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Abstract 

 

The metasedimentary rocks of the Morar Group in northern Scotland form part of the early 

Neoproterozoic Moine Supergroup. The upper part of the Group is c. 2-3 km thick and 

contains two large km-scale facies successions: a coarsening-upwards marine-to-fluvial 

regression overlain by a fining-upwards fluvial-to-marine transgression. Fluvial facies make 

up less than a third of the total thickness; shallow-marine lithofacies comprise the remainder. 

Combining these new findings with previously published data indicates that the Morar Group 

represents, overall, a transgressive stratigraphic succession c. 6-9km thick, in which there is 

both an upward and eastward predominance of shallow-marine deposits, and a concomitant 

loss of fluvial facies.  Smaller-scale (100s of m thick) transgressive-regressive cycles are 

superimposed on this transgressive trend. Collectively, the characteristics of the succession 

are consistent with deposition in a foreland basin located adjacent to the Grenville orogen, 

and possibly linked to the peri-Rodinian ocean.  Subsidence and progressive deepening of the 

Morar basin may have, at least in part, been driven by loading of Grenville-orogeny-

emplaced thrust sheets, and aided by sediment loading.  However, the relative contributions 

of thrust loading versus plate boundary effects and/or eustatic sea-level rise on basin 

evolution remain speculative.  
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Analysis of the sedimentology and depositional environments of metasedimentary 

successions within the high-grade cores of mountain belts is often problematic as much detail 

is commonly obscured by the effects of polyphase deformation and metamorphic 

recrystallisation. These problems are compounded within Precambrian successions by a lack 

of palaeontological control. Nonetheless, in some orogens it has proved possible to 

reconstruct the main depositional environments in areas where the structural setting is 

relatively straightforward and exposure is of good quality. In this context, much research has 

been carried out on the sedimentology and basin setting of the deformed and 

polymetamorphic Moine Supergroup of northern Scotland (Strachan 1986; Glendinning 

1988; Soper et al. 1998; Bonsor & Prave 2008; Krabbendam et al. 2008; Bonsor et al. 2010). 

This is one of a number of thick early Neoproterozoic siliciclastic successions that were 

deposited in the North Atlantic region during and after the amalgamation of Laurentia, 

Baltica and Amazonia that resulted in the Grenville orogeny and the formation of the Rodinia 

Supercontinent (Fig 1; Hoffman 1991; Li et al. 2008). Other broadly coeval successions in 

the region include the Torridon Group of Scotland (Stewart 2002), the Krummedal 

Succession of East Greenland (Sønderholm et al. 2008) and the Krossfjorden Group and the 

Murchisonfjorden Supergroup of Svalbard (Pettersson et al. 2009) amongst others. All these 

sequences contain detrital zircon patterns suggesting an eastern Laurentian provenance, with 

abundant detritus derived from the  Grenville orogen (Cawood et al. 2007; Pettersson et al. 

2009). All successions, with the exception of the Torridon Group, have been subsequently 

strongly deformed and metamorphosed during Neoproterozoic (e.g. Knoydartian) and/or 

early Palaeozoic (Caledonian) orogenic events. 

 

The basinal setting of the Moine Supergroup has been the focus of debate. It was interpreted 

as a shallow-marine rift basin (Strachan 1986; Glendinning 1988; Soper et al. 1998), perhaps 

representing a ‘failed rift’ in the core of Rodinia (Fig. 1a; Dalziel & Soper 2001). Partly, on 

the basis of detrital zircon data, Cawood et al. (2004) suggested an intracratonic setting.  

Krabbendam et al. (2008), while working in the lowermost Morar Group, documented fluvial 

braidplain deposits similar to the Torridon Group farther west, and suggested molasse-type 

deposition in a foreland basin to the Grenville Orogen.  Subsequent research in the 

stratigraphically middle part of the Morar Group (Bonsor et al. 2010), showed a gradual 

change from fluvial to tidally influenced shallow-marine deposits. This change was 

interpreted as recording the transition from dominantly non-marine sedimentation, linked to 

the erosion of the Grenville orogenic belt, to marine-influenced sedimentation related to the 



peri-Rodinian ocean (Fig. 1b). In this paper, we extend our analysis of the sedimentology and 

depositional environments of the Morar Group to its upper part. This provides a complete 

transect through this major siliciclastic succession in northern Scotland and places further 

constraints on basin and tectonic settings for this and correlative successions that 

accumulated in the present-day circum-North Atlantic region during, and following, the 

assembly of the Rodinia supercontinent. 

 

Geological Setting 

 

The Morar Group forms the lowest part of the Moine Supergroup and mainly comprises thick 

sequences of meta-sandstone (psammite) with subordinate meta-siltstone (semi-pelite) and 

meta-mudstone (pelite) (Strachan et al. 2010).  The outcrop of the Morar Group is bounded to 

the west by the Moine Thrust, which forms the margin of the Caledonian orogen in Scotland, 

and to the east by the Sgurr Beag Thrust (Fig. 2a). The generally pelitic Glenfinnan Group 

and psammitic Loch Eil Group occur in the hanging wall of the latter fault and are considered 

to stratigraphically overlie the Morar Group (Holdsworth et al. 1987; 1994; Soper et al 1998). 

