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[1] Ice domes are either axisymmetric, high points along ridges, or ridge triple junctions.
We model time‐dependent isothermal flow near triple junctions, solving the full set of
mechanical equations with a nonlinear power law rheology. Forcing is applied through the
boundary conditions, which affect flow patterns at outlets. Where such forcing is purely
axisymmetric, an axisymmetric dome is formed. If a threefold symmetry in the forcing is
applied, the axisymmetric dome breaks up into three ridges subtending angles of 120°. Sets
of experiments where the forcing was not exactly threefold symmetric by angle or by
amplitude caused the triple junction to migrate to a new steady state. Here, in steady state, the
ridges join the triple junction at nearly 120°, but one ridge curves to satisfy the boundary
forcing. The slope pattern in the immediate dome vicinity depends only on a dimensionless
parameter, which is a function of the ice consistency, the accumulation, and the rheological
power law index. Attempts to replicate the topography around Summit, Greenland,
obtained a good fit with n = 3. At a triple junction the dome is really distinct from the
surrounding ridges, contrary to the highest point of a single ridge divide. As a consequence,
the Raymond effect is at its strongest at the dome and weakens considerably over one ice
thickness as one moves away from the flow center. Along the ridges leaving the dome, the
Raymond effect is still present and decreases with the ratio of the flow across and along the
ridge. In the vicinity of the dome, horizontal strain rates vary strongly from uniaxial to
biaxial. Large‐scale effects, represented in our model as fluxes at boundaries, seem to be the
primary controls on dome position and shape.
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1. Introduction

[2] This paper presents the first three‐dimensional finite
element full system modeling of flow at nonaxisymmetric ice
domes. Full system modeling of ice divides experiencing
plane flow [Raymond, 1983; Hvidberg, 1996; Pettit and
Waddington, 2003; Martín et al., 2006, 2009a, 2009b] is
now routine, and axisymmetric flows have also been con-
sidered [Hvidberg, 1996]. However, ice domes are rarely
perfectly elongated or axisymmetric, and often it seems that
they are the meeting points of three ice divide ridges or triple
junctions, and in such areas three‐dimensional effects cannot
be neglected. Some topographic data and satellite imagery
are used to present this assertion in a companion paper
[Hindmarsh et al., 2011, hereinafter Part 2]. A further
example we use in this paper is the topography of the
Greenland Ice Sheet in the summit area from a 5 km grid
digital elevation model (DEM) [Bamber et al., 2001], given
in Figure 1. In this example, the dome is the meeting point of
two well‐defined ridges subtending an angle of 134°. At an
equal angle between this two ridges, we can discern a weak

third ridge. We will show in this paper that it shares many
similarities with an ideal triple junction (i.e., where the dome
is the meeting point of three identical ridges), and thus
belongs to the family of the triple junctions.
[3] The wider significance of this observation relates to

the fact that two ice cores, Greenland Ice Core Project (GRIP)
and Greenland Ice Sheet Project 2 (GISP2) ice cores, were
drilled in this area in the 1990s [Hvidberg et al., 1997]. Ice
domes are preferred sites for ice core drilling, both in Antarctica
(e.g., Dome C [EPICA Community Members, 2004], Dome F
[Dome‐F Deep Coring Group, 1998], Berkner Island
[Mulvaney et al., 2007]) and in Greenland (Greenland Ice
Core Project (GRIP) [Dansgaard et al., 1993]), principally
because the local provenance of the ice seems more assured.
A further motivation is that vertical compression dominates
under a dome center, giving a greatest chance of recovering
an undisturbed stratigraphy.
[4] Because absolute dating techniques are usually not

available, the dating of the cores relies strongly on ice‐flow
modeling, and since the problem is essentially one of inverse
nature, one‐dimensional flow models are still the only ones
that are computationally practicable to use for dating dome
cores [Parrenin et al., 2007]. The longitudinal components of
stresses and strain rates dominate compared with the shear
components in ice domes and ridges areas. For this reason,
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the Shallow Ice Approximation (SIA) [Hutter, 1983], widely
used in large‐scale ice flow models [e.g., Ritz et al., 2001],
does not hold in the vicinity of domes or ridges, and in con-
sequence the full‐Stokes equations must be used. Underneath
a dome, owing to the vanishing of deviatoric stresses with
depth, the nonlinear Glen rheology implies a highly viscous
ice area and strong horizontal variations in the vertical strain
rate. This effect was firstly described by Raymond [1983],
and is now referred to as the Raymond effect. An obvious
consequence is that the vertical velocity profile differs under
the dome compared with the flank. As a consequence of this
difference, Raymond [1983] predicted that isochrones would
exhibit anticlines just under domes. Such anticlines were later
discovered on radargrams [Nereson et al., 1998b; Vaughan
et al., 1999] and are now called Raymond arches.
[5] Owing to the evident relationship between isochronal

layers and the (past and present) velocity field [Parrenin and
Hindmarsh, 2007], measured isochronal layers are now
widely used to infer information about ice flow. In particular,
the Raymond effect gives valuable information about ice
rheology. Since the vertical velocity profiles under the dome
and at the flank depend on the ice rheology [Parrenin and
Hindmarsh, 2007; Pettit and Waddington, 2003], Raymond
arches have been used to infer the constitutive relationship of
ice and especially the value of the Glen index [Martín et al.,
2006]. Recently, theoretical studies have shown that anisot-
ropy of ice may increase the size of the Raymond arches
[Pettit et al., 2007; Martín et al., 2009a], as does a more
nonlinear ice rheology.
[6] Since Raymond arches are also a consequence of the

history of the ice flow, they have also widely been used for
inferring ice geometry history [Nereson et al., 1998b;
Nereson and Raymond, 2001;Price et al., 2007;Martín et al.,
2009b], accumulation pattern [Nereson et al., 2000; Martín

et al., 2006], basal sliding and along ridge flow [Pettit
et al., 2007; Martín et al., 2009b]. One may also note that
the fact that ice divide ridges are clearly viewable in remote‐
sensed images is a consequence of their high curvature, which
is itself a consequence of the nonlinear rheology of ice
[Fowler, 1992; Hindmarsh, 1996; Pettit and Waddington,
2003].
[7] The occurrence of Raymond arches in the central part of

ice sheets is still a matter of debate [Jacobel and Hodge,
1995] as low values of the Glen index, less than 2 and pos-
sibly close to 1, have been reported for these areas [Doake and
Wolff, 1985; Lliboutry and Duval, 1985; Lipenkov et al.,
1997]. Another explanation for missing Raymond arches is
that domes and ridges positions in large ice sheets are highly
dependent on margin position and that they have not been in
their actual position long enough for Raymond arches to form
[Anandakrishnan et al., 1994; Hindmarsh, 1996; Marshall
and Cuffey, 2000]. The highly nonlinear (and thus non‐SIA)
vertical velocity profiles which have been used for the
dating of the Dome C and Dome F cores [Parrenin et al.,
2007] give support to this explanation and suggest the occur-
rence of the Raymond effect, although this may also be related
to the basal topography.
[8] Increases in computing power now mean that it is

computationally feasible to model transient ice sheet and
glacier flows in three dimension, solving the full‐Stokes
equations [LeMeur et al., 2004; Zwinger et al., 2007] coupled
with the evolution of the upper free surface [Pattyn, 2008].
[9] Our scientific aim is, starting from an initially axi-

symmetric dome, to explore the formation of triple junctions.
We want to explore the characteristic features of the topog-
raphy and of the flow of ice, especially the Raymond effect,
in the vicinity of triple junctions. We start with the working
hypothesis that nonaxisymmetry of the dome is a conse-
quence of nonaxisymmetry of the distal forcing. This auto-
matically creates a number of ridges which can enter the dome
area. A second hypothesis is that, with an appropriate sym-
metry in the distal forcing, more than three ridges could meet
at a dome. We suppose that it is possible but extremely
unlikely for a real ice sheet, and that this does not need to be
modeled as the slightest perturbation will create two neigh-
boring triple junctions. This argument has previously been
developed by Nye [1991] in a catastrophe theory context of
genericity and nongenericity.
[10] The situation where three divide ridges of equal

strength meet at triple junction (an example from the Fletcher
Promontory is shown in Part 2) is an instructive ideal, and
we explore this. This situation implies a distal forcing with a
threefold symmetry. We then consider distal forcing without
such a threefold symmetry, varying both the geometry (angle
subtended by forcing maxima) and the amplitude of the
maxima. By doing this, we want to show that the case where
the dome is the meeting point of two well‐defined ridges and
a weak (eventually vanishing) third ridge is a special type of
triple junction. This would support the working hypothesis
that triple junction exist at most domes.
[11] Specifically, we have two objectives: (1) use a full

Stokes model to model triple junctions for a nonlinear rhe-
ology and (2) investigate the effects of nonthreefold sym-
metric forcing on triple junctions. The paper plan is to present
the model, and investigate triple junction behavior under a
number of different distal forcing scenarios. In the companion

Figure 1. Five meter surface contours in the Greenland Ice
Sheet summit area from a 5 km grid digital elevation model
(DEM) [Bamber et al., 2001]. Starting from the dome, two
ridges are well defined. Estimates of their direction are plotted
(solid arrows). The angle between these two estimates is
134°. The estimated direction of the weak third ridge (dashed
arrow) is plotted at an equal angle between the two sharp
ridges.
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paper [Hindmarsh et al., 2011], we use these results to ana-
lyze observations from Thyssenhöhe, Berkner Island, and the
Fletcher Promontory triple junctions, both located in West
Antarctica.

