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Environmental context. The chemical speciation of metals in waters is of great importance in determining 9 

their transport, fate and effects in the environment. Modelling chemical speciation is valuable for making 10 

predictions about these effects. Here a model of metal speciation is tested against field data, and 11 

recommendations are made as to how both model and measurements might be improved in future. 12 

Abstract  A key question in the evaluation of chemical speciation models is: how well do model predictions 13 

compare against speciation measurements? To address this issue, the performance of WHAM/Model VII in 14 

predicting free metal ion concentrations in field samples has been evaluated. A statistical sampling method 15 

considering uncertainties in input measurements, model parameters and the binding activity of dissolved organic 16 

matter was used to generate distributions of predicted free ion concentrations. Model performance varied with 17 

the metal considered and the analytical technique used to measure the free ion. Generally, the best agreement 18 

between observation and prediction was seen for aluminium, cobalt, nickel, zinc and cadmium. Important 19 

differences in agreement between model and observations were seen, depending upon the analytical technique. 20 

In particular, concentrations of free ion determined with voltammetric techniques were largely over-predicted by 21 

the model. Uncertainties in model predictions varied among metals. Only for aluminium could discrepancies 22 

between observation and model could be explained by uncertainties in input measurements and model 23 

parameters. For the other metals, the ranges of model predictions were mostly too small to explain the 24 

discrepancies between model and observation. Incorporating the effects of uncertainty into speciation model 25 

predictions allows for more rigorous assessment of model performance. 26 
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Introduction 30 

The modelling of equilibrium metal speciation in natural waters has assumed an increasing 31 

importance in recent years as the role of speciation in metal bioavailability and toxicity has been 32 

recognised. Advances in the understanding of the chemistry of natural components of waters, 33 

particularly organic matter (humic substances), have allowed the development of sophisticated metal–34 

humic binding models, such as NICA–Donnan
[1]

 and Humic Ion-Binding Model VI.
[2]

 A predecessor 35 
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to Model VI, Model V,
[3]

 is incorporated into the Biotic Ligand Model
[4]

 of metal bioavailabilty. The 36 

evaluation of the performance of these models against field speciation data is thus becoming a 37 

research area of great importance. These models simulate the binding of protons and metal ions to 38 

humic substances (humic and fulvic acids), which are generally thought to be the dominant form of 39 

non-living organic matter in terrestrial and aquatic environments, and which are known to bind some 40 

metals strongly. The models are parameterised against laboratory data on the binding of protons and 41 

metals to isolated samples of humic substances, and thus their application to field data rests on the 42 

important assumption that the ion-binding properties of dissolved organic matter in the field are 43 

similar to those of isolated humics. 44 

There are two key research questions when evaluating the performance of chemical speciation 45 

models: 46 

1. How well do model predictions compare against speciation measurements on field samples? 47 

2. How does uncertainty in model parameters and input variables influence the distribution of model 48 

predictions? 49 

Evaluating model predictions of solid–solution metal partitioning in surface waters is fairly 50 

straightforward
[5]

 as the separation of solid and solution phases can be readily done (e.g. by filtration). 51 

However, evaluation of speciation within the dissolved phase, which is important for bioavailability 52 

models, is more complex as field measurements of dissolved metal speciation are required. In recent 53 

years several techniques have been developed for measuring free metal ions in surface waters at 54 

environmental concentrations, such as the Donnan membrane technique (DMT),
[6]

 a range of 55 

voltammetric techniques
[7–13]

 and ion-exchange methods,
[14]

 and there is a growing body of measured 56 

free metal ion concentration data. Several studies
[7,15–18]

 have compared speciation calculations of free 57 

metal ion concentrations against measurements made by a variety of methods, however, to date there 58 

has been no systematic attempt to synthesise and model the data as a single exercise. 59 

In assessing the ability of a humic ion-binding model to predict measured free ion concentrations in 60 

the field four factors must be considered: 61 

• the degree to which the binding properties of isolated humic substances in the laboratory reflect 62 

the binding properties of dissolved organic matter (DOM) in the field; 63 

• uncertainties in key input variables, such as pH, dissolved organic carbon (DOC) nature and 64 

concentration, dissolved metal and other solute concentrations, required by the model; 65 

• uncertainties in the model parameters; and 66 

• uncertainty in measured concentrations of free metal ions in the field. 67 

The first factor is the most challenging to assess, as a thorough analysis would entail a 68 

comprehensive characterisation of field DOM, including the ion-binding properties of the humic 69 
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component. Therefore, past modelling efforts have taken a pragmatic approach whereby a portion of 70 

the measured DOM is assumed to have the ion-binding properties of humic acid, fulvic acid (FA), or a 71 

mixture of both,
[6,19]

 reflecting the apparent ‘binding activity’ of the DOM. Using this approach, a 72 

‘best average’ binding activity, based on the apparent binding activity of DOM from a range of field 73 

samples, has been derived.
[19]

 The concentration of humic substances required to simulate free Al and 74 

Cu concentrations in freshwater samples is similar to, but on average somewhat lower than, the 75 

concentration of DOM.
[19,20]

 The average DOM ‘activity’ is similar for separate studies involving Al 76 

and Cu, and so in the absence of similar data for the other metals it is reasonable to apply the same 77 

average ‘activity’ in studies involving speciation of the latter. This supports the hypothesis that the 78 

ion-binding properties of natural organic matter are similar to those of isolated humic substances. 79 

However, the optimal binding activity has also been shown to vary among field samples and thus 80 

represents a source of uncertainty if a ‘best average’ value is used for predictive work. For example, 81 

Kalis and coworkers
[6]

 studied how varying the proportions of HA and FA comprising DOM 82 

influenced the prediction of the free ion by the NICA–Donnan model, and found that for copper the 83 

free ion prediction varied by four orders of magnitude, whereas for nickel, zinc, cadmium and lead the 84 

variation was up to an order of magnitude. 85 

The effects on predictions of uncertainties in input variables and model parameters are amenable to 86 

analysis, provided suitable uncertainty ranges can be defined. Uncertainty in input variables arises 87 

from measurement error, and is present in all measurements used as inputs to the model. As the input 88 

data for a speciation problem will comprise multiple measurements including pH, temperature, and 89 

concentrations of major ions, dissolved organic carbon and metal, multiple sources of input variable 90 

uncertainty exist. Uncertainty in model parameters arises because the humic-binding models are 91 

parameterised using multiple datasets (where available) for metal binding to isolated humic 92 

substances, with the aim of producing ‘best average’ binding parameters. Parameterisation to multiple 93 

laboratory datasets gives multiple fitted values of the metal–humic binding constant which will 94 

exhibit a degree of variability, giving rise to uncertainties in the ‘best average’ values. 95 

Little research has been done into the influences of uncertainty on the predictions of chemical 96 

speciation models, although methods for doing so have been presented (e.g. Anderson
[21]

). Given the 97 

complexity of speciation calculations, statistical sampling approaches (e.g. Monte Carlo analysis) 98 

have proved most popular in application (e.g. Groenenberg et al.
[22]

). Such approaches involve the 99 

generation of a sample set of an input or a parameter, by repeated sampling from a presumed 100 

statistical distribution of values, and the generation of a sample set of model outputs from these 101 

sample input sets. An advantage of this approach is that multiple sample sets, representing 102 

uncertainties in more than one input and/or parameter, may be simultaneously generated in order to 103 

study the combined effect on the distribution of model outputs. 104 
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Incorporating the ability to assess uncertainties into chemical speciation models would allow users 105 

to assess the main sources of uncertainty in their predictions, and would highlight those uncertainties 106 

to which the models are most sensitive, allowing focusing of future research efforts. The development 107 

of Humic Ion Binding Model VII
[23]

 and the parallel development of an updated version of the 108 

WHAM model, has afforded the opportunity to extend WHAM to allow uncertainty assessments on 109 

calculations to be performed. In this paper we present the results of a comprehensive study of the 110 

performance of the newly updated WHAM, which we term WHAM/Model VII. We have collated 111 

available measurements of free metal ion concentrations in freshwaters along with associated 112 

measurements of pH, major ions and DOC where these are available. Uncertainty in the model 113 

predictions has been quantified using a Monte Carlo approach with uncertainties represented by 114 

distributions of selected model parameters and water quality input variables. Free ion measurements 115 

and model predictions are compared on the basis of goodness-of-fit and bias. Deviations between 116 

measurement and modelled outputs are assessed against the predicted ranges of variability in the free 117 

metal ion concentrations arising from the uncertainties considered. 118 

Methods 119 

A glossary of parameters and terms used herein is provided in the ‘Glossary of terms and parameters 120 

used in this study’ section. 121 

WHAM/Model VII 122 

Humic Ion-Binding Model VII
[23]

 describes ion (proton and cationic metal) binding to HA and FA 123 

using a structured formulation of discrete binding site types to describe heterogeneity in ion binding 124 

strengths. The formulation of binding site types, and their interrelationships, in terms of relative 125 

abundances and binding strengths for protons and other cations, is done with the goal of adequately 126 

describing the binding of protons and cations to isolated HAs and FAs in laboratory studies using the 127 

minimum necessary set of parameters. Proton binding is simulated using the equilibrium: 128 

