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Abstract 

Least squares (LS), Theil’s (TS) and weighted total least squares (WTLS) regression analysis methods 

are used to develop empirical relationships between radium in the ground, radon in soil and radon in 

dwellings to assist in the post-closure assessment of indoor radon related to near surface radioactive 

waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated 

226Ra in the <2mm fraction of topsoils (eRa226) derived from estimated uranium (eU) from airborne 

gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical 

samples, (iii) soil gas radon and (iv) indoor radon data.  For models comparing indoor radon and (i) 

eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings 

have significant slopes. For these groupings there is reasonable agreement in slope and intercept 

between the three regression analysis methods (LS, TS and WTLS).  Relationships between radon in 

dwellings and radium in the ground or radon in soil differ depending on the characteristics of the 

underlying geological units, with more permeable units having steeper slopes and higher indoor 

radon concentrations for a given radium or soil gas radon concentration in the ground.  The 

regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m-3 

whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from 
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about 20 Bq m-3 for a moderately permeable geological unit to about 40 Bq m-3 for highly permeable 

limestone, implying unrealistically high contributions to indoor radon from sources other than the 

ground. An intercept value of 5 Bq m-3 is assumed as an appropriate mean value for the UK for 

sources of indoor radon other than radon from the ground, based on examination of UK data.   

Comparison with published data used to derive an average indoor radon : soil 226Ra ratio shows that 

whereas the published data are generally clustered with no obvious correlation, the data from this 

study have substantially different relationships depending largely on the permeability of the 

underlying geology. Models for the relatively impermeable geological units plot parallel to the 

average indoor radon : soil 226Ra model but with lower indoor radon : soil 226Ra ratios, whilst the 

models for the permeable geological units plot parallel to the average indoor radon : soil 226Ra model 

but with higher than average indoor radon : soil 226Ra ratios.  

 

1 Introduction 

The Low Level Waste Repository (LLWR; see http://www.llwrsite.com/ for further details) is the UK’s 

principal facility for the disposal of solid low-level radioactive waste. The facility is located on the 

West Cumbrian coastal plain close to the village of Drigg and approximately 5 km south-east of the 

Sellafield nuclear site.   The LLWR receives wastes from a range of consignors including from nuclear 

industry sites, defence establishments and users of radioactive materials, and from the clean-up of 

historically contaminated sites.  The bulk of the volume and of total radioactive inventory received 

by the LLWR comes from facilities associated with the nuclear industry. Significant radiological 

impacts could arise, however, from the disposal of consignments of wastes from processing and use 

of naturally-occurring radionuclides, mainly 226Ra and 232Th and their progeny.  These wastes consist 

of mineral sands, wastes from processing such minerals and also wastes from clean up of sites at 

which processing, manufacture or use of thorium and radium products took place, e.g. radium 

luminising facilities.  The production of radon-222 in the waste is directly proportional to the 

http://www.llwrsite.com/
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inventory of its parent, radium-226, which itself is due to disposed 226Ra (half-life 1600 years) plus in-

growth from decay of disposed 234U (half-life 250,000 years) via 230Th (half-life 77,000 years).  

A particular concern for the post-closure radiological environmental impact assessment is that an 

excavation into the engineered cap, or into the waste itself, could give opportunities for exposures 

to radon from radium-bearing wastes.  The case that can give the highest dose is if it is assumed that 

a dwelling is constructed either directly above the radium-bearing waste or on spoil created by 

excavation of repository cover materials and waste, including radium-bearing waste.  In the past, the 

case of a dwelling constructed on a degraded low level radioactive waste site or on excavated spoil 

was assessed making use of models that attempt to represent the entry and build up of radon within 

such a dwelling taking account of radon migration processes and the possible characteristics of the 

dwelling.  This approach is subject to large uncertainties because the entry of radon and 

accumulation in a building is highly sensitive to ground conditions, building construction and 

ventilation, and because the characteristics of a future building are unknown.  For the most recent 

assessments of the LLWR (Sumerling, 2008), a simpler approach was adopted using an empirical 

relationship between the concentration of radon in dwellings and the concentration of 226Ra in soil, 

based on general data from UNSCEAR (2000).   

In the UK, there are substantial data sets of measured radon in dwellings, naturally-occurring 

radionuclides in soil and radon in soil gas, all related to classification of local geology.  This gives the 

opportunity to develop empirical relationships that are intrinsically matched to the average 

characteristics of UK houses and also, by choice of the geological association, that are appropriate to 

represent ground conditions more relevant to the radiological assessment cases.  This paper 

describes work carried out by the British Geological Survey and the Health Protection Agency to 

analyse UK data and to develop empirical relationships between uranium and 226Ra in soil, radon in 

soil and radon in dwellings.  These relationships will assist in the post-closure assessment of radon 

related to near surface radioactive waste disposal as practiced at the LLWR. 
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2 Materials and methods 

2.1 Introduction.  

Four types of data were used in this study: (i) estimated 226Ra in the <2mm fraction of topsoils 

(eRa226) derived from estimated uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 

derived from measurements of uranium in soil geochemical samples, (iii) concentration of radon in 

soil gas; and (iv) radon concentrations in homes. Not all types of data are available in all parts of the 

UK, and where they are available the numbers of results are variable. The amount of appropriate 

data available over artificial ground (assumed to be similar to the potential situation if the repository 

is later disturbed) is limited. As a consequence, this study focussed on data from high-permeability 

geological units with relatively high radon potential, to mimic the likely permeability of disturbed 

ground. It was known from previous investigations (Appleton et al., 2000; Miles and Appleton, 2005; 

Appleton and Miles, 2009; BGS and HPA unpublished data) that the following geological units were 

the most likely to provide appropriate data, in terms of permeability, for the current study: (i) Lower 

Carboniferous limestones (DINLM); (ii) Lower Carboniferous mudstone with subsidiary siltstone, 

sandstone, limestone (DINMDMIX); (iii) Jurassic Inferior Oolite limestone units (INOLMST); (iv) 

Jurassic Northampton Sand Formation (INONS); and (v) the Jurassic Marlstone Rock Formation 

(MRB). A number of geological units with moderate or low permeability were included in the study 

for comparative purposes. These were Triassic mudstones (TRIMD), Westphalian and Namurian 

mudstones with subsidiary siltstone, sandstone, and limestone (WESNAMMDMIX), Namurian and 

Westphalian sandstones (NAM&WESSD), Upper Lias mudstones (ULI), and Permian dolomites 

(PERDO).  

