by three parameters. The most important is the so called the
root constant which is a critical value below which the actual evapotranspiration is reduced
below the potential rate. These three parameters for 15 land covers are available in tables. A
SMD factor similar to the root constant is used in MORECS being 40% of the total maximum
available water. The maximum available water for various soil covers of soils of medium
capacity is available in a form of table. Soils of high or low available water capacity are
assigned 25% more or less than the medium soil respectively.

The hybrid between MORECS and Penman-Grindley can be employed so that the potential
evapotranspiration, as calculated from Penman-Monteith equation in MORECS, can be reduced
to actual evapotranspiration using the root constant of Penman-Grindley method. A similar
approach is now under investigation by FAO where the potential evapotranspiration as
calculated from an operational form of Penman-Monteith equation can be reduced to actual
evapotranspiration using a crop and a soil coefficient.

Soil water movement can be described by a capacity/storage approach or by physically based
models based on Darcy's law. The capacity approach is adopted in MORECS and in the
Penman-Grindley methods. In this approach, if the inflow (rainfall) to the first layer exceeds
its storage capacity, the water drains down to the second layer until the water available for
infiltration is dissipated within the root zone. Some models use a single layer whilst others use
two, i.e a time dependent 'dynamic' root zone and a fixed maximum depth of the soil profile.
Other models use a multi-layer approach, e.g. ten layers to cover the entire root zone. No
drainage takes place under deficit conditions, and, at this time, water can only be lost via
evapotranspiration as upward flow.

•
The Darcy's law approach can be used to describe mathematically the water flow in saturated
and unsaturated conditions. The soil water flux is calculated as a product of soil hydraulic
conductivity and hydraulic gradient. In a homogeneous medium, the hydraulic conductivity•
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at saturation is a single value whilst, under unsaturated conditions, it is a function of either
soil moisture or the soil water potential.

The combination of Darcy's law and the continuity equation produces the well known
Richards equation for soil moisture flow under unsaturated conditions. It is a partial non-linear

differential equation. It calculates the changes in soil moisture as a function of time at a given
distance. This equation requires two relations, the unsaturated hydraulic conductivity/soil
moisture or soil potential and the soil moisture/soil water potential. The latter is known as soil

water retention curve or soil water characteristics curve or pF curve. These two relations can
be obtained from field or laboratory measurements or can be obtained from predictive models
which make use of the readily available soil survey data (bulk density and percentages of sand,
silt and clay). This approach would be suitable at a small scale, e.g I km', since the spatial
variability of these parameters, especially the hydraulic conductivity, is on a comparable scale.

The soil moisture of the surface layer plays an important role in generating the runoff. Surface
runoff occurs when the effective rainfall exceeds the maximum infiltration rate at the soil

surface. When this occurs, the excess water accumulates until it exceeds the surface storage
then, it runs off. There arc different approaches in estimating this runoff. The simplest one is
to assign a ratio of the rainfall based on long term record of measurements of both rainfall and
runoff. Another approach would be to employ a threshold value of moisture content at

saturation or saturated hydraulic conductivity or specified maximum infiltration rate, above
which the runoff occurs.

The US Department of Agriculture Soil Conservation Service's (SCS) approach, known as the
Curve Number (Williams, Jones, & Dyke, 1984), can be used when databases are available
for soil water storage (e.g. HOST), land use and slope for different soil types. In this approach,
the runoff is calculated from rainfall and a retention parameter which is related to soil water

content, the upper limit of soil water storage and a maximum value for retention. The retention
parameter varies according to soil type, land usc and management, slope and time. This value
can be obtained from tables and curves for a number of conditions.

Bypass flow occurs under similar conditions to those that create surface runoff. Flow through
cracks, fissures and macropores occur when the rainfall exceeds the maximum infiltration rate
of the soil matrix. This flow contributes to the deep percolation and hence the groundwater

recharge. It can be assigned a certain ratio of the rainfall. This is usually obtained either as
a matching factor from calibration or as water in excess of a threshold value in a similar
manner to surface runoff. Also, it can be calculated from mom complex models for turbulent

non-Darcian flows, analogous to open channel flow. Often these models take into account the
geometry of the cracks or macropores and are mostly used at a small scale.

5.3 UNSATURATED ZONE COMPONENT

The general level of complexity of unsaturated zone methodology should be commensurate
with the current conceptual knowledge (*unsaturated zone behaviour. The current. detailed
quantitative knowledge is not sufficient to justify a more complex solution. The primary

method used for unsaturated zone transfer is likely to be in the form of a response function.