2. The Model and Governing Equations

[12] We restrict our study to the flow of incompressible ice
in a semicircular domain of radius R in the horizontal (x, y)
space, where the y = 0 plane, aligned with the diameter of the
domain, is a symmetry plane. This hypothesis is used to
reduce our domain size as 3‐D transient simulations are
computationally expensive, but will allow us to model the
case of an ideal triple junction resembling Fletcher Promon-
tory, as well as the case of triple junctions with two sharp
similar ridges and one weak ridge resembling Thyssenhöhe
and the summit of the Greenland Ice Sheet.

2.1. Field Equations

[13] We use the finite element code ELMER [e.g.,
Gagliardini and Zwinger, 2008; Gillet‐Chaulet et al., 2006]
to solve the full‐Stokes equations for incompressible ice

r � u ¼ 0

r � sþ �ig ¼ 0

8<
: ; ð1Þ

where u = (u, v,w) is the velocity vector,s is the stress tensor,
g is the acceleration due to gravity and ri is the uniform
density of ice. We use an isotropic Glen [Glen, 1955] con-
stitutive relation for the ice flow law:

� ¼ 2�e1=n�1e; ð2Þ

where t is the deviatoric stress tensor and e is the trace-
less strain rate tensor. The apparent (nonlinear) viscosity n =
he1/n−1 is function of the intrinsic ice consistency coefficient
h, of the second invariant of the strain rate tensor defined by
e2 = 2e:e, where we use the double contracted tensorial
product “:”, and of the Glen index n (set equal to 3, if not
mentioned explicitly in the text).
[14] In the following, wemodel isothermal flow, so that h is

uniform in space, except for one experiment in section 4.2.4
where we prescribe h to represent the influence of softer ice
at higher temperatures near the bed. The ice is always sup-
posed to be below the melting temperature, so no sliding is
considered.
[15] The upper free surface z = s(x, y, t) evolves according

to the kinematical condition

@tsþ uH � rs ¼ wþ a; ð3Þ

where uH = (u, v) is the surface horizontal velocity vector
aligned with (x, y) the ice accumulation rate is denoted by a
and is constant through time and space.
[16] The Stokes equations (1) and free‐surface equation (3)

are solved in a coupled way using a transient scheme until a
(near) steady state is achieved. The criterion for steady state is
that the maximum rate of displacement of a node on the free
surface is less than 1 mm/yr. Small perturbation theory shows
that the free surface in the divide area can evolve rapidly with
respect to divide characteristic time s/a [Nereson et al.,
1998a] in response to changes in the boundary forcings. In

our experiments the ice volume is kept constant through time
so that the steady state topography is close to the initial
topography, that is, the maximal change in ice thickness is of
the order of a few percent. In consequence, the steady state as
defined above is usually achieved after few percents of the ice
divide characteristic time.
[17] When a steady solution for the surface elevation and

the velocity is reached, the steady state age c corresponding
to the steady configuration, is calculated using

u � r� ¼ 1: ð4Þ

The age is zero on the upper free surface and we never con-
sider situations of net melting here.

2.2. Boundary Conditions

[18] On the lower boundary, the ice is fixed to the immobile
substrate, where

u ¼ v ¼ w ¼ 0: ð5Þ

The upper surface is a stress free surface

s � n ¼ 0; ð6Þ

where n is the unit vector pointing outward of the free surface.
On the y = 0 plane, aligned with the diameter of the semi-
circular domain, symmetry conditions are applied

v ¼ 0

�xy ¼ �yz ¼ 0:

8<
: ð7Þ

[19] The circumference is not a physical boundary; it is
used to reduce our domain size. As is common in plane‐flow
applications [e.g., Raymond, 1983; Mangeney et al., 1996;
Hvidberg, 1996; Pettit and Waddington, 2003], SIA assump-
tions are used to prescribe the conditions at this boundary. A
horizontal velocity uH and a vertical force are prescribed on
the circumference.
[20] 1. We assume that the orientation of the horizontal

velocity vector uH is colinear with the surface slope vector
and pointing in the opposite direction.
[21] 2. We assume that the norm kuHk of the horizontal

velocity vector varies with depth to the power n + 1 and is
equal to zero at the bed at z = 0:

kuHk ¼ K � � sð Þnþ1� s� zð Þnþ1�; ð8Þ

where the constant K is a function of the surface slope, the
ice stiffness, and the product of gravitational acceleration
and density. In our simulations, to reach a steady state, the
total volume of ice is kept constant through time by speci-
fying that the ice flux entering through the free surface as
accumulation pR2a/2 is equal to the ice flux leaving through
the circumference

Z �

0

Z H

0
uH � ncRdzd� ¼ 1

2
�R2a; ð9Þ

where nc = (cos(�), sin(�), 0) is the unit vector on the cir-
cumference pointing outward from the domain with � = arctan
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(y/x). Using relation (9) we can determine the constant termK
in equation (8) to obtain

uH � nc ¼ 1

2

nþ 2

nþ 1
sð Þ� nþ2ð ÞRa sð Þnþ1� s� zð Þnþ1

h i
f �ð Þ; ð10Þ

where f is a function of � that obeys the constraint

Z �

0
f �ð Þd� ¼ �: ð11Þ

Having f(�) = 1 leads to an axisymmetric boundary condition
for the velocity, whereas a value of f greater than unity
increases the outflow and a value of f lower than unity
decreases the outflow.
[22] 3. As the vertical component of the velocity vector is

left free, we apply the SIA shear stress profile

s � nc � e3 ¼ �g
@h

@nc
z� sð Þ: ð12Þ

[23] It is known that, when applying the shallow ice
approximation at a boundary, the error induced by these
nonphysical boundary propagates into the domain over few
times the ice thickness. In two‐dimensional calculations, the
availability of computational power permits to place the
boundary sufficiently far from the center of the domain and to
exclude it from displays [Raymond, 1983; Hvidberg, 1996;
Martín et al., 2006]. This circumstance is not always possible
with our three‐dimensional calculations. However, the radius
of our modeled domain is chosen to be larger than ten ice
thicknesses so that the flow in the vicinity of the domain
center is insensitive to the details of the boundary condition.

3. Experimental Design

3.1. Initial Conditions

[24] We prescribe the initial surface elevation to be axi-
symmetric. It is given by the analytical surface elevation

obtained with the SIA at order zero of an isothermal ice sheet
flowing over a flat bedrock [Vialov, 1958]:

s rð Þ ¼ s0 1� 	

s0
r

� � nþ1ð Þ=n !n= 2nþ2ð Þ
; ð13Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
2 [0, R], s0 is the prescribed initial dome

elevation, and 	 is a small parameter corresponding the ratio
of the ice sheet dome elevation to the ice sheet extent.
[25] According to the SIA with constant and uniform

accumulation a in (3) and ice consistency h in (2), the small
parameter 	 is given by

	 nþ1ð Þ=n ¼ nþ 2

2

� �1=n 2�

�igs0

a

s0

� �1
n

; ð14Þ

The experiments are repeated for a range of initial geometries
given by equation (13) with n = 3. As, in our experiments, the
ice volume is kept constant through time, for given initial
volume and domain radius, the steady state should be inde-
pendent of the detailed initial surface elevation. In general, a
change in the initial geometry correspond also in a change of
the model parameters h and a, and this is explicated in the
main text. To reduce the computation time to reach a steady
state, h and a are chosen from equations (13) and (14) so that
the initial state of the ice sheet is close to the steady state
obtained from the finite element calculation in the axisym-
metric case.
[26] The finite element mesh that we used contains 7290

trilinear brick elements, leading to a total of 8369 nodes. The
vertical direction is discretized by 15 layers. The uppermost
layer is 2.5 times thicker than the lowermost layer. In the
horizontal directions, the mesh is thinner in the central part.
A 3‐D view of the finite element mesh is shown in Figure 2.
[27] In one experiment, in section 4.2.4, we introduce

a vertical variation in the temperature profile, written as a
function of the normalized depth ẑ = z/s. This was based on a
polynomial fit of the GRIPmeasured temperature [Gundestrup
et al., 1993] and was imposed over the whole domain [see
Gagliardini and Meyssonnier, 2000]. The temperature is
−32°C at the surface, nearly constant in the upper half part
and then increases to −8.5°C at the bed. The ice fluidity Ai =
h−n in (2) depends on the temperature through an Arrhenius
relationship