R
–
 + H

+
 = RH (1) 129 

where R represents a binding site. Eight sites are defined: four strong acid (Type A) with a total 130 

density of nA moles per gram, and four weak acid (Type B) with a total density of nB moles per gram. 131 

The total density of the B sites (nB) is fixed to half the density of the A sites (nA). Each of the Type A 132 

sites has the same density (i.e. nA/4) and each Type B site also has the same density (i.e. nB/4). The 133 

intrinsic proton binding strength to each site type is defined by a central pKA/B value and a spread 134 

factor, ΔpKA/B. 135 

Metal binding equilibria are defined as follows: 136 

Rmon
–
 + M

z+
 = RM

(z – 1)+
 (2) 137 

Rbi
2–

 + M
z+

 = RM
(z – 2)+

 (3) 138 
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Rtri
3–

 + M
z+

 = RM
(z – 3)+

 (4) 139 

where Rmon, Rbi and Rtri represent mondentate, bidentate and tridentate binding sites. There are two 140 

intrinsic binding constants per metal, log KMA and log KMB, referring to monodentate binding to the 141 

Type A and Type B sites. The relationship between log KMA and log KMB for each metal is fixed, so 142 

only log KMA needs to be fitted. Bidentate and tridentate metal binding sites are generated by 143 

calculating the proportions of single sites that are able to form pairs and triplets, assuming a spherical 144 

shape for the humic molecules. Metal binding strengths are calculated by summing the log KMA/MB 145 

values for the individual sites. Additional heterogeneity of binding strength is achieved by an 146 

additional metal-specific parameter (ΔLK2) that is used to increase the binding strength of subsets of 147 

the bidentate and tridentate sites. A total of 9 % of the bidentate sites have the logarithms of their 148 

binding strength increased by ΔLK2 and 0.9 % have increases of 2ΔLK2. For tridentate sites the 149 

respective increases are 1.5ΔLK2 and 3ΔLK2. 150 

The intrinsic proton and metal binding constants pKA/B and log KMA/MB are defined for a state of 151 

zero electrical charge of the humic substances. Development of charge, by ion binding and release, 152 

modifies the overall binding strengths because of attractive or repulsive electrostatic forces between 153 

the humic molecules and the binding ions. This effect is taken into account by empirical electrostatic 154 

terms that modify the intrinsic binding constants. Counterion accumulation adjacent to humic 155 

molecules is simulated by a Donnan model. 156 

Besides Model VII, the WHAM code comprises submodels for ion binding to metal oxides
[24]

 and a 157 

cation exchanger, and solution speciation. Ion binding to metal oxides is described using a surface 158 

complexation model. As with Model VII, relationships among binding site densities, and binding 159 

strengths, are fixed where this facilitates an adequate description of metal binding to oxides under 160 

laboratory conditions with a minimal parameter set. Proton and metal binding reactions are described 161 

using the following equilibria, where XOH represents a surface hydroxy group, X being an atom of 162 

the metal comprising the metal oxide: 163 

XOH2
+
 = XOH + H

+
 (5) 164 

XOH = XO
–
 + H

+
 (6) 165 

XOH + M
n+

 = XOM
(n – 1)+

 + H
+
 (7) 166 

for which the intrinsic binding constants are described respectively by parameters K1,oxide, K2,oxide and 167 

KMH,oxide. The surface sites are assumed to be homogeneous with respect to proton binding. 168 

Heterogeneity in metal binding is achieved using the expression 169 

pKMH,oxide,y = pKMH,oxide,y + ΔpKMH,oxide 170 

where y = 0 for 90.1 % of the sites, y = 1 for 9 % of the sites and y = 2 for 0.9 % of the sites. The term 171 

ΔpKMH,oxide is a binding strength heterogeneity term specific to the oxide but common to all metals. 172 
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Four types of metal oxide are simulated: iron(III) oxide, aluminium oxide, manganese oxide and 173 

silica. 174 

Electrostatic effects on binding strength are described by empirical electrostatic terms and 175 

counterion accumulation adjacent to the mineral surface is simulated by a Donnan model. The cation 176 

exchanger is defined by a fixed (negative) surface charge per unit mass. Cation binding by 177 

electrostatic accumulation is described by a Donnan model. 178 

Equilibria among simple ions in solution are described by conventional mole balance equations. 179 

The precipitation of aluminium and iron(III) hydroxides is simulated by conventional solubility 180 

products. Alternatively, the solution chemistry of aluminium and iron(III) may be simulated by 181 

assuming equilibrium with the hydroxide. Here we use the previously quoted standard solubility 182 

product of 8.5 and enthalpy of –107 kJ mol
–1

 for aluminium(III) hydroxide.
[25]

 A solubility product 183 

expression for of iron(III) hydroxide was derived by Lofts and co-workers
[26]

 using WHAM/Model 184 

VI. We have updated these calculations using WHAM/Model VII (see Accessory publication for 185 

details). An enthalpy of iron(III) hydroxide solubility of –100.4 kJ mol
–1

 
[27]

 was used. The model 186 

allows iron(III) and aluminium(III) hydroxide precipitates to have chemically active surfaces, which 187 

are simulated using the surface complexation model. 188 

WHAM/Model VII may be used to simulate partitioning of metals between the particulate and 189 

solution phases in a freshwater, by specifying concentrations of chemically active substances (humic 190 

and FAs, metal oxides, cation exchanger) in the particulate phase. Concentrations of any of these 191 

binding substances may also be specified to be present in the solution phase (concentrations of these 192 

substances in the solution phase are defined as ‘colloidal’ in WHAM/Model VII). As WHAM/Model 193 

VII is a purely chemical model, the method used to distinguish the particulate and solution phases 194 

(e.g. filter size used to isolate particulate matter from the solution) is not important. Alternatively, the 195 

model may be used to simulate speciation in the filtrate phase alone, as is done in this study. 196 

Consideration of uncertainty in WHAM/Model VII 197 

To produce estimates of uncertainty in model output, WHAM/Model VII has been developed to allow 198 

uncertainty in parameters and measurements to be inputted and for measures of the resulting 199 

uncertainty to be outputted. Output uncertainties are calculated using a Monte Carlo method. Each 200 

input, xi (parameter or input variable), for which uncertainty is to be considered, is assigned an 201 

absolute or relative uncertainty factor (σi or pi). Sample sets of y values of each variable are then 202 

generated by random sampling. A perturbation factor q, generated by random sampling from a 203 

standard normal distribution, is used to calculate perturbed values of each variable. For variables 204 

assigned an absolute uncertainty the perturbed value is given by: 205 

,'i j i ix x q  (1) 206 



Page 7 of 29 

For variables assigned a relative uncertainty the perturbed value is given by
[24]

: 207 

,' exp ln ln 1i j i ix x q p  (2) 208 

such that for each variable a sample set of values xi,1, xi,2, xi,3, ...xi,y is generated. The model is run y 209 

times, each run using one set of the sampled variables, producing for each output a population of 210 

values. A further run is done using the unperturbed set of inputs, to produce a baseline prediction. The 211 

advantages of using a Monte Carlo approach include the rapid and robust generation of many 212 

‘scenarios’ (samples) by statistical sampling from parameter and input variable distributions, and the 213 

ability to impose different distributions of uncertainty on different input variables and parameters. 214 