 

2.2 Estimated uranium from airborne radiometric data 

The High Resolution Airborne Resource and Environmental Survey (HiRES-1) of the English Midlands, 

including 1024 channel gamma spectrometry, is described in Peart et al., (2004). An equivalent 

uranium (eU) value is determined from the 214Bi gamma peak assuming equilibrium between the 
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measured gamma peak from 214Bi (a radon decay product) and the parent natural U concentration in 

the ground. This assumed equilibrium, however, may not always hold true due to the differing 

geochemical behaviour of the members of the 238U decay chain. The geochemical behaviour of 226Ra 

is markedly different from U, which may lead to U being removed during weathering, leaving 226Ra, 

although in the context of this study, the determination of 226Ra is more important than the 

determination of U. Also the 214Bi gamma peak effectively reports short-lived radon decay product 

concentrations in the top 30 cm or so of the ground, from which some degree of loss of radon may 

occur. Therefore the 214Bi gamma peak could indicate higher or lower eU values than the 238U levels 

actually present. In addition, the data from the airborne gamma spectrometry surveys are calibrated 

against ground gamma spectrometry data determined using instruments which themselves are 

calibrated using concrete pads with known U concentrations, for which it is assumed that there is 

equilibrium between 238U and 214Bi. There will be greater uncertainty attached to average eU data 

for urban areas (Appleton et al., 2008). The lack of a 1:1 relationship between airborne eU and U 

measured by XRF in the <2mm fraction of topsoils (unpublished data and Appleton et al., 2008) may 

be due to (i) radon loss  (IAEA, 2003), (ii) varying levels of soil moisture (Grasty, 1997); (iii) radon 

decay products washed-out of the air by rain;  (iv) possible calibration problems with the HiRES 

airborne gamma spectrometry data and/or (v) lack of a 1:1 relationship between (a) U in the whole 

surface (0-15 cm depth) soil, which is the dominant source of the 214Bi signal for airborne gamma 

spectrometric determination of eU and (b) U determined by XRF in the <2mm fraction of topsoil 

collected from the 5-20cm depth interval. Data for the HiRES area appear to indicate that radon loss 

is not a major factor. This is because eU vs. U in <2mm surface soil regression lines are almost 

identical for (i) geological units likely to be characterised by coarse grained, permeable, less moisture 

retentive soils and (ii) fine grained, impermeable, moisture retentive soils.  Whatever the reasons for 

the lack of the 1:1 relationship, the equation (Estimated <2mm topsoil U concentration = 1.72 x 

HiRES eU) is used in this study report to convert the HiRES eU data into estimated <2mm topsoil U 

concentrations, thereby facilitating comparison with regression models derived from the topsoil 
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(<2mm) U geochemical data. Estimated U in topsoil is then converted to estimated 226Ra activity 

concentration (eRa226) for the regression analysis. Assuming U-natural (U-238) and 226Ra are in 

equilibrium, estimated topsoil U derived from airborne gamma spectrometry surveys and U in soil 

samples determined by XRF analysis can be converted from mg kg-1 U to activity concentrations (Bq 

kg-1 of 238U or 226Ra) using the formula: 1 mg kg-1 U-nat  = 12.35 Bq 238,234U kg-1 = 12.35 Bq 226Ra kg-1 if 

in equilibrium (IAEA, 1989).  

 

 

 

2.3 Soil uranium geochemical data  

The BGS regional and urban soil geochemical survey methods are described in Johnson et al. (2005) 

and Fordyce et al. (2005) and availability of soil U data in Beresford et al. (2007). Regional soil and 

urban samples are collected at a density of approximately 1 sample per 2 km2 and 4 samples per 

km2, respectively. Topsoil (A) soil samples collected from the 5–20 cm depth range, are sieved to 

pass <150 µm and subsurface (S) soil samples from  35- to 50-cm depth are sieved to pass a 2-mm 

mesh. In some cases this might be expected to enhance the U concentration in the size fraction 

analysed.  In general U concentrations, determined in most of the samples by X-ray Fluorescence 

Spectroscopy (XRF), are approximately the same in the A and S samples, although there is variation 

at individual sites presumably reflecting a range of pedological, topographic and other factors. For 

the geological units of specific interest to the present study (DINLM, INOLMST and INONS), U is on 

average only ±5% different between the A (<2mm) and S (<150 micron) soils so these differences are 

unlikely to have a major impact when statistics and models are based on grouped data.  Topsoil U 

data were used for the present study as there is likely to be a closer correlation between U in 

topsoils and the airborne radiometric data. 

 

2.4 Soil gas and indoor radon data 
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The soil gas radon measurements used in the present study were made using a ‘Lucas cell’ type 

scintillation counter following extraction by pumping from a depth of 60-70 cm (see Ball et al., 1991 

for further details). Uncertainties related to the measurement of radon in soil gas and the statistics 

derived from grouped data are discussed by Appleton et al (2000) and Emery et al. (2005). Indoor 

radon measurement methods and uncertainties for grouped indoor radon data are explained in 

Miles and Appleton (2005) and Hunter et al. (2005, 2009). 