Inliers of Archaean (‘Lewisianoid’) gneiss, commonly highly deformed, are thought to 

represent the basement on which the Moine rocks were deposited (e.g. Ramsay et al. 1957; 

Holdsworth 1989; Friend et al. 2003).  The Morar Group contains detrital zircons that yield 

U-Pb ages of between 1.7 and 1.0 Ga (Friend et al. 2008; Kirkland et al. 2008) and these 

have been interpreted to be derived from a variety of units within eastern Laurentia (Friend et 

al. 2003; Cawood et al. 2007; Kirkland et al. 2008), with significant detrital input from the 

Grenville orogen (Krabbendam et al. 2008). The youngest reliable concordant zircon grains 

reported from different samples are 1032 ± 24 Ma (Friend et al. 2003); 1022 ± 24 Ma 

(Kirkland et al. 2008) and 985 ± 6 Ma (Peters, 2001). The structural and metamorphic 

complexity of the Moine rocks results from polyphase deformation during the Knoydartian 

(c. 820-725 Ma) and both phases of the Caledonian – the Grampian (470-460 Ma) and 

Scandian (435-425 Ma) orogenic events (Strachan et al. 2002, 2010; Cutts et al. 2010).   

 

Although the Morar Group is deformed by kilometre-scale folds and shear zones and 

metamorphosed to amphibolite facies, in large areas the strain is low enough to allow 

reconstruction of the original stratigraphy and permits detailed sedimentological analysis.  

One such area is the type locality of the Morar Group on the eponymous peninsula (Fig. 2a), 

where detailed sedimentological analyses have been undertaken previously (Glendinning 



1988; Bonsor & Prave 2008).  Our work reports on another region, some 100 km northeast of 

the type locality (Fig. 2a), wherein previous workers (Sutton & Watson 1954; working in the 

Fannichs area, see Fig. 2a) constructed a local stratigraphical framework that was then used 

throughout northern Scotland. Krabbendam et al. (2011) have revised this stratigraphy and 

defined five units in the Morar Group, from base to top, the Altnaharra, Glascarnoch, Vaich, 

Crom and Debiedale formations, over a stratigraphic thickness of 6-9 km. The Altnaharra 

Formation (3-5 km thick) has been interpreted as a fluvial braidplain deposit (Krabbendam et 

al. 2008, 2011; Bonsor et al. 2010) deposited nonconformably on Lewisianoid basement 

slivers that have been caught up along the Moine and Achness thrust faults (Krabbendam et 

al. 2011; Figs. 2a and 3).  It can be correlated across the Achness Thrust and traced for some 

50 km southwest-ward to the Ullapool area where the Morar Group succession is unbroken 

by any major thrust faults. There, the stratigraphy youngs eastward until being either intruded 

by the Carn Chuinneag Granite (Wilson & Shepherd 1979) or truncated by the Sgurr Beag 

Thrust (Fig. 3). The Altnaharra Formation above the Achness Thrust is highly deformed but 

strain decreases in the overlying Glascarnoch Formation and enough sedimentological detail 

is preserved to permit recognition of a distal fluvial braidplain to shallow-marine 

transgressive succession (Bonsor et al. 2010; Fig. 3).  The Altnaharra and Glascarnoch 

formations exhibit complementary thinning/thickening trends such that the former thins 

eastwards whilst the latter thickens, and each may be, in part, lateral equivalents of the other 

(Bonsor et al. 2010; Krabbendam et al. 2011). 

 

In this paper, we examine the stratigraphically highest levels of the Morar Group exposed in 

Glen Calvie (Figs. 2c and 3). The transition from the upper Glascarnoch Formation into the 

overlying succession of the Vaich Pelite through to the Crom Psammite and Diebidale Pelite 

formations can be observed in the study area (Fig. 2c and 3).  The main focus is the Crom 

Psammite Formation, as the pelitic formations are generally too deformed to allow for refined 

sedimentological analysis. This area forms a convenient linkage to compare depositional 

trends between the Sutherland outcrops in northernmost Scotland and the Fannichs area to the 

southwest.   

 

Sedimentology of the upper Morar Group: Crom Psammite Formation 

Facies type and architecture 

 



The Crom Psammite Formation is between 2 and 3 km thick and comprises micaceous to 

quartzitic psammite interbedded with varying amount of pelite.  The formation is bounded 

below and above by the Vaich and Debidale Pelite formations, respectively (Fig. 2c), each 

between 0.3-0.7 km thick (although these thicknesses are likely to be maximum thicknesses 

as a result of thickening by folding). Although the rocks have undergone amphibolite-facies 

metamorphism, original sedimentary structures are well preserved in much of the area, 

particularly west of Glen Calvie (Figs. 2b and c).   

 

Four main lithofacies are identified in the Crom Psammite Formation on the basis of their 

sedimentology: LFC1, LFC2, LFC3, and LFC4.  Gradual and systematic transitions between 

these lithofacies define a coarsening-upward succession in the lower part of the stratigraphy 

and then a changeover to a fining-upward succession throughout the remainder of the 

succession. These successions are recognised by an upward increase and then decrease in the 

proportion of psammite, matched by a complementary trend in pelite.  It should be noted that 

the recognition and definition of a lithofacies was based purely on sedimentological criteria, 

not stratigraphic position.      

 

Lithofacies 1 (LFC1): interbedded pelite and ripple-laminated psammite 

LFC1 is typified by massive pelite and semi-pelite interbedded with isolated tabular-layered 

micaceous psammite and ripple laminated psammite in beds 5-20 cm thick (Fig. 4a). Pelite 

and semi-pelite units comprise approximately 60% of the lithofacies. The pelite beds are 

mainly massive, but locally contain ripple lamination and flaser bedding. The micaceous 

psammite is composed of 50-55% quartz, 20-25% alkali and plagioclase feldspar and 15-20% 

biotite and muscovite, and the micaceous composition imparts a grey hue to the rocks.   No 

abrupt changes in lithology, bedform scale or gravel lags are observed in LFC1 and soft-

sediment deformation is rare. 

