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Abstract 

This paper reviews the potential impacts of climate change on nitrate concentrations in 

groundwater of the UK using a Source–Pathway–Receptor framework. Changes in 

temperature, precipitation quantity and distribution, and atmospheric carbon dioxide 

concentrations will affect the agricultural nitrate source term through changes in both soil 

processes and agricultural productivity. Non-agricultural source terms, such as urban areas 

and atmospheric deposition, are also expected to be affected. The implications for the rate of 

nitrate leaching to groundwater as a result of these changes are not yet fully understood but 

predictions suggest that leaching rate may increase under future climate scenarios.  Climate 

change will affect the hydrological cycle with changes to recharge, groundwater levels and 

resources and flow processes. These changes will impact on concentrations of nitrate in 

abstracted water and other receptors, such as surface water and groundwater-fed wetlands. 

The implications for nitrate leaching to groundwater as a result of climate changes are not yet 

well enough understood to be able to make useful predictions without more site-specific data. 

The few studies which address the whole cycle show likely changes in nitrate leaching 

ranging from limited increases to a possible doubling of aquifer concentrations by 2100. 

These changes may be masked by nitrate reductions from improved agricultural practices, but 

a range of adaption measures need to be identified. Future impact may also be driven by 

economic responses to climate change.  
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1 Introduction 

Understanding the impact of climate change on the hydrological cycle, particularly the 

impacts on water quality, is essential for ensuring the sustainability of future water resources. 

Such impacts have been the focus of numerous site- and processes- specific studies over the 

last couple of decades. More recently, due to the complexity of the potential environmental 

responses to change, a number of studies or overviews have attempted to integrate findings 

from site and case studies. For example, the potential impacts of climate change on 

agriculture have been reviewed by Downing et al. (2000), on UK surface water quality by 

Whitehead et al. (2009), and the fate and transport of pesticides in ground and surface water 

by Bloomfield et al. (2006). Taking the UK as a case study, this paper provides an overview 

of the potential impacts of climate change on nitrate concentrations in groundwater using a 

Source–Pathway–Receptor framework. 

In the UK, nitrate is almost ubiquitous in groundwater, often at elevated concentrations and 

exceeding drinking water standards (Rivett et al., 2007). It is the most widespread 

groundwater quality problem facing the UK water industry and environmental regulators, as 

it is the single biggest cause of groundwater body status failure under the WFD (UKWIR, 

2004). Nitrate concentrations are predicted to continue to rise in many places over the next 

decade (Stuart et al., 2007). If present trends continue, many groundwater sources could 

exceed the drinking water standard by 2015, as indicated by trend analysis reported in River 

Basin Management Plans. Significant seasonality also gives potentially problematic 

concentrations during the winter months. Holman and Loveland (2001) set out a cross-

sectorial regional assessment of climate change (RegIS) which included water resources. 

They used the Driver–Pressure–State–Impact–Response approach to link climate change, 

agricultural sector, water resources, and receptors such as water quality, biodiversity and 

societal response. We have used a similar approach in this study.  

In order to understand the nature of climate change impact on groundwater nitrate 

concentrations, three important questions need to be addressed: 

 What are the likely changes to agricultural practices and how may these affect nitrate 

leaching from the soil zone? 

 What are the likely changes to groundwater recharge mechanisms and groundwater 

levels? 
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 What are the likely changes to nitrate concentrations in groundwater and the 

consequent impact on groundwater receptors? 

We address these questions by applying a Source–Pathway–Receptor model to the nitrogen 

(N) cycle. A simplified version of the N cycle is shown in Fig. 1. This includes direct run off 

from the soil to surface water, bypassing groundwater. This process is not covered in depth in 

this review. The Source–Pathway–Receptor model provides a convenient conceptual 

framework to allow the various factors to be considered individually. It is accepted that such 

a simplification excludes the interaction of this cycle with other element cycles and with the 

water cycle (Cresser et al., 2008). The Source–Pathway–Receptor model also includes a 

Driver/Pressure term to express climate change, where for this study we use climate change 

scenarios from the UK Climate Impacts Programme (UKCIP).  

Figure 1 

The study draws on extensive literature mainly from the UK and so presents a UK-based 

perspective, although literature for other temperate climates is included to augment that from 

the UK and to demonstrate that the proposed framework and general conclusions have a 

wider applicability. 

The principal N input to UK groundwater is derived from manures, fertilisers, sewage 

sludges and crop residues in agricultural areas (DEFRA, 2006).  There are also smaller inputs 

from urban point sources and aerial deposition (Wakida and Lerner, 2005). N fertiliser can be 

applied as urea or ammonia, as well as nitrate, but the non-nitrate forms are generally 

converted rapidly to nitrate in the soils of the UK (MAFF, 1999). A small percentage of 

applied N is lost to the atmosphere as NH3, NO or N2O (Destouni and Darracq, 2009; Skiba 

et al., 1997; Sommer and Hutchings, 1995). A proportion of soil N is leached as nitrate from 

the base of the soil. This is either stored in, or transmitted through, the unsaturated zone to 

groundwater. 

Scenarios of climate change for the UK have been produced by UKCIP in 1998 (Hulme and 

Jenkins, 1998) and 2002 (Hulme et al., 2002), and recent climate conditions have fallen 

broadly within the range of projections. The most recent predictions for the UK, UKCP09, 

now include feedback within the atmospheric carbon cycle and uncertainties in the feedback 

from the land carbon cycle (Murphy et al., 2009). These climate change scenarios are used as 

a reference throughout the paper and are summarised in Table 1. The emissions scenarios 

used in UKCP09 reflect a range of social and economic changes including population, 
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economic growth, technological developments, energy usage and type, and land use. It is 

assumed that land use change will slow down but there will be continued agricultural 

intensification due to rising global demand for food.  

The projected changes show a wide range of uncertainty with the temperature differential 

between southern England and northern areas perhaps greater than at present, but with less 

predictable changes in distribution and intensity of rainfall.  

Characterising uncertainty in climate impact modelling studies is currently the focus of 

extensive work. For example, Prudhomme and Davies (2009) investigated three sources of 

uncertainty surrounding climate change impact studies on river flows in the UK: uncertainty 

in General Circulation Models (GCMs), in downscaling techniques and in hydrological 

modelling and showed that GCM uncertainty is generally larger than downscaling 

uncertainty, and both are consistently greater than uncertainty from hydrological modelling or 

natural variability. However, no downscaling technique was found to be significantly better 

or to have a systematic bias smaller than the others. Jackson et al. (2011) applied a suite of 

outputs from thirteen different GCM models to a regional distributed groundwater model of 

the Chalk aquifer of Berkshire, UK to investigate uncertainty in the driving GCMs on 

groundwater. They found that although an ensemble average suggests there will be about a 

5% reduction in annual potential groundwater recharge across the study area, this was not 

statistically significant at the 95% confidence level and more importantly observed that the 

spread of results for simulated changes in annual potential groundwater recharge range from 

a 26% decrease to a 31% increase by the 2080s, with ten GCMs predicting a decrease and 

three an increase in potential recharge. 