 

 

 

2.5 Regression analysis methods 

Regression analysis based on the average values for spatially and geologically grouped data require 

that the data in each subset is approximately normally distributed so that the value used for the 

regression analysis is a robust central estimate. For regression analysis which incorporates a value 

for the uncertainty of the group average (i.e. standard deviation) then the distribution in each subset 

should be close to normal. It is well documented that indoor radon data are usually positively 

skewed and follow a generally lognormal distribution (Miles, 1998). Frequency distributions of 

skewness coefficients and Anderson-Darling normality tests were produced for a representative 

selection of data subsets (i.e. data grouped by 1-km or 5-km grid square and geology). The 

Anderson-Darling (AD) test compares the empirical cumulative distribution function of the data 

subset with the distribution expected if the data were normal.  The AD test is especially effective at 

detecting departure from normality in the high and low values of a distribution. The AD tests 

indicated that regression analysis should be based on (1) arithmetic means for eRa226 derived from 

(a) HIRES airborne data and (b) U in <2mm surface soils; and (2) geometric means for soil gas radon 

and indoor radon data.  

Three regression analysis methods which use very different algorithms have been applied and 

compared. These are:  (i) Least squares (LS); (ii) Theil's method (TS) and (iii) Weighted total least-
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squares (WTLS). In LS analysis, the method makes the assumption that all the uncertainty is 

associated with y and that the y residuals (distances of y values from the calculated line) are 

normally distributed.  If this is the case then the standard deviations on slope and intercept can also 

be calculated. The main drawbacks with the LS method for the data being considered here are: (i) 

there are significant uncertainties on both the x and the y data sets; and (ii) the results of the least 

squares method are not robust to outliers. 

Theil’s method (Theil, 1950) is a non-parametric approach to straight line fitting that can be 

expressed in the following algorithm: (i) the xy pairs are ranked according to their x value and split 

into two groups those above the median x value and those below (if the number of points is odd the 

median value is removed); and (ii) the slope of all combinations of xy pairs from the lower and upper 

sets is determined.  For a given pair of points    

 

The median value of all  are then determined and used as the final slope value; and (iii) using the 

median value of m values for  the intercepts are estimated for each point using the equation: 

 

The median value for is used as the final intercept value. The MATLAB implementation of this 

algorithm as described by Glaister (2005) has been used in this study. The advantages of this 

approach are: (i) it makes no assumptions about the errors being on the x or the y values; and (ii) it is 

robust to outliers. The disadvantage is that the method does not take account of the uncertainties 

on the x and y values. 

A recent study has developed a new algorithm for fitting a straight line to data sets where there is 

uncertainty on both the x and the y axes (Krystek and Anton, 2007) called the total Weighted Total 

Least Squares Method (WTLS).  Using this algorithm the problem is reduced to a one-dimensional 

search for a minimum. Global convergence and stability are assured by determining the angle of the 

straight line with respect to the abscissa instead of the slope. The complete uncertainty matrix is 
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calculated, i.e. variances and covariance of the fitting parameters.  The mathematical derivation and 

final equations for the model fitting are too lengthy to be included here and full details are given in 

Krystek and Anton (2007).  The authors have written an implementation of the algorithm in the 

MATLAB programming language which has been used in this study. The advantage of this method 

compared to the LS is that the uncertainty on both the x and the y data are taken into account 

(although it is necessary to know what the uncertainties are on each x y point expressed as a 

standard deviation). Like LS, however, the method is not resistant to outliers in the data. 

 

 

3. Results  

3.1 Models derived from HiRES airborne data  

Least squares (LS) regression equations, R2 and significance data for three geological units with 

adequate data and representing different ground permeabilities are presented in Table 1 and 

illustrated in Figure 1. Plots of the regression models with and without the y axis intercept 

constrained to 5 Bq m-3 are illustrated in Figures 1 and 2. It is well established (see references in 

Scheib et al., 2006; Barnet et al., 2008; Kemski et al., 2005, 2006) that a specific 226Ra or radon 

concentration in the ground will generally result in higher indoor radon concentrations when the 

ground has high permeability (for example over karstified limestones such as the Lower 

Carboniferous limestones of the English Midlands: DINLM) and low indoor radon concentrations 

when the ground is relatively impermeable (for example over the Triassic mudstones: TRIMD).  

Intermediate indoor radon concentrations will be associated with geological units that have 

moderate permeability (for example the Lower Carboniferous mudstone with subsidiary siltstone, 

sandstone, and limestone: DINMDMIX). For this reason, linear regression models for individual 

geological units with strongly contrasting permeability tend to be oriented above each other, as 

illustrated in Figure 1. Although no data are known to be available for the sedimentary terrains of 

the English Midlands, it is likely that the emanation coefficients of permeable soils and rocks 
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(derived from sandstones, limestones and sand and gravel superficial deposits, for example) will be 

higher than emanation coefficients for fine-grained impermeable rocks such as mudstones. 

However, the dominant reason for the orientation of the regression models in Figure 1 is generally 

considered to be variations in the permeability of the ground. Multiple regression modelling using 

ground permeability data and soil variables (K and Th) which correlate with permeability in the 

Carboniferous, Permo-Triassic and Jurassic sedimentary terrains of Derbyshire tend to confirm this 

relationship (Scheib et al., 2006). 