 

 

Lithofacies 2 (LFC2): pelite, ripple-laminated and cross-bedded psammite 

LFC2 is characterised by decametre-scale coarsening-upward cycles (10-20 m thick) 

composed of pelite and semi-pelite interbedded with thin (5-30 cm thick) isolated psammite 

beds at the base that progressively increase in number and thickness upward (Fig. 4b).  These 

culminate in attaining a 50:50 proportion of psammite to pelite at the tops of these cycles, and 

pelite thickness decreases to 5-25 cm.  



 

Psammite beds are tabular throughout LFC2, and typically display horizontal laminations or 

low-angle planar cross-stratification. The beds have large width-to-thickness ratios (20:0.3 m 

is typical), although these ratios should be treated as a minimum since individual outcrops are 

typically <30 m wide. In places hummocky cross-stratification is observed in beds typically 

10-30 cm thick.  Psammite beds at the tops of the coarsening-upward units often display 

planar cross-beds and asymmetric and combined-flow ripples (Fig. 5) exhibiting wavy- to 

rarely bimodal (herringbone) small ripple-scale cross-lamination. Cross-bed foresets at all 

scales are commonly accentuated by mud drapes throughout the LFC2 units.  

 

Soft-sediment deformation is rare. Where observed, it shows pinched cuspate forms with 

greatest deformation at bed base. The soft-sediment features are almost always truncated by 

overlying beds and rarely affect more than two superposed beds.  

 

Lithofacies 3 (LFC3): interbedded, cross-bedded psammite and pelite 

LFC3 is characterised by well-developed, coarsening-upwards cycles 15-20 m thick 

consisting of low-angle cross-bedded, tabular psammite interbedded with a varying amount 

of pelite and semi-pelite (Fig. 6).  In comparison to LFC1 and LFC2, LFC3 psammites are 

generally less micaceous (composed of 60-75% quartz, c. 30% plagioclase and alkali feldspar 

and c. 15% muscovite and biotite) and comprise a much larger (60-70%) proportion of the 

depositional cycles.    

 

LFC3 cycles typically show: a pelitic base (0.5-1.5 m thick); an upward increase in the 

number and thickness of psammite beds and concomitant reduction in pelite; and a 

predominantly psammitic top (Fig. 6). A sequential change of bedforms accompanies the 

lithological changes in each cycle: bases are characterised by bundles of semi-pelitic and 

psammitic flaser, lenticular and pinstripe bedforms (Fig. 7a); central parts display 5-15 cm 

thick tabular psammite beds that are interbedded with horizontal and wavy-laminated semi-

pelite units ranging from 5 to 10 cm in thickness (Fig. 7b); and the uppermost parts show 

scalloped and erosive-based to tabular psammitic beds that, in places, contain trough cross-

stratification and only minor pelite.  Rhythmic bundling, or alternation, of the pelite and 

psammite beds is developed locally as evident by varying bed thicknesses, and mud-drapes 

and ripple cross-lamination are abundant. Psammite beds are sharp-based and tabular 

throughout LFC3, and show large width-to-thickness ratios (15:<0.2 m is typical). The 



thickness of psammite beds increases from <5 cm at the base of LFC3 units to 30 cm at the 

top. Ripple bedforms in LFC3 units are varied and consist of asymmetric, symmetric and 

combined-flow ripples.  In many instances superposed ripples show opposing directions of 

internal cross-laminae dip. Bundling is developed as repeated, deci-centimetre-scale 

alternations between ripple cross-lamination with mud drapes, and flat-laminated intervals 

with much lesser mud laminae (Fig. 7c).  

 

In places, pinched, cuspate soft-sediment deformation features are observed within the 

thickest psammite beds in the upper parts of the LFC3 cycles.  Throughout LFC3 there is no 

discernable change in the overall proportion of micaceous content of the beds or soft-

sediment deformation. 

 

 

 

Lithofacies 4 (LFC4): gritty, cross-bedded psammite  

LFC4 facies develop upwards from LFC3 and are confined to the middle of the Crom 

Psammite Formation.  Limited continuous outcrop between LFC3 and LFC4 hinders detailed 

and systematic documentation of the transition between the lithofacies but, nonetheless, 

sufficient outcrop is present (e.g. in the vicinity of Crom Loch above Gleann Mòr, Fig. 2c) 

over c. 1 km of stratigraphy to confirm that there is a consistent upward increase in trough 

cross-bedded psammite and a concomitant decrease in interbedded pelite. 

 

In the vicinity of Crom Loch, LFC4 is composed predominantly of feldspathic to quartzitic 

psammite containing 50-60% quartz, 30-35% alkali and plagioclase feldspar and 5-10% 

biotite and muscovite. Psammite constitutes more than 90% of LFC4 and is typified by 

amalgamated and stacked sets and cosets of trough cross-beds (Fig. 8), 5-50 cm thick, 

exhibiting erosive, scalloped bases and interbedded with much subordinate thin pelite beds 

(typically <5 cm thick; Fig. 9a). The trough-cross bed sets define scours with a smaller width-

to-thickness ratio (typically 30-50 cm wide and 4-15 cm thick) than in LFC1-3.  The trough-

cross bed sets are marked by near angle-of-repose foresets that are tangential to bounding 

surfaces.  Rarely, planar-stratified lenticular and wedge-shaped beds (lateral accretion bars) 

are present and range from 1.5-2 m in length and 20-40 cm thick.  These bed dimensions are, 

however, treated as minimal values due to the erosional truncation of the bedforms by 

overlying beds.  Lateral accretion features having set thicknesses measurable in decimetres 



can be observed and are orientated obliquely to the trough cross-beds and planar-

stratification.   