An important additional source of uncertainty in the impacts of climate change is the method 

by which the climate data are downscaled.  Many of the UK studies have used change factor / 

delta methods, which will produce very different understanding of impacts to that which will 

be gained by the probabilistic UKCP09 scenarios.  There are as yet few published studies on 

this, although Fowler et al (2007) look at the issue in the broader context of hydrological 

modelling, and Holman et al (2009) compares methods for potential recharge.  

 

Position of Table 1 
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2 Climate change and the nitrogen source term 

2.1 Leaching from agricultural land 

Nitrate in UK groundwater is derived primarily from agricultural sources (Wilson et al., 

1994). Predictions using the NEAP-N model, which estimates current losses from the base of 

the soil zone from agricultural land, show that concentrations range up to 180 mg L-1 NO3 

(Silgram et al., 2001). Concentrations higher than this have been recorded within potential 

recharge leaving the soil zone (e.g. Rozemeijer et al. 2009). Whilst it is clear that climate 

change will have a significant impact on crop yields and geographical distribution, it is 

difficult to predict what these will be and relate these directly to changes in nitrate 

availability in the soil. For leaching processes the impacts are clearer with most changes 

leading to increased nitrate leaching. 

Currently the UK climate is well-suited to temperate zone crops with good adaptation to 

cooler temperatures: yields of wheat, barley, oats and sugar beet are amongst the highest in 

the world (MAFF, 2000). Most studies of climate change impacts on agriculture have 

analysed the effects of long-term climatic changes on crop production, but the impacts of 

increasing climatic variability should also be included (De Jong et al., 2008).  The impact of 

changes to the flux of N leaching from the base of the soil must also be included. Fig. 2 

summarises the ways in which increased greenhouse gases could have an impact on 

agricultural nitrate leaching. The main factors considered in this review are changes in 

agricultural land use and soil mineralisation; these are discussed below. 

Position of Figure 2 

2.1.1 Changes in crop yield and distribution 

Crop yields are affected by many factors associated with climate change including 

temperature, rainfall, atmospheric CO2 concentration, extreme weather events and climate 

variability (MAFF, 2000; RR, 2009).  Of these, increased CO2 is mostly beneficial, although 

it can result in the requirement for additional fertiliser applications, whereas others such as 

temperature and rainfall can be both beneficial and detrimental. For northern Europe climate 

change is projected to bring mixed effects on agricultural productivity (IPCC, 2007). Cline 

(2007) quotes a range of scenarios giving changes varying from between -4 % and 11% to 

between 10% and 28% increase in agricultural capacity for the UK by 2080. A summary of 

the possible impacts on temperate crop yields and changes in distribution of cropped areas in 

shown in Table 2. 
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Position of Table 2 

Overall, crop productivity is predicted to increase slightly at mid to high latitudes for local 

mean total temperature increases of 1-3 °C depending on the crop type then decrease beyond 

that in some regions (IPCC, 2007). Higher temperatures during the growing season speed 

annual crops through their development and a lower mass may be produced in all but very 

northerly areas, such as Canada and Russia (Parry et al., 1999).  The other main cause of 

falling yields is the projected decrease in water availability due to increase in 

evapotranspiration, enhanced losses of soil moisture and a projected decrease in precipitation.  

Poor vernalisation, an insufficient period of low winter temperatures to initiate or accelerate 

the flowering process, can also be important (Parry et al., 1999). In the short term, climate 

warming will allow earlier planting or sowing combined with a short-season cultivar to 

minimise the impact of heat and water stress.  

Most cereals and fruit are determinate plants, where a flower or bud terminates the growing 

tip, flowering occurs all at once over a short period and there is a rapid switch from 

vegetative growth to seed formation and filling. These crops are therefore vulnerable to 

transient stresses.  In contrast, indeterminate crops, such as sugar beet and maize, maintain 

vegetative apices and flower from axillary buds over longer periods. These crops are less 

efficient yield producers under favourable conditions but provide yield stability.  We could 

therefore anticipate a long-term switch to indeterminate crop types in the warmer, drier parts 

of the UK based on climatic sensitivity although this may be offset by the continued high 

demand for cereals.  Parry et al. (1999) used a percentage increase in global cereal prices of 

between 20 and 40% by 1980 depending on the climate scenario.  

The predicted effect of increased atmospheric CO2 concentrations is to increase the rate of 

photosynthesis and growth (carbon fertilisation) and to reduce the amount of water required 

for unit biomass (MAFF, 2000). Gauging the influence of higher atmospheric concentrations 

of CO2 on crop yields (carbon fertilisation) is therefore crucial to estimates of agricultural 

impact (Cline, 2007; Olesen and Bindi, 2002). Crops are divided into two types, C3 and C4, 

depending on the mechanism of photosynthesis. C3 crops benefit substantially more from 

carbon fertilisation. Crops belonging to the C3 group include low temperature crops such as 

wheat, potatoes, barley, oats, higher temperature crops such as soybeans, rice, cassava, as 

well as legumes and most trees. The C4 group includes maize, millet, sorghum and sugarcane.  
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Work on the original projections for carbon fertilisation using studies from enclosures, such 

as greenhouses, suggested rising yields particularly for C3 crops of up to 30% (summarised in 

Cline (2007)). It was assumed that these increases could offset declines in yield due to other 

climate change factors. More recent work using the free air concentration enrichment method 

(FACE) suggests that the impact is likely to be perhaps only 50% of the original predictions 

(Long et al., 2006). Lesser increased yields may also be seen for C4 crops (Torbert et al., 

2004).   

It is well established that elevated CO2 reduces plant stomatal conductance, transpiration and 

dark respiration, improving water use efficiency (Drake et al., 1997). The combined effect of 

these processes is to increase usage efficiency of radiation, N and water. Morison and Gifford 

(1983) showed that the sensitivity of stomatal conductance to increases in CO2 for C3 and C4 

grasses was similar. Transpiration efficiency was larger in the C4 species but the relative 

increase was larger in C3. The observed increase in global river runoff through the 20th 

century has been related to the reduction of plant uptake of water due to CO2 induced 

stomatal closure (Betts et al., 2007; Gedney et al., 2006). Sinclair (1992) showed that the 

availability of mineral nutrition limited the potential effects of CO2 uptake. Grasslands may 

be amongst the earliest systems to be affected (Ball and Pocock, 1997). 

In an integrated assessment (ReGIS), using East Anglia and the northwest of England as case 

studies, Holman et al. (2005a) record the scope provided by climate change to extend the 

range of currently grown crops, such as sugar beet and potatoes, to introduce new crops: 

sunflowers, grain and forage maize and to alter current rotations. There may also be a move 

from grassland to arable farming, due to economic pressures and an increase in arable area in 

upland catchments. Tuck et al. (2006) assess the potential distribution of a wide range of 

biofuel crops under climate changes in different latitudes and longitudes of Europe. There is 

the potential for a substantial increase in extent for olives, sorghum and possibly peanuts in 

England and field mustard, hemp and reed canary grass in Scotland.  There are many other 

factors which influence agricultural practice, including regulations and demographic 

pressures. 

2.1.2 Impact on nitrogen leaching from agricultural land 

Most nitrate leached from arable soils originates from inorganic N present in the soil pool in 

late summer, autumn or early winter, when plant demand is low.  This residual is liable to 

leaching in late autumn or early winter (White et al., 1983). Losses from crops are therefore a 
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function of the interactions between over-winter rainfall, soil type and water holding 

capacity, cropping, and the rate/timing of fertiliser/manure applications. Goulding (2000) and 

Di and Cameron (2002) suggest an increasing potential for leaching flux in the order 

forest<cut grassland<grazed pastures<arable cropping<ploughing of pasture<market gardens. 