When uncertainty in humic–metal binding strengths (log KMA) is considered, a single perturbation 215 

factor q is applied per sample, so that the metal binding strengths are always all perturbed in the same 216 

direction and by the same proportion of their uncertainty factors. For metals having the same 217 

uncertainty factor the relative values of their log KMA values are thus kept the same. This is done 218 

because we consider it reasonable to assume that the molecular variability in humic substances giving 219 

rise to variability in metal binding strengths is likely to affect the binding of all metals to a similar 220 

degree and in the same direction. The same restriction is also applied when calculating uncertainties 221 

in the parameter pKMH,oxide for metal binding to oxides. 222 

Variability in the predicted free ion concentrations in theoretical calculations and modelling of 223 

measured free metal ions was quantified by calculating the 16–84 % interquartile range of predicted 224 

log free ion concentration (Q16–84). The 2.5–97.5 % interquartile range (Q2.5–97.5) was used to assess the 225 

importance of the variability in outputs in relation to the observations, and thus the overall role of 226 

uncertainty in explaining the discrepancies between observation and prediction. If the observed free 227 

ion concentration falls within this interquartile range there is at least a 95 % probability that the 228 

discrepancy between observation and prediction can be attributed to the uncertainties used to generate 229 

the spread of outputs. The Q16-84 and Q2.5-97.5 interquartile ranges are approximately equivalent to ±1 or 230 

±2 standard deviations respectively around the mean of a normally distributed variable. Using these 231 

ranges, rather than calculating the standard deviation of the output, takes into account any deviation 232 

from normality of the output distribution, while providing a measure of the distribution that is 233 

consistent with the concept of the standard deviation as it applies to normally distributed data. 234 

Speciation and uncertainty calculations 235 

The speciation modelling presented in this study comprises theoretical calculations of dissolved metal 236 

speciation, including free metal ion concentrations, in field samples in which the free metal ion 237 

concentration has been measured. Theoretical uncertainty calculations were done to allow a 238 

systematic analysis and understanding of the overall contributions of different inputs to the total 239 

uncertainty. The metals for which calculations were done were Al, Co, Ni, Cu, Zn, Cd and Pb, 240 

representing the set of metals for which field data were subsequently modelled. All calculations 241 
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represented the dissolved phase of surface waters. For Al a soft water composition broadly 242 

representative of the field samples simulated (Table 1) was used and calculations were done for the 243 

pH range 4.0 to 6.5. A FA concentration of 10 mg L
–1

 was used to simulate dissolved organic carbon. 244 

For the remaining metals, a harder water composition (Table 1) and a pH range of 5.0 to 8.5 was used. 245 

In both sets of calculations the dissolved Ca was adjusted to give charge balance at each pH value 246 

simulated. 247 

Field datasets containing metal speciation data (free ion measurements) were compiled from the 248 

peer-reviewed literature. The datasets used are listed in Table 2 along with measurement methods. For 249 

all metals except Al, the datasets obtained were based on a complete review of the available literature. 250 

Data were used if the measurements of the free ion concentration, dissolved metal, DOC and pH were 251 

available. Measurements where prior adjustment of the pH to a quoted value was done were accepted, 252 

whereas measurements made on samples amended with additional metal were not. For Al, data were 253 

taken from three sites monitored under the UK Acid Waters Monitoring Scheme.
[30]

 Al measurements 254 

in these samples did not comprise direct measurements of free ion concentration; instead, [Al
3+

] was 255 

estimated by the speciation of measured ‘labile’ Al,
[31]

 taken to comprise the free ion and all Al bound 256 

to inorganic ligands. 257 

Concentrations of major dissolved species and other physicochemical parameters required for 258 

speciation calculations were obtained from the same literature source as the free metal ion 259 

concentrations, where possible. These included the temperature at the time of analysis, and 260 

concentrations of dissolved Na
+
, Mg

2+
, Al

3+
, K

+
, Ca

2+
, Fe

3+
, Cl

–
, NO3

–
, SO4

2–
 and F and alkalinity or 261 

CO3
2–

. Where these measurements were not available, they were sourced from alternative literature, or 262 

were estimated (see Tables A1 and A2 in the Accessory publication). If measurements of carbonate or 263 

alkalinity were not available, equilibrium with atmospheric CO2 was assumed, using a partial pressure 264 

of 38.50 Pa (equivalent to 3.80 × 10
–4

 partial pressure). To check the sensitivity of the model to the 265 

chosen partial pressure we simulated the free metal ion concentrations in a freshwater medium at 266 

partial pressures between 3.0 × 10
–4

 and 3.0 × 10
–3

. The calculated log free ion concentrations varied 267 

by no more 0.13. 268 

In line with previous work,
[19]

 the portion of DOC chemically active with respect to metal binding 269 

was represented by FA only and an ‘activity factor’, FFADOC, was used to convert from measured DOC 270 

into model input FA. In this study we have used an FFADOC value of 1.27, representing 63.5 % of the 271 

DOC being ‘active’ on average. This value was calculated from the geometric mean of FFADOC values 272 

for a set of UK waters found by Bryan and coworkers (Fig. 1).
[19]

 Where estimation of Al 273 

concentrations was not possible, dissolved Al was estimated by assuming that the solution was in 274 

equilibrium with aluminium(III) hydroxide. Dissolved iron(III) chemistry was simulated by allowing 275 

the precipitation of iron(III) hydroxide to occur and by allowing the precipitate to have a chemically 276 
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active surface. Iron(III) oxide was used as the model substance to simulate the surface chemistry of 277 

the precipitate, assuming one mole of precipitated iron(III) to form 90 g of oxide.
[32]

 278 

Uncertainties considered in the speciation calculations are shown in Table 3. The uncertainty in log 279 

KMA for Model VII was set to the standard deviation of the fitted value
[23]

 and for consistency the 280 

uncertainty in pKMH values for metal binding to iron(III) oxide was set to the same value. The 281 

uncertainty in the solubility product of iron(III) hydroxide was derived from the calculations of the 282 

solubility product expression (see Accessory publication for details). For consistency the uncertainty 283 

in the solubility product of aluminium(III) hydroxide was set to the same value. For the theoretical 284 

calculations, separate model runs were done considering uncertainty in: 285 

1. FFADOC only; 286 

2. FFADOC and measurements; 287 

3. parameters; and 288 

4. FFADOC, measurements and parameters. 289 

For the calculations of free metal in the field datasets, the same runs were done except for ‘FFADOC 290 

only’. A sample size of 1999 was used to generate output distributions. 291 

Results 292 

Modelling results: theoretical uncertainty calculations 293 

Calculations for Al are shown for pH 5.0 and pH 6.0 (Fig. 2). At pH 5.0, precipitation of 294 

aluminium(III) hydroxide was predicted not to occur in the majority of the Monte Carlo samples. By 295 

contrast, at pH 6.0, precipitation of aluminium(III) hydroxide was predicted to occur in all the Monte 296 

Carlo samples. Thus, at pH 6.0 calculated Al activities were controlled by the pH and the solubility of 297 

aluminium(III) hydroxide. Where only uncertainty in FFADOC was considered, the calculated activity 298 

of Al
3+

 in equilibrium with the hydroxide was constant. Therefore, the only possible source of 299 

variability in calculated concentrations of [Al
3+

] at pH 6.0 was variation in the calculated ionic 300 

strength, which was negligible. Hence the variability in calculated [Al
3+

] (expressed as the 301 

interquartile range Q16–84) at pH 6.0 was also negligible when only uncertainty in FFADOC was 302 

considered. At pH 5.0, in the absence of precipitation control, variability in [Al
3+

] was controlled by 303 

the variability in input FA concentration imposed by the uncertainty in FFADOC. Therefore, at this pH 304 

the variability as a result of uncertainty in FFADOC was notably larger than at pH 6.0. This was also 305 

seen when uncertainties in measurements were considered along with the uncertainty in FFADOC. 306 