Ai Tð Þ ¼ AT0
i e

Q
R

�
1
T0
�1

T

�
; ð15Þ

where Ai
T0 is a reference ice fluidity at temperature T0, R =

8.314 J mol−1 K−1 is the gas constant andQ = 78 kJ mol−1 the
activation energy [Lliboutry and Duval, 1985]. The reference
ice fluidity Ai

T0 has been chosen so that

Z s

0
Ai z� sð Þndz ¼

Z s

0
Aiso
i z� sð Þndz: ð16Þ

This implies, according to the SIA, that, for a given surface
slope, the surface horizontal velocities are identical in the
isothermal case and with the GRIP temperature profile.

Figure 2. Three‐dimensional view of the finite element
mesh with a 30 times vertical exaggeration. The radius R of
the domain is 15s0 or 20s0 (see Table 1).
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3.2. Dimensionless Results

[28] All the results are given in dimensionless form repre-
sented by the circumflex symbol, using the initial dome ele-
vation s0 in (13) and the ice accumulation a in (3):

x̂; ŷ; ẑ; ŝð Þ ¼ 1

s0
x; y; z; sð Þ;

t̂; �̂ð Þ ¼ a

s0
t; �ð Þ;

êij ¼ s0
a
eij:

ð17Þ

For the slope, a scale analysis byMartín et al. [2009b], related
to a previous analysis by Wilchinsky and Chugunov [1997],
shows that the slope gx is usefully scaled by a dimensionless
parameter L � 1, which represents the slope magnitude at
a distance on the order of one ice sheet thickness away from
the divide:


x � @xs x=H ¼ 1ð Þ � L � 2�

�igH

a

H

� �1
n� 1: ð18Þ

The quantities on the right hand side represent typical values
at the divide when the ice is in steady state; values for L lie
typically between 0.001 (thick ice, low accumulation rate)
and 0.02 (thin ice, high accumulation). Martín et al. [2009b]
showed that for ridges where the y slope (along‐ridge slope)
gy is nonzero, the flow may be parameterized by the slope
ratio d = gy /L.When d is small, the momentum balance
equations in the x and y directions partially uncouple,
meaning that the problem can be solved in the 2‐D (x, z)
plane. Furthermore, as those authors showed, the amplitude
of steady Raymond arches depends strongly on the along‐
ridge slope as expressed by the parameter d; We use the same
scaling in this work and the surface slope g scaled byL (18) is
denoted by


̂ ¼ 1

L

: ð19Þ

3.3. Experiment A: Axisymmetry

[29] These experiments assess the influence of the mesh
on the results and the stability of the 3‐D model. The model
is run with an axisymmetric boundary condition on the
circumference, that is, f (�) = 1, until it reaches a steady
state. Results are compared with the results obtained with
a much higher‐resolution two‐dimensional axisymmetric
model based on the same assumptions. For this 2‐D axi-
symmetric model the mesh is composed of 2700 bilinear
quadrilateral elements for a total of 2806 nodes. The vertical
direction is discretized by 45 layers, with the uppermost layer
3 times thicker than the lowermost layer. Along the x direc-
tion, the size of the elements is 10 times larger near the cir-
cumference than near the dome, so that, in the vicinity of the
dome, the horizontal dimension of the elements is approxi-
mately 6 times smaller in the 2‐D axisymmetric model than
in the 3‐D model.

3.4. Experiment B: Threefold Symmetry

[30] We now seek to describe and understand the flow of
ice in a triple junction with a threefold symmetry. Such a
symmetry in the ice flow is created by imposing a threefold

symmetry on the boundary forcing, so f(�) is chosen as
piecewise linear function as

f �ð Þ ¼

1� F þ 2F � 3�=� for � � �=3

1þ F � 2F � 3 �� �=3ð Þ=� for �=3 < � � 2�=3

1� F þ 2F � 3 �� 2�=3ð Þ=� for � > 2�=3

0
BBBBBB@

1
CCCCCCA
;

ð20Þ

where the outflow parameter F 2 [0, 1]. Experiments are
performed for different values of F and n.

3.5. Experiment C: Threefold Symmetry Broken
by Nonuniform Angles

[31] We now explore breaking of the threefold symmetry
by altering the entry angle of the boundary forcing that pro-
duces the divide ridges. For this experiment the minimum and
maximum values of f(�) are the same as for Experiment B,
but the maxima are for � = 0° and � = 105°. Hence, f(�) is
chosen as

f �ð Þ ¼

0þ 2� 24�=7� for � � 7�=24

2� 2� 24 �� 7�=24ð Þ=7� for 7�=24 < � � 7�=12

0þ 2� 12 �� 7�=12ð Þ=5� for 7�=12 > �

0
BBBBBB@

1
CCCCCCA
:

ð21Þ

3.6. Experiment D: Threefold Symmetry Broken
With Unequal Forcing Amplitude

[32] In these experiments we explore the effects of sym-
metry breaking by altering the amplitude of forcing of the
divide ridges at the boundaries. The maxima of f(�) are at � =
0° and � = 120° but the values of the maxima are different,
f(�) is chosen as

f �ð Þ ¼

0:7þ 0:6� 3�=� for � � �=3

1:3� 1:25� 3 �� �=3ð Þ=� for �=3 < � � 2�=3

0:05þ 2:55� 3 �� 2�=3ð Þ=� for � > 2�=3

0
BBBBBB@

1
CCCCCCA
:

ð22Þ

4. Results

[33] All the experiments are denoted by a letter represent-
ing the type of forcing presented in sections 3.2–3.6 (A, B, C,
or D) and a number representing the initial surface elevation
(1–4); see Table 1 and equation (13).

4.1. Experiment A

[34] In order to compare the accuracy of the two and three
dimensional solutions, the surfaces, scaled slopes and surface
longitudinal strain rates obtained with the 2‐D axisymmetric
model and along the x axis of the 3‐D model for experiment
A1 are plotted in Figure 3. The solutions given by the two
models are nearly identical, showing the ability of our 3‐D
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model to capture the main features of the Raymond effect
even with amesh that is much coarser than the meshes that are
practical in 2‐D experiments. We are confident that a refined
mesh would not increase the accuracy of the surface results
given by the 3‐D model. The results obtained here reproduce
the main features from previous higher‐resolution 2‐D
models of the Raymond effect [Pettit and Waddington, 2003;
Martín et al., 2006]. The consequences of an operating
Raymond effect on the surface topography, the strain rate
pattern and the isochrones are briefly reprised here. In
describing the results of the experiments, we think of the
divide as a starting point from which we move out.
[35] In the dome area, there is a very high gradient in the

slope over a distance of approximately one ice thickness.
Further away, the absolute value of the slope increases con-
tinuously and nearly linearly with distance from the dome.
The Raymond effect produces a relatively high surface ver-
tical strain rate under the dome, and a smaller and nearly
uniform value at distances greater than two ice thicknesses
from the divide, with a steep gradient over those two ice
thicknesses. Continuity requires that surface horizontal strain
rates are also large in magnitude in the vicinity of the dome
where the vertical strain rates are large. The strain rate state is
axisymmetric, that is, êxx = êyy, just under the dome at x = 0,
but êxx < êyy for 0 < x̂ < 5. For x̂ ≥ 5 the two strain rates are
nearly constant and equal.
[36] The steady state isochrones obtained with the two

models are plotted in Figure 3d. The Raymond effect leads
to the formation of the so‐called Raymond arches, that is,
convexities in the isochrones, whose amplitudes are defined
as the difference in elevation between the apex of the iso-
chrone and its elevation in the flow area away from the divide.
For the upper half part of the ice sheet the isochrones com-
puted with the two models are nearly identical. In the lower
half part, with the 3‐Dmodel, the highest point of the arches is
underestimated, and away from the dome the lowest iso-
chrones are a little deeper compared with the 2‐D model.
In summary, the 3‐D model underestimates by a little the
arch amplitude in the lower part of the ice sheet.