The input flux is transformed according to a specified function to derive a distribution of
arrival times at the regional saturated zone. The key advantage of this methodology is its
flexibility of process representation within a general type of formulation, albeit in a
summarised form.
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The definition of the precise form of the function is not straightforward: some NRA regional
experience exists which is an advantage of this procedure. Thickness of the unsaturated zone
will need to be accurately classified with respect to the use of differently parameterised
transfer functions within a particular aquifer. The linearity of the model may need modification
in the light of experience.

Spatial and temporal resolution are likely to be coarser than in the consideration of near-
surface processes. The methodology does not inherently demand fine discretisation in space
and time, the intervals will be chosen on the basis of meaningful variation in parameter values
and on the rates of change of soil-base fluxes.

•

Transfer functions may model the pulse effect as opposed to the flow of water itself, and this

distinction may differ between aquifers. This means that water quality cannot be added directly

to the procedure, which could be a disadvantage. More complex unsaturated zone methods can
also have this problem but parameterisation of a chemical pulse may provide an acceptable
solut ion.

The 'full' numerical modelling of the unsaturated zone is secn as being too complex for a
general procedure, but the experience that can be derived from such studies will be
incorporated into simpler models for routine use.

Lateral transfers within the unsaturated zone will be considered in relation to the three-
dimensional variations of material permeabilities and the magnitude/frequency characteristics
of the soil-base fluxes. Generalisations will be made to introduce a separate term into saturated
zone arrival and/or to modify the response function described above. Approximations in this
field have not been generalised and need investigation. Experience in 'type' areas, which is
available in NRA consultants' reports to some degree, will be a primary source in the
development of a simplified, spatially continuous procedure.

•
The amount of validation of recharge to the regional saturated zone that can be accomplished
will bc heavily dependent on time availability. Saturated zone behaviour as a whole is
involved at this stage, and it is only in rare cases that this is simple. Observations and
modelling will need to be employed with feedback to the recharge methodology and/or
parameterisation made accordingly.

•

5.4 INTERACTION WITH RIVERS

In places, a complete spatial assessment of recharge will require consideration of the role of
rivers as a source of recharge and as a lateral transfer mechanism. Identification of zones
where this is likely to be important will be made on a geological basis, supplemented by flow
frequency statistics from the National Water Archive.

Within relevant zones, in-bank river stages will be considered in the light of relative river and
aquifer heads and bed and bank conductances: however, detailed examples are, very few. For
overbank stages, recharge will be viewed in the light of flood durations and floodplain
material characteristics. Both these aspects are research areas and it is expected that their early
representation will be somewhat crude, but updated as information becomes available.

•

5.5 OTHER CONSIDERATIONS
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Other processes can also influence groundwater recharge and of these, leakage from
distribution systems, particularly in urban areas, may make a significant contribution.
Quantifying this parameter will probably require detailed information about the distribution
system. However, it need not be considered within this project but provision for its inclusion

in the soil model will be required in future developments. Other factors, which may have a

less significant effect, are frozen ground and snow cover and melt. However, these are likely
to be rare and minor events in terms of mean annual recharge and so will not be considered
further in this project.

The scale of spatial and temporal resolution does need some consideration. Since the objective

of this project is the estimation of mean annual recharge there will be the requirement to
aggregate up as the evapotranspiration calculations are likely to be performed using a daily
time step. Thus the scale of these calculations is likely to be at a higher resolution than any
subsequent requirement since the finest resolution requested is likely to be weekly or ten day

averages. Similarly, any lags due to the soil and/or unsaturated zone are unlikely to be
significant on the mean annual basis. However, lags will be important for subsequent
developments. In addition, it will be necessary to standardise on a time period for the
calculation of mean annual recharge in order to ensure that inter-comparisons can be made.

The spatial resolution is an important factor. Although the spatial resolution required is of an
average value over the area being considered, there will potentially be significant variations

in land use, soil type and topography within that area. Consideration will therefore need to be
given to how these variations can be accounted for within the model.

Final considerations are the availability of data to the users and the compatibility of any
preferred system with existing or parallel methodologies. It must be assumed that the user has
access to long-term MORECS estimates (PE and AE) and rainfall, land cover and soil maps.
Complete compatibility with MORECS in the short term is difficult, although the comparisons

with field observations will give an indication of the differences in the two systems. In the
longer term, discussions are well advanced between IH and the UK Meteorological Office to
produce an updated MORECS. This collaboration will ensure compatibility in the future.
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6. The next stage

There are five objectives to be achieved to complete this project. These are:

To develop a procedure for estimating mean annual groundwater recharge, at a range
of scales, that can be consistently applied by the NRA regions.