Variability in [Al
3+

] was similar at both pH 0.0 and pH 6.0 when uncertainty in parameters was 307 

considered, and in both cases was greater than the variability seen when uncertainties in 308 

measurements and FFADOC were considered. At both pH values, the uncertainties in the log KMA values 309 

for Al
3+

 and the competing ions Mg
2+

 and Ca
2+

 contributed to the variability. At pH 6.0, the 310 

uncertainty in the solubility product of Al hydroxide also contributed, resulting in a slightly larger 311 
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interquartile range. The variability obtained by combining different sources of uncertainty was clearly 312 

less than additive (on a log scale). Combining uncertainties attributable to FFADOC, measurements and 313 

parameters produced similar variability at both pH values (1.28 at pH 5.0 and 1.20 at pH 6.0). The 314 

effect of combining uncertainties on the resulting variability was clearly less than additive. This was 315 

particularly clear at pH 5.0. 316 

Fig. 3 shows the variabilities in predicted free ion concentration for Co, Ni, Cu, Zn, Cd and Pb at 317 

pH 7.0. For Co and Ni, uncertainty in input measurements dominates the overall uncertainty, but 318 

uncertainty in FFADOC does not contribute greatly to the measurement uncertainty. For Zn and Cd, the 319 

contributions of parameter uncertainty and of FFADOC to measurement uncertainty are large relative to 320 

the other metals, particularly for Zn. The variability seen when considering measurements and 321 

parameters together is consistently less than additive. For Cu and Pb, uncertainties in parameters 322 

clearly make a larger contribution to the total variability than measurement uncertainties, and 323 

variability attributable to uncertainty in FFADOC is approximately half that resulting from 324 

measurements overall. The relative importance of the different sources of uncertainty did not vary 325 

with pH (data not shown). 326 

These calculations indicate that the sources of uncertainty in calculations are generally similar to 327 

those found by Groenenberg and coworkers
[22]

 using the NICA–Donnan model. They found that 328 

uncertainties in binding predictions for Cu and Pb were largely attributable to uncertainty in the 329 

metals’ binding affinity, which is consistent with our observation that parameter uncertainty 330 

(including uncertainty in the main metal binding parameter log KMA) was more important than input 331 

measurement uncertainty for these metals. They also found that uncertainties in FFADOC and in binding 332 

parameters produced comparable interquartile ranges of uncertainty for Cd
2+

. This does not agree with 333 

our findings, where parameter uncertainty has a somewhat larger effect than uncertainty in FFADOC. 334 

Modelling results: field data 335 

Model fits and the variability in outputs are given in Tables 3 and 4. The basic fit is characterised by 336 

the bias and the root mean squared error (RMSE) in log [M
z+

]. 337 

Including a chemically active iron(III) oxide phase had a notable effect on the predicted speciation 338 

of lead. Free lead ion concentrations predicted, assuming precipitated iron(III) hydroxide to be surface 339 

active, were predicted to be up to almost two orders of magnitude lower than the concentrations 340 

predicted if precipitated iron(III) hydroxide was assumed to be not surface active (Fig. 4). This is in 341 

accordance with past modelling predictions
[5]

 and with experimental observation (e.g. Lyvén et al.
[33]

) 342 

Negligible effects were seen for the other metals. 343 

Observed and predicted concentrations of [Al
3+

] (Fig. 5) had mean biases under 0.5 orders of 344 

magnitude for all three datasets. Dataset Al-01 had all observations predicted to within one order of 345 

magnitude and 52 of the 55 observations predicted to within 0.5 orders of magnitude. Dataset Al-02 346 
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had 179 of 180 observations predicted to within one order of magnitude and 162 observations 347 

predicted to within 0.5 orders of magnitude, and a small absolute bias (Table 5). Values in dataset Al-348 

03 were not quite so well predicted with a relatively large negative bias. Of the observations, 141 of 349 

167 were predicted to within one order of magnitude. The number of observations predicted to within 350 

half an order of magnitude (59) was low relative to Al-01 and Al-02. Most observations fall within the 351 

interquartile range Q2.5–97.5, suggesting that uncertainty in input variables and parameters can largely 352 

account for the discrepancies between observation and prediction. 353 

Observed concentrations of [Co
2+

] (Fig. 6) were all predicted to within one order of magnitude and 354 

six of the seven observations were predicted to within half an order of magnitude. One of the seven 355 

observations fell within the Q2.5–97.5 interquartile range. 356 

Observed and predicted concentrations of [Ni
2+

] (Fig. 7) showed that when [Ni
2+

] > 10
–8

 M the 357 

model predictions were consistently within one order of magnitude of the observations with a mean 358 

bias of 0.06 log units. At lower concentrations, overestimation of observed [Ni
2+

] was greater (mean 359 

bias 0.82 log units). This tendency to overestimation has been noted previously
[34,35]

 when using 360 

Model VI. Overall, 43 of 54 observations were predicted to within one order of magnitude, and 21 to 361 

within 0.5 orders of magnitude. 362 

Observed and predicted concentrations of [Cu
2+

] (Fig. 8) showed that agreement between 363 

observation and prediction was better at higher free copper (>10
–12

 M) than at lower concentrations. 364 

Overall 33 of 133 observations were predicted to within one order of magnitude and 21 to within 0.5 365 

orders of magnitude. The data for which [Cu
2+

] < 10
–12

 M have all been measured using voltammetric 366 

techniques. Measured [Cu
2+

] ranges were as low as 10
–16

 M yet the model did not predict any 367 

concentrations to be below 10
–13

 M. Mean biases for four of the five datasets obtained using 368 

competitive ligand exchange–adsorptive cathodic stripping voltammetry (CLE-AdCSV) (Cu-02 to 369 

Cu-05) showed overestimation of measured concentrations by at least two orders of magnitude on 370 

average. By contrast, the concentrations in dataset Cu-01, also measured by CLE-AdCSV, were 371 

underestimated by the model. Seven of nine CLE-AdCSV measurements in dataset Cu-03 with 372 

observed [Cu
2+

] in the range 10
–12

 to 10
–9

 M, were relatively well predicted, to within an order of 373 

magnitude. These measurements were done in soft, acidic-to-circumneutral waters (pH 5.3–7.5; 374 

dissolved Ca 42–85 mg L
–1

) of low [DOC] (0.4–1.1 mg C L
–1

) whereas the remaining measurements 375 

were done in waters of higher pH (samples were adjusted to pH 7.9), hardness (dissolved Ca 0.1–0.4 376 

mg L
–1

) and [DOC] (0.9–5.8 mg C L
–1

). 377 

The other measurement techniques used generally resulted in closer agreement between 378 

observation and prediction. For measurements using the DMT (Cu-06b, Cu-07 and Cu-08), bias 379 

between observation and prediction was fairly low, but there was notable scatter between observation 380 

and prediction when [Cu
2+

] < 10
–9

 M. Dataset Cu-06a (permeation liquid membrane) was 381 
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underestimated on average. Dataset Cu-09, obtained using an ion exchange column method (IET), 382 

showed relatively close agreement between observation and prediction when [Cu
2+

] > 10
–8

 M (mean 383 

bias = –0.12 log units). At lower free copper concentrations agreement was relatively poor (mean bias 384 

= –2.22 log units). 385 

Observed and predicted concentrations of [Zn
2+

] (Fig. 9) showed that 72 of 84 observations were 386 

predicted to within an order of magnitude and 45 to within half an order of magnitude. Some patterns 387 

can be observed depending upon measurement technique. Observations obtained by CLE-AdCSV 388 

(Zn-01, Zn-02, Zn-03) were mostly overestimated by the model (mean bias 0.5 log units). 389 

Observations obtained by DMT (Zn-04, Zn-05) were correlated fairly well with prediction when 390 

[Zn
2+

] > 10
–7

 M (RMSE 0.12 log units) although with a relatively small bias to underestimation (mean 391 

–0.26 log units). For [Zn
2+

] < 10
–7

 M, observations obtained by DMT became more scattered with 392 

respect to predictions (RMSE 0.26 log units). Observations obtained by IET (Zn-06) were predicted 393 

relatively well when [Zn
2+

] > 10
–7

 M (mean bias –0.14 log units) but were not so well predicted at 394 

lower concentrations (mean bias –0.91 log units). 395 

Observed and predicted concentrations of [Cd
2+

] (Fig. 10) showed patterns generally similar to 396 

those for zinc. Of 85 measurements, 72 were predicted to within an order of magnitude and 51 to 397 

within half an order of magnitude. Measurements made using voltammetric techniques (Cd-01, Cd-398 

02) were consistently overpredicted. Measurements made using DMT were simulated relatively well 399 