4.2. Experiment B

4.2.1. Effect of Boundary Forcing Amplitude F
[37] To allow visual comparison of the effect of F, the

steady free surfaces obtained for experiment B1 with F = 0.5
and F = 1 in equation (20) are plotted in Figure 4. On this
plot are also shown the dimensionless surface vertical strain
rate êzz and the surface horizontal velocity vectors on the
circumference. All the other parameters of the model are kept
constant in these experiments.
[38] The threefold symmetry forcing produces an ideal

triple junction. In the modeled domain, two ridges of equal

strength are present at 0° and 120°, at which point the outflow
at the boundary is the smallest. The ridges show more cur-
vature, that is, the ratio d of the slope along the ridge over
the slope parameter L (see equation (18)) is smaller, as the
outflow parameter F increases.
[39] The vertical strain rate on the surface is greatest under

the dome where the Raymond effect is the highest. This effect
also operates under the ridges; it is greater where the ridges
are more defined and it decreases when the slope ratio d
increase. The effect of varying the boundary forcing F on
the surface elevations ŝ, the scaled slopes 
̂ and the surface
longitudinal strain rate components êii obtained along the
diameter are shown in Figure 5a.
[40] There are small spurious oscillations on the surface

and the slope at around 5so each side of the dome. Of course,
the slope is a differentiated quantity and therefore more sus-
ceptible to noise. The oscillations coincide with the transition
between the fine inner mesh and the coarser outer mesh. In

Table 1. Values of Parameters Defining Initial Domain Geometriesa

Initial Geometry s0 (m) 	 R

1 3000 10−2 20s0
2 3000 6.2 × 10−3 20s0
3 2000 2 × 10−2 20s0
4 1000 4 × 10−2 15s0

aDome elevation, s0; mean slope, 	; and radius, R, of the modeled domain.

Figure 3. Experiment A1. Plots along the diameter x̂ of (a)
the surface ŝ; (b) the scaled slope 
̂; (c) the surface longitudi-
nal strain rates êxx (dotted lines), êyy (dashed lines), and êzz
(solid lines); and (d) several isochrones. Results obtained
with the 3‐D model are in black, with the 2‐D axisymmetric
model in red.
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3‐D, the mesh refinement is not an easy task especially with
brick elements. But, we are confident that increases in com-
puting power will permit these problems to be overcome, and
the wiggles shown to be spurious features, and we are also
confident that the overall pattern shown is correct.
[41] In the immediate vicinity of the dome, as observed in

the axisymmetric case, the slope increases very quickly over a
distance of approximately one ice thickness either along the
ridge (right‐hand side, x̂ > 0) and along the talweg (left‐hand
side of Figure 5a, x̂ < 0) (talweg is a geomorphological term
meaning the line of the bottom of a valley). An important
result is that, in this area, the slope pattern is independent of
the value of F and thus can be used to quantify the Raymond
effect under the dome independently of the strength of the
ridges leaving the dome.
[42] Moving further away along the ridge, the scaled slope

increases steadily in absolute value for the lower amplitude

case F = 0.5, but reaches a stable value around −1 and
decreases a little in absolute value near the boundary forF = 1.
Moving further away along the talweg, the slope increases
nearly linearly and increases more as F is bigger, but the
difference between the two curves remains small.
[43] An interesting result that can be seen in the strain rate

plot, is that just under the dome, ice experiences an axisym-
metric vertical compression, that is, êxx = êyy = −êzz /2.
But, there are large variations of the strain rate state in the
immediate vicinity of the dome from a mainly xz plane
deformation state (i.e., êxx > êyy) on the talweg (Figure 5a, left‐
hand side), to a yz plane deformation state (i.e., perpendicular
to the ridge, êyy > êxx) on the ridge side (Figure 5a, right‐hand
side). The ratio between the two strain rates along the hori-
zontal directions êxx and êyy is larger as the ridge is sharper,
that is, as F is higher. Owing to the Raymond effect, the
vertical strain rate shows a higher absolute value just under

Figure 4. Experiment B1, the effect of boundary forcing amplitude F (equation (20)). Ice surface contours
and surface vertical strain rate êzz obtained for (a) F = 0.5 and (b) F = 1. Red arrows on boundary are the
horizontal surface velocity vectors.

Figure 5. (a) Experiment B1, the effect of boundary forcing amplitude F (equation (20)). Plots are along
the diameter x̂ of surface ŝ; scaled slope 
̂; and surface longitudinal strain rates êxx (dotted lines), êyy (dashed
lines), and êzz (solid lines). Results obtained with F = 1 in black and F = 0.5 in red. (b) Experiments B1–B4,
the effect of initial volume and accumulation. Plots along the diameter x̂ of surface ŝ, slope g, and scaled
slope 
̂ for initial condition 1 (black), initial condition 2 (blue), initial condition 3 (red), and initial condition
4 (green) (Table 1).
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the dome and decreases quickly over a distance of less than
two ice thicknesses as we move away from the dome. Under
the ridge, on the right‐hand side of Figure 5a, the Raymond
effect operates, but is muted somewhat by the presence of an
along‐ridge slope, as predicted by Martín et al. [2009b]. In
the remaining part of section 4.2 all the results are obtained
with F = 1.
4.2.2. Effect of Initial Volume, Dome Elevation,
and Accumulation
[44] In these experiments, we change the initial volume by

changing the initial surface elevation as given in Table 1. This
allow us to change two of the three parameters that enter the
definition of the slope parameterL in equation (18): the dome
elevation s0 and the ice accumulation a. The ice consistency h
is constant and uniform in all the experiments. The uniform
and constant accumulation a is chosen from the analytical
solution (14); between initial conditions 3 and 4, only the
initial volume, and thus the dome elevation, changes and a is
unchanged.
[45] In Figure 5b, we compare the variation of the surface

elevation, the slope, and the scaled slope as a function of
dimensionless position on the diameter. The greater the
parameter 	, the greater the increase of slope as we move
away from the dome. However, when scaled by L, the vari-
ation of slope 
̂ with dimensionless distance is identical for
all the experiments in the vicinity of the dome, that is, over
a distance of approximately two ice thicknesses. Along the
ridge (Figure 5b, right‐hand side), all the results show the
same variation. Along the talweg, away from the dome,
the scaled slope 
̂ increases more rapidly with distance from
the flow center as 	 increases, but this difference is small
for the low values of 	. The oscillations obtained with initial
condition 4, near the edges are assumed to be the consequence

of the SIA profiles used for the boundary condition, as for this
case the domain extended only 15 times the ice thickness
from the initial dome center.
4.2.3. Effect of the Glen Index n
[46] Here we compare the results of the calculations that

comprised experiment B1 with n = 1, n = 2, n = 3 and n = 4.
The initial surface elevation and the constant accumulation a
are the same for all the experiments. When n ≠ 3, the ice
consistency h is chosen so that the surface elevation accord-
ing to the SIA in the axisymmetric case (equations (13)
and (14)), would be equal to the initial surface elevation with
n = 3 in r = 0 and r = R.
[47] Shown in Figure 6a are the steady surface profile, the

surface vertical strain rate êzz and surface horizontal velocity
vectors on the circumference. For all four cases we obtain a
stable ideal triple junction with ridges orientated at 120°. The
ice surface ridges are sharper and more well defined as n
increases. For n = 1, the surface contours in the vicinity of
the dome are still nearly circular. As expected, the greater
the value of n, the more marked is the Raymond effect,
and the absolute value of the vertical strain rate êzz just under
the dome and the ridges also increases with n.
[48] The surface, the slope, the scaled slope and the surface

vertical strain rate are plotted in Figure 6b. The variation of
the slope is very different for n = 1 and n > 1. With n > 1 as
discussed before, on both sides of the dome, there is a steep
gradient of the slope over a distance of approximately one ice
thickness; this gradient is steeper as n increases On the side of
the ridge (right‐hand side of Figure 6b), away from the dome,
the slope increases in absolute value toward a stable value,
and this value is reached over a shorter distance as n increases.
Along the talweg (left‐hand side of Figure 6b), the slope
increases nearly linearly as we move away from the dome.

Figure 6. (a) Experiment B1, the effect of Glen index n. Ice elevation contours and surface vertical strain
rate êzz for n = 1, n = 2, n = 3, and n = 4. Surface velocity vectors in red on the circumference. (b) Plots along
the diameter x̂ of surface ŝ, slope g, scaled slope 
̂, and surface vertical strain rate êzz for n = 1 (blue), n = 2
(red), n = 3 (black), and n = 4 (green).

GILLET‐CHAULET AND HINDMARSH: ICE‐DIVIDE TRIPLE JUNCTION MODELING F02023F02023

8 of 15



The increase in the slope is higher when n is greater. With
n = 1, there is no abrupt variation of the slope in the vicinity
of the dome, and the slope increases continuously on each
side of the dome.
[49] The variation of the scaled slope in the vicinity of the

dome is identical whatever the value of n. Under the ridge the
absolute value of the scaled slope is smaller as n is higher,
while along the talweg the increase of the scaled slope, as we
move away from the dome is smaller as n is higher.
[50] We show a view of the three‐dimensional isochrone

surface in Figure 7a, demonstrating a strong central Raymond
cupola, and Raymond bumps emanating along all three arms.
In Figure 7c, we plot the steady state isochrones for different
n on the reflection‐symmetry plane y = 0. With n = 1,
the isochrones are flat as expected (no Raymond bumps). For
n > 1, in a pattern which reflects the surface vertical strain rate
shown in Figure 6, the maximum height of the Raymond
bumps is located just under the dome. This maximum height
is higher as n is higher. The reflection‐symmetry plane runs
along a ridge on the right‐hand side of Figure 7c, and the
Raymond effect operates but is muted somewhat by the
along‐ridge slope. To the left of the dome, along the talweg,

the isochrone apices deepen over a short distance since here
the Raymond effect does not operate, and are also deeper
at the same point as n increases. Along the ridge to the right of
the dome the elevation of the isochrones is higher than to left.
[51] Figure 7d shows the isochrones for different n on a line

perpendicular to the ridge at a distance 5s0 from the dome. As
on the symmetry plane, a linear rheology for the ice leads to
flat isochrones. For n > 1 the isochrones show small ampli-
tude Raymond bumps. The highest points of the isochrones
are located under the ridge and their ages were chosen to give
the same elevation for all values of n, but away from the
ridges, isochrones are deeper as n is higher leading to bigger
Raymond bumps.
4.2.4. Effect of Nonuniform Temperature
[52] We have seen from the previous experiments that, for

an ideal triple junction, the slope pattern in the immediate
vicinity of the dome is only a function of the dimension-
less parameter L (equation (18)) which depends on the Glen
index, the ice thickness, the accumulation and the ice con-
sistency. In real ice sheets, owing to the temperature gradient
in the ice, the ice consistency can vary strongly from the upper
surface to the bed, so that, in general, the choice of a typical

Figure 7. Experiment B1, the effect of n. (a) Three‐dimensional view of isochrone corresponding to �̂ =
2.4 for n = 4; (b) isochronal layer for experiment D2 at t̂ = 0.058 (see Figure 10b). Isochrones are calculated
for n = 1 (blue), n = 2 (red), n = 3 (black), and n = 4 (green) (c) in the symmetry plane and (d) perpendicular to
the ridge at a distance 5s0 from the dome.
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value for h to calculateL is difficult. Specifically here, we use
the GRIP temperature profile to see if it is possible to infer
useful information about the ice flow law in Greenland from
the dome topography presented in Figure 1. As described
in section 3.1, the ice fluidity Ai(T ) varies with normalized
depth (equations (15) and (16)), and is plotted in Figure 8a.
According to the temperature profile, the fluidity is nearly
constant and very low in the upper 70% of the ice sheet and
then increases rapidly toward the bed. The intersection with
the value of the fluidity used for the isothermal experiment
Ai
iso is at 10% of the ice thickness above the bed.
[53] The GRIP temperature profile is not in a state of

thermal equilibrium but still has memory of the last glacial
maximum temperatures [Gundestrup et al., 1993]. As said
above, the free surface reacts very quickly to changes in the
boundary forcing, so that our hypothesis is that the free sur-
face can reach a quasi‐steady state independently of the state
of the temperature field, whether the temperature field is
steady or unsteady. Specifically, we do not think that the “hot

spot” patterns described by Nereson and Waddington [2002],
associated with the operation of the Raymond effect, will play
a role in the dynamical situations we are seeking to model.
Finally, the choice of a vertically stretched temperature
profile in our domain extending only 20 times the ice thick-
ness in the horizontal direction, is justified by the small dif-
ferences between the GRIP and GISP2 temperature profiles
[Gundestrup et al., 1993; Clow et al., 1996].
[54] Vertical velocity and vertical strain rate profiles under

the dome and at a distance 5s0 from the dome in the ridge side
and at a corresponding position on the talweg side are plotted
in Figures 8b and 8c. These profiles are different in absolute
values, in the isothermal and GRIP temperature profile cases,
but both show the same expected pattern: a highly non-
linear vertical velocity profile beneath the dome where the
Raymond effect is at its maximum. Away from the dome, on
the talweg side, the vertical velocity profile is more linear,
especially in the upper part. The vertical velocity profile 5s0
from the dome in the ridge side is between the dome and the
flank profiles as the Raymond effect still operates but is
muted by the along‐ridge flow. The vertical velocity profiles
reflect these differences. With the GRIP temperature profile,
the vertical velocity profile is less nonlinear under the dome
and more linear in the flank compared with the isothermal
case. Despite these differences in the vertical profiles, the
surface and slope plotted along the diameter in Figures 8d
and 8e are very close and present the same pattern dis-
cussed previously.
4.2.5. Discussion
[55] We have shown that a 120° periodic boundary con-

dition for the ice flux leads to the formation of a stable ideal
triple junction where the dome is the symmetric meeting point
of three identical ridges.
[56] The surface slope along the ridge and the talweg

depend on the ice flux on the boundary, and the smaller the
flux along the ridge, the sharper the ridge. The Raymond
effect is at its maximum under the dome and decreases
quickly over few ice thicknesses, but is still operating under
the ridges and, as demonstrated with a “2.5‐D” model by
Martín et al. [2009b], the smaller the along‐ridge slope, the
greater the Raymond effect.
[57] The surface slope shows large variations in the vicinity

of the dome over a distance of one to two ice thicknesses,
either along the ridge or along the talweg, but the variation
is smaller on the ridge side. We have shown that, in the
immediate dome vicinity, the slope scaled by L exhibits
exactly the same gradient, and this depends neither on the
ice fluxes on the boundary nor on vertical variations of the
ice consistency with temperature. Thus, this gradient depends
on the ice thickness, the accumulation rate, the ice consis-
tency and the Glen index, allowing us to determine one of the
variables if the others are known.
[58] As expected from previous results using 2‐D model-

ing, the surface vertical strain rate varies highly in the vicinity
of the dome and ridge, and this variation is higher as the Glen
index n is higher. Moreover, we have shown that the strain
rate state also changes over very short distances in the dome
vicinity, from a mostly along‐ridge plane deformation to a
mostly plane deformation perpendicular to the ridge on the
ridge side, with an axisymmetric compression just under the
dome. As a consequence, the ice in the dome vicinity will
experience very different strain rate states even with small

Figure 8. Experiment B1, the effect of temperature.
(a) Fluidity relative to the isothermal fluidity as a function
of reduced depth ẑ. The dashed line corresponds to the rela-
tive isothermal fluidity (i.e., equal to 1); (b) vertical velocity
and (c) strain rate profiles under the dome (solid lines), at a
distance 5s0 from the dome on the ridge side (dotted lines),
and at a distance 5s0 from the dome on the opposite side
(dashed lines). (d and e) Plots along the diameter x̂ of the sur-
face ŝ and the slope g. Results obtained in the isothermal case
are in black, and results for the GRIP temperature profile case
are in red.
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peregrinations of the dome (i.e., of the order of one or two
ice thicknesses). Such large changes have been suggested
to be responsible for flow disturbances such as boudinage or
folding especially in the presence of strongly anisotropic layers
[Dahl‐Jensen et al., 1997; Thorsteinsson and Waddington,
2002; Durand et al., 2007].

4.3. Experiment C

[59] In this experiment, the three fold symmetry is broken
by nonuniform angles so that the central point, that is, the
initial dome location, is no longer the center of a threefold
symmetry. As a consequence the dome position migrates
from its initial position to a new stable position, to form a
nonsymmetric triple junction with two ridges (one in the
modeled domain and its symmetric) sharper than the third
ridge.
[60] We examine the development of the surface elevation

and surface vertical strain rate êzz through time in Figure 9a at

four different times from experiment C1. At the beginning,
two ridges start to develop, a straight ridge along the diameter
on the right hand side and a curved ridge in the domain with
an orientation varying from approximately 120° near the
dome to 105° near the boundary. As time passes, this ridge
becomes sharper and the dome starts to move toward a stable
position, leading to a straighter ridge with an orientation of
approximately 113°. This ridge is a little bit sharper than the
one running along the diameter.
[61] We assume that the stable position of the dome is an

equilibrium point with respect to the ice flux at the boundary,
and thus depends only on the symmetries of our boundary
conditions. But the transient process where the dome first
forms a triple junction and then migrates with only minor
changes to the topography in the dome vicinity is a note-
worthy feature. The time involved for the initially axisym-
metric dome to form a triple junction depends on the
magnitude of the changes at the boundary but takes only a few

Figure 9. (a) Experiment C1. Surface contours and surface vertical strain rate êzz obtained at (from top to
bottom) t̂ = 0.01, t̂ = 0.02, t̂ = 0.04, and t̂ = 0.24. Horizontal surface velocity on the perimeter is shown by
red vectors. (b) Experiment D2. Surface contours and surface vertical strain rate êzz obtained at (from top to
bottom) t̂ = 8.7 × 10−3, t̂ = 0.012, t̂ = 0.017, and t̂ = 0.058. Horizontal surface velocity on the perimeter is
shown by red vectors.
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percent of the divide characteristic time s/a (section 2.1)
in our experiments, consistent with plane‐flow perturbation
analyses [Hindmarsh, 1997].
[62] For this nonsymmetric triple junction, it is interesting

to notice that the strain rate state under the dome is not an
uniaxial compression, and exx > eyy. As for the ideal triple
junctions in the previous experiments, the Raymond effect
operates under the dome and the ridges, and increases as the
ridge sharpens.

4.4. Experiment D

[63] In this experiment, the three fold symmetry is broken
by changing the amplitude of the ice flux on the boundary.
Again the initial dome location is no longer a threefold sym-
metry center, which causes the dome to migrate.

[64] In a similar way to experiment C, the surface elevation
and surface vertical strain rate êzz obtained at four different
times of experiment D2 with n = 3 are plotted in Figure 9b.
As in the previous experiment a curved ridge forms and the
dome moves from its initial position to a stable position.
Locally the dome is elongated transverse to the axis of
symmetry, turning into a curved ridge. The ridge running
along the diameter is very weak. The Raymond effect con-
tinues to operate under the dome and the stronger ridge,
whereas the weaker ridge does not show higher vertical strain
rates. At the beginning, the vertical strain rate is even higher
in the talweg opposite to the weakest ridge (left‐hand side)
because the surface has not reached a stable position.
[65] We have shown above that surface topographywas not

influenced by a vertically varying temperature profile when
compared with an isothermal simulation. The initial surface
elevation of experiment D2 has the same characteristic ice
thickness and slope as the GRIP area. We can then com-
pare our modeled surface topography to the observed surface
topography to infer the Glen index n in this area.
[66] The surface elevation in the GRIP area is com-

pared with the surface elevations obtained at t̂ = 0.017 for
n = 2, n = 3 and n = 4. For Summit this corresponds to
approximately two centuries of evolution.
[67] Modeled surfaces are shifted vertically by +280 m

to allow for the mean bed elevation at Summit, and their
symmetries rotated so that the estimated modeled main ridge
direction matches the northern ridge. This is ridge R1 in
Figure 10. The ridge R2 in Figure 10 corresponds to the
diameter of the modeled domain. For all the values of n, the
modeled main ridge makes an angle of 64° with the diameter,
so that the difference between the ridge R2 and the estimated
weak ridge in Figure 1 is 3°.
[68] The modeled surface contours are very close to the

real surface contours, so that the main characteristics of the
Greenland Summit triple junction are well reproduced by our
3‐D model. However, the differences in the surface con-
tours for the three values of n are small especially in the
dome vicinity. The differences are more visible on the surface
slopes along the ridges R1 and R2, shown in Figure 11. As
shown in experiment A, the greater the value of n, the higher
the gradient of the slope in the dome vicinity, and the smaller
the increase of the slope along the talweg as we move away
from the dome in the opposite direction to the ridge.
[69] Comparison to the observed topography shows the

following.
[70] 1. With n = 2, the amplitude of the variation in slope

in the dome area is too small and the slope increases too much
as we move away from the dome along the talweg.
[71] 2. With n = 4, it is the opposite; the amplitude of the

variation in slope in the dome area is too high and the increase
of the slope too low, especially for the weakest ridge.
[72] 3. With n = 3, both the amplitude of the variations in

slope in the dome area and the variation of the slope on the
left‐hand side of the graph gives better results than with n = 2
and n = 4.
[73] We have shown in the previous experiments, that

the slope pattern in the dome vicinity is only a function of L,
and differs only a little as we move away from the dome,
especially for the low values of 	. Consequently, by changing
some of the parameters entering L (see equation (18)) for
n = 2 or n = 4, we suppose it should be possible to obtain a

Figure 10. Experiment D2. Comparison of surface contour
elevations (every 5 m) in the area of the GRIP ice core given
by a 5 km grid DEM of Greenland [Bamber et al., 2001]
(black lines) with the surface elevation (red lines) obtained
with (top) n = 2, (middle) n = 3, and (bottom) n = 4 at t̂ =
0.017. In Figure 10 (top) the star is the position of the GRIP
ice core, and the lines R1 and R2 are estimates of the modeled
divide locations.
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better match of the model to the data either in the dome
vicinity or away from the dome, but never everywhere.
[74] We remark that we compared the modeled results

to the northern ridge because visually the matching of the

surface contours plotted in Figure 10 is better. The southern
ridge is a little bit sharper than the northern ridge but as
we have seen with experiment B, the slope is more affected by
n than by the other parameters. Comparison of the modeled
surfaces with the southern ridge would lead to the same
conclusions regarding the best choice of the Glen index to
produce a match. For the same reason, we choose to compare
the observed topography to our model results at time t̂ = 0.017
even if the steady state had not yet been reached, because
our steady state ridges are more curved compared with the
observed ridge. The differences in the topography pattern
along the ridge R2 between t̂ = 0.017 and the steady state
are very small, so that our conclusions remain valid and
rheological information can still be inferred from the surface
topography even when the dome is not in a steady state, at
least if the changes in the boundary forcing are not too dra-
matic. This does not automatically implies that the surface
of the Greenland Summit is not in a “near” steady state as
different boundary forcings in our model would maybe lead
to a less curved steady state ridge.
[75] The modeled surface longitudinal strain rates êxx,

êyy and êzz along the ridge R2 obtained at t̂ = 0.017 with n = 2,
n = 3 and n = 4 are shown in Figure 11d. As in the previous
experiment, the strain rate state under the dome is not a uni-
axial compression, and êxx > êyy. The higher vertical strain
rate under the dome, which is due to the Raymond effect, is
nearly all compensated for by a higher strain rate along the x
direction êxx, while the effect on êyy is very small. As already
discussed, as n increases so does the horizontal variation of
êzz under the dome. During this period, the dome is still
moving and the vertical strain rate is higher on the opposite
side (left‐hand side) of the weak ridge than under the weak
ridge (right‐hand side).

5. Conclusions

[76] The Raymond effect and especially the associated
Raymond arches have previously been used to explore both
the ice rheology and the formation/stability of ice ridges (see
section 1 for references). Most of these applications are two‐
dimensional, which is suitable for modeling the flow of ice
perpendicular to well‐established ice ridges. However, for
most ice domes, three‐dimensional conditions prevail.
[77] We have used a three‐dimensional finite element full‐

Stokes model to calculate the flow of ice under triple junc-
tions. From amathematical point of view, there is no evidence
of spontaneous symmetry breaking at the flow center with
the physical hypotheses we have adopted. Triple junctions
are due to symmetry breaking in the far field. Thus, starting
from an initially axisymmetric free surface, and applying a
variable ice flux at the boundary, leads to the formation of a
triple junction. In our experiments, it takes only few percent
of the divide characteristic time for the triple junction to reach
a stable topography.
[78] A 120° periodic forcing leads to the formation of a

stable ideal triple junction at the origin where the dome is the
meeting point of three identical ridges. The three ridges are
straight and join the dome to the points at the boundary with
the smallest ice flux. The Fletcher Promontory, presented in
the companion paper, is close to that ideal.
[79] When we break the threefold symmetry, there is an

initial time when ridges start to form from the points at the

Figure 11. Experiment D2. Comparison of the surface
elevation and slope obtained from a 5 km grid DEMof Green-
land [Bamber et al., 2001] (black lines) and from experiment
D2 (red lines) at t̂ = 0.017with (a) n = 2, (b) n = 3, and (c) n = 4.
The modeled surfaces are shifted vertically by +280 m.
(d) Comparison of the modeled surface longitudinal strain
rates êxx, êyy, and êzz along the ridge R2 obtained at t̂ = 0.017
with n = 2 (dotted lines), n = 3 (solid lines), and n = 4 (dashed
lines). The results are given along the ridges R1 (solid lines)
and R2 (diameter of the model) (dashed lines) (see Figure 10;
x evolves according to the arrow and x = 0 is the junction of
the two ridges).
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boundary with the smallest ice flux. The initially axisym-
metric dome, forms a triple junction first, then migrates to a
stable position depending on the distribution of the ice fluxes
at the boundary. The ridges can be curved, but, at the dome,
the angle between the ridges is close to 120°.
[80] As expected, the smaller the along‐ridge flux, the

flatter the ridge in the along‐flow direction and the sharper it
is across the flow, with most of the deformation perpendicular
to the ridge, with the situation approaching that of a plane‐
flow divide. By varying the magnitude of the ice fluxes at the
boundary, we have modeled the case of a dome with two
strong divides and one weak divide, and we have shown that
it enters the family of the triple junctions, as it shares many
similarities with the ideal triple junction regarding both the
topography and the axial distribution of the Raymond effect.
This seems to be the more general case for real ice sheets, as
illustrated in this paper with the actual summit of Greenland,
and in Part 2 with Thyssenhöhe, Berkner Island.
[81] The results presented here highlight this sharp

decrease of the Raymond effect whenwemove away from the
dome along a ridge. As previously shown by axisymmetric
and 2.5‐Dmodels, the Raymond effect is at its maximum just
under the dome and decreases quickly over a distance of less
than one ice thickness. After this, the Raymond effect still
operates under the ridges, but its magnitude depends on the
along‐ridge flow.
[82] This is associated with very high gradients in the slope

and in the surface vertical strain rate, over one to two ice
thicknesses in the dome area. Results obtained for divides
where the dome is the highest point of a unique straight
divide, not reproduced here, do not show these high gradients
in the dome area when moving along the ridge. In this case,
as expected, the Raymond effect decreases continuously
beneath the divide as the along‐ridge flow increases, but there
is no clear distinction of the dome itself when looking at the
slope and vertical strain rate patterns along the ridge. As a
consequence, the general pattern for an isochronic surface
under a triple junction is for a Raymond cupola to form under
the summit, and for Raymond arch ridges to form under the
arms. Real examples of such 3‐D patterns are presented and
discussed in the companion paper for Fletcher Promontory
and Thyssenhöhe, Berkner Island.
[83] As a consequence of this change from near axisym-

metry to strongly directional flow when a triple junction is
present, the vertical surface strain rate varies strongly in the
dome vicinity in every direction. The strain rate state varies
also strongly in the dome vicinity from a uniaxial compres-
sion under the dome for a 120° symmetric triple junction to
two‐dimensional strain rate states, being longitudinal along
the talweg and transverse under the ridges.
[84] We have shown that the slope gradient in the dome

vicinity depends on the ice thickness, the accumulation,
the ice fluidity and the Glen index. When scaled by L
(equation (18)), which is a dimensionless parameter depen-
dent on these quantities, the slope exhibits the same variations
in the dome vicinity irrespective of the parameter choices.
This pattern is the same for an isothermal ice sheet or for
an ice sheet with a vertically stretched temperature profile.
Consequently, knowing the ice thickness field and accumu-
lation rate in principle allows us to determine the Glen index.
The interest is that the surface reacts very quickly to new
climatic conditions [Hindmarsh, 1996, 1997] and thus does

not depend on the flow history as the Raymond arches
do. Results of ourmodel have been compared with the surface
in the vicinity of the Greenland Ice Sheet summit, where
Raymond arches are not observed, and a value of 3 for
the Glen index gives a good match. This is the value used
by large‐scale SIA models that have been applied to the
Greenland Ice Sheet [Fabre et al., 1995; Greve and Hutter,
1995; Huybrechts, 1996].
[85] However, these applications raise several questions

which need further exploration.
[86] 1. The shape, position and stability of the dome depend

on large‐scale effects; that is, in our model, on the ice fluxes
far from the dome on the lateral boundary. Accurate modeling
of the flow and evolution of the central parts of ice sheets
then depends on accurate modeling of the margins of the ice
sheets, and the ice fluxes at the boundary is the relevant
information to pass from a large to a nestedmodel. Up to now,
the reciprocal effects of the small scale (dome position and
shape) to the large scale have not been explored.
[87] 2. Local variations of the bedrock, sliding and accu-

mulation are known to affect the flow of ice and the free
surface and could affect our conclusions concerning the
interpretation of the Glen index form the topography of triple
junctions. Therefore, their effect on the slope in the dome
vicinity has to be studied.
[88] 3. Studies have shown that anisotropy can affect the

flow of ice and the Raymond effect [Pettit et al., 2007;
Durand et al., 2007;Gillet‐Chaulet et al., 2006;Martín et al.,
2009a]. More efforts are needed in this direction to constrain
the rheology of ice.
[89] 4. We have shown that modeling ice flow using iso-

thermal and fixed temperature profiles can lead to the same
surface but with very different vertical velocity profiles,
so that a good matching of a modeled free surface with data
does not necessarily imply a good matching of the vertical
profiles. Consequently, data describing variation in the ver-
tical direction, such as isochrones or strain rates are really
needed to constrain models.

[90] Acknowledgments. Our thanks to Hugh Corr for advising us
on the Greenland DEMs. This work was supported by NERC grant
NE/F00446X/1, “Measuring and modeling the Raymond Effect for to infer
low strain rate ice rheology.”We thank Andy Aschwanden, EdWaddington,
and an anonymous reviewer for their detailed and thoughtful reviews.

References
Anandakrishnan, S., R. Alley, and E. Waddington (1994), Sensitivity of the
ice‐divide position in Greenland to climate change, Geophys. Res. Lett.,
21(6), 441–444.

Bamber, J. L., R. L. Layberry, and S. P. Gogenini (2001), A new ice thick-
ness and bed data set for the Greenland ice sheet: 1. Measurement, data
reduction, and errors, J. Geophys. Res., 106, 33,773–33,780.

Clow, G. D., R. W. Saltus, and E. D. Waddington (1996), A new high‐
precision borehole‐temperature logging system used at GISP2, Greenland,
and Taylor Dome, Antarctica, J. Glaciol., 42, 576–584.

Dahl‐Jensen, D., T. Thorsteinsson, R. Alley, and H. Shoji, (1997), Flow
properties of the ice from the Greenland Ice Core Project ice core: The
reason for folds?, J. Geophys. Res., 102, 26,831–26,840.

Dansgaard, W., et al. (1993), Evidence for general instability of past cli-
mate from a 250 kyr ice‐core record, Nature, 364, 218–220.

Doake, C. S. M., and E. W. Wolff (1985), Flow law in polar ice sheets,
Nature, 314, 255–257.

Dome‐F Deep Coring Group (1998), Deep ice‐core drilling at Dome Fuji
and glaciological studies in east Dronning Maud Land, Antarctica, Ann.
Glaciol., 27, 333–337.

GILLET‐CHAULET AND HINDMARSH: ICE‐DIVIDE TRIPLE JUNCTION MODELING F02023F02023

14 of 15



Durand, G., F. Gillet‐Chaulet, A. Svensson, O. Gagliardini, S. Kipfsthul,
J. Meyssonnier, F. Parrenin, P. Duval, and D. Dahl‐Jensen (2007),
Change in ice rheology during climate variations—Implications for ice
flow modelling and dating of the EPICA Dome C core, Clim. Past, 3,
155–167.

EPICA Community Members (2004), Eight glacial cycles from an Antarctic
ice core, Nature, 429, 623–6284.

Fabre, A., A. Letréguilly, C. Ritz, and A. Mangeney (1995), Greenland
under changing climates: Sensitivity experiments with a new three‐
dimensional ice sheet model, Ann. Glaciol., 21, 1–7.

Fowler, A. C. (1992), Modelling ice sheet dynamics, Geophys. Astrophys.
Fluid Dyn., 63, 29–65.

Gagliardini, O., and J. Meyssonnier (2000), Simulation of anisotropic ice
flow and fabric evolution along the GRIP‐GISP2 flow line (Central
Greenland), Ann. Glaciol., 30, 217–223.

Gagliardini, O., and T. Zwinger (2008), The ISMIP‐HOM benchmark
experiments performed using the finite‐element code Elmer, Cryosphere,
2, 67–76.