Nitrate leaching beneath individual crops, measured by means of porous pot suction 

lysimeters or conventional lysimeters, appears to be very variable on the field scale (Cuny et 

al., 1998; Goulding et al., 2000; Owens et al., 2000; Wu et al., 1995). Leaching can also be 

estimated from the N balance by measuring the other elements of the N cycle (Lord et al., 

2002; Salo and Turtola, 2006; Sieling and Kage, 2006).  Many of these studies report leached 

N as a concentration rather than a flux and make these studies difficult to compare.  

Estimates identify outdoor vegetables, potatoes and oil seed rape as giving the greatest losses 

under current agricultural practices (Table 3). This data has some limitations as it is derived 

mainly from point source measurements and also does not account for cumulative effects 

from previous crops.  Data for possible new crops such as sunflowers, soybeans, various 

types of maize, and sorghum are more-readily available from warmer climatic areas, such as 

Spain, USA and China, and may not be comparable to the UK (Owens et al., 2000; Scott 

Angle, 1990; Zhao et al., 2006; Zhu and Fox, 2003).  

Position of Table 3 

Future nitrate leaching will also be affected by continued changes to agricultural practices 

designed to reduce nitrate leaching, such as catchcrops and rotations (Beaudoin et al., 2005; 

DEFRA, 2009; Francis et al., 1998; Herrera and Liedgens, 2009; Justes et al., 1999; 

Thomsen, 2005).  The N balance can be poorly correlated to the mass of leached nitrate in the 

short term but may be a good longer term indicator (Sieling and Kage, 2006). The indirect 

effects of changing land use and agricultural systems can have significant effects on soils 

(MAFF, 2000). Climate change will also modify key soil processes that underpin crop 

growth.  

Soil mineralisation depends on the nature and abundance of the organic matter and on 

temperature, humidity, pH and faunal activity. It is widely believed that increases in ambient 

temperature will decrease the organic matter content of soils (Leirós et al., 1999) and this in 

turn can affect hydraulic properties (Bowman et al., 2000). 

Net soil mineralisation of N is a complex process being the difference between gross 

mineralisation and immobilisation. The extent of mineralisation of N in soils increases 



Stuart et al . Nitrate and CC in the UK  

 9

linearly with soil organic matter content and with temperature (Leirós et al., 1999), leading to 

the build up of inorganic N in the soil and an increased risk of leaching (Olesen and Bindi, 

2002). Soil moisture appears to be the primary variable affecting soil enzyme activity 

(Sardans et al., 2008). N mineralisation and nitrification are related to temperature and 

indirectly to rainfall (Emmett et al., 2004). The overall effects depend on how changes affect 

soil moisture during the summer season (Leirós et al., 1999), on the countering effects of 

growth enhancement from increased carbon inputs and increased nitrate uptake by vegetation 

(Ineson et al., 1998a; Ineson et al., 1998b).  

Generally, microbial activity is lowest when the soil is either dry or saturated. Borken and 

Matzner (2009) reviewed the effects of wetting and drying cycles on mineralisation and 

concluded that increasing summer droughts will reduce mineralisation and N and C fluxes 

whereas increasing summer precipitation could enhance losses. They suggested that the  

pulse in net N (and C) mineralisation commonly observed following wetting of dry soil is 

short-lived and that this additional mineralisation during wetting may be derived from 

accumulated microbial and plant necromass, lysis of live microbial cells, release of solutes 

and exposure of previously protected organic matter. 

However, soil mineralisation appears to be enhanced under climate change scenarios. To 

simulate increasing temperature Rustad et al. (2001) reviewed data from a number of studies 

using artificial warming such as undersoil heating and greenhouses. For 2-9 years of warming 

in the range 0.3-6 °C, net N mineralisation rate increased by 46% and plant productivity by 

19%.  Ducharne et al. (2007) modelled a number of climate change scenarios which indicated 

an increase of net N mineralisation rate of between 8 and 25% on a reference level of 94 kg N 

ha-1 yr-1. The impact of increased temperature (8 to 26%) was smaller than that reported by 

Rustad et al. (2001) but outweighed the reduction of mineralisation due to reduced soil water 

content. 

Nutrient fluxes tend to be greatest under storm events, both to overland flow and to delivery 

of deeper soil water to drainage (Petry et al., 2002). An important control on N leaching to 

groundwater is the proportioning between run-off and infiltration. Increased rainfall intensity 

and changes to soil hydraulic properties will lead to a change in partitioning between run off 

and recharge. N leached directly to surface water will be removed via rivers to the sea. Soil 

parameters controlling the water balance, such as soil texture, organic content, hydraulic 

conductivity, wetting front pressure, field capacity residual water content and porosity, as 

well as ion exchange capacity, are key to the prediction of nitrate leaching (Vachaud and 
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Chen, 2002). Shallow groundwater often shows large temporal and spatial variations in 

nitrate concentration. Rozemeijer et al. (2009) found weather-induced fluctuations of between 

55% and 153% of average nitrate concentrations in a test farm in the Netherlands.  

Callesen et al. (2007) showed that freezing and thawing of soils may alter the N turnover, 

with large losses following periods of frost due to increased ammonification and 

mineralisation. Matzner and Borken (2008) reviewed the mechanisms causing the post-frost 

pulse and suggested that nitrate losses are more likely caused by reduced root uptake rather 

than by increased N net mineralisation. Elevated nitrate losses from soils under alpine and/or 

arctic and forest vegetation occurred only in the year following exceptional soil frost, with 

greatest reported losses of a flux of about 13 kg N ha−1 yr-1. The pool of N susceptible to 

freeze-thaw events is rather limited, as indicated by decreasing losses with short-term 

repeated events. Thus, freeze-thaw events might induce solute losses of N from soils that are 

relevant at the annual time scale. The recent periods of below average winter temperatures in 

the UK suggest that this process could be relevant to large areas of the UK. 

There have been a number of attempts to model the impact of climate change on N leaching 

with variable results. Olesen et al. (2007) modelled the impact of yields of winter wheat and 

nitrate leaching under a range of climate change scenarios. They projected that yields of 10 t 

ha-1 would extend further north in the UK for the period 2071 to 2100. However, nitrate 

leaching flux showed a patchy increase over the same period, although this is not quantified. 

Eckersten et al. (2001) modelled the possible consequences of climate change on the N 

budget of winter wheat in Southern Sweden. The effects of both elevated atmospheric CO2 

and changed climate were simulated using two linked process-oriented models 

(SOIL/SOILN). For the year 2050 winter wheat production was predicted to increase by 10-

20% compared with the present value. Precipitation and drainage was predicted to increase 

which resulted in an increased N leaching flux of 17% (from 58 to 68 kg ha-1 yr-1). However, 

Ulen and Johansson (2009) showed that modelled N leaching flux from an arable field in 

Sweden using tile drain and piezometer data has increased by only 0.06 kg ha-1 yr-1 in the 

period 1993 to 2005 due to an increased temperature of 2°C during the growing season (April 

to September) and an increase in precipitation (+16 mm mainly in June).  