(RMSE 0.06 log units, mean bias 0.08 log units) when [Cd
2+

] > 10
–10

M but were overpredicted at 400 

lower concentrations (mean bias 0.68 log units). Observations made using IET were all simulated to 401 

within one order of magnitude. Two of three measurements made using a permeation liquid 402 

membrane (PLM) were predicted to within one order of magnitude. 403 

Table 5 compares bias and error in the predictions made with and without assuming binding of lead 404 

to iron(III) oxide. Allowing precipitated iron(III) hydroxide to have an active surface either reduced 405 

the predicted free ion or made little difference to the prediction. Overall, bias and RMSE were 406 

reduced by allowing precipitated iron(III) hydroxide to have an active surface. Of the individual 407 

datasets, the fit was most improved for Pb-01, for which the binding to iron(III) oxide is most 408 

important in determining the predicted free ion (Fig. 4) although the bias and RMSE remained large. 409 

Observed and predicted concentrations of [Pb
2+

], assuming binding of lead to iron(III) oxide (Fig. 410 

11), showed somewhat similar patterns to Cu. Measurements made using competitive ligand 411 

exchange–differential pulse cathodic stripping voltammetry (CLE-DPCSV) were consistently 412 

underpredicted. Measurements made by DMT were predicted with low bias but with notable scatter 413 

(21 of 45 observations were not predicted to within one order of magnitude). Two of three 414 

measurements made by PLM were predicted to within an order of magnitude. Overall, 33 of 76 415 
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observations were predicted to within one order of magnitude and 19 to within 0.5 orders of 416 

magnitude. 417 

Model uncertainty 418 

Model uncertainty results (Tables 4, 5) summarise the spread of output values (quantified as the Q16–84 419 

interquartile range of log free ion concentration) obtained in each dataset when considering 420 

uncertainty in (a) input varaibles and FFADOC only, (b) parameters only, and (c) input variables, FFADOC 421 

and parameters together. The influence of the different categories of uncertainty on the variability of 422 

the output free ion concentrations is not additive, consistent with the findings of the theoretical 423 

calculations. Where uncertainties in inputs, FFADOC and parameters are considered together, the spread 424 

of output values is smaller than the sum of the corresponding ranges calculated when the uncertainties 425 

are considered in separate simulations. With the exception of Cu, considering input uncertainty only 426 

mostly results in a greater spread of output predictions than does considering parameter uncertainty 427 

only. Parameter uncertainty resulted in a greater spread of output predictions in one of three Al 428 

datasets, and in two of five Pb datasets. For Cu, considering parameter uncertainty resulted in spreads 429 

of output values that were consistently greater than or equal to the spreads obtained when 430 

uncertainties in inputs and FFADOC were considered. On average, the spreads of output values (i.e. the 431 

breadth of the Q16–84 range) followed the trend Al ≈ Cu > Pb > Ni ≈ Zn ≈ Cd. 432 

A key aspect of assessing uncertainty is whether discrepancies between observations and 433 

predictions can generally be attributed to uncertainty in the input variables and model parameters, i.e. 434 

if the observation falls within the range of predicted values then the discrepancy is explained. The 435 

Q2.5–97.5 interquartile range of the predictions, when all uncertainties were considered, was used to 436 

assess this (Tables 3, 4). 437 

The majority of observations of [Al
3+

] (88 %) fell within the Q2.5–97.5 range and so generally the 438 

discrepancies can be attributed to the influence of uncertainties. However, for the other metals, the 439 

proportions of observations falling within this range were lower, ranging from 0 % for Co to 42 % for 440 

Cd, and 22 % when all five metals were considered together. Thus, in general the discrepancies 441 

between observation and prediction could not be attributed to uncertainty in the model predictions. 442 

Discussion 443 

As noted in the Introduction, the following factors must be considered when the performance of 444 

WHAM/Model VII is assessed against field observations: 445 

• the influences of uncertainties in model inputs variables and parameters on the spread of model 446 

predictions; 447 

• the extent to which the metal binding properties of humic substances represent those of field 448 

DOM; and 449 
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• the accuracy and precision of measured free metal ion concentrations. 450 

This study has explicitly tackled the first of these factors, by incorporating the consideration of 451 

uncertainty in input variables and parameters into the model to allow a spread of predictions that can 452 

be compared to measured values. The second factor was partly tackled by incorporating uncertainty in 453 

FFADOC into calculations. We have shown that with the exception of Al, discrepancies between 454 

measurements and model predictions can largely not be explained by uncertainties in input variables 455 

or model parameters, assuming that such uncertainties have been reasonably quantified. Two factors 456 

thus remain as possible sources of discrepancy between model and measurement: the extent to which 457 

isolated humic substances represent field DOM, and the precision and accuracy of free ion 458 

measurements. 459 

In this study we have simulated metal speciation assuming DOM to comprise a mixture of FA and 460 

an undefined, ‘inert’ material having no ion-binding properties. No other organic ligands are 461 

considered. Non-humic, metal-binding organic ligands could influence speciation if present in 462 

sufficient quantities to compete with FAs. This is not, however, a structural issue with the model, but 463 

a limitation of the ability to characterise and model all the significant individual components of DOM. 464 

Some researchers have suggested a significant role for non-humic ligands in controlling freshwater 465 

metal speciation. For example, Xue and Sigg
[36]

 suggested that the strong binding and low free ion 466 

concentrations of copper and cadmium found in some Swiss lakes were attributable to small amounts 467 

of ligands having stronger binding than humic substances, Rozan and Benoit
[37]

 suggested that copper 468 

speciation in rivers of southern New England was controlled in part by sulphide and 469 

ethylenediaminetetraacetic acid (EDTA), and Baken et al.
[38]

 found that EDTA was an important 470 

control on metal speciation in anthropogenically affected waters, particularly for Ni. Thus, where the 471 

model overestimates the observed free ion it is reasonable to postulate that this may be attributable to 472 

unaccounted-for strong ligands. Clearly there is a need to further investigate the occurrence and 473 

metal-binding properties of such ligands. Methods to distinguish different types of DOM in waters 474 

exist (e.g. Murphy et al.
[39]

) and research on structural identification of individual DOM components 475 

(e.g. Woods et al.
[40]

) is ongoing. Parallel application of such methods in speciation studies may assist 476 

in identifying and characterising non-humic components of DOM and their role in metal binding. 477 

We now turn to the precision and accuracy of measurements of the free metal ion. Of the two, 478 

precision (i.e. reproducibility) is the easier to quantify. We did not consider precision when analysing 479 

the agreement between model and prediction, because it was not quantified in all the studies and so a 480 

consistent analysis of its role was not feasible. More emphasis is needed on quantifying the precision 481 

of speciation measurements, as it is a key aspect of the assessment both of the method and of the 482 

comparative performance of speciation models. Measurement accuracy is more challenging to assess, 483 

particularly for the complex methods used to measure free metal ions. Method validation in simple 484 

matrices under laboratory conditions may not hold in the more complex chemical environment 485 
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presented by a field sample. The accuracy of speciation methods has accordingly been questioned in 486 

the literature. For example, van Leeuwen and Town
[41]

 have questioned the results of competitive 487 

ligand exchange voltammetry, arguing that equilibrium between the natural and added competing 488 

ligands is not necessarily attained within the experimental timeframe, and that this introduces bias into 489 

the reported free ion concentrations by underestimation of the actual equilibrium value. In this case, 490 

the argument against the accuracy of the method is consistent with the model predictions in that 491 

WHAM tends to predict a higher free metal ion than is measured by voltammetry. Comparing the 492 

model with those datasets not obtained using voltammetry produces decreases in bias for Cu, Cd and 493 

Pb, and RMSE for Cu, Zn, Cd and Pb (Table 6). However, this cannot be taken as definitive evidence 494 

that voltammetry gives inaccurate measurements, as this would mean assuming that the model 495 

predictions are accurate. More systematic evaluation of the accuracy of speciation methods is needed. 496 

A useful first step would be to move towards standardisation of methods, to make their 497 

intercomparison more reliable.
[42]

 Intercomparison among methods should provide insights not 498 

obtainable by comparison solely with models that are based on key a-priori assumptions about the 499 

system under study. This is not to say, however, that models do not have a useful role to play in the 500 

evaluation of measurement methods. Models provide an internally consistent set of predictions against 501 

which to compare multiple measurement methods and gain additional information on the relative 502 

performance of different methods under different chemical conditions. The collation of literature data 503 

presented here shows that comparative measurements are rare, being confined to one study. Unsworth 504 

and coworkers
[16]

 compared DMT and PLM measurements of free ionic Cu and Pb in three samples 505 

and of Cd in two samples. This study is a beginning, but as the number of samples is limited there is 506 

currently little scope to systematically assess the relative performance of the methods. 507 