 

Regression lines for high permeability units intersected the y axis at high positive values (see for 

example Figure 1). These would imply unrealistically high contributions to indoor radon from sources 

other than the ground. The reason for the high intercepts may be related to the magnitudes of the 

errors on the input parameters and to the LS regression method. Initial studies of the impact of 

uncertainty of both the indoor radon and estimated soil 226Ra data on the outcome of regression 

models showed that adding uncertainties on to data that is linear with a small positive intercept 

generally leads to a regression line with a significantly larger positive intercept than in the input 

data. It is possible to force a regression line to intercept the y axis at a particular value known to 

correspond to the physical situation. In an empirical model based on UNSCEAR data, Sumerling 

(2008) used a forced intercept of 16 Bq m-3 on the presupposition that 40% of the average indoor 

concentration is a constant related to outdoor air and building materials. UNSCEAR (1993) estimated 

the world mean outdoor radon concentration at 10 Bq m-3, implying a world mean contribution from 

building materials of 6 Bq m-3. However, an intercept of 16 Bq m-3 is not appropriate for the UK, 

where contributions from outdoor air and building materials are lower than the world mean. Wrixon 

et al (1988) showed that the mean outdoor radon concentration in the UK was much lower than the 

world mean, at 4 Bq m-3. Gunby et al (1993) showed that the distribution of indoor radon 

concentrations in the UK was consistent with a lognormal distribution with a constant additional 

contribution of 4 Bq m-3. Since any additional contribution from building materials would be 
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expected to be normally, rather than lognormally, distributed, this implies that any contribution 

from building materials is very small on average. This conclusion is consistent with the results of 

measurements of radon emanation from UK building materials. A value of 5 Bq m-3 was assumed 

here for the contribution from outdoor radon and building materials together, and was used as a 

forced intercept in for the regression models indicated by the thin lines in Figure 1.  

 

 

 

Comparison of the results of LS, TS and WTLS regression analysis based on eRa226 derived from 

HiRES airborne data and indoor radon data grouped by geology and 1-km grid square showed that 

‘All data’, DINLM and DINMDMIX had slopes significantly different from 0 for both the WTLS and the 

LS methods (Figures 2-3, Table 2).  The LS method showed a lower uncertainty than the WTLS 

method whilst the TS slope agreed with the LS and WTLS (within their uncertainties) for DINLM and 

DINMDMIX but not for ‘all data’ where it gave a lower slope.  This suggests that for ‘all data’, outliers 

may have exerted an undue influence on the results.  

For the LS method none of the groupings had an intercept significantly different from 1.61 (natural 

logarithm of 5 Bq m-3, which is the average contribution to indoor radon from building materials and 

outside air), but the WTLS method showed significant intercepts for all groups (Figure 2 and 4; 

Table 2).  The TS intercepts agrees quite well with the LS and WTLS intercepts. 

 

3.3 Models based on soil geochemical data 

The LS regression equations, R2 and significance data for three geological units with adequate data 

and representing different ground permeabilities are presented in Table 3.  Regression lines for 

geological units with different permeabilities are generally oriented above each other as illustrated 

in Figure 5 in which the high permeability Lower Carboniferous limestones (DINLM), Northampton 

Sand Formation (INONS) and Inferior Oolite limestones (INOLMST) lie above the relatively 
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impermeable Westphalian (WESMDMIX) mudstone with subsidiary siltstone, sandstone units.  Only 

the correlation coefficients for the INOLMST and ‘All data’ regression models were statistically 

significant (p <0.05; Table 3). When the regression models were forced to intersect the y axis at 5 Bq 

m-3, the regression lines for the permeable units (INONS, DINLM and INOLMST) were virtually 

coincident (Figure 5).  

Although the regression models for most of the individual geological units were not statistically 

significant (probably due to the relatively small number of data points and the uncertainties in 

grouped indoor radon and soil U data used to produce the regression models), there was a logical 

relationship between the regression models for the permeable and impermeable geological units 

which is similar to the relationship observed for statistically significant regression models derived 

from the HiRES data. The slopes for the regression models forced to intersect the y axis at 5 Bq m-3 

were similar for HiRES (Figure 1) and topsoil geochemical (Figure 5) data.  

In the comparison of LS, TS and WTLS regression methods (Figures 6-7, 9; Table 4), the LS method 

showed that only ‘all data’ and INOLMST had a slope significantly different from zero whereas the 

WTLS showed that only ‘all data’ have a significant (but negative) slope.  For ‘all data’ the TS method 

agreed with the LS method but not with the WTLS, whilst for the INOLMST, the TS slope agreed with 

the LS method slope (within the measured uncertainty). The LS method showed intercepts for all 

groups except TRIMD and WESDUMIX to be significantly greater than 1.61 (natural log of 5 Bq m-3) 

whereas the WTLS method showed only ‘all data’ and DINLM to have intercepts significantly greater 

than this value (Figures 6, 8; Table 4). Taking into account the relatively large intercept standard 

deviations (Table 4), it is clear that the intercepts for INOLMST, INONS, TRIMD, ULI and WESDUMIX 

were not significantly different from 1.61 (natural log of 5 Bq m-3).  

 

3.4 Soil gas radon – indoor radon regression models 

The LS regression equations, R2 and significance data for five geological units with adequate data and 

representing different ground permeabilities are presented in Table 5. Plots of the regression models 
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with and without the y axis intercept constrained to 5 Bq m-3 are illustrated in Figures 9 and 10.  

Statistically significant regression models for which the intercept is not fixed at 5 Bq m-3 were 

available for: (i) Northampton Sand Formation: 1-km grouped data (average SGRn); (ii) Northampton 

Sand Formation: 5-km grouped data; (iii) Lower Carboniferous limestones: 1-km grouped data 

collected in 2002-2004; (iv) Carboniferous and Permian data for Derbyshire and Nottinghamshire: 1-

km grouped data; and (v) Carboniferous and Permian data for Derbyshire and Nottinghamshire: 5-

km grouped data.  

Only the third model of the above (Lower Carboniferous limestones in Derbyshire, 1-km grouping of 

2002-2004 data) was statistically significant (p <0.05) when the intercept was set to 5 Bq m-3. 

The slopes of the regression lines for the Carboniferous and Permian in Derbyshire and 

Nottinghamshire grouped by 1-km and 5-km grid square were likely to be steeper than regression 

lines for individual geological units. Unfortunately, sufficient data were not available to prove this. 

Regression models for other geological units grouped by 1-km and 5-km grid square were not 

statistically significant, probably largely due to the relatively small number of data points and the 

uncertainties in the grouped indoor radon and soil gas radon data used to produce the regression 

models.  