The projected decrease in summer recharge and increased frequency of droughts will lead to 

an increased requirement for agricultural irrigation (Henriques et al., 2008). This is most 

likely in the drier areas of the UK, such as East Anglia. For surface water, Weatherhead and 
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Howden (2009) show that future water resource constraints will limit opportunities to use 

irrigation, particularly in the southeast of England.  

2.2 Leaching from forests and upland areas 

Climate change may also impact on leaching from forests. Both increased temperature and 

CO2 concentration produce primary productivity if N is in sufficient supply and increase in N 

leaching although boreal ecosystems are typically N limited. Nadelhoffer et al. (1984) 

showed that mineralisation of organic matter in forests varied seasonally more than 

nitrification. A higher soil temperature should increase mineralisation of organic matter 

releasing N that can go to plant growth but also to run off and leaching to groundwater. 

showed that  In a study aimed primarily at estimating CO2 sequestration Wright et al. (1998) 

attributed an increase in N flux in runoff of 5 to12 mmol m-2 yr -1 (0.7 to 1.7 kg ha-1 yr-1) to a 

5% increase in rate of decomposition of old organic matter in response to higher 

temperatures. Mitchell et al. (1996) found high concentrations and high drainage water losses 

followed an anomalous cold period for all four sites. After high nitrate losses during the 

snowmelt, nitrate concentrations and fluxes decreased suggesting that climatic variation can 

have a major effect on nitrogen flux and cycling and may influence temporal patterns of 

nitrate loss in a region. Aber et al. (2002) looked at a number of disturbances on N leaching 

from a forested catchment. Relevant here are that drought events led to low N losses and CO2 

enrichment was predicted to lead to a decreased  flux of leached N.  

Many upland areas in the UK are underlain by poorly permeable strata with little utilisable 

groundwater. Using surface water nitrate concentrations as an analogue, these are often 

related to total N deposition since other inputs are often low (Allott et al., 1995). Monteith et 

al. (2000) showed that patterns of variation in nitrate concentration, observed in upland lakes 

and streams over the last decade, show a strong negative correlation with winter values for 

the North Atlantic Oscillation Index and mean winter temperature. Variations in a longer 

term stream nitrate record may be linked to the length of time the soil profile remains frozen 

during the winter.  These factors could be influenced by climate changes. Land use in the 

areas may change due to external climate–driven changes such as expansion of agriculture 

into upland valleys, for food or biofuels and this could lead to increased leaching of nutrients 

(Reed et al., 2009). 
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2.3 Other nitrogen sources 

In urban areas, industrial and municipal discharges may increase loads of nutrients and other 

contaminants from both surface infrastructure and from the sewerage system. Urbanisation 

changes the natural pattern of recharge with increased recharge from mains water, leaking 

sewers and pluvial drains (Morris et al., 2006).  Built areas and impervious surfaces change 

the scope for local precipitation to enter the aquifer.  The impact of relatively modern 

suburban areas appears to be modest (Morris et al., 2006) whereas older urban areas with a 

longer history show a greater impact (Wakida and Lerner, 2005).  

In the UK the majority of sewage effluent is treated and discharged to surface water. The 

impact to groundwater from sewage may therefore be minimised. This impact may still be 

influenced by climate change in the same way as surface water.  In a surface water study in 

Maryland, USA, Kaushal et al. (2008) showed that urban areas become larger sources of N 

pollution during periods of variable rainfall, with high export during high flow conditions. 

From stream data they assessed that N urban areas export to surface water lay between 

agricultural areas and forests. There is insufficient data to show whether this is also true for 

groundwater. 

Davis (1996) considered that recycling of sewage sludge to agricultural land was likely to be 

a major future disposal option, although environmental pressures on sludge recycling to land 

could lead to restrictions on applications in terms of N content. Inappropriate application 

times or rates may lead to poor utilisation by crops and, thus, to nitrate leaching and 

contamination of water supplies (Shepherd, 1996).  Climate change pressures currently 

encourage the production of biofuels and Moffat et al. (2001) tested sewage sludge 

application and waste water irrigation for such production, but did not evaluate N leaching. 

Urban areas are considered to be hot spots of environmental change (Grimm et al., 2008a) but 

our knowledge of ecosystem responses to urbanisation is based on only a few case studies  

(Grimm et al., 2008b).  Urban infrastructure, such as water supply and sanitation, will come 

under increased pressure from climate change (Ruth and Coelho, 2007).  Potential impacts on 

urban water quality will come from changes in short-term rainfall intensity overwhelming 

drainage systems particularly for combined systems (Whitehead et al., 2009).  There may also 

be damage to water supply and sewers from shrink/swell clays, landslides and subsidence, 

leading to leakage (Boyle et al., 2000; Hobbs et al., 2008). 
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Aerial deposition represents another N source to the surface and thence to groundwater. 

Deposition of N compounds for the UK has been derived from vehicle and power station 

emissions, the largest source of oxidised N, agriculture (NH3 and N2O) and nylon 

manufacture (N2O) (UKRG, 1994). Possible impacts could include both changes in emissions 

from agricultural sources and deposition pattern due to changes in weather. Predicted changes 

in the aerial deposition of oxidised N over Europe due to climate change are small and not 

very coherent due to the strong inter-annual variability (Langner et al., 2005). 

2.4 Summary 

Table 4 summarises the scale of possible changes in agricultural and non-agricultural sources 

and leaching processes.  Whilst it is clear that climate change will have a significant impact 

on crop yields and areas, it remains difficult to predict what these will be and relate these 

directly to nitrate availability in the soil. For leaching processes the impacts are clearer with 

most changes leading to increased nitrate leaching. 

Position of Table 4. 

3 Pathways 
For a pollutant to reach a receptor there must be a possible route; the pathways from the soil 

surface and factors controlling migration include: 

 Soil infiltration (cracking, surface sealing)  

 Migration through the unsaturated zone (depth to water table, fissure flow); 

 Migration through the saturated zone (water levels, flow direction, permeability, 

single or dual porosity, karst development, travel time); 

 Linkage between groundwater and the receptor if the receptor is not groundwater. 

Where the receptor is groundwater, surface water or a groundwater-dependent ecosystem an 

important driver is the amount and distribution of recharge (Fig 3).  

The predicted impacts of climate change on pathways for nitrate to reach receptors are 

described below using examples from the UK, whilst Table 5 summarises the findings of 

similar impact studies for other areas elsewhere in Europe and North America.  

Position of Figure 3 

Position of Table 5 
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3.1 Impact of climate and land use change on recharge and resources 

Groundwater recharge is not only controlled by the spatial and temporal variability in the 

major climate variables but also on land surface properties, the depth and hydraulic properties 

of the soils, and vegetation and understanding the relative importance of these factors is 

critical for estimating recharge rates and for assessing water quality (Şen, 2009). 

Climate change may have both positive and negative impacts (Jyrkama and Sykes, 2007); 

increasing precipitation leads to increases in run-off, evapotranspiration and groundwater 

recharge; decreasing precipitation leads to decreases in recharge and falling water levels; 

increasing temperature reduces the amount of ground frost thus increasing winter recharge for 

a catchment in Ontario, Canada. Eckhardt and Ulbrich (2003) also predicted pronounced 

changes in the annual cycle of streamflow and groundwater recharge influenced by changes 

in the pattern of snowmelt. There may be also changes in the amount of runoff relative to 

recharge due to surface impermeablisation or periods of ground saturation. 