 

Gravel clasts and gravel lags are abundant within the psammitic facies (Fig. 9a); cm-scale 

accessory mineral bands are present locally. Gravel clasts of quartz and K-feldspar are 

typically 2-3 mm diameter (with the largest clasts having c. 4 mm diameters), and normal 

grading is observed within individual trough-cross bed sets. Soft-sediment deformation is 

relatively common within the thickest sets and is generally restricted to individual beds. Soft-

sediment deformation geometries are mainly pinched cuspate forms (Fig. 9b).  

 

LFC4 exhibits fining-upward units 5-10 m thick (Fig. 8), in contrast to the coarsening-

upward trends typifying LFC1-3 lithofacies cycles.   Each unit is characterised by 

amalgamated trough cross-bed co-sets at the base, and co-sets of trough cross-beds with 

associated ripple structures and minor pelite beds at the top.  Coarsening-upward sequences 

are observed locally and display thin ripple structures interbedded with minor pelite (beds 

generally 1-10cm thick) at the base, and amalgamated trough cross-beds (set thicknesses of 5-

30 cm) at the top.   Bedforms throughout this lithofacies exhibit mud drapes (Fig. 9a). 

   

In the vicinity of Beinn a’Cheistall (about 10 km SW of the main study area; Fig. 2b), the 

proportion of coarse-grained material is significantly greater and clast sizes are conspicuously 

larger (Peach et al. 1912). Clasts are generally lenticular and flattened due to tectonic 

deformation, and apparent long-axis lengths of 4 cm are common. Clasts are mainly K-

feldspar, vein quartz and quartzite, indicative of a broadly granitic source area. Layers of 

conglomerate up to 50 cm thick are common and alternate with layers of trough cross-bedded 

psammite.  

 

Palaeoenvironmental interpretation  

 

LFC1 

 

The high proportion of pelite, interbedded with sharp-based, tabular and thinly laminated 

psammitic and semi-pelitic beds is indicative of episodic deposition within a dominantly 

relatively low-energy environment. The occurrence of nested ripple-laminated and tabular 

psammite within mostly pelite and semi-pelite is indicative of unconfined sheet-like flows 

interspersed with quiescent periods. The rare occurrence of hummocky cross-stratification 



within LFC1 supports this interpretation and indicates the influence of storms during some 

depositional episodes (Hamblin & Walker 1979; Walker 1992; Dumas & Arnott 2006). This 

combination of features is typical of the offshore transition zone near storm wave base  where 

mud deposition out of suspension would be punctuated by episodic, storm-related sand-

bearing currents forming ripple-laminated tabular beds and hummocky cross-stratification 

(Walker 1992; Varban and Plint 2008). 

 

LFC2 

The development of distinct coarsening-upward depositional units in LFC2 and an overall 

increase in psammitic facies indicates a shallower depositional environment, than LFC1 

facies. The predominance of wave-ripples, planar cross-beds and bundled sets of ripple cross-

lamination to planar-lamination in the psammitic beds throughout most of LFC2 are 

indicative of sedimentation under oscillatory and combined flows in an inner shelf to 

shoreface setting (Walker 1992; Roberts 2007; Dashtgard et al. 2010).  The occurrence of 

asymmetric and combined-flow ripples, bidirectional ripple sets and the prevalence of mud 

drapes in some of the LFC2 cycles indicate periodically reversing flows separated by 

repeated episodes of slack water.  Such features are hallmark characteristics of tidally 

influenced shallow-marine environments (e.g. Walker 1992) and are good evidence for LFC2 

deposition to have occurred under tidal currents for some periods of time (Roberts 2007; 

Varban & Plint 2008).   

 

Taken collectively, the LFC2 facies are indicative of deposition predominantly within a 

shallow-marine shoreface and inner shelf setting influenced by tides.  

 

LFC3 

 

Coarsening-upwards cycles consisting of greater proportions of psammite relative to 

interbedded pelite and psammite units is indicative of further shallowing of the depositional 

in LFC3.  The presence of pinstripe, flaser and lenticular bedding, bidirectional ripple cross-

lamination and abundant mud drapes indicates that deposition was strongly tidally influenced 

(e.g. Molgat & Arnott 2001; Roberts 2007; Varban & Plint, 2008). The uppermost parts of 

LFC3 cycles are marked by psammites with sharp, scalloped, erosional bases and trough 

cross-bedding, reflecting deposition under increasingly higher energy flow conditions. The 

bundling of psammite and semi-pelitic beds within the LFC3 units suggests a 



palaeoenvironmental setting influenced by regular variations in flow energy, such as those 

associated with diurnal and spring-neap tidal cycles (Chakraborty & Bose 1992; Molgat & 

Arnott 2001).  The thicker, cleaner, psammitic facies with mud drapes, erosional bases and 

trough cross-bedding at the top of LFC3 units do not display well-developed bed bundling, 

and our preferred interpretation is that they represent the distal-most parts of a distributary 

network of broad, shallow tidally-influenced channels. 

 

LFC4 

 

The erosive-based, stacked, amalgamated sets of trough cross-bed sets and co-sets, arranged 

in m- to several-m-thick units that show an upward decrease in grain-size and thinning of 

beds are characteristics attributable to deposition in fluvial channels (Cant & Stockmal 2009; 

Varban & Plint 2008; Roberts 2007). Such a trend is commonly interpreted as reflecting 

decreasing flow strength and gradual abandonment of channels (Cant & Stockmal 2009; 

Bridge 1993; Skelly et al. 2003). The association of planar cross-stratified beds and the 

presence of gravel lags at the base of scalloped and lens-shaped beds with lateral accretion 

surfaces support such an interpretation. 