To test that procedure at two sites.



To produce a manual that documents the procedure and provides the equations, graphs
and maps needed to implement the method.

To produce recommendations for further work to produce a process based software
system for modelling groundwater recharge at a variety of temporal scales.

To hold a one day seminar to present the results of the project to staff of the NRA
regions.

•

The next stage will be to develop the models outlined in this report and test them against field
data from two sites. These sites will be chosen to be representative of conditions encountered
in the drift free areas of the Chalk and Permo-Triassic Sandstones. The results of these tests
will enable the appropriate models to be selected and developed to produce the manual.

•
The methodology for using the procedure will be presented in the form of appropriate graphs,
tables, maps and equations suitable for hand calculation. Although the most desirable method
of presenting the procedure would be in the form of computer software; this is not one of the
objectives of this project. The development of computer software would allow the
development of the procedure to handle a greater range of hydrological conditions and a range
of temporal and spatial resolutions. It will also provide the NRA staff with a fast and flexible
method of estimating groundwater recharge. Another advantage would be that the software
could be updated by adding or changing modules as the results of experience or research
became available.

•
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Annexe 1 - Tables of values used by MORECS

•




TableI Daytime values of surface resistance for dense green crops freely supplied

with water (After Thompson et al. 1981).

Type of crop(snil)




Grass,riparian land 80 (Jan),80 60,50, 40. 60 (lune

•




60.70, 70, 70,80, 80 (Dec)

•
Cereals 40




l'otatoes.sugarbeet 40

• Deciduoustrees 80

• Conifers 70"

•
Uplane' 120(Jan-Mar,Oct-Dec): 100(Apr-Sept)




Orchards




• (Bare soil 100)

• (Water 0)

at sem vapourpressuredeficit and 20 degC assumedindependentof r„, i.e. r, = re,

(b)assumedindependentof leaf arcaof groundcover, i.e. r, = r„

•
•
•

•

Table2 Maximum leaf area indexes (After Thompson a at 1981).

CropGreen leaf area index

Grass.nparian land2.0 (Jan).2.0. 3.0.4.0. 5.0, 5.0(June)

•




5.0,5.0,4.0, 3.0,2.5, 2.0 (Dec)




Cereals 5.0

• Potatoes 4.0

• Sugarbeet 40




Deciduoustrees 6.0




Conifers 6.0'

• Orchards




•





"' constantthroughoutyear






Table 3

Crop


Grass

Effective crop heights used in MORECS (After Thompson et at 1981).

Height (ni) CropHeight (m)

0.15Orchards°015, 2.0. 3.0

Spring barley° 0.05 - 0.8 Conifers 10.0

Winter wheat° 0.08 - 0.8 Upland 0.15

Winter barley° 0.08 - 0.8 Impervious urban 10.0

Potatoes° 0.05 - 0.6 Bare rock 0.05

Sugar beet° 0.05 - 0 35 Water 0.005,

Deciduous trees° 0.15, 2.0, 10.0 Bare soil 0.05

° Range of values for spring-sown crops refer to the period emergenceto harvest

(1') Range of values for autumn-sown crops refer to the over-winter period, up to harvest

° First value is for defoliated trees, the second at leaf emergency, and the third for full leaf.

Table 4 MORECS values of available water capacity (After Thompson et al. 1981).

Crop

Grass

Cereals

Potatoes

Sugar best

Deciduous tress

Conifers

Upland

Orchards


Bare soil

at maximum rooting depth

° at full foliation

Green leaf area index

125


I 4.1ysi

94000

140°

175°

175

50

150

20



•
•
•

Table 5 Relation between real land use and MORECS sutface types (After Thompson
et at 1981).

Real land use Representation In MORKS outputs•
I. Impervious urban Impervious urban• 
 Open water Open water

•

 Riparian Riparian




Bare rock Bare rock
•


 Conifers Conifers

• 
 Heather, gorse Upland




Permanent grass Grass




Deciduous trees Deciduous trees
•


 Orchards Orchards




Rough grazing Upland

•
II. Cereals ((Winter wheat + wintcr barley)/2 + spring barley)12




Potatoes (Main crop and earlies)/2
•






 Temporary grass Grass

• 
 Fallow Bare soil
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