If the observations obtained using voltammetry are excluded, the bias between the model 508 

predictions and observations is below 0.5 orders of magnitude for all the metals except Ni (Tables 5, 509 

6). Bias above 0.5 orders of magnitude in individual datasets, e.g. Al-03 and Cd-04, could be reduced 510 

by model ‘calibration’, such as adjustment of FFADOC within plausible ranges. A recent modelling 511 

study of Al speciation data from the UK Acid Waters Monitoring Network
[43]

 showed that the data 512 

could be simulated using plausible general values of FFADOC, one for streams and one for lakes, similar 513 

in magnitude to the central value adopted here. 514 

Speciation models are increasingly being incorporated into risk assessment models such as the 515 

Biotic Ligand Model (BLM).
[44]

 Accuracy and precision of speciation model predictions are thus 516 

important for the accuracy and precision of the predictions of such models. Judgements as to what 517 

constitutes ‘reasonable’ or ‘acceptable’ accuracy and precision in model predictions are contingent on 518 

the purpose of the specific model. For example, the purpose of the BLM is to describe the variability 519 

in metal toxicity across varying water compositions. The BLM has been shown to accomplish this 520 

purpose for several metals and organisms (e.g. De Schamphelaere and Janssen
[45]

 and De 521 
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Schamphelaere et al.
[46]

). This suggests that the humic-binding submodel in the BLM is performing 522 

well under the conditions of the metal toxicity tests, although bias in the model predictions will be 523 

compensated for to some extent if the BLM is calibrated using data generated in waters containing 524 

DOM. The performance of the BLM is qualitatively consistent with the observation, in the current 525 

study, that WHAM predictions of the free metal ion tend to agree with observations best when the 526 

latter are relatively high, where toxic effects are most likely to be seen under laboratory conditions 527 

(~10
–8

 M, 10
–9

 M, 10
–7

 M, 10
–10

 M and 10
–9

 M for Ni, Cu, Zn, Cd and Pb). It is feasible that future 528 

extension of the BLM to chronic effects of sensitive freshwater organisms may extend the range of its 529 

application to lower free ion concentrations, where agreement between observation and model 530 

prediction is sometimes poorer. This possibility needs to be borne in mind in future development of 531 

biotic ligand models. Ideally, the influence of uncertainty in WHAM predictions should be 532 

incorporated into biotic ligand models so that the propagation of uncertainties into predictions of 533 

toxicity can be assessed. Similar considerations apply to other environmental models having a 534 

speciation component, such as CHUM
[47]

 and TICKET-UWM.
[48]

 535 

A full consideration of the performance of WHAM, or any other model, can only ideally be done if 536 

the precision of the observations and variability in the model predictions can be quantified and the 537 

accuracy of the observations can be relied upon. In this study we have made a first quantification of 538 

the uncertainty (i.e. the variability) of the model predictions and a comparison of predictions with 539 

available observations. A possible next step would be to extend the calculation of uncertainty to 540 

include solution complexation. This has been previously done for actinides,
[49]

 where complexation to 541 

inorganic ligands such as carbonate may be important. Looking to the future, we would recommend 542 

the following research steps to progress the understanding and assessment of metal speciation 543 

measurement and modelling in freshwaters: 544 

• A more comprehensive approach to speciation measurements, including the simultaneous testing 545 

of multiple methods and parallel characterisation of DOM structure and composition, in as wide a 546 

range of waters as possible. 547 

• Explicit and routine consideration of the influence of model uncertainty on the outputs of 548 

geochemical and toxicity models, and assessment of the implications for specific model 549 

applications such as risk assessment. 550 

Conclusions 551 

• Discrepancies between observations and predictions of free Al were generally attributable to 552 

uncertainties in input variables and model parameters, however, this was not the case for Co, Ni, 553 

Cu, Zn, Cd and Pb. 554 

• Generally, the best agreements between measurements and predictions were seen for Al, Co, Ni, 555 

Zn and Cd. Agreements for Cu and Pb were dependent upon the analytical method used to 556 
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measure the free ion: measurements made using voltammetry were largely overestimated by the 557 

model. Generally, the model agreed best with measurements made using the DMT, IET and PLM 558 

methods. 559 

• More parallel comparisons of multiple analytical methods and modelling are needed to better 560 

understand the reasons for the observed patterns and discrepancies between observations and 561 

model predictions. More comprehensive characterisation of the different components of DOM is 562 

needed. 563 

• More emphasis needs to be placed generally on quantifying the precision (uncertainty) of 564 

measurements and model predictions, as this is essential for assessing the accuracy of model 565 

predictions. 566 

Glossary of terms and parameters used in this study 567 

nA, density of Type A binding sites on humic or fulvic acid 568 

KA/B, equilibrium constant for proton binding to Type A or Type B sites on humic or fulvic acid (Eqn 1) 569 

KMA/MB, equilibrium constant for metal binding to Type A or Type B sites on humic or fulvic acid (Eqn 2) 570 

ΔLK2, heterogeneity term used to generate strong metal binding sites on humic or fulvic acid 571 

K1,oxide, equilibrium constant for protonation of metal oxide surface site (Eqn 5) 572 

K2,oxide, equilibrium constant for deprotonation of metal oxide surface site (Eqn 6) 573 

KMH,oxide, equilibrium constant for metal-proton exchange at metal oxide surface site (Eqn 7) 574 

ΔpKMH,oxide, heterogeneity term used to generate strong metal binding sites on metal oxide surface 575 

xi, central value of input variable or parameter for which uncertainty is to be considered 576 

x’i, j, perturbed value of input variable or parameter, used for calculation of speciation in a single Monte Carlo 577 

sample 578 

q, perturbation factor used to generate x’i, j values, generated by random sampling from a standard normal 579 

distribution 580 

σi, uncertainty factor for input variable or parameter having absolute uncertainty 581 

pι, uncertainty factor for input variable or parameter having relative uncertainty 582 

FFADOC, factor relating observed dissolved organic carbon concentrations to fulvic acid concentrations for the 583 

purposes of speciation calculation. A value of two indicates that DOC is 100% active with respect to ion 584 

binding 585 

Q16–84, the interquartile range between the 16th and 84th percentiles of the distribution of calculated free metal 586 

ion concentrations 587 

Q2.5–97.5, the interquartile range between the 2.5th and 97.5th percentiles of the distribution of calculated free 588 

metal ion concentrations 589 
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bias, the mean of absolute deviations between observed and calculated log [free ion] in a dataset. A positive bias 590 

indicates that on average predicted concentrations exceed observed ones, and vice versa. 591 

Accessory publication 592 

Additional information on the sources of pH, DOC and major solute concentrations used in the field 593 

study modelling, and the calculation of the solubility express ion for iron(III) hydroxide, is given in 594 

the Accessory publication (see http://www.publish.csiro.au/?act = 595 

view_file&file_id=EN11049_AC.pdf). 596 
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Table 1. Water compositions used for theoretical calculations 732 

M = Co, Ni, Cu, Zn, Cd, Pb; FA = fulvic acid 733 

Determinand Composition for calculation of 

uncertainty in [Al
3+

] 
Composition for calculation of 

uncertainty in [M
2+

]
 

Temperature (K) 293 293 
FA (mg L

–1
) 10.0 5.0 

Dissolved Na (M) 1.0 × 10
–4 

5.0 × 10
–4 

Dissolved Mg (M) 5.0 × 10
–5 

5.0 × 10
–4 

Dissolved Al (M) 5.0 × 10
–6 A 

1.0 × 10
–5 A 

Dissolved K (M) 1.0 × 10
–5 

5.0 × 10
–5 

Dissolved Ca (M)
B 

5.1 × 10
–5

–1.3 × 10
–4 

4.7 × 10
–4

–1.7 × 10
–3 

Dissolved Fe
III

 (M) 1.0 × 10
–6 A 

1.0 × 10
–6 A 

Dissolved Co (M) – 1.0 × 10
–9 

Dissolved Ni (M) – 5.0 × 10
–9 

Dissolved Cu (M) – 2.0 × 10
–8 

Dissolved Zn (M) – 1.0 × 10
–7 

Dissolved Cd (M) – 1.0 × 10
–9 

Dissolved Pb (M) – 1.0 × 10
–8 

Dissolved Cl (M) 5.0 × 10
–4 

1.0 × 10
–3 

Dissolved NO3 (M) 5.0 × 10
–6 

5.0 × 10
–4 

Dissolved SO4 (M) 1.0 × 10
–4 

5.0 × 10
–4 

pCO2 (Pa) 36.50 36.50 
A
Al(OH)3 and Fe(OH)3 allowed to precipitate using the parameters given in the main text. 734 