There have been several relevant studies on the impact of climate change on recharge in the 

UK. These showed increasing recharge and water levels over the next few decades but 

becoming drier thereafter (Holman, 2006; Younger et al., 2002; Yusoff et al., 2002). 

Projected impacts of climate change on recharge and water resources for other areas are 

summarised in Table 5. These impacts are very variable but a common result is an enhanced 

contrast between winter and summer patterns. 

Soil moisture depends on a balance between precipitation and evapotranspiration and the 

winter period when soils are at field capacity may be curtailed by longer periods of higher 

temperatures and lower precipitation. A change in cropping pattern or the introduction of new 

crops may also change soil moisture, and recharge. Fohrer et al. (2001) evaluated cropland 

using winter barley, mixed forest, grassland and fallow as examples using the SWAT model. 

The amount of ground cover is important for controlling spring run-off, the temperature 

determines the growing season, canopy storage and height determines evapotranspiration. A 

relatively limited impact was predicted on overall recharge. Elevated CO2 concentrations 

would lead to reduced stomatal conductance and therefore to reduced transpiration (Ducharne 

et al., 2007).  

Cropping and stock management can have an impact on soil hydrology because access during 

wet periods can cause soil compaction and thus increased run-off (Holman et al., 2003). Soil 

structural degradation may be particularly related to late harvested crops such as maize, sugar 
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beet, main crop potatoes and autumn sown crops. There is mounting evidence that the 

condition of temperate soils could change at a range of temporal scales in response to climate 

change with implications for future assessments of recharge (Rounsevell et al., 1999; Grieve, 

2001). Potential changes could be:  

 daily scale -  possible reduction in soil water content; 

 daily to annual scale- increased erodability due to increased shrink/swell behaviour 

and increased recharge due to fissure flow -decreased erodability due improved 

vegetation cover in upland area; 

 decadal to centuries scale loss of organic content. 

DeFries and Eshleman (2004) set out the difficulties of assessing the consequences of land 

use change to hydrological processes: generally short hydrological records, natural high 

variability of most systems, difficulties of ‘controlling’ land use change in catchments which 

are being monitored, the small number of controlled-scale experiments, and challenges in 

extrapolation. Remote sensing, field measurements and modelling studies may be needed to 

understand the mechanisms of impact (Stonestrom et al., 2009). An integrated approach to 

assessing the impacts of climate change on groundwater recharge showed that the significant 

sources of uncertainty in recharge estimation were in the direction and extent of changes in 

precipitation, temperature, coastal flooding, urbanisation and surface sealing, woodland 

creation and cropping and changes in cropping, rotations and management practices 

(Holman, 2006; Holman, 2007). 

It is likely that with the increase in temperature and decrease in summer precipitation 

projected for south eastern areas of the UK that the requirement for agricultural irrigation will 

be increased.  There is little in the UK literature on nitrate leaching from irrigated agriculture, 

although this issue has been long recognised elsewhere (Spalding and Exner, 1993; Watts and 

Martin, 1981). Nitrate leaching from irrigated agriculture depends on the irrigation regime, 

amount and timing of water applications as well as the amount of fertiliser used (Derby et al., 

2009; Peralta and Stockle, 2002; Thompson et al., 2007), although the evidence can be 

contradictory.  There could potentially be an increase in the amount of nitrate leached due to 

irrigation using nitrate-rich groundwater if this is not taken into account in the fertiliser 

balance. Guimerà (1998) showed that nitrate concentrations of up to 700 mg L-1 in a coastal 

area of Spain were due to recycling of groundwater for irrigation as well as fertiliser 

applications. Stigter et al. (2005) modelled nutrient recycling in an area of southern Portugal 
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where concentrations reached 250 mg L-1 in groundwater and also showed irrigation with 

nitrate-rich water to contribute significantly to nitrate leaching. These study areas are warmer 

and drier than anticipated for the UK. 

3.2 Changes in infiltration through soils 

Deep shrinkage cracks in shrink/swell soils may serve as preferential flow channels and allow 

agricultural chemicals to rapidly move past the crop root zone to subsoil, potentially 

contaminating groundwater (Chen et al., 2002; Harris et al., 1994). Several aspects of the 

infiltration process in cracking soils have proven to be difficult to measure; seal/crust 

formation and properties, crack network patterns, preferential flow zones and contributions, 

and soil moisture determinations within the profile (Wells et al., 2003).  For many soils, the 

physical changes that take place (such as swelling, sealing, shrinkage, and cracking) during 

and after rain following dry periods greatly affect the movement of water in the soil as the 

cracks develop deeper and transmit water to lower depths within the profile. The change in 

soil macroporosity in the shrink-swell clay soils when change in water content occurred had a 

greater impact on low-tension flow processes than the change in water content itself (Lin et 

al., 1998).The impact of climate change may be increased cracking during more frequent or 

prolonged dry periods and increased infiltration during more frequent intense rainfall events. 

In addition to swelling and cracking, clay soils form a surface seal, which also greatly affects 

infiltration (Wells et al., 2003). Surface sealing occurs due to the impact of raindrops on the 

surface of the soil, causing compaction, and settling of fine-grained detached material on the 

surface of the soil, effectively clogging the micropores. There may also be a breakdown of 

aggregates and the dispersion of clay material as a result of rapid wetting resulting in a 

change in soil permeability. 

3.3 Impact of aquifer pathways on nitrate transport 

The patterns of groundwater flow in aquifers can be considered as a distribution with one end 

member being flow through fractures and the other being intergranular movement through the 

pores of the matrix. In fractured aquifers, where the intergranular effective porosity is low, 

storage of water is limited. The recharge mechanism is similar under any recharge conditions 

with water moving rapidly through fractures and the consequent large impact of recharge 

volume of recharge on water levels. We could therefore expect to see increased differences 

between winter and summer water levels. Large seasonal variations in water table elevation 

would be anticipated and also clear and rapid responses to extreme events. 
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As an example, in the UK Lincolnshire Limestone, groundwater movement is almost entirely 

by fracture flow along well-developed bedding plane fractures and joints (Allen et al., 1997). 

Often seasonal head differences are large, caused by the aquifer responding rapidly to 

recharge, as enhanced fractures allow run-off to enter the aquifer and be rapidly transferred 

down the hydraulic gradient. In some parts of the aquifer, a rapid increase of transmissivity 

with water table elevation can be observed (Smith, 1979) implying larger or more frequent 

fractures in the upper part of the aquifer.  

In general nitrate concentrations follow a similar seasonal pattern to water levels. Beeson and 

Cook (2004) showed that nitrate in abstracted groundwater from the Lincolnshire Limestone 

decreased during periods of low water levels. This could be interpreted as a loss of rapid 

routes to points of abstraction for high nitrate modern recharge in the upper part of the aquifer 

due to the low water level. 

For the other end member, purely intergranular aquifers, with large water storage in the pore 

spaces and few fractures, we would expect to see the opposite with very limited fluctuations 

in both water levels and nitrate concentrations.  There are few important aquifers of this type 

in the UK and for the major sandstone aquifers fracture flow also has a significant role. 