Gillet‐Chaulet, F., O. Gagliardini, J. Meyssonnier, T. Zwinger, and
J. Ruokolainen (2006), Flow‐induced anisotropy in polar ice and related
ice‐sheet flow modelling, J. Non‐Newt. Fluid Mech., 134, 33–43.

Glen, J. W. (1955), The creep of polycrystalline ice, Proc. R. Soc. London,
Ser. A, 228, 519–538.

Greve, R., and K. Hutter (1995), Polythermal three‐dimensional modelling
of the Greenland ice sheet with varied geothermal heat flux, Ann. Glaciol.,
21, 8–12.

Gundestrup, N. S., D. Dahl‐Jensen, S. J. Johnsen, and A. Rossi (1993),
Bore‐hole survey at dome GRIP 1991, Cold Reg. Sci. Technol., 21,
399–402.

Hindmarsh, R. C. A. (1996), Stochastic perturbation of divide position,
Ann. Glaciol., 23, 93–104.

Hindmarsh, R. C. A. (1997), Normal modes of an ice sheet, J. Fluid. Mech.,
335, 393–413.

Hindmarsh, R. C. A., E. C. King, R. Mulvaney, H. F. J. Corr, and F. Gillet‐
Chaulet (2011), Flow at ice‐divide triple junctions: 2. Three‐dimensional
views of isochrone architecture from ice‐penetrating radar surveys,
J. Geophys. Res., doi:10.1029/2009JF001622, in press.

Hutter, K. (1983), Theoretical Glaciology: Material Science of Ice and
the Mechanics of Glaciers and Ice Sheets, D. Reidel, Dordrecht,
Netherlands.

Huybrechts, P. (1996), Basal temperature conditions of the Greenland ice
sheet during the glacial cycles, Ann. Glaciol., 23, 226–236.

Hvidberg, C. S. (1996), Steady‐state thermomechanical modelling of ice
flow near the centre of large ice sheets with the finite‐element technique,
Ann. Glaciol., 23, 116–123.

Hvidberg, C. S., D. Dahl‐Jensen, and E. D. Waddington (1997), Ice
flow between the GRIP and GISP2 boreholes in Central Greenland,
J. Geophys. Res., 102, 26,851–26,859.

Jacobel, R. W., and S. J. Hodge (1995), Radar internal layers from the
Greenland Summit, Geophys. Res. Lett., 22, 587–590.

Le Meur, E., O. Gagliardini, T. Zwinger and J. Ruokolainen (2004), Glacier
flow modelling: A comparison of the Shallow Ice Approximation and the
full Stokes Solution, C. R. Phys., 5, 709–722.

Lipenkov, V. Y., A. N. Salamatin, and P. Duval (1997), Bubbly‐ice densi-
fication in ice sheets: II. Applications, J. Glaciol., 43, 397–407.

Lliboutry, L., and P. Duval (1985), Various isotropic and anisotropic ices
found in glacier and polar ice caps and their corresponding rheologies,
Ann. Geophys., 3, 207–224.

Mangeney, A., F. Califano, and O. Castelnau (1996), Isothermal flow of an
anisotropic ice sheet in the vicinity of an ice divide, J. Geophys. Res.,
101, 28,189–28,204.

Marshall, S. J., and K. M. Cuffey (2000), Peregrinations of the Greenland
Ice Sheet divide in the last glacial cycle: Implications for central Greenland
ice core, Earth Planet. Sci. Lett., 179, 73–90.

Martín, C., R. C. A. Hindmarsh, and F. J. Navarro (2006), Dating ice flow
change near the flow divide at Roosevelt Island, Antarctica, by using a
thermomechanical model to predict radar statigraphy, J. Geophys. Res.,
111, F01011, doi:10.1029/2005JF000326.

Martín, C., G. H. Gudmundsson, H. D. Pritchard, and O. Gagliardini
(2009a), On the effects of anisotropic rheology on ice flow, internal
structure, and the age‐depth relationship at ice divides, J. Geophys.
Res., 114, F04001, doi:10.1029/2008JF001204

Martín, C., R. C. A. Hindmarsh, and F. J. Navarro (2009b), On the effects
of divide migration, along‐ridge flow, and basal sliding on isochrones
near an ice divide, J. Geophys. Res., 114, F02006, doi:10.1029/
2008JF001025.

Mulvaney, R., O. Alemany, and P. Possenti (2007), The Berkner Island
(Antarctica) ice‐core drilling project, Ann. Glaciol., 47, 115–124.

Nereson, N. A., and C. F. Raymond (2001), The elevation history of ice
streams and the spatial accumulation pattern along the Siple Coast of
West Antarctica inferred from ground‐based radar data from three
inter‐ice‐stream ridges, J. Glaciol., 47, 303–313.

Nereson, N. A., and E. D. Waddington (2002), Isochrones and isotherms
beneath migrating ice divides, J. Glaciol, 48(160), 95–108.

Nereson, N. A., R. C. A. Hindmarsh, and C. F. Raymond, (1998a), Sensi-
tivity of the divide position at Siple Dome, West Antarctica to boundary
forcing, Ann. Glaciol., 27, 207–214.

Nereson, N. A., C. F. Raymond, E. D. Waddington, and R. W. Jacobel
(1998b), Migration of the Siple Dome ice divide, West Antarctica,
J. Glaciol., 44, 643–652.

Nereson, N. A., C. F. Raymond, R. W. Jacobel, and E. D. Waddington
(2000), The accumulation pattern across Siple Dome, West Antarctica,
inferred from radar‐detected internal layers, J. Glaciol., 46, 75–87.

Nye, J. F. (1991), The topology of ice‐sheet centers, J. Glaciol., 37,
220–227.

Parrenin, F., and R. C. A. Hindmarsh (2007), Influence of a non‐uniform
velocity field on isochrone geometry along a steady flowline of an ice
sheet, J. Glaciol., 53, 612–622.

Parrenin, F., et al. (2007), 1‐D‐ice flow modelling at EPICA Dome C and
Dome Fuji, East Antarctica, Clim. Past, 3, 243–259.

Pattyn, F. (2008), Investigating the stability of subglacial lakes with a full
Stokesmodel. J. Glaciol., 54, 353–361, doi:10.3189/002214308784886171.

Pettit, E. C., and E. D. Waddington (2003), Ice flow at low deviatoric
stress, J. Glaciol., 49, 359–369.

Pettit, E. C., T. Thorsteinsson, H. P. Jacobson, and E. D. Waddington
(2007), The role of crystal fabric in flow near an ice divide, J. Glaciol.,
53, 277–288.

Price, S. F., H. Conway, and E. D. Waddington (2007), Evidence of late
Pleistocene thinning of Siple Dome, West Antarctica, J. Geophys. Res.,
112, F03021, doi:10.1029/2006JF000725.

Raymond, C. F. (1983), Deformation in the vicinity of ice divides,
J. Glaciol., 29, 357–373.

Ritz, C., V. Rommelaere, and C. Dumas (2001), Modeling the evolution of
Antarctic ice sheet over the last 420,000 years: Implications for altitude
changes in the Vostok region, J. Geophys. Res., 106, 31,943–31,964.

Thorsteinsson, T., and E. D. Waddington (2002), Folding in strongly aniso-
tropic layers near ice‐sheet centers, Ann. Glaciol., 35, 480–486.

Vaughan, D. G., H. F. J. Corr, C. S. M. Doake, and E. D. Waddington
(1999), Distortion of isochronous layers in ice revealed by ground‐
penetrating radar, Nature, 398, 323–326.

Vialov, S. S. (1958), Regularities of glacial shields movement and the
theory of plastic viscous flow, in Physics of the Motion of the Ice, IASH
Publ., vol. 47, pp. 266–275, IAHS Press, Wallingford, U. K.

Wilchinsky, A. V., and V. A. Chugunov (1997), Modelling ice‐divide
dynamics by perturbation methods, J. Glaciol., 43, 352–358.

Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007),
A full Stokes‐flow thermo‐mechanical model for firn and ice applied
to the Gorshkov crater glacier, Kamchatka, Ann. Glaciol. 45, 29–37.

F. Gillet‐Chaulet and R. C. A. Hindmarsh, Physical Sciences Division,
British Antarctic Survey, Natural Environment Research Council, High
Cross, Madingley Road, Cambridge CB3 0ET, UK. (fall@bas.ac.uk;
rcah@bas.ac.uk)

GILLET‐CHAULET AND HINDMARSH: ICE‐DIVIDE TRIPLE JUNCTION MODELING F02023F02023

15 of 15



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