B
Adjusted to maintain charge balance across the pH range simulated. 735 
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Table 2. Field datasets used for WHAM/Model VII testing 737 

Metal Measurement method n Code Reference 

Al Cation exchange column + speciation 55 Al-01 [28] 

 Cation exchange column + speciation 180 Al-02 [28] 

 Cation exchange column + speciation 167 Al-03 [28] 

Co CLE-DPCSV
A 

7 Co-01 [7] 

Ni IET
B 

3 Ni-01 [17] 

 DMT
C 

3 Ni-02 [16] 

 DMT 7 Ni-03 [6] 

 DMT 35 Ni-04 [32] 

 DMT 6 Ni-05 [35] 

Cu CLE-AdCSV
D 

2 Cu-01 [48] 

 CLE-DPCSV 14 Cu-02 [8] 

 CLE-DPCSV 38 Cu-03 [9] 

 CLE-CSV
E 

5 Cu-04 [10] 

 CLE-CSV 15 Cu-05 [11] 

 PLM
F 

2 Cu-06a [16] 

 DMT 3 Cu-06b [16] 

 DMT 7 Cu-07 [6] 

 DMT 35 Cu-08 [32] 

 IET 10 Cu-09 [49] 

Zn CLE-DPASV
G
 4 Zn-01 [48] 

 CLE-DPASV 12 Zn-02 [8] 

 CLE-DPASV 6 Zn-03 [12] 

 DMT 5 Zn-04 [6] 

 DMT 34 Zn-05 [32] 

 IET 24 Zn-06 [49] 

Cd CLE-AdCSV 4 Cd-01 [48] 

 CLE-DPASV 11 Cd-02 [13] 

 PLM 3 Cd-03a [16] 

 DMT 2 Cd-03b [16] 

 DMT 6 Cd-04 [6] 

 DMT 35 Cd-05 [32] 

 IET 24 Cd-06 [49] 

Pb CLE-DPCSV 28 Pb-01 [10] 

 PLM 2 Pb-02a [16] 

 DMT 3 Pb-02b [16] 

 DMT 7 Pb-03 [6] 

 DMT 35 Pb-04 [32] 

A
Competitive ligand exchange–differential pulse cathodic stripping voltammetry. 738 

B
Ion exchange column method. 739 

C
Donnan membrane technique. 740 

D
Competitive ligand exchange–adsorptive cathodic stripping voltammetry. 741 

E
Competitive ligand exchange–cathodic stripping voltammetry. 742 

F
Permeation liquid membrane. 743 

G
Competitive ligand exchange–differential pulse anodic stripping voltammetry. 744 
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Table 3. Uncertainties in WHAM/Model VII inputs used in this study 746 

Variable Uncertainty type σi or pi 

Input variables   

 Temperature (K) Absolute 1 

 pCO2 Relative 0.025 

 pH Absolute 0.05 

 Colloidal fulvic acid (g L
–1

) Relative 0.09 

 Solute concentrations
A
 (M) Relative 0.025 

Parameters – Model VII   

 logKMA Absolute 0.3 

Parameters – iron(III) oxide   

 pKMH,oxide
 

Absolute 0.3 

Solution speciation   

 logKSO,Fe(OH)3 Absolute 0.7 

 logKSO,Al(OH)3 Absolute 0.7 

A
Solutes comprise dissolved metals, major ions and alkalinity. 747 
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Table 4. Bias, error (root mean square error, RMSE) and variability in WHAM predictions of 749 

field speciation of Al, Co, Ni, Cu, Zn and Cd, and numbers of observations falling within the 750 

interquartile range 2.5–97.5 % of the predictions 751 

For variability (Q16–84), the interquartile range of the predictions of log free metal ion is 16–84 %. 752 

Input variables include uncertainty in FFADOC. For observations within Q2.5–97.5, the interquartile range 753 

of the predictions of log free metal ion is 2.5–97.5 %. Bold entries refer to bias, error and variability 754 

in predictions for each metal as a whole. 755 

Metal Dataset nobs Mean 

observed 

Mean 

predicted 

Bias RMSE  Variability 

(Q16–84)
 

 Observations 

   log[M
z+

] log[M
z+

]   Input 

variables 

Parameters All within Q2.5–

97.5
 

Al Al-01 55 –6.03 –6.23 0.20 0.29 0.68 0.44 0.82 55 

 Al-02 180 –7.69 –7.84 0.16 0.29 0.56 0.56 0.82 173 

 Al-03 167 –6.01 –6.73 0.72 0.81 0.60 0.64 0.88 127 

 All Al 402 –6.76 –7.14 0.38 0.54 0.60 0.58 0.84 355 

Co Co-01 7 –9.74 –9.36 0.33 0.40 0.14 0.0024 0.14 0 

Ni Ni-01 3 –6.65 –6.24 0.41 0.46 0.14 0.0086 0.15 0 

 Ni-02 3 –9.54 –9.24 0.30 0.46 0.18 0.058 0.19 1 

 Ni-03 7 –9.35 –8.48 0.86 0.95 0.18 0.030 0.19 0 

 Ni-04 35 –8.75 –8.00 0.75 0.92 0.16 0.052 0.17 1 

 Ni-05 6 –8.01 –7.89 0.12 0.30 0.18 0.084 0.20 2 

 All Ni 54 –8.67 –8.02 0.65 0.83 0.16 0.050 0.18 4 

Cu Cu-01 2 –8.86 –10.71 –1.84 1.84 0.44 0.56 0.76 0 

 Cu-02 14 –13.62 –10.29 3.34 3.39 0.44 0.46 0.62 0 

 Cu-03 39 –13.44 –10.89 2.55 2.73 0.40 0.62 0.76 4 

 Cu-04 5 –14.82 –10.62 4.30 4.30 0.32 0.76 0.84 0 

 Cu-05 15 –15.05 –11.47 3.58 3.97 0.46 0.64 0.80 0 

 Cu-06a 3 –10.37 –11.71 –1.33 1.48 0.38 0.62 0.68 1 

 Cu-06b 3 –10.36 –11.71 –1.34 1.53 0.38 0.62 0.68 1 

 Cu-07 7 –10.46 –10.90 –0.44 1.19 0.44 0.58 0.76 2 

 Cu-08 35 –10.19 –10.11 0.078 1.19 0.38 0.48 0.64 12 

 Cu-09 10 –8.02 –9.47 –1.44 1.76 0.48 0.58 0.78 3 

 All Cu 133 –12.00 –10.87 1.76 2.62 0.40 0.54 0.68 23 

Zn Zn-01 4 –7.15 –7.42 –0.27 0.57 0.26 0.28 0.40 4 

 Zn-02 12 –8.31 –7.52 0.80 0.84 0.15 0.046 0.15 0 

 Zn-03 5 –8.68 –8.28 0.40 0.41 0.15 0.054 0.16 0 

 Zn-04 4 –8.00 –7.27 0.73 0.84 0.18 0.11 0.22 1 

 Zn-05 34 –6.44 –6.59 0.15 0.33 0.21 0.15 0.28 16 

 Zn-06 25 –7.44 –8.20 –0.76 0.84 0.30 0.34 0.45 2 

 All Zn 84 –7.26 –7.38 –0.12 0.65 0.22 0.19 0.30 23 

Cd Cd-01 4 –9.61 –8.91 0.69 0.81 0.24 0.19 0.30 3 

 Cd-02 11 –12.00 –10.85 1.16 1.26 0.22 0.19 0.28 2 

 Cd-03a 3 –11.22 –10.57 0.65 1.10 0.20 0.13 0.26 0 

 Cd-03b 2 –11.61 –10.64 0.97 1.12 0.20 0.13 0.26 0 

 Cd-04 5 –11.19 –10.00 1.19 1.27 0.17 0.060 0.18 0 

 Cd-05 35 –9.29 –9.11 0.19 0.33 0.18 0.092 0.22 20 

 Cd-06 25 –9.54 –9.90 –0.36 0.42 0.28 0.26 0.38 11 

 All Cd 85 –9.96 –9.71 0.27 0.71 0.22 0.16 0.28 36 

 756 
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Table 5. Bias, error (root mean square error, RMSE) and variability in WHAM predictions of 758 

field speciation of Pb, and numbers of observations falling within the interquartile range 2.5–759 