It is difficult to recommend a single LS regression model for risk modelling and it is suggested that 

modelling be based on the two models that produce the lowest and highest indoor radon estimates 

as these probably provide a reasonable range for modelling.  The linear regression models based on 

data from the UK are similar to those derived from arithmetic mean soil gas radon data in the Czech 

Republic (Barnet et al., 2008), but predict significantly higher indoor radon concentrations compared 

with models based on data from Germany where it is estimated that the ratio of indoor radon to soil 

gas radon ranges from about 0.002 to 0.0005 (Kemski et al., 2006), mainly because the German soil 

gas radon data are the maximum value of several measurements at one site whereas arithmetic 

means are used in the Czech Republic and GMs in the UK.  Different national and regional house 

characteristics will also impact on indoor radon – soil gas radon regression models. Older buildings 
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with ‘leaky’ floors are likely to be characterised by higher indoor radon for a specific soil gas 

concentration compared with buildings that have ‘gas-tight’ floors. 

Comparison of the LS, TS and WTLS regression methods showed that ‘all data’, BGS Derbyshire Carb. 

Lmst. 1km grouping (2002-04 data), BGS Derby-Notts Carb-Perm 5km grouping and the BGS Derby-

Notts Carb-Perm 1km grouping all had slope values significantly greater than 0 for the LS method 

(Figures 11-12; Table 6) .  The WTLS method , however, only showed that only ‘all data’, BGS INONS 

1km grouping and BGS Derby-Notts Carb-Perm 5km grouping had slope values greater than 0.  Of 

the three methods, the WTLS had higher slope values.  The Theil’s method agreed more closely with 

the LS than the WTLS. 

The LS method showed all groupings to have intercepts significantly different from 1.61 (natural log 

equivalent of 5 Bq m-3) apart from the BGS Derby-Notts Carb-Perm 1km grouping and Carb. Lmst 

1km grouping (2002-04 data) (Figures 11, 13; Table 6).  In contrast none of the intercepts were 

significantly different from this value for the WTLS method. In most instances the Theil’s method 

agreed more closely with the LS method apart from BGS Derby-Notts Carb-Perm 1km grouping 

where it agreed more closely with the WTLS method. 

 

 

4. Comparison with published soil 226Ra – indoor radon data regression models 

Sheppard et al., (2006) compiled data to facilitate the assessment of the environmental impact of 

radioactive waste and used this to derive an average indoor radon : soil 226Ra ratio with a lognormal 

distribution (geometric mean (GM) 1.5 (indicated by the long-dash line in Figures 14-15), geometric 

standard deviation (GSD) 2.6). The GMs of the data used by Sheppard et al. (2006) to derive this 

model are illustrated in Figure 14. An earlier model by Amiro (1992) has similar characteristics (GM 

1.7, GSD 3). Sheppard et al.’s GMs were mainly derived from large surveys of areas representing a 

wide range of geological terrains and normal levels of soil 226Ra. Most of the data reported in 

Sheppard et al., (2006) are clustered with no obvious correlation (Figure 14) although Sheppard et al. 
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(2006) noted that a correlation can be assumed on theoretical grounds. The GM for a uraniferous 

granite area in Finland (F-UGran in Figure 14; data from Voutilainen et al., 1988) plots very close to 

the lognormal distribution proposed by Sheppard et al. (2006). The GM for the alum shale area in 

Sweden (S-AlSh in Figure 14; data from Stranden and Strand, 1988) falls just outside the uncertainty 

bounds based on a indoor radon: soil 226Ra ratio of 1.5 and the average indoor radon GSD for 

England and Wales corrected for measurement uncertainty (2.27; 1 GSD and 2 GSD bounds in 

Figures 14 and 15 are indicated by short-dash lines). Also plotted in Figure 14 is the least squares 

regression model for the Oslo area (derived from Figure 6 in Smethurst et al., 2008). This has a 

slightly higher ratio of about 1.9 but this would be expected because the model was based on 

average rather than GM indoor radon and soil estimated 226Ra concentrations. The least squares 

linear regression models for the relatively impermeable Westphalian (WESMDMIX) mudstones with 

subsidiary siltstones and sandstones from the English Midlands plot parallel to the Sheppard et al. 

(2006) model but below it, whilst the models for the very permeable Northampton Sand Formation 

(INONS) and Lower Carboniferous Limestone (DINLM) plot parallel but above the Sheppard et al. 

(2006) model. Most of the Sheppard et al. (2006) data and data from this study fall within 1 GSD of 

the GM. Although it is speculative to base a conclusion on two extreme points (derived by Sheppard 

et al (2006) from data for the alum shale area in Sweden (S-AlSh) and uraniferous granite in Finland 

(F-UGran)), these support fixing intercepts at 5 Bq m-3 indoor radon for models derived from eRa226 

estimated from U in BGS <2mm topsoil samples (Figure 14).  Slopes and intercepts for LS, WTLS and 

Theil models based on 226Ra derived from soil U data are essentially the same for DINLM, INOLMST, 

INONS, TRIMD, ULI and WESDUMDMIX (Table 3). 

The relationships between LS models based on BGS HIRES data and HPA indoor radon data for 

England with the model data published by Sheppard et al., (2006) (Figure 15) are similar to the 

models for BGS soil geochemical data and HPA indoor radon data described above. The extensions of 

the DINLM and DINMDMIX models without fixed intercepts pass closer to the F-UGran and S-AlSh 

points than the models with intercepts fixed at 5 Bq m-3. 
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5. Discussion and conclusions  

The LS regression analysis demonstrated that relationships between 226Ra in the ground, radon in 

soil and radon in dwellings differ depending on the characteristics of the underlying geological units. 

The results are applicable to the analysis of possible future scenarios for the LLWR and provide a 

range of models for ground with different permeabilities. The LS regression models for geological 

units with high permeability, analogous to the disturbed ground of the repository wastes and 

capping materials, predict higher levels of indoor radon for a specific estimated 226Ra concentrations 

in the ground or soil gas radon concentrations than regression models for generally impermeable 

geological units. That being the case, it would be appropriate to use the models for the high 

permeability units in post-closure assessments of radon related to the radioactive waste in the LLWR 

as this will tend to be cautious. The results are consistent with work elsewhere, and the range of 

empirical relations for different geologies and with and without forced intercepts probably represent 

the range of possible outcomes from the situations modelled. 

Uncertainties related to the measurement methods and GMs for grouped data used to formulate 

the regression models were identified and these impact on the regression model slope and intercept 

uncertainties. Whereas the GM radon concentrations in homes are reasonably robust, being based 

on 30 or more measurements in each case, there is still significant uncertainty in these values.  The 

TS method should better deal with the impact of outliers on the regression model whilst WTLS 

analysis takes into account uncertainties in both the 'x' and 'y' axes and should therefore be the 

optimum and most reliable and robust regression analysis method for the estimated slopes and 

intercepts and their associated uncertainties.  

From the comparison of LS, TS and WTLS methods, it was concluded that models for indoor radon vs. 

eRa226 derived from U measured in <2mm soil samples seem to have the poorest support with 

none of the groupings giving slopes significantly different from zero according to the WTLS method.  
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For models between indoor radon and (i) eRa226 in <2mm soil derived from HIRES eU data and (ii) 

soil gas radon data, some of the geological groupings had significant slopes according to the WTLS 

method. For these groupings there was reasonable agreement in slope and intercept between the 

three regression analysis methods (LS, TS and WTLS).  

 The distribution of radon in homes appears to be lognormal because factors determining how much 

radon gets from the source into the home are multiplicative (Gunby et al, 1993). We need to 

determine whether the relationship between the source (or surrogate for the source,  226Ra 

estimated from airborne gamma or U in soil) and the output (radon in homes) is linear. If the factors 

controlling the passage of radon from the source to the output were to vary from one area to 

another, we would expect to see significant variations in GSD from one area to another, since the 

GSD depends on those factors. In particular, if the factors controlling the passage of radon from the 

source to the output were to vary depending on the strength of the source, then we would expect to 

see systematic variation in GSD with GM. In fact we observe little or no variation in GSD with GM 

(Miles, 1998), implying that the factors controlling the passage of radon from the source to the 

output do not vary with GM. This in turn implies that the relationship between the source and the 

output should be linear, since in each case the same set of multiplicative controlling factors apply. 

Hence doubling the 226Ra in the ground should double concentrations in homes, giving a lognormal 

distribution which, if plotted as a histogram on a logarithmic x axis, is just shifted to the right without 

changing shape.  If the measurements of the source term (226Ra) have normally distributed 

uncertainties, the appropriate variables to use for modelling would be arithmetic mean source value 

and GM radon in homes (Figures 1 and 5 above) . In contrast, the relationship between soil gas and 

indoor radon (Figures 9 and 10) is best defined using GMs on both axes because both variables are 

lognormally distributed. It therefore seems to be appropriate to use these models for predicting 

indoor radon levels which are likely to occur at the 226Ra  and soil gas radon concentrations found or 

predicted at near-surface radioactive waste disposal sites. These models should be used in 

preference to those based on the log (y)-linear (x) relationship between LnGM indoor radon and 
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estimated 226Ra  (Figures 2 and 6), which was used in this study for the comparison between WTLS, 

LS and Theil regression models. The LnGM radon was used on the y axis because the uncertainty 

(expressed by the LnGSD) had to be symmetrically distributed either side of each data point for the 

WTLS regression analysis. There is little difference between the indoor radon concentrations 

predicted by the GM indoor radon – eRa226 and LnGM indoor radon – eRa226 regression lines at 

the upper limits of the data used to construct the models. However, at the higher concentrations 

which may in some circumstances be encountered above near-surface radioactive waste disposal 

sites, the LnGM indoor radon – eRa226 regression models predict higher radon concentrations than 

the GM indoor radon – eRa226 models, when the intercepts for both types of models are 

unconstrained. 

Intercepts of 4-5 Bq m-3 would be expected for all regression analysis models as this is the average 

contribution to indoor air from radon in outdoor air and building materials for dwellings in the UK. 

The soil gas data vs. indoor radon regression models have intercepts of 4 Bq m-3 for both the INONS 

(1-km grouping) and the Derby-Notts Carb-Perm 5-km grouping. In contrast, the intercepts for the 

eRa226 (HIRES) vs. indoor radon models have intercepts of 18 Bq m-3 for DINMDMIX and 42 Bq m-3 

for DINLM (1 Bq m-3 for ‘all data’). 

A key issue is whether to use models with an intercept constrained for theoretical reasons to 

5 Bq m-3, which represents the average value for the contribution from outdoor radon and building 

materials), or unconstrained models based solely on the empirical data. Slopes of the fixed intercept 

models are generally steeper than the slopes for unconstrained models. Extrapolation of fixed 

intercept models to the likely 226Ra  and soil gas radon concentrations that may be encountered in 

certain circumstances in future over the LLWR will predict higher indoor radon concentrations than 

will extrapolation of unconstrained models. However, models with and without a constrained 

intercept for the value of indoor radon gave results that were generally within a factor of two of 

each other, suggesting that, allowing for uncertainties on the inputs, such extrapolation of the 

constrained models may be justified.  
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Comparison with published data used to derive an average indoor radon : soil radium ratio showed 

that the LS models for the relatively impermeable English geological units plot parallel to the 

Sheppard et al. (2006) model but below it (i.e. lower indoor radon : soil radium ratios), whilst the 

models for the permeable English geological units plot parallel but above  the Sheppard et al. (2006) 

model (i.e. have higher indoor radon : soil radium ratios).  
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Table 1. LS linear regression models derived from HiRES data converted to estimated Ra226 in <2mm 

fraction of topsoils 

 

Data set Model formula 

No. of 

data 

points  R2 

  

Significance 

(p) 

HiRES DINLM 1-km grouping y = 2.15x + 52 51 0.21 <0.05 

HiRES DINMDMIX 1-km grouping y = 1.3x + 17 39 0.29 <0.05 

HiRES all data 1-km grouping y = 3.03x – 35 296 0.32 <0.05 

HiRES TRIMD 1-km grouping y = 0.04x + 20 35 0.01 >0.05 

Data set 

Model formula with  

5 Bq/m3 indoor radon intercept 

 

 

 

HiRES DINLM 1-km grouping y = 3.13x + 5 51 0.16 <0.05 

HiRES DINMDMIX 1-km grouping y = 1.62x + 5 39 0.27 <0.05 

HiRES all data 1-km grouping y = 1.88x + 5 296 0.27 <0.05 

HiRES TRIMD 1-km grouping y = 0.58x + 5 35 -0.34 >0.05 

(p) <0.05 = R significant at the 95% confidence level; >0.05 = R not significant at the 95% confidence level 
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Table 2 Slope, intercept and associated uncertainties of log GM indoor radon against eRa-226 for 

models for a range of geological groups (based on HIRES data).  
 

 

  Theil's method     

Grouping Slope  Intercept     

All data 0.023 2.88     

DINLM 0.015 4.13     

DINMDMIX 0.017 3.17     

NAM & WESMDMIX -0.025 3.53     

NAM & WESSD -0.006 3.66     

TRIMD -0.003 2.95     

PERDO -0.021 4.06     

INOLMST -0.044 5.51     

  WTLS method   

Grouping Slope  Intercept sd slope sd intercept   

All data 0.051 2.00 0.04 0.21   

DINLM 0.022 3.89 0.02 0.45   

DINMDMIX 0.022 3.10 0.02 0.36   

NAM & WESMDMIX -0.034 3.85 0.08 0.87   

NAM & WESSD -0.010 3.78 2.03 1.11   

TRIMD -0.003 2.92 0.09 1.23   

PERDO -0.009 3.67 1.74 1.83   

INOLMST -0.140 8.17 0.83 3.22   

  Least Squares 

Grouping Slope  Intercept 95%ul slope 95%ll slope 95%ul intercept 95%ll intercept 

All data 0.037 2.47 0.029 0.045 2.20 2.73 

DINLM 0.016 4.16 0.008 0.024 3.78 4.54 

DINMDMIX 0.018 3.28 0.008 0.028 2.89 3.67 

NAM & WESMDMIX -0.028 3.65 -0.046 -0.009 3.11 4.19 

NAM & WESSD -0.017 3.96 -0.054 0.020 3.03 4.89 

TRIMD 0.002 2.80 -0.017 0.020 2.27 3.33 

PERDO -0.015 3.89 -0.064 0.033 2.45 5.33 

INOLMST -0.055 5.76 -0.110 0.000 4.18 7.35 

 

 

sd = standard deviation; ul = upper limit; ll = lower limit 
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Table 3. LS linear regression models derived from U in topsoil samples converted to estimated Ra226 

in <2mm fraction of topsoils  

 

 

Data set Model formula 

No. of 

data 

points R2 

Significance 

(p) 

Topsoil DINLM 5-km grouping y = 0.94x + 97 17 0.08 >0.05 

Topsoil INONS 5-km grouping y = 1.86x + 39 11 0.18 >0.05 

Topsoil INOLMST y = 2.57 + 7 10 0.62 <0.05 

Topsoil all data 5-km grouping y = 1.98x – 4 172 0.13 <0.05 

Topsoil WESMDMIX 5-km grouping y = 0.14x + 17 21 0.01 >0.05 

     

Data set 

Model formula with  

5 Bq/m3 indoor radon intercept 

 

 

 

Topsoil DINLM 5-km grouping y = 3.05x + 5 17 -0.37 >0.05 

Topsoil INONS 5-km grouping y = 3.3x + 5 11 0.06 >0.05 

Topsoil INOLMST y = 2.64x + 5 10 0.61 <0.05 

Topsoil all data 5-km grouping y = 1.68x + 5 172 0.13 <0.05 

Topsoil WESMDMIX 5-km grouping y = 0.48x + 5 21 -0.08 >0.05 
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Table 4  Slope, intercept and associated uncertainties of log GM indoor radon against eRa-226 for 

the different geological groupings (eRa226 derived from soil uranium data).  

 

 

 Theil's method     

Grouping Slope  Intercept     

All data 0.015 3.05     

DINLM 0.007 4.51     

INOLMST 0.035 3.27     

INONS 0.033 3.42     

TRIMD 0.009 2.67     

ULI 0.018 2.83     

WESDUMDMIX 0.012 2.41     

 WTLS method   

Grouping Slope  Intercept sd slope sd intercept   

All data -0.085 6.12 0.025 0.77   

DINLM 0.011 4.34 0.030 1.35   

INOLMST 0.048 2.91 0.047 1.15   

INONS 0.031 3.49 0.052 1.25   

TRIMD 0.027 2.20 0.074 2.41   

ULI 0.025 2.58 0.035 1.12   

WESDUMDMIX 0.012 2.43 0.074 2.50   

 Least Squares 

Grouping Slope  Intercept 95% ll slope 95% ul Slope 95% ll 

intercept 

95% ul 

intercept 

All data 0.027 2.81 0.01 0.043 2.22 3.39 

DINLM 0.007 4.55 -0.01 0.018 4.00 5.10 

INOLMST 0.041 3.11 0.02 0.066 2.46 3.76 

INONS 0.027 3.60 -0.02 0.076 2.44 4.76 

TRIMD 0.009 2.79 -0.05 0.070 0.80 4.78 

ULI 0.022 2.70 0.00 0.043 2.02 3.38 

WESDUMDMIX 0.011 2.46 -0.02 0.045 1.31 3.60 
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Table 5. LS linear regression models derived using soil gas radon data  

 

 

Data set Model formula 

 

N R2 

Significance 

(p) 

Derby-Notts Carb-Perm 1km 

grouping y = 1.97x + 56 

13 

0.25 <0.05 

Derby-Notts Carb-Perm 5km 

grouping y = 1.1x + 37 

75 

0.09 <0.05 

INONS 5-km grouping y = 2.0x + 53 10 0.35 <0.05 

INONS 1-km grouping y = 1.90x + 42 17 0.23 <0.05 

Derby Carb. Lmst. 1-km grouping y = 0.83x + 66 6 0.88 <0.05 

     

Data set 

Model formula with  

5 Bq/m3 indoor radon 

intercept 

 

  

Derby-Notts Carb-Perm 1km 

grouping y = 3.14x + 5 

13 

0.13 >0.05 

Derby-Notts Carb-Perm 5km 

grouping y = 2.31x + 5 

75 

-0.11 >0.05 

INONS 5-km grouping y = 4.49x + 5 10 -0.40 >0.05 

INONS 1-km grouping y = 3.52x + 5 17 0.01 >0.05 

Derby Carb. Lmst. 1-km grouping y = 1.15x + 5 6 0.68 <0.05 
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Table 6  Slope, intercept and associated uncertainties of log GM indoor radon against log GM soil gas 

radon for the different geological groupings.  

 

 

 Theil's method     

Grouping Slope  Intercept     

All data 0.455 2.73     

BGS INONS 1km grouping 0.358 3.26     

BGS INONS 5 km grouping 0.101 4.13     

BGS Derbyshire Carb Lmst 1km grouping 

(2002-04 data) 

0.405 3.35     

BGS Derby-Notts Carb-Perm 5km 

grouping 

0.364 2.68     

BGS Derby-Notts Carb-Perm 1km 

grouping 

1.171 0.22     

 WTLS method     

Grouping Slope  Intercept sd 

slope 

sd 

intercept 

  

All data 0.840 1.63 0.141 0.40   

BGS INONS 1km grouping 0.964 1.43 0.376 1.00   

BGS INONS 5 km grouping 0.254 3.85 0.590 1.40   

BGS Derbyshire Carb Lmst 1km grouping 

(2002-04 data) 

0.568 2.46 0.526 2.41   

BGS Derby-Notts Carb-Perm 5km 

grouping 

0.913 1.34 0.294 0.78   

BGS Derby-Notts Carb-Perm 1km 

grouping 

1.315 0.04 0.705 2.42   

 LS      

Grouping Slope  Intercept 95% ll 

slope 

95% ul 

Slope 

95% ll 

intercept 

95% ul 

intercept 

All data 0.438 2.81 0.308 0.569 2.45 3.18 

BGS INONS 1km grouping 0.297 3.28 -0.124 0.718 2.18 4.39 

BGS INONS 5 km grouping 0.112 4.15 -0.261 0.484 3.26 5.04 

BGS Derbyshire Carb Lmst 1km grouping 

(2002-04 data) 

0.453 3.01 0.114 0.793 1.50 4.51 

BGS Derby-Notts Carb-Perm 5km 

grouping 

0.376 2.80 0.185 0.566 2.30 3.29 

BGS Derby-Notts Carb-Perm 1km 

grouping 

0.783 1.94 0.153 1.412 -0.14 4.02 

 

 

 

 

 



30 

 

 

 

 

Figure 1. LS regression models between estimated soil 226Ra  (derived from HiRES airborne 

radiometric eU) and indoor radon with data grouped by 1km-geology (thin regression lines have 

intercepts set to 5 Bq m-3).  
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Figure 2 Plot of the e226Ra regression lines derived from HIRES airborne data  
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Figure 3 Comparison of the slopes (Log GM indoor radon/e226Ra Bq kg-1) and their 95% confidence 

limits for the regression lines derived from HIRES data. 
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Figure 4 Comparison of the intercepts (Log GM indoor radon) and their 95% confidence limits for the 

regression lines derived from the HIRES airborne radiometric data. 
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Figure 5. Regression models between e226Ra (derived from U in topsoil samples) and indoor radon 

with data grouped by 5km-geology (dashed regression lines have intercepts set to 5 Bq m-3).   
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Figure 6 Plot of the e226Ra regression lines derived from soil U data.  
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Figure 7 Comparison of the slopes (Log GM indoor radon/mean e226Ra) of the regression lines and 

their 95% confidence limits for models derived from soil U geochemical data.  



37 

 

 

 

Figure 8 Comparison of the intercepts (Log GM indoor radon) of the e226Ra regression lines and their 

95% confidence limits for regression models derived from soil U geochemical data. 
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Figure 9 Relationship between GM soil gas radon (n>4) with GM indoor radon (n>19) with data 

grouped by 1-km or 5-km grid square and geology: data for Carboniferous and Permian of the 

English Midlands and the Northampton Sand Formation.  
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Figure 10. Relationship between GM soil gas radon (n>4) with GM indoor radon (n>19) with data 

grouped by 1-km or 5-km grid square and geology: data for Carboniferous and Permian of the 

English Midlands and the Northampton Sand Formation (intercepts set at 5 Bq m-3) 
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Figure 11 Plot of the regression lines based on soil gas radon data (Log scale) .   
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Figure 12 Comparison of the slopes (Log GM indoor radon/Log GM soil gas radon) and their 95% 

confidence limits for regression models derived from soil gas radon data. 
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Figure 13 Comparison of the intercepts (Log GM indoor radon) and their 95% confidence limits for 

regression models derived from soil gas radon data.  
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Figure 14 Relationship between average e226Ra derived from U in <2mm soil and average indoor 

222Rn for the English Midlands (intercepts set to 5 Bq m-3 indoor radon) compared with published 

data. 
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Figure 15 Relationship between average e226Ra in <2mm soil derived from HIRES data and average 

indoor 222Rn for the English Midlands (intercepts fixed at 5 Bq m-3) compared with published data. 

 