Whilst water movement in the Permo-Triassic sandstone is predominantly intergranular, 

albeit controlled by considerable vertical heterogeneity and horizontal anisotropy, there is 

some fracture conductivity, which can dominate where there is extensive connectivity (Allen 

et al., 1997). Water levels and nitrate concentrations in the Permo-Triassic sandstone aquifer 

generally show relatively small seasonal fluctuations.  

In dual-porosity aquifers, such as the Chalk, the hydraulic properties are complex and result 

from a combination of matrix and fracture properties (Allen et al., 1997). Chalk pore throats 

are small, restricting water movement and the fracture distribution is not uniformly 

distributed either geographically or with depth. Water movement through the unsaturated 

profile is determined by the intensity and duration of rainfall, antecedent conditions and the 

hydraulic conductivity of the profile and will have important implications for solute transport. 

In addition to changes in flow path giving access to a greater percentage of shallow high 

nitrate water there may also be winter preferential  flow from the base of the soil bringing 

high nitrate water directly to the water table or water table rise from water entering elsewhere 

in the catchment flushing out stored nitrate from porewater. 
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Sugita and Nakane (2007) have examined the effects of rainfall patterns on transport of 

nitrate in dual porosity media simulated by sand with artificial macropores. They showed that 

the proportion of solute moving by preferential flow increased with the amount of artificial 

rainfall. For lower amounts of rainfall some nitrate appeared to be removed by denitrification.  

For the Pacific region they estimated that the chance of nitrate leaching could increase by 

perhaps 25% in due to higher frequencies of heavier rainfall events resulting from climate 

change.  

Therefore we speculate that for fractured aquifers an increase of intensive winter recharge as 

predicted by climate change models could lead to both increased winter preferential flow and 

an increase in water levels opening shallow rapid pathways to the receptor. Both of these 

could lead to at least a seasonal increase in nitrate concentrations in abstracted water. 

However, looking at the balance of nitrate overall, we need to evaluate the impacts of 

increased rainfall and increased dilution on nitrate concentrations. Changes in the flow path 

within the aquifer due to increased rainfall alone will not affect the gross mass present in 

groundwater.  

4 Receptors 

Groundwater provides water for public supply, industry and irrigation, baseflow support to 

surface water and aquatic ecosystem health (Lerner and Harris, 2009). Under the Water 

Framework Directive (2000/60/EC), receptors, in terms of chemical status, include the 

groundwater body itself, drinking water abstractions, associated surface waters and directly 

dependent ecosystems. Each of these can be affected by nitrate. The RegIS approach takes 

this a step further and assesses the impact on biodiversity (Holman et al., 2008). 

Factors potentially involved in the relationship between groundwater body nitrate 

concentrations and receptor concentrations are the relative quantity and quality of waters 

exchanged between ground and surface waters. Any climate change impacts which 

effectively increase nitrate leaching to groundwater could therefore have very serious 

implications on other receptors. 

Under the Groundwater Directive (2006/118/EC) and Nitrate Directive (91/676/EEC), the 

standard for nitrate is already set at 50 mg L-1. For other pollutants (except pesticides) quality 

standards (threshold values) are derived by considering the risk of failure to achieve the 

environmental objectives, associated with surface water and wetlands.  
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4.1 Abstracted groundwater 

Nitrate is already widespread in the aquifers of the UK often at elevated concentrations 

(Rivett et al., 2007).  The average groundwater nitrate concentration in England has been 

shown to be rising at 0.34 mg NO3 L-1 yr-1 with the greatest trends in the Lincolnshire 

Limestone (0.96 mg NO3 L
-1 yr-1 and lowest in the Magnesian limestone aquifer (Stuart et al., 

2007). Average trends for the major Chalk and Sherwood Sandstone aquifers were 0.38 and 

0.44 mg NO3 L
-1 yr-1 respectively. In 2000, 34% of sites analysed exceeded the 50 mg L-1 

standard. If present trends continue, 41% of groundwater sources could exceed the standard 

by 2015 (Stuart et al., 2007). Under current climate conditions and agricultural practices 

concentrations are predicted to continue to rise in the UK Chalk aquifer (Wang et al., in 

press). These trends could be influenced by climate change both by changes in nitrate 

leaching and by changes in amount and timing of recharge and by the soil and aquifer 

pathway. 

Groundwater nitrate concentrations show seasonal fluctuations, and these can be considerable 

for fractured aquifers, such as the Lincolnshire Limestone (Stuart and Kinniburgh, 2005).  

Seasonal behaviour depends on the mechanism of transmission of water from the surface to 

the water table, i.e. the pathway. Impacts on soil and aquifer pathways could therefore affect 

seasonal concentrations in aquifers.  

4.2 Surface water, wetlands and groundwater-dependent ecosystems 

Groundwater provides baseflow to rivers and supports a large number of wetlands. The Base 

Flow Index (BFI) is used as a measure of the baseflow characteristics of river catchments and 

has been shown to be a function of the hydraulic characteristic of the geological units within 

the catchment (Bloomfield et al., 2009). BFI provides a systematic way of assessing the 

average proportion of base flow in the total run-off of a catchment. Long-term average fluxes 

of nitrate from groundwater to surface water may be affected by long-term changes in 

groundwater heads; however, potential changes in seasonal and extreme groundwater heads 

will also have an effect on fluxes of nitrate from groundwater to surface waters. Changes in 

the seasonal distribution of recharge may have a critical effect on low flows in rivers 

supported by baseflow, but rivers supported by slowly responding aquifers may show a 

considerable delay in response (Wilkinson and Cooper, 1993; Peters et al., 2006).  

The hyporheic zone has several roles including bank storage for flood water and a buffer 

zone and filter for nutrient fluxes (Smith et al., 2008).  Where residence times are sufficiently 
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long and there are potential electron donors available denitrification can occur in this zone 

(Puckett et al., 2008). Krause et al. (2009) showed that the distribution of the low redox zone 

can be very variable.  However there are no catchment-scale or experimental data which 

demonstrate that this zone is effective in mitigating pollutant loads in managed landscapes 

(Smith et al., 2008). Sprenger et al. (2011) found that bank filtration processes are vulnerable 

to climate change due to the drastically shortened travel time during flood events.  

Surface water is particularly sensitive to N and so as groundwater and its dissolved nitrate 

discharges into surface water its ecology can be adversely affected, particularly in association 

with phosphate, leading to eutrophication (Lerner and Harris, 2009). Assessing the impacts of 

eutrophication is not straightforward as it depends on light conditions, temperature, mean 

residence time and flow conditions as well as nutrient loading. Shallow lakes are particularly 

susceptible to eutrophication (Whitehead et al., 2009). Changes in the groundwater-surface 

water relationship, such as those resulting from climate change will have the potential for 

causing negative impacts on groundwater dependent ecosystems. 

Individual plant species responses to stressors are also likely to be influenced by the 

hydrologic and geomorphologic characteristics of different wetland classes (Mahaney et al., 

2009). Also the toxic limits for nitrate in groundwater are likely to be much lower for some 

invertebrates than the drinking water limit, perhaps nearer to 2 mg L-1 NO3-N (Camargo and 

Alonso, 2006; Camargo et al., 2005; Hinsby et al., 2008). The threshold value for estuarine 

transitional waters for dissolved N is 0.28 mg l-1 (UKTAG, 2008). 