97.5 % of the predictions 760 

For variability (Q16–84), the interquartile range of the predictions of log free metal ion is 16–84 %. 761 

Input variables include uncertainty in FFADOC. For observations within Q2.5–97.5, the interquartile range 762 

of the predictions of log free metal ion is 2.5–97.5 %. Bold entries refer to bias, error and variability 763 

in predictions for each metal as a whole. 764 

Dataset nobs Mean 

observed 
Mean 

predicted 
Bias RMSE  Variability 

(Q16–84)
 

 Observations 

within Q2.5–97.5 
  log[M

z+
] log[M

z+
]   Input 

variables 
Parameters All 

Not considering binding by iron(III) oxide 

 Pb-01 28 –13.20 –10.56 2.64 2.83 0.28 0.36 0.42 1 
 Pb-02a 3 –11.49 –10.70 –0.53 0.53 0.22 0.16 0.56 0 
 Pb-02b 3 –11.30 –10.70 –0.72 0.72 0.22 0.16 0.56 0 
 Pb-03 7 –11.90 –11.40 0.50 0.93 0.26 0.20 0.32 1 
 Pb-04 35 –9.81 –9.38 0.46 1.12 0.34 0.36 0.48 5 
 All Pb 76 –11.38 –10.11 1.17 1.69 0.30 0.33 0.45 7 
Considering binding by iron(III) oxide 

 Pb-01 28 –13.20 –11.48 1.72 1.96 0.26 0.20 0.54 2 
 Pb-02a 3 –11.49 –12.51 –1.02 1.09 0.20 0.22 0.30 0 
 Pb-02b 3 –11.30 –12.51 –1.21 1.29 0.20 0.22 0.30 0 
 Pb-03 7 –11.90 –11.77 0.13 0.85 0.22 0.22 0.26 1 
 Pb-04 35 –9.81 –9.50 0.31 1.14 0.26 0.35 0.46 6 
 All Pb 76 –11.38 –10.68 0.70 1.48 0.26 0.28 0.46 9 

 765 
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Table 6. Bias and scatter (root mean squared error, RMSE) in WHAM predictions of field 767 

speciation of Cu, Zn, Cd and Pb, for all free ion observations and for observations not obtained 768 

using voltammetry 769 

Parameter Copper Zinc Cadmium Lead 

 All Not including 

voltammetry 

All Not including 

voltammetry 

All Not including 

voltammetry 

All Not including 

voltammetry 

nobs 133 58 84 63 85 70 76 48 

Mean observed 

log[M
z+

] 

–12.00 –9.87 –7.26 –6.94 –9.96 –9.66 –11.38 –10.31 

Mean predicted 

log[M
z+

] 

–10.87 –10.26 –7.38 –7.27 –9.71 –9.56 –10.68 –10.21 

Bias 1.76 –0.39 –0.12 –0.17 0.27 0.11 0.70 0.11 

RMSE 2.62 1.32 0.65 0.56 0.71 0.48 1.48 1.10 

Fig. 1. Distribution of estimated dissolved organic carbon (DOC) ‘activity’, from Bryan and coworkers.
[26]

 770 

The DOC ‘activity’ (FFADOC) is the ratio of model-optimised fulvic acid to measured DOC. The dashed lines 771 

represent the mean, mean + 1 standard deviation and mean – 1 standard deviation of log FFADOC. The Anderson–772 

Darling test indicated no significant departure from normality at a significance level of P = 0.05. 773 

Fig. 2. Theoretical calculations of variability in free ion concentrations of Al: calculated free concentrations 774 

and Q16–84 ranges for the chemical conditions given in Table 3 and pH 5.0 (closed symbols), pH 6.0 (open 775 

symbols), for four uncertainty scenarios. 1 = uncertainty in FFADOC only, 2 = uncertainty in FFADOC and input 776 

variables, 3 = uncertainty in parameters only, 4 = uncertainty in FFADOC, input variables and parameters together. 777 

Fig. 3. Theoretical calculations of variability in free ion concentrations of Co, Ni, Cu, Zn, Cd and Pb: 778 

calculated free concentrations and Q16–84 ranges for the chemical conditions given in Table 3 and pH 7.0, for 779 

four uncertainty scenarios. 1 = uncertainty in FFADOC only, 2 = uncertainty in FFADOC and input variables, 3 = 780 

uncertainty in parameters only, 4 = uncertainty in FFADOC, input variables and parameters together. 781 

Fig. 4. Comparison of Pb
2+

 concentrations calculated assuming iron(III) oxide to be an active binding phase 782 

with concentrations calculated assuming iron(III) oxide to be inert with respect to ion binding. FeOx = iron(III) 783 

oxide. 784 

Fig. 5. Comparison of Al
3+

 concentrations calculated by speciation of inorganic monomeric Al and by 785 

speciation of total monomeric Al, for all Al datasets. Error bars indicate the Q16–84 range predicted by 786 

WHAM/Model VII. 787 

Fig. 6. Comparison of observed Co
2+

 concentrations with predictions of WHAM/Model VII, for dataset Co-788 

01. Error bars indicate the Q16–84 range predicted by WHAM/Model VII. 789 

Fig. 7. Comparison of observed Ni
2+

 concentrations with predictions of WHAM/Model VII, for all Ni 790 

datasets. Vertical error bars indicate the Q16–84 range predicted by WHAM/Model VII, horizontal error bars 791 

represent ±1 standard deviation of measurements, where quoted. 792 

Fig. 8. Comparison of observed Cu
2+

 concentrations with predictions of WHAM/Model VII, for 793 

measurements made by voltammetry (top), by Donnan membrane technique (DMT) (middle) and by Permeation 794 

liquid membrane (PLM) or ion exchange column method (IET) (bottom). Vertical error bars indicate the Q16–84 795 

range predicted by WHAM/Model VII, horizontal error bars represent ±1 standard deviation of measurements, 796 

where quoted. CLE-AdCSV: competitive ligand exchange adsorptive cathodic stripping voltammetry; CLE-797 
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DPCSV: competitive ligand exchange differential pulse cathodic stripping voltammetry; CLE-CSV: competitive 798 

ligand exchange cathodic stripping voltammetry. 799 

Fig. 9. Comparison of observed Zn
2+

 concentrations with predictions of WHAM/Model VII, for measurements 800 

made by voltammetry (top) and by Donnan membrane technique (DMT) and ion exchange column method 801 

(IET) (bottom). Vertical error bars indicate the Q16–84 range predicted by WHAM/Model VII, horizontal error 802 

bars represent ±1 standard deviation of measurements, where quoted. CLE-DPASV: competitive ligand 803 

exchange differential pulse anodic stripping voltammetry. 804 

Fig. 10. Comparison of observed Cd
2+

 concentrations with predictions of WHAM/Model VII, for 805 

measurements made by voltammetry, permeation liquid membrane (PLM), and ion exchange column method 806 

(IET) (top), and by Donnan membrane technique (DMT) (bottom). Vertical error bars indicate the Q16–84 range 807 

predicted by WHAM/Model VII, horizontal error bars represent ±1 standard deviation of measurements, where 808 

quoted. CLE-AdCSV: competitive ligand exchange adsorptive cathodic stripping voltammetry; CLE-DPCSV: 809 

competitive ligand exchange differential pulse cathodic stripping voltammetry. 810 

Fig. 11. Comparison of observed Pb
2+

 concentrations with predictions of WHAM/Model VII, for 811 

measurements made by voltammetry and permeation liquid membrane (PLM) (top), and by Donnan membrane 812 

technique (DMT) (bottom). Vertical error bars indicate the Q16–84 range predicted by WHAM/Model VII, 813 

horizontal error bars represent ±1 standard deviation of measurements, where quoted. CLE-DPCSV: 814 

Competitive ligand exchange differential pulse cathodic stripping voltammetry. 815 
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