 

The pinched, cuspate soft-sediment deformation features are interpreted to represent water-

escape in rapidly deposited, water-logged sediment. Fluid escape is a consequence of high 

sedimentation rates generating unstable and over-pressurised water-laden sediment, for 

example during a flood event. A seismic origin of the soft-sediment deformation is ruled out 

because deformation is generally confined to individual beds (see Maltman, 1994).   

 

Overall, LFC4 facies are interpreted as recording a tidally influenced, distal distributary 

network of multiple, shallow, laterally shifting channels (Nio & Yang 1991; Varban & Plint 

2008; Walker 1992). Such a setting is typical of pre-land-plant Proterozoic times when 

channel margins were poorly stabilised (e.g. Bhattacharya & Giosan 2003; Long 2006) and 

shorelines would probably have been characterised by a distributary network of numerous, 

unconfined shallow channels at any one time, a setting commonly referred to as a ‘braidplain 

delta’ (McPherson et al. 1987; Fedo & Cooper 1990, 2001; Long 2006).  As a result, there 

would not have been a discrete point-source input of sediment to the palaeoshoreline, as in 

many modern shorelines, and instead sediment delivery would have been along a continuous 

braidplain margin.  The persistent repetition of coarsening- and thickening-upward units 



within LFC2-3 which underlie LFC4 in the lower part of the Crom Psammite Formation are 

taken as evidence of repeated marine flooding events followed by braidplain progradation.   

 

Facies associations 

 

The position of the lithofacies within the Crom Psammite Formation defines a coarsening- 

and then fining-upwards facies succession.  These trends are most easily recognised by the 

increasing and then decreasing psammite:pelite ratio upwards in the stratigraphy. Within the 

lower Crom Psammite Formation interbedded pelite and psammite lithologies of LFC1, 

develop upwards to the coarsening-upward lithofacies units of LFC2 and 3, in an overall 

coarsening-upwards facies succession.  Across this succession there is an upward increase in 

the proportion of psammitic and tidally influenced facies in each depositional cycle.  The top 

of the succession is marked by the predominantly psammitic and tidally-influenced distal 

fluvial facies of LFC4 – which are observed in the middle of the Crom Psammite Formation.   

 

In the upper Crom Psammite Formation the lithofacies are superposed in reverse order, from 

LFC3 to LFC1, to define a fining-upward facies succession.  Fluvial to tidally influenced 

lithofacies (LFC4-3) are, therefore, replaced upward by shoreface and shallow-marine 

lithofacies (LFC2-1) in the upper part of the Crom Psammite.   Individual LFC1-3 units are 

very similar to those observed in lower Crom Psammite (Figs. 10 and 11), however, in the 

upper Crom Psammite the proportion of finer pelitic and semi-pelitic lithofacies 

systematically increases across each depositional cycle so that, on the whole, the upper Crom 

Psammite fines upward. 

 

The lower and upper boundaries of the Crom Psammite Formation with the superposed Vaich 

Pelite and Diebidale Pelite formations, respectively, are indistinct.  The contact between the 

the base of the Crom Psammite and the underlying Vaich Pelite appears gradational and is 

marked by an upward increase in the number of ripple laminated psammite beds interbedded 

with the pelite and semi-pelite. Similarly, the top of the Crom Psammite is composed 

predominantly of thinly laminated semi-pelite, and psammite is rare.  As a result, the 

boundary between the Crom Psammite Formation and the laminated semi-pelitic Debidale 

Formation is also indistinct and difficult to place.   

 

  



 

 

 

Stratigraphic trends: a complete synthesis of the Morar Group in northern Scotland 

 

The above analysis indicates that the Crom Psammite Formation is dominated by tidally-

influenced, shallow-marine deposits with an incursion of braidplain facies in its middle part. 

There is evidence for two large-scale cycles: an initial marine-to-fluvial regression 

superceded by a fluvial-to-marine transgression in the upper part of the stratigraphy that 

culminated in a major basin-deepening event represented by the Diebidale Pelite Formation.  

Both the lower and upper contacts of the Crom Psammite are transitional and occur gradually 

over many 10s of m of stratigraphic thickness. Non-marine facies are subordinate and 

restricted to a c. 1 km-thick succession in the middle of the formation with the rest of the 

Crom Psammite being tidally-influenced shallow-marine deposits.  The scarcity of three-

dimensional exposures of trough cross-beds means that only a paltry number (5) of reliable 

palaeocurrent measurements are available. For completeness, we note that they yield broadly 

N-quadrant-directed sediment transport, but such few measurements over such a large 

stratigraphic thickness are not statistically significant.  Nonetheless, these measurements are 

broadly parallel to the northeastward thinning of the coarse gravelly deposits within LFC4, 

which could also be taken as indicative of the direction of sediment transport. 

 

The new data reported here need to be assessed in the context of published interpretations of 

the sedimentology of the lower (Altnaharra Formation) and middle (Glascarnoch Formation) 

parts of the Morar Group in northern Scotland (Krabbendam et al. 2008; Bonsor et al. 2010). 

These two publications documented a vertical facies transition from medial fluvial braidplain 

deposition, characterised by large (metre-scale) trough cross-bedded psammite in the 

Altnaharra Formation, to distal braidplain deposition, characterised by greater preservation of 

fines and smaller scale trough-cross beds and lateral accretion features, and then tide-

dominated shallow-marine deposition, reflected in rhythmic bundles of interbedded pelitic 

and psammitic lithologies, in the Glascarnoch Formation (Fig 12). 