4.3 Atmosphere 

Concentrations of N2O in the troposphere are increasing and this has raised concerns that 

N2O could destroy stratospheric ozone concentrations (Jaffe, 1992). N2O emissions to the 

atmosphere can also contribute to radiative climatic forcing (Conen et al., 2000).  N2O 

emissions have been attributed to agricultural pollution, from denitrification of nitrate 

(Puckett et al., 2011).  However N2O can be an intermediate in both nitrification and 

denitrification processes (Jaffe, 1992). In soils the denitrification mechanism appears to be 

predominant and is related to soil parameters such as temperature and water-filled pore space 

as well as soil mineral N content (Conen et al., 2000). Mørkved et al. (2006) showed it was 

also influenced by the freeze-thaw cycle with high emissions during frozen periods. 

N2O can also be emitted from water. Mühlherr and Hiscock (1998) found very high 

concentrations of N2O in groundwater from the most important limestone aquifers in the UK. 
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The correlations between N2O, NO3 and dissolved oxygen, as well as the spatial distribution 

of these chemical parameters, were used to identify nitrification processes in the unsaturated 

zone as the main N2O production mechanism probably strongly supplemented by nitrogenous 

compounds from anthropogenic land applications. N2O production in the saturated zone was 

less substantial and was possibly denitrification mediated.  

Destouni and Darracq (2009) showed that for a Swedish catchment the subsurface 

contribution to atmospheric N2O was similar to that from surface water, and that these 

together were in the same order as N from deposition. They suggested that climate change 

may affect the nutrient attenuation and transformation rates. 

5 Discussion  

5.1 Balancing the factors 

The principal impacts of climate change are shown to be changes in rainfall amounts, 

changes in intensity of rainfall, increased temperature, added to which are the direct impacts 

of increased atmospheric CO2. There are a range of competing consequential factors which 

control the concentration of groundwater nitrate at a receptor: changes in agriculture, soil 

mineralisation, recharge, leaching and groundwater pathway processes. Individual processes 

are well-studied but it remains difficult to assess the overall impact.   

There are a few published studies which attempt to relate temperate climate change to 

predicted changes in nitrate concentrations in groundwater or at other receptors directly (De 

Jong et al., 2008; Ducharne et al., 2007; Holman et al., 2005b; Jackson et al., 2007; 

Whitehead et al., 2009).  Holman et al. (2005b) indicate that the net impact is different for 

different areas, with nitrate leaching reduced in areas where agricultural production is lost 

due to increase droughts or floods, such as East Anglia, and increased in those where climate 

changes bring improved conditions and agricultural expansion, such as northwest England. 

De Jong et al. (2008) concluded that climate scenarios did not change N leaching very much 

and greater perturbations to climate, for example, to winter rainfall or to climate change 

driven agricultural intensification, would be required. In contrast, Ducharne et al. (2007) 

showed that for the Seine Basin under current practices the aquifer concentration would 

increase by 50% from the present.  Under a moderate to high emissions scenario this could be 

as much as 100%. Overall with the inherent difficulties of estimating key parameters in all of 

these studies predict that the impact on nitrate leaching to groundwater is likely to be within 

the margins of uncertainty. 
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5.2 Other factors  

There are many other influences on the amount of nitrate in groundwater and its impact on 

receptors, such as management practices. There may be both intended and unintended 

consequences of management practices which are controlled by regulation and subsidy. For 

example, the existence of a subsidy will lead to increased application of lime to upland 

catchments to mitigate the effect of acidification. This may have the unintended consequence 

of increasing nitrate leaching. Other measures, such as those imposed by the identification of 

Nitrate Vulnerable Zones are intended to alter the amount of nitrate lost to groundwater. The 

effects of these and similar measures may have an effect which masks the effect of climate 

change on nitrate leaching.  

Measures have been taken in the UK to reduce nitrate pollution of ground and surface water 

by establishing nitrate sensitive areas (NSAs) and subsequently nitrate vulnerable zones 

(NVZs), where agricultural usage of nitrogenous fertilisers is regulated. There have been very 

few studies of the effectiveness of these measures in the UK.  Lord et al. (1999) and Silgram 

et al. (2005) considered the success of NSAs in terms of the nitrate concentration of soil 

water in fields within an NSA and coupling this data with a nitrate transport model. This 

suggested a possible decline of nitrate leaching through the root zone but the study was not 

long enough to show a decline in abstracted groundwater.  For a series of NVZs in England 

Worrall et al. (2009) found that about two thirds of NVZs showed no significant 

improvement in surface water concentrations even after 15 years, and about one third 

appeared to be worse relative to a control catchment. The average improvement relative to a 

control due to NVZ designation was 0.02 ± 0.08 mg N L-1 yr-1. With ongoing improvements 

to N management under Good Agricultural Practice (Defra, 2009) it may be difficult in the 

future to identify the component due to climate change. 

5.3 Limitations on this approach 

The simple and linear Source–Pathway–Receptor approach derived from the N cycle does not 

deal adequately with interactions between the elements in a number of important respects:  

 it assumes that the Source, Pathway and Receptor are independent;  

 it does not allow the relative significance of the impacts to be assessed, for example 

an increase in N leaching is not necessarily of importance if the recharge increases 

such that the concentration of N in the recharge decreases;  

 it also does not allow for other feedbacks in the system such as the contribution of N 

from surface water to groundwater during interactions; 
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 it does not allow for changes in the route of removal of N from soils directly to 

surface water thus not impacting on groundwater. 

However we believe that it provides a valuable framework to allow the individual elements of 

this complex system to be assessed. 

5.4 Future issues 

Climate change can affect various socio-economic sectors such as tourism, trade and 

industry, as well as agriculture. Other factors not covered by this study could therefore have 

an important role in affecting nitrate concentrations in the future. It is likely that the main 

impacts of climate change on agriculture will be economic (Holman et al., 2005a). This will 

drive continued loss of grassland as arable farming becomes viable in new areas and other 

changes driven by lack of irrigation water. As pressures on water become generally greater 

land management changes may need to be made to increase recharge, such as direct drilling 

rather than conventional autumn cultivation, and artificial recharge may be considered 

(Holman et al., 2005a).  

 This paper raises challenging issues regarding the need for and approaches to adaptation in 

the context of climate change. Adapting to climate change can be done in anticipation of 

climate change impacts (anticipatory adaptation where proactive steps are taken) or in 

response to climate events (reactive adaptation) (Binder et al., 2010).  Anticipatory adaptation 

occurs when governments, businesses, or private citizens take proactive steps to reduce the 

negative consequences of projected climate change impacts and can also be used to maximize 

the benefits of climate change, such as a longer growing season (Binder et al., 2010).  

Smit and Skinner (2002) set out four main types of adaptation options for agriculture in 

Canada:  

1. Technological developments for crops, weather/climate information systems and 

resource management innovations, including irrigation; 

2. Government programmes for agricultural subsidies and insurance to provide income 

stabilisation; 

3. Farm production practices including intensification and diversification of crops and 

livestock, and changing land use; 

4. Farm financial management including investment in crop futures. 
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They also emphasise the need for information provision to stimulate adaptation initiatives. 

These types would also be applicable to policies related to nitrate leaching. 

Given the major impact uncertainties, robust adaptation options are needed which are 

beneficial irrespective of the actual impacts of climate change. In the UK there has already 

been a shift away from climate change impact assessment to identifying practical adaptation 

measures (Wilby et al., 2006). Such measures will need to take into account environmental, 

technological, economic, institutional and cultural characteristics (Tanaka et al., 2006; Pahl-

Wostl, 2007; Medellín-Azuara et al., 2008). 

Managing and adapting water demand has received considerable attention. Holman and 

Trawick (2011) discuss adaptive capacity to groundwater abstraction management. They 

identified key elements as better horizontal and vertical integration within resource 

management, making better use of resources, embedding adaptation at multiple scales, 

facilitating local groups promoting efficient water use and not least controlling abstractions. 

Other elements suggested by Mohapatra and Mitchell (2009) were a differential pricing 

structure, conservation education, pollution prevention and water recycling, as well as 

effective information management. Crabbé and Robin (2006) examined likely local 

institutional barriers to climate change adaptation for Eastern Ontario. 

The economic cost of such measures needs to be related to the existing uncertainties in the 

climate change scenarios (Middelkoop et al., 2001). These authors recommend a flexible 

policy in water management planning and design where anticipatory adaptive measures in 

response to climate change impacts are undertaken in combination with ongoing activities. 

Baker and Murray (2009) attempt to model the interactions of climate policy and 

groundwater management. They examined the impact of a range of greenhouse gas 

mitigation incentives, aimed at the agricultural sector, on the derived demand for 

groundwater. They show that a regional solution to reducing emissions both from fossil fuel 

use for groundwater extraction and from N2O emissions from fertilisers would also benefit 

groundwater resources and possibly quality. Table 6 sets out a summary of their findings for 

both water management and nitrate leaching in terms of marginal cost or price effects. The 

main sources of uncertainty were identified as policy uncertainty and the magnitude of the 

policy stimuli.  

Position of Table 6 
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Such complex issues will demand a multidisciplinary approach and this may become a major 

issue (DeFries and Eshleman, 2004). These authors state that a wide collaboration will be 

needed between disciplines such as remote sensing, socio economic studies, ecology and 

hydrology. Advances in remote sensing, data handling and processing, and predictive 

modelling now allow such research to become a practical option. Research aimed towards 

explicit understanding of these interactions will be needed to provide necessary input to 

decisions that must balance trade-offs between the positive benefits of land-use change and 

potential negative consequences. Cline (2007) identifies another factor, international trade, as 

a future potential modifier on the agricultural sector but thinks that this would not be 

effective for a global scale problem.  

6 Conclusions 

Nitrate concentrations in groundwater are already a serious problem with many groundwater 

abstractions containing nitrate concentration which exceed the drinking water limit. Under 

current climate conditions and agricultural practices concentrations are predicted to continue 

to rise.  

Climate changes such as changes in temperature, precipitation amounts and distribution, and 

the underlying increases in atmospheric CO2 concentrations will impact on both soil 

processes and agricultural productivity. This has been well-studied in terms of crop yields 

and potential changes in cultivars, crop type and the northwards extension of cropping area.  

However, the impacts of these changes on the N source term remain difficult to predict. 

Studies of soil processes suggest climate change is likely to lead to increased nitrate leaching 

from the soil. Other source terms include non-agricultural sources, such as urban areas and 

atmospheric deposition.  

Climate change will also affect the hydrological cycle with changes to recharge, groundwater 

levels and resources and flow processes. The predicted impacts are variable but many 

predictions suggest an overall decrease in recharge and a fall in water levels and almost all 

predict an enhanced seasonal variation in water levels. This will impact on concentrations of 

nitrate in abstracted water and other possibly more-sensitive receptors such as groundwater 

dependent wetlands on an annual timescale. The longer term impact on aquifer pathways still 

needs to be evaluated. 
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The implications for nitrate leaching to groundwater as a result of climate changes are not yet 

well enough understood to be able to make useful predictions without a lot of site-specific 

data.   The few studies which address the whole cycle show likely nitrate leaching ranging 

from limited increases to a possible doubling of aquifer concentrations by 2100 if changes to 

agricultural practice are not made. The inherent difficulties of estimating key parameters 

mean that these predictions are within the margins of uncertainty. The predicted impact of 

climate change on nitrate concentrations appears to be less than the predicted changes to 

concentrations resulting from measures to reduce agricultural nitrate leaching. 

The main future climate change impacts on agriculture may be economic. A range of 

adaption measures need to be identified and these need to be derived through 

interdisciplinary including collaboration between regulators, the farming community, 

government departments and scientists. 
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Table 1.  Summary of projected seasonal and annual changes by 2080 using the UKCP09 
scenarios 

Variable Overall Area most affected Area least affected 

Mean daily maximum 
summer temperatures 

Increase 
everywhere 

Up to 5.4ºC (2.2 to 
9.5ºC) in parts of 
southern England 

2.8ºC (1 to 5ºC) in parts 
of northern Britain. 

Mean daily minimum 
winter temperature 

Increase 
everywhere 

Increases by about 2.1ºC (0.6 to 3.7ºC) to 3.5ºC (1.5 to 
5.9ºC) across the country 

Annual precipitation Very little change  Changes range from –16% to +14% with no clear 
geographical pattern. 

Precipitation in winter Regional variation Up to +33% (+9 to 70%) 
along the western side of 
the UK 

Small decreases (–11 to 
+7%) over parts of the 
Scottish highlands. 

Precipitation in 
summer 

Decrease for most 
places 

Up to –40% (–65 to –6%) 
in parts of the far south of 
England. 

Little change (–8 to 
+10%) over parts of 
northern Scotland. 
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Table 2. Possible impacts on European temperate crops (from Bisgrove and Hadley (2002) and Olesen and Bindi (2002)) 

Crop group Growth type Effect of temperature increase Effect of increased CO2 Management options Geographical change 
Cereals, 
oilseed and 
legumes 

 Negative- Shorter growing 
period and reduced yield 

Positive- Increased 
growth and increased 
nitrogen fixation in pulses 

Early planting of spring cereals 
Use of longer-season cultivars 
later sowing date for winter 
cereals 

Expansion into the north of cooler 
season seed crops (pea, bean, oil seed 
rape) and northwards of warmer 
season crops (soybean and sunflower) 

Root and 
tubers 

Determinate e.g. 
potatoes 

Negative- Reduced growing 
season and increased water 
requirement and yield variability 

Positive- Large increase in 
yield 

Advanced planting and 
cultivation of new varieties 

 

Indeterminate e.g. 
sugar beet 

Positive – extension of growing 
period 

Positive – increase in 
yield 

Requires sufficient water  

Horticultural  
field and 
glasshouse 

Determinate e.g. 
onion, cauliflower, 
broccoli 

Negative - Shorter growing 
period and reduced yield or 
quality 

  Production of field-grown crops 
expanding northwards 

Indeterminate e.g. 
carrots 

Positive-    Production of field-grown crops 
expanding northwards 

Lettuce None Increased yