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Abstract 

We hypothesise that stream sediment elemental composition can predict mean 

and minimum concentrations of alkalinity, Ca and Mg in the river water 

throughout a river network.  We tested this hypothesis for the River Derwent 

catchment in North Yorkshire, England, by using 6 years of water chemistry 

data from the Environment Agency and a digital elevation model to flow path-

weight British Geological Survey (BGS) sediment element concentration data.  

The predictive models for mean concentrations were excellent for Ca and 

alkalinity, but less good for Mg, and did not require land use data inputs as 

stream water sediment composition seems to reflect all aspects of the riparian 

zone soil system. Predictive model forms were linear.  Attempts to predict 

minimum values for Ca and alkalinity also were less satisfactory.  This 

probably is due to variations in hydrological response times to individual 

precipitation events across the catchment. 
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1. Introduction 

One positive aspect of concerns over acid deposition impacts upon terrestrial and 

aquatic ecosystems was the interest stimulated in the quantification of weathering 

rates and alkalinity generation within soil systems.  In acidification-sensitive drainage 

basins, acid neutralization capacity of river waters approximately equates to Gran 
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alkalinity (Neal, 2001).  Consequently there is a need for reliable methods that can 

predict the amounts of alkalinity generated in soils and, potentially, transferable to 

surface waters.  In the present study we have tested the hypothesis that alkalinity is 

predictable from sediment total Ca or Ca plus Mg concentrations as such data are 

readily available in many countries from past geological surveys.  Alkalinity fluxes 

determine critical loads of acidity for freshwaters and soils.  A robust and verifiable 

method for predicting alkalinity generation over regional and national scales therefore 

should be extremely useful in planning strategies for integrated catchment 

management and managing acid deposition effects (Cresser et al., 2006).  Moreover, 

in the context of the ameliorative role of soil C storage in climate change, currently 

there is much interest in losses of both inorganic and organic carbon from soils. 

Biochemical processes in the terrestrial environment strongly influence the 

hydrochemical response of small catchments, as stream water is largely made up of 

drainage from soils (Moldan and Cerny, 1994).  A recent study of spatial and seasonal 

variations in water chemistry across North West England very effectively highlighted 

the diversity of factors influencing water chemical quality at regional scales (Rothwell 

et al., 2010).   In spite of this complexity, numerous successful hydro-chemical 

models have been developed over recent decades for predicting, for individual 

streams, the temporal changes in water chemical quality during and following 

precipitation events (e.g. Christopherson et al., 1982; Gherini et al., 1985; Nikolaidis 

et al.,1988; Christopherson et al., 1994).  Process-based models may be applied over 

longer time scales too (Cosby et al., 1985; Whitehead et al., 1988), although care is 

then needed to ensure that the model encompasses all key parameters driving water 

chemistry if extrapolation is made significantly beyond the calibration period.  

Cresser et al. (2000) pointed out, however, that most such models are not transferrable 

between catchments, which limits their use at regional or national scales.  More 

recently, in a review of benchmarks for ecological and water quality assessments, 

Hawkins et al. (2010) highlighted the dominance of site-specific modelling 

approaches, and the crucial importance of better characterization of freshwater 

environments at a more general level. 

Generation of site-specific models based upon data collection is generally 

prohibitively expensive for regional or national scale use.  Billett and Cresser (1992) 

therefore aspired to be able to predict spatial and temporal variations in water 

chemistry over a regional scale from readily available soil maps and associated, 
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already published, soil chemical data.  They postulated that it should be possible to 

predict stream water chemistry under high and low flow conditions from the 

characteristics of the surface and sub-surface soils in the riparian zone.  They further 

hypothesised that the relative proportions of different soil types immediately adjacent 

to streams in the Scottish highlands should affect stream water chemistry far more 

than the total proportional coverage of soil types in each stream’s catchment.  They 

therefore used catchment topography to predict flow paths for each catchment to work 

out the relative proportions of precipitation falling on the catchment likely to drain 

through each riparian zone soil type.  This provided an appropriate flow path 

weighting for each soil type in their predictive model.  Using % Ca saturation of the 

cation exchange capacity (CEC) for surface and sub-surface soil horizons, flow path-

weighted as described above, they obtained excellent predictive relationships for 

mean and maximum (base flow) Ca concentrations (Billett and Cresser, 1992).  

However, prediction of minimum Ca concentration for their 10 upland catchments 

was appreciably poorer.  The model later became known as the Aberdeen Soil 

Horizon (ASH) model (Cresser et al., 2000). 

The above results were based upon detailed soil surveys and chemical 

analyses for 10 upland moorland catchments(Billett and Cresser, 1992).  There was no 

agricultural land use other than rough grazing, and no, or minimal, forestry in any of 

the catchments.  Hooper et al. (1998) later demonstrated the importance of riparian 

water at the Panola Mountain Research Watershed, Georgia, to base flow and storm 

flow chemistry, consistent with the concepts of the ASH model. 

Johnson et al. (1997) showed that riparian zone soils and land use strongly 

influenced stream water chemistry in summer at Saginaw Bay in the USA.  Land use 

was not incorporated in the ASH model, because soil management practices 

associated with diverse types of land use and soil management would cause 

appropriate changes to the Ca saturation of the CEC of upper and lower soil horizons, 

so should be incorporated automatically within the model. 

ASH utilised the flow path-weighted cation exchange chemistry of the mineral 

sub-soil (B/C horizon) to predict the base flow chemistry, and that of the organic-rich 

surface horizons (O and A horizons) to predict chemistry at high-flows.  However, the 

need for reliable high-resolution soil maps was subsequently found to severely restrict 

the widespread applicability of the ASH model (Cresser et al., 2000).  It was modified 

therefore by making it geology-based (G-BASH) for predictions of Gran alkalinity 
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and base cation concentrations in stream waters, the underpinning concept being that 

soil parent material and topography in combination should be a reliable surrogate for 

soil type and chemistry (Cresser et al., 2000).  The down side of basing predictions 

upon underlying geology was that it was then essential to incorporate riparian zone 

land cover type into the G-BASH model because of its potential impact upon the 

chemistry of riparian zone soils.  The predictive equations that successfully emerged 

for alkalinity and base cation concentrations were based primarily upon flow path-

weighted bedrock geological composition and proportions of arable land and 

improved grazing in the riparian zone (Cresser et al., 2000). 

The G-BASH model was subsequently modified and extended with reasonable 

success to predict Gran alkalinity across the whole River Dee Catchment in North 

East Scotland using digitized geological maps, published rock chemical composition 

data, and a simple hydrological flow path model in a geographical information system 

(Smart et al., 2001).  Only the rock chemistry was flow path-weighted because of 

resolution constraints of the GIS for land cover.  It was hoped that the G-BASH 

model subsequently would be transferable to other regions, though so far this has 

happened, and only after modification, for north west England. 

 Acid deposition reduces alkalinity, but landscape characteristics moderate the 

pollution impacts on water chemical quality (Norton, 1980; Soulsby and Reynolds, 

1995).  It has long been recognized that the sensitivity of the streams to acidification 

is predictable from the underlying bedrock geology (Norton, 1980; Bricker and Rice, 

1989).  In Japan, Asano and Uchida (2005) reported that acid neutralization in soils 

and/or permeable bedrock was important in the neutralization of hill slope discharge 

for two hydrologically well-defined, steep, granitic drainage basins in the Tanakami 

Mountains.  Extending the application of G-BASH for predicting alkalinity from 

north east Scotland to north west England, Cresser et al. (2006) found it was essential 

to take into account both the extent to which alkalinity had been used up in countering 

the effects of acid deposition as well as the greater dilution in a region where runoff 

was higher. 

 With recent technological advances, especially the improved availability and 

affordability of Geographic Information Systems (GIS), many GIS-based surface and 

subsurface water models have been applied in resource and water discharge 

management (e.g. Djokic and Maidment, 1993; Goodchild et al., 1993; Ross and Tara, 

1993; Merchant, 1994; Smith and Vidmar, 1994; Cowen et al., 1995; Greene and 
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Cruise, 1995; Poiani and Bedford, 1995; Shamsi, 1996; Bennett, 1997; USEPA 2001).  

Integration of conceptual models with best available technology to overcome the 

barriers that hinder their use has been strongly recommended (Coroza et al., 1997; Sui 

and Maggio, 1999). 

 A potentially invaluable and readily available data resource that does not 

appear to have been considered in the context of predictive models for stream water 

chemical quality, even at the individual catchment level, is the British Geological 

Survey river sediment data. These data are in the public domain as a series of 17 

regional geochemistry atlases (e.g. BGS, 1996) and as the NERC G-BASE data 

resource.  Sediment composition, like stream water chemical composition, depends 

upon riparian zone soils and geology and land use adjacent to, and upstream of, the 

sampling point, so should be an integrating parameter for all their effects.  Sediment 

composition is known to affect heavy metal concentrations present in waters as a 

result of prior mining activities (Aston et al., 1974).  Plant and Moore (1979) noted 

that appropriately sampled stream sediments should approximate to a composite 

sample of the weathering products upstream.  The objective of the present research is 

to test the idea that such sediment data can be used to spatially model stream water 

chemistry.  This assumption is made on the basis that sediment composition should 

directly reflect riparian zone soil characteristics.  If successful, such a relatively 

simple tool should have many benefits to planners, particularly in terms of assessment 

and management of catchment systems at regional and national scales.  Our study is a 

preliminary assessment of the potential use of BGS sediment data for the River 

Derwent in North Yorkshire, England, for assessing the spatial and temporal 

variations in alkalinity, Ca, and Mg concentrations in river water.  It is hypothesised 

that it will be possible to predict mean and minimum concentrations of these 

determinants just from flow path-weighted sediment Ca and Mg concentrations, with 

no reference to land use. 

 

2. Site description, data and methodology 

2.1 Study Area 

The River Derwent in North Yorkshire, England, is used for water abstraction, leisure 

and sporting activities, and effluent disposal, and its catchment contains several nature 

reserves.  It is 115 km long and drains 2057 km2 (Neal et al. 1998).  In the Yorkshire 
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area, its catchment is a significant surface and groundwater resource (NRA, 1992).  

Although considered a clean river with water quality of class 1a (very good) to class 

1b (good) based on chemical indices, it has a poorer biological quality rating, the 

poorest water occurring in the lowland stretches at the southern end of the River 

(NRA, 1992). 

 The drainage basin is predominantly rural, with little industry other than 

agriculture.  The headwater areas are mainly heather/grass moorland, bracken, and 

coniferous woodland (20%), whereas the lower areas are predominantly arable (40% 

is mainly cropped with wheat and winter- and spring-barley) along with agricultural 

pasture and meadowlands (25%) and forestry (5%) (Neal et al., 1998).  The catchment 

has received significant deposition of acidic oxide pollutants from the atmosphere in 

the recent past (Smith et al., 1997). 

 As shown in Fig. 1, the area is underlain by Cretaceous Chalk, Jurassic 

sandstone, limestone and clays, and Triassic sandstones and mudstones (Neal et al., 

1998), overlain by recent and Pleistocene alluvium ranging from clay to gravel. 

 

2.2. Data 

Water chemical data are from the Environment Agency for eight sites along River 

Derwent, namely Forge Valley, Sherburn, Yedingham, Malton, Low Hutton, 

Howsham Bridge, Sutton Lock and Derwent Bridge (Fig. 1), covering January 1998 

to January 2004  at approximately monthly intervals.  Table 1 shows the Ca, Mg, and 

alkalinity mean values and ranges for each EA sampling site. 

  Stream sediment data for 851 samples in the drainage basin are from the 

British Geological Survey.  The ranges, means and standard deviations for Ca% and 

Mg % of the data are shown in Table 2.  The methods used for stream sediment 

sampling are fully described in BGS (1996), and are those now recommended as 

international standards for geochemical mapping (Darnley et al., 1995); they were 

based upon earlier work by Plant and Moore (1979).  Samples of active sediments 

were collected, upstream, if necessary, of any identifiable potential source of local 

contamination such as housing, industry, or road or track crossings.  A layer of 

oxidised material at the surface was removed prior to sampling the sediment, which 

then was wet-screened in the field using a minimum quantity of water to collect 

sediment finer than 150 µm until ca. 100 g of material was obtained. Following 

preliminary air drying, the samples were freeze-dried at a field laboratory. A sediment 
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subsample of ca. 50 g, obtained by cone-and-quartering, was ball milled and a further 

sub-sample of the finely ground material then analysed as a powder by direct reading 

DC arc atomic emission spectrometry.  Details of the analytical methodology and 

quality control procedures are given elsewhere (BGS, 1996).  

2.3 GIS analysis 

A Digital Elevation Model (DEM) of the area enclosing the River Derwent drainage 

basin (50 m x 50 m grid) was produced from the Ordnance Survey PANORAMA 

dataset based upon 1:50000 contour data.  This was used in the GIS to quantify the 

spatial relationships between stream water chemical variables (alkalinity, Ca, and Mg 

concentrations) at the eight EA river water sampling stations and upstream drainage-

water pathway-weighted sediment sample data (sediment Ca and Mg concentrations).  

Thus sediment elemental composition data from the British Geological Survey (BGS) 

were used in ArcGIS to provide spatial distributions of the Ca and Mg concentrations 

in sediment that were deemed likely to influence the temporal and spatial variations in 

stream water alkalinity, Ca, and Mg concentrations. 

The method used simple algorithms for terrain analysis of gridded-DEM 

available in most GIS software.  These allowed an indication of surface water flow 

directions to be calculated.  Surfaces of flow directions were then used to calculate the 

upstream contributing area for each DEM grid cell (flow accumulation).  Flow 

accumulation is highest along stream channels and decreases rapidly away from 

channels.  Therefore by using an arbitrary threshold of upstream contributing area, a 

stream network representation was obtained from the DEM.  Sediment sampling point 

Ca and Mg data were attached to their nearest stream network cell, so that sediment 

data matched the topography representation of the DEM.  Once sediment sampling 

points were located on the gridded representation of the stream network, each cell on 

the stream network was then allocated to the closest sediment sampling point on the 

network.  This was calculated using standard GIS cost surface analysis, where stream 

cells had very low cost in comparison to non-stream cells. 

Having allocated segments of the stream network to their closest sediment 

sampling point, the furthest downstream cell of segments allocated to each sediment 

sampling point was found. Using these as pour-points, once again, standard GIS 

algorithms for finding watersheds from DEM data were used to find the watershed 
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upstream of each of these points.  These areas represented “sub-catchments” 

corresponding to each sampling point. 

The Ca or Mg concentration in stream water was modelled for all sampling 

points on the stream network by finding the watershed for each of these points.   

These watersheds were overlain with the watershed layers for sediment sampling 

points.  Taking the sum of the appropriate element values for these overlaid areas and 

dividing by the number of cells in those areas gave “flow-weighted” sediment Ca or 

Mg values. 

 For the eight sites along the River Derwent, relationships were then examined 

between mean and minimum Ca, Mg, and alkalinity concentrations in water and 

drainage flow path-weighted sediment base cation metal concentrations.  For Ca and 

alkalinity we looked at relationships for the means of the three lowest concentrations 

in river water to compare with use of single minimum concentrations for each EA 

site. 

 Forge Valley is quite different from the other study sites within the River 

Derwent catchment because of a sea cut, where most of the water is diverted to the 

North Sea in the interests of flood protection down-stream.  Therefore, because its 

contribution to water quality downstream is small, it was treated throughout as a small 

independent catchment.  Subsequently relationships were investigated with and 

without Forge Valley data. 

 

3. Results 

3.1. Predicting alkalinity from sediment Ca and Mg 

Mean alkalinity values at the water sampling sites were plotted against flow-path-

weighted Ca (%) in sediment (Fig. 2).  The R2- values for simple linear regressions are 

0.989 with Forge Valley and 0.968 without.  The significance of coefficients and 

intercepts of regression equations is shown in Table 3.  Inclusion of Forge Valley data 

had an insignificant effect upon slope or intercept (Table 3). 

  Both Ca(HCO3)2 and Mg(HCO3)2 are likely to be major contributors to 

alkalinity within the River Derwent because of the calcareous geology of the area, so it 

was decided to test whether adding Ca and Mg concentrations of the sediment on a 

moles of charge basis improved the correlation strength.  This basis was used to allow 
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summation of different element concentrations and because HCO3
- will be 

predominantly balanced by Ca2+ and Mg2+ in water samples.  Plotting river water 

alkalinity against sediment Ca+Mg (as mmolc/kg) again produced highly significant 

linear correlations regardless of whether Forge Valley data were included or excluded 

(Fig. 2 and Table 3).  Changing the linear equation without Forge Valley data to a 2nd 

order polynomial improved the R2 value to 0.992, but is not easy to justify, because 

adding the Forge Valley data did not significantly change either the slope or the 

intercept of the simpler linear regression line (Fig. 2). The Forge Valley data would 

not fit on the extrapolated polynomial line. 

3.2. Predicting mean Ca or Mg concentrations from sediment % Ca or Mg 

The mean Ca concentration in river water was strongly correlated with flow-path 

weighted sediment Ca concentration (R² = 0.942 for a linear trend line when the 

Forge Valley data were included, Fig. 3 and Table 3).  

 A 2nd order polynomial equation best described the relationship between 

river water mean Mg concentration and flow path-weighted sediment % Mg, 

giving an R2 value of 0.964.  This possibly is justifiable to a limited extent on the 

grounds that there would be a significant input of Mg from the atmosphere even if 

there was no Mg in sediment, because of the maritime climate of the UK, but the 

simpler linear regression is also reasonable fit (Fig. 3 and Table 3). 

3.3. Predicting lowest Ca and alkalinity concentrations from sediment % Ca 

Figure 4 shows the correlations for scatter plots for the means of 3 lowest Ca 

concentrations in river water against flow path-weighted sediment Ca, both 

including and excluding the Forge Valley data.  The linear equations gave R2 

values of 0.729 and 0.935, respectively (Table 3), but with negative Ca 

concentrations in the water at very low sediment Ca concentrations.   

The relationships between means of three lowest alkalinity values for each 

site and flow path-weighted sediment Ca concentration were slightly weaker than 

those for lowest Ca concentrations in water, regardless of whether or not Forge 

Valley data were included (R2  0.675 and 0.877 respectively, Table 3).  

Correlations were even less significant for discrete minimum values for each site. 
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4. Discussion 

4.1. Predicting alkalinity from sediment Ca and Mg  

The very high  R2 values of above 0.9  for predictions of mean alkalinity values at the 

water sampling sites using  flow-path-weighted Ca (%) in sediment indicate that this 

single variable seems to be an  excellent predictor for water mean alkalinity.  By 

including data for Forge Valley as an independent catchment, the calibration range 

was significantly extended by the presence of a catchment highly dominated by 

heather moorland and mainly coniferous woodland.  However, the slopes and 

intercepts of the regression plots in Fig. 2 differ very little (Table 3); therefore the 

Forge Valley catchment could be regarded as a validation catchment for the model 

obtained with Forge Valley excluded. There is no evidence from regression 

diagnostics that Forge Valley (at the lower end of both the response and predictor 

variable range) influences the regression model unduly. 

Plotting river water alkalinity against sediment Ca+Mg (as mmolc/kg) did not 

improve the fit of model predictions to observations, regardless of whether Forge 

Valley data were included or excluded. Although both Ca(HCO3)2 and Mg(HCO3)2 

will contribute to alkalinity within the river, some Mg emanating from the riparian 

zone soils will undoubtedly be of maritime origins.  Cresser et al. (2000) found that 

their equations for predicting river water Mg concentrations in River Dee sub-

catchments in northeastern Scotland were significantly improved when chloride 

concentration was included as one of the predictive variables in their model.  Green et 

al. (2008) have shown that road salting can significantly increase the pH of soils lying 

between roads and parallel river systems.  In future work it may be necessary 

therefore to consider the possible contribution that road salting may make to equations 

for predicting alkalinity if Mg sediment data are included, as road salt in the UK 

generally contains substantial amounts of Mg and often Ca as gypsum too. 

4.2. Predicting mean Ca or Mg concentrations from sediment % Ca or Mg 

The strong linear correlation between mean Ca concentration in river water and 

flow path-weighted sediment Ca concentration suggests that it should be feasible 

to predict spatial variations in mean Ca concentrations throughout catchments.    

 Although a 2nd order polynomial equation best described the relationship 

between river water Mg concentration and flow path-weighted sediment % Mg, 
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giving an R2 value of 0.964, simple linear regression provides a useful predictive 

relationship.  It is highly likely that road salting/road runoff would substantially 

enhance the river water Mg concentration at some sites.  The Sherburn and 

Yedingham sites gave the highest river water mean Mg concentrations (Table 1), 

and these are the sites where road runoff would exert the greatest effect because 

the sea cut reduces dilution from less contaminated and more rural upland areas. 

4.3. Prediction lowest Ca and alkalinity concentrations from sediment % Ca 

Although the linear regression model based upon means of 3 lowest Ca 

concentrations in river water against flow path-weighted sediment Ca, excluding 

the Forge valley site, is good, it is probably not yet adequate for predictive 

purposes without more calibration data.  This is because of the negative intercept 

and because of the poor R2 value when Forge Valley data are included.  

Correlations were even poorer if simple single lowest concentration values were 

used rather than means of the three lowest values for each water sampling site 

(plots not shown).  Clearly more data are needed before an appropriate predictive 

model is found, and this might also overcome the problem of negative intercepts.  

With hindsight, the relatively poor relationships between means of three 

lowest alkalinity values for each site and flow path-weighted sediment Ca 

concentrations are probably to be expected.  Alkalinity minima correspond to high 

or highest discharge conditions (Wade et al., 1999), which are likely to be attained 

at different times during storms across the catchment and along its length. They 

will also depend upon the spatial variations in the acidity of near-surface soils. 

Such variations are caused by variability of natural soil acidification processes 

coupled with acid deposition impacts, as soil acidity of both organic acid and 

mineral acid origins will be neutralized to some extent by in-situ alkalinity 

generation (Cresser et al., 2006).  Therefore substantial variations in alkalinity 

around minimum values are to be expected.  Research by Tetzlaff et al. (2007) 

using fine resolution Gran alkalinity time series data over a hydrological year 

demonstrated, for the Feugh catchment in Scotland, that there were diverse and 

subtle changes in stream-water chemistry over the year.  When attempting to 

model stream-water Gran alkalinity at different spatial scales and under different 
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hydrological conditions using end member mixing analysis (EMMA),  Wade et al. 

(1999) commented on the problems caused by the very limited amount of high 

discharge data when rivers were sampled only monthly. 

 

5.1 Conclusions 

The results of this preliminary study strongly support the hypothesis that stream 

water sediment elemental composition data are useful for prediction of mean 

concentrations of alkalinity, Ca and Mg in river water throughout the catchment of 

the River Derwent in North Yorkshire.  This is in spite of the fact that as the river 

flows across the Corallian limestone, some water is lost from the river to 

groundwater recharge (Carey and Chadha, 1998).  The predictive models did not 

require land use data inputs.  This was as anticipated from the hypothesis that 

stream water sediment composition would reflect all aspects of the riparian zone 

soil system, including land use effects.  Further work is needed, however, to 

robustly account for the poorer linear relationships observed for Mg concentration. 

 Attempts to predict minimum values for Ca and alkalinity using a simple 

regression approach were, however, slightly less encouraging , which was thought 

to be primarily due to variations in hydrological response times to individual storm 

events across the catchment. 
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Table.1.          

  Ca (mg/l) Mg (mg/l) Alkalinity (as CaCO3 mg/l) 

Sample Point Max Min Mean  SD Max Min Mean SD Max Min Mean SD 

Forge Valley 70.9 19.8 50.7 (12.7) 6.21 2.68 4.9 (0.8) 144 29.8 96.6 (28.5)

Sherburn 147 67.7 109 (16.2) 22.8 7.62 12.3 (2.3) 225 95.5 172.1 (27.6)

Yedingham 149 84 122 (12.4) 15.2 8.77 11.5 (1.3) 234 121 197 (23.3)

Malton 101 20.3 82.3 (14.7) 8.3 2 6.7 (1.1) 191 21.8 150 (30.3)

Low Hutton 98.7 20.6 82.5 (14.0) 8.32 1.92 6.7 (1.1) 224 20.6 152 (30.0)
Howsham 
Bridge 101 28.5 81.6 (14.9) 8.41 2.61 6.6 (1.2) 194 47.6 149 (30.2)

Sutton Lock 106 26.1 84.1 (15.6) 9.15 2.71 7.2 (1.3) 192 28.2 149 (32.4)

Derwent Bridge 125 36.3 89.1 (15.9) 10.5 3.52 8.0 (1.4) 207 50.4 156 (30.4)
 
 
 
 

Table.2. Ranges of Ca and Mg in River Water Sediments. 
 

Range 
Lowest Highest Mean SD 

Ca 2024.4 164204.4 17723.6 (23745.8)

Mg 1073.9 43164.4 5756.8 (5072.4)
 

 
 

 

  



 
Table 2. Ranges and means of Ca and Mg concentrations (%) in river sediments. 
 
Element Lowest Highest Mean SD 
Ca 0.202 16.42 1.77 (2.37) 
Mg 0.107 4.32 0.576 (0.507) 
 
 
 
 

Fig. 
No. 

Dependent 
(water) 
variable 

+/- 
Forge 
Valley

Independent 
(sediment) 

variable 

Slope Intercept R2 

    Value SE t Value SE t  
2 Mean 

alkalinity 
- Ca+mg 

(mmolc/kg) 
x2 

.0000151 .000 13.804 112.778 3.668 30.744 0.974

2 Mean 
alkalinity 

- Ca+mg 
(mmolc/kg) x

.057 .005 10.485 60.478 9.679 6.248 0.956

3 Mean Mg + Mg (%) x2 14.141 1.398 10.112 2.438 .596 4.092 0.945
3 Mean Mg + Mg (%) x 16.614 2.427 6.845 -2.172 1.521 -1.428 0.886

 
 



 
 
Fig. 1.  Simplified bedrock geology around the sampling sites and the distribution of 
the eight monitoring sites (circles) along the length of the River Derwent (darker line) 
in North Yorkshire.  Geology data are reproduced with the permission of the British 
Geological Survey ©NERC.  All rights reserved.  In the key, 1 denotes Mudstones, 
siltstones and sandstones; 2 Sequences including limestones and associated, 
mudstones, siltstones and sandstones; 3 Sandstones and conglomerates; 4 Chalk; 5 
Miscellaneous other (5 is all outside the Derwent catchment area). 
 



 
 

 
Fig. 2. Linear correlations of mean river water alkalinity with flow-path-weighted Ca 
concentration (%) in sediment, +/- Forge Valley data (upper left and right 
respectively), and with flow path-weighted Ca + Mg concentrations in sediment 
(mmolc/kg) (centre left and right respectively).  “FV” denotes the Forge Valley points.   
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Fig. 3. River water mean Mg (left) and Ca (right) concentration vs. flow path-
weighted sediment % Mg or % Ca concentration respectively (both including Forge 
Valley values, denoted by FV). 
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Fig. 4. Correlations of means of three lowest Ca concentrations in river water 
(upper plots) and alkalinity in river water (lower plots) with flow path-weighted 
sediment Ca concentration in sediment (%), with (left) and without (right) Forge 
Valley data, denoted by FV. 
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