 

Our new findings for the upper part of the Morar Group, combined with this previously 

published data, therefore indicate that the Group is a transgressive succession over its 6-9 km 

thickness, marked by an upward and eastward increase in shallow-marine facies relative to 

fluvial facies (Fig. 12). Within this large-scale trend are two superposed 



progradation/retrogradation cycles, similar in scale to the late Proterozoic – early Cambrian 

Grand Cycles of the North America Cordillera (e.g. Aitken 1978). The first cycle is 3-6 km 

thick and was initiated with the progradation of proximal braidplain deposits of the basal 

Altnaharra Formation followed by a gradual fining-upward and backstepping phase of 

sedimentation through the fluvial to tidally influenced shoreline of the Glascarnoch 

Formation. This cycle culminated in the (meta)siltstone of the deeper marine Vaich Pelite 

Formation (Fig. 12). The second cycle started with a gradual regressive or forestepping 

system as marked by the return of tidally influenced shallow-marine deposition upward to 

distal braidplain deposition through the lower to middle part of the Crom Psammite 

Formation. The second cycle then ended with the resumption of the transgression, as shown 

by the initiation of a fining- and deepening-upward trend from the upper part of the Crom 

Psammite Formation into the pelitic Debiedale Formation (Fig. 12). 

 

Discussion  

 

This study, combined with Bonsor et al. (2010) and Krabbendam et al. (2008), shows that the 

Morar basin preserves two, km-scale transgressive-regressive cycles superposed on an overall 

deepening trend with sufficient accommodation space for at least 6-9 km of siliciclastic 

sediment. Initial studies of the sedimentology of the Moine Supergroup interpreted it as a rift 

basin deposit (Strachan, 1986; Glendinning, 1988; Soper et al. 1998). Arguments against this 

interpretation have been summarised by Bonsor & Prave (2008), Krabbendam et al. (2008) 

and Bonsor et al. (2010). Briefly, the Morar Group succession described here (Fig 12) lacks 

the hall-mark features of rift-basin successions: there is no evidence for the episodic 

emplacement of fault-generated detritus (all facies and lithological transitions are very 

gradual); there is no evidence for abrupt, periodic (i.e. repetitive) generation of 

accommodation space that would be expected along basin-bounding faults; nor are there any 

abrupt vertical or lateral facies transitions which are characteristic of rift basin settings (e.g. 

Archie & López-Gómez 2005). Over c. 6-9 km of stratigraphy there is no indication of 

volcanic or evaporitic input, no substantial or abrupt coarse-grained deposits, and no rapid 

changes to the dominant palaeoflow direction, which is atypical of rift basin settings (e.g. 

Allen & Allen 2005).  

  

The alternative view adopted here is that the Morar Group was deposited in a foreland basin. 

The gradual and systematic nature of facies changes over significant thicknesses of sediment 



is consistent with an extensive basin formed by tectonic loading. This scenario can also 

explain the sustained subsidence necessary to accumulate such a thick succession, in 

combination with the general lack of syn-depositional igneous activity.   Similar depositional 

frameworks, both in scale and lithofacies development, are known for the well-studied 

Cretaceous Interior Seaway basins that fringed the North American Cordillera from Canadian 

to Mexico (Beaumont, 1981; Flemings & Jordan 1989; Cant & Stockmal 1989; Flemings & 

Jordan 1990; Jordan & Flemings 1991; Underschultz & Erdmer 1991; Plint et al. 2001; 

Varban & Plint 2008; Yang & Miall 2010).  There, episodic loading events are known to 

have driven km-scale progradational-retrogradational depositional cycles, not dissimilar to 

those described above for the Morar Group. 

 

Palinspastic reconstructions of the Morar Group basin place it north of, but proximal to, the 

Grenville orogen in the North Atlantic region (Fig 1; Krabbendam et al. 2008; Cawood et al. 

2010). Peak metamorphism in the Grenville is dated broadly at c. 1100 – 1000 Ma, with late-

orogenic cooling and magmatism lasting until c. 960 Ma (e.g. Rivers 1997; Davidson 2008; 

Hynes & Rivers 2010).  Deposition of the Morar Group must have occurred after the age of 

the youngest dated detrital zircons at c. 1000 Ma (Peters 2001; Friend et al. 2003; Kirkland et 

al. 2008) but before the oldest Knoydartian metamorphic event at c. 820 Ma (Vance et al. 

1998). These age constraints permit the interpretation that deposition was at least partially 

contemporaneous with late-stage Grenville orogenesis.  As a result, subsidence and 

progressive deepening of the basin could, at least in part, have been driven by loading of 

Grenville-orogeny-emplaced thrust sheets, and aided by sediment loading (e.g. Beaumont 

1981). The gradual and systematic facies changes (both laterally and vertically) exhibited by 

the Morar Group and the lack of sharp influxes of coarse deposits are consistent with the 

genesis of the basin under a suite of conditions such that the rate of subsidence exceeded the 

rate of sediment flux, a pattern not uncommon in foreland settings (Tankard 1986; Varban & 

Plint, 2008; Yang & Miall 2010).  The palaeocontinental reconstructions also indicate that the 

Moine basin was located relatively near to the periphery of Rodinia (Li et al. 2008; see also 

Cawood et al. 2010), so that the evolving basin may also have been affected by far-field plate 

boundary effects and sea-level changes, similar to those which would have affected 

correlative successions in East Greenland and Svalbard (Cawood et al. 2010).  The relative 

contributions of Grenville-related thrust loading versus plate boundary effects and/or eustatic 

sea-level rise to the basin evolution remain speculative however.  

 



High sediment flux from the Grenville orogen to the basin would have been facilitated by 

high erosion rates of the source, as a result of both a lack of sediment-stabilising terrestrial 

biota in the Neoproterozoic, and a humid climate (Williams 1969; Retallack & Mindszenty 

1994).  The latter conditions have been inferred for at least the start of the deposition of the 

Morar Group from the nature of palaeosols found in Lewisian Gneiss beneath the base-

Torridon Group unconformity in northwest Scotland by Williams (1969) and Retallack & 

Mindszenty (1994).  In addition, Hoffman & Grotzinger (1993) suggested that the position of 

the Grenville Orogen was favourably oriented with respect to trade winds to allow monsoonal 

precipitation.  The combination of high precipitation with a lack of vegetation has no 

parallels in modern-day orogens, so it is difficult to judge how much greater associated rates 

of erosion would have been, but it is likely that they were very high. The distribution of 

detritus derived from the Grenville orogen across Laurentia (Rainbird et al. 1992; Banks et 

al. 2007; Cawood et al. 2007; Petterson et al. 2009) suggests that a considerable portion of 

sediment bypassed the Grenvillian foreland sensu stricto.  The gradual transitions between 

facies in the Morar Group are inferred to be the result of sustained delivery of sediment to the 

basin.  If the higher estimates of sedimentation rates in Phanerozoic foreland basins are 

applicable – e.g. c. 500 m/Myr (e.g. Pfiffner 1986; Roberts 2005), then the entire Morar 

Group may have been deposited within 12 – 18 million years.     

 

The fluvial sandstones of the early Neoproterozoic Torridon Group outcrop extensively on 

the Caledonian foreland in northern Scotland, west of the Moine Thrust Zone (Fig 12; 

Stewart 2002 and references therein). The possibility of correlation of the Torridon Group 

and the Morar Group has been discussed frequently (e.g. Peach et al. 1907; Kennedy 1951; 

Sutton & Watson 1964; Stewart 2002; Friend et al. 2003), although it has often been 

discounted because of the potentially large displacements that may have occurred on the 

intervening Moine Thrust. Krabbendam et al. (2008) have shown that the Altnaharra 

Formation and the Torridon Group are similar in terms of their age of deposition, fluvial 

sedimentology, stratigraphical thickness and position on Lewisian basement, geochemistry, 

detrital zircon age pattern, and overall sediment transport direction (see also Rainbird et al. 

2001; Kinnaird et al. 2007). The detrital zircon distributions in both groups show that they 

share a similar source, namely parts of eastern Laurentia and the Grenville Orogen, the final 

stages of which overlap deposition. It was therefore concluded that the Applecross-Aultbea 

and the Altnaharra formations are direct correlatives (Fig 12) and formed part of an axial 



trunk fluvial system flowing in front of the Grenville Orogen, forming an orogen-parallel 

foreland basin.  

 

It is now apparent that both the Torridon Group and the lower Morar Group are characterised 

by major fining-upwards trends. In the Torridon Group this fining-upwards trend occurs 

within a terrestrial-fluvial succession – topped by deltaic and/or lacustrine deposits of the 

Cailleach Head Formation (Stewart 2002).  Within the Morar Group – originally deposited 

much farther east – the trend is from medial fluvial to shallow marine facies. Our 

reconstruction of stratigraphic relations implies that the Applecross-Aultbea-Altnaharra 

fluvial wedge passed laterally eastwards into the dominantly tidally-influenced shallow-

marine sediments of the Glascarnoch Formation (Fig 12). We interpret the base of the 

overlying Vaich Pelite Formation in the Morar Group as a major flooding surface produced 

during marine transgression; this unit may broadly correlate with the deltaic and/or lacustrine 

deposits of the Cailleach Head Formation (Stewart 2002) at the exposed top of the Torridon 

Group (Fig 12). Our new data for the upper Morar Group reveal that a further progradational-

retrogradational cycle occurred, as recorded by the Crom Psammite, and then a major 

flooding surface represented by the base of the Diebedale Pelite Formation (Fig 12). Our 

proposed correlations require testing by geochronology centred on providing more accurate 

constraints on the ages of deposition of these units, as well as a more systematic study of 

detrital zircon age patterns than is available to date.  

 

 

Conclusions 

 

This study provides new sedimentological data for reconstructing the depositional framework 

of the Morar Group (lower Moine Supergroup) in northern Scotland. The Crom Psammite 

Formation, which forms the upper part of the Morar Group, is ca. 2-3 km thick and is 

exposed across its full thickness in the Glen Calvie area, northern Scotland.  Detailed 

sedimentological analysis has identified:  

 Four lithofacies within the Crom Psammite Formation, ranging from tidally-

influenced shallow-marine, to fluvial deltaic facies. The non-marine facies are 

subordinate and restricted to a c. 1 km-thick succession in the middle of the 

formation.   

 



 Vertical stacking of the facies define two large-scale cycles, each ca. 1-1.5 km thick: 

a coarsening-upward marine-to-fluvial regression in the lower Crom, and a fining-

upward fluvial-to-marine transgression in the upper part of the stratigraphy that 

culminated in a major basin-deepening event represented by the Diebidale Pelite 

Formation.  

 Both the lower and upper contacts of the Crom Psammite to the Vaich and Debidale 

Pelite formations, respectively, are transitional and occur gradually over many 10s of 

m of stratigraphic thickness.   

 

Our new findings for the upper part of the Morar Group, combined with previously published 

data (Bonsor et al. 2010; Krabbendam et al. 2008), indicate that the Morar Group is a 

transgressive succession over its 6-9 km thickness, marked by an upward and eastward 

increase in shallow-marine facies relative to fluvial facies. Within this large-scale trend are 

two superposed progradation/retrogradation cycles, similar in scale (several km) to the late 

Proterozoic – early Cambrian Grand Cycles of the North America Cordillera. The overall 

characteristics of the succession are consistent with deposition in a large, marginally 

underfilled foreland basin located adjacent to the Grenville orogen, and possibly linked to the 

peri-Rodinian ocean. 
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Figures 

 

Fig. 1.  Schematic reconstructions of Laurentia, Baltica and Amazonia at ca. 1000 Ma, 

following amalgamation of Rodinia and Grenville-age orogenesis: (a) after Dalziel and Soper 

(2001) and (b) after Li et al. 2008 and Cawood et al. 2010, who used the term ‘Asgard Sea’ to 

refer to the oceanic tract that separated Laurentia and Baltica.  Approximate position of 

Morar (M), Torridon (T), and Krummedal (K) sequences is indicated. SN, Sveconorwegian 

Belt; Hb, Hebridean block (NW Scottish Foreland and Rockall Platform).   

 
  



Fig. 2.  a) Overview map of Northern Highlands, showing main early Neoproterozoic 

sequences and their basement.  Post-900 Ma rocks not shown. AT = Achness Thrust, MT = 

Moine Thrust, SBT = Sgurr Beag Thrust, MP = Morar Peninsula. Areas of previous 

sedimentological studies in the lower and middle Morar Group are outlined within boxes 

marked ‘Fannichs’ (Bonsor et al. 2010) and ‘Sutherland’ (Krabbendam et al. 2008).   Box 

marked ‘Glen Calvie’ is area of this study; b) Map of the Glen Calvie area – subset area 

highlighted is shown in Fig. 2c; c) Geological map of Glen Calvie study area.  Location of  

sedimentological logs from this study are shown: U.G.-V. = Upper Glascarnoch - Vaich 

Pelite - Lower Crom Psammite; L.C. = Lower-Mid Crom Psammite; M.C. = Mid Crom 

Psammite; U.C. = Upper Crom Psammite section.  Aproximate boundaries of lithofacies 

LFC1 - LFC4 shown.   

 

  



Fig. 3. Schematic diagram of the regional Morar Group tectono-stratigraphy in the northern 

Highlands (Fannichs – Sutherland).  Major thrust faults, but not folds, are shown; not to 

scale.  Relative location of log sections from this study are denoted by black bars – the code 

of the logs corresponds to logs marked in Fig. 2, and to the detailed log sections in Figs. 4, 6, 

8 & 10.  Log sections from previous studies are shown by white bars (Bonsor et al. 2010), 

and hashed bars (Krabbendam et al. 2008).   

 
  



Fig. 4. (a) Sedimentological log of LFC1 in the lower part of the Crom Psammite Formation 

(GR 245314, 888506); and (b) sedimentological log of LFC2 above LFC1 in the lower Crom 

Psammite Formation (GR 243957, 888050).  In both, arrows denote palaeo-flow directions 

measured from small-scale ripples; note the absence of conglomerate. Grey triangles mark 

coarsening-upward units.  

 
  



Fig. 5. Complex co-sets of ripple cross-laminations within psammitic beds of the Lower 

Crom Formation. 

 
  



Fig. 6. Sedimentological log of LFC3 in the lower part of the Crom Psammite Formation, 

Glen Calvie. Arrows denote palaeo-flow directions measured from small-scale ripples; grey 

triangles mark coarsening-upward units. 

 
  



Fig. 7. Photographs of the lower part of the Crom Psammite Formation: (a) lenticular and 

flaser bedding; (b) thin tabular cross-beds and lens-shaped psammite beds interbedded with 

horizontal and wavy-laminated semi-pelite units; and (c) bundles of combined-flow and 

wave-ripple units with planar laminated units. 

 
  



Fig. 8. Sedimentological log of LFC4 within the middle part of the Crom Psammite 

Formation, Crom Loch (GR 238995, 882705).  Arrows denote palaeo-flow directions 

measured from three-dimensional trough cross-bed structures; dots denote gravel lags and 

clasts; grey triangles mark fining-upward units. 

 

 
  



Fig. 9. Photographs illustrating the LFC4 lithofacies within the middle part of the Crom 

Psammite Formation: (a) gravel lags and mud drapes are common at the base and top of 

individual cross-bed sets; and (b) typical pinched cuspate soft-sediment deformation forms in 

LFC3.  

 
  



Fig. 10. Sedimentological log of LFC3 facies in the upper part of the Crom Psammite 

Formation, Glen Calvie (GR 246878, 885958).  Grey triangles mark coarsening-upward 

units.  Individual coarsening-upward cycles in the lithofacies are similar in both the lower 

and upper part of the Crom Psammite Formation.  

 
  



 

Fig. 11. Photographs of typical LFC2 facies in the upper Crom Psammite Formation: pelite 

and semi-pelite interbedded with thin cross-laminated tabular psammite (GR 234790, 

888870). 

 
  



Fig. 12. Schematic stratigraphic section of the Morar Group, which integrates all the detailed 

sedimentological logs from work in the Morar Group, and shows the inferred  

palaeoenvironments, and possible correlations with the Torridon Group.   Lines of 

sedimentological logs in the Morar Group from this study are marked by black bars; logs 

from previous work are marked by white bars.  Arrows  denote general direction of 

palaeoflow. The right hand column indicates inferred base-level trends in the basin, and 

demarcates points critical to basin evolution (e.g. flooding surfaces).  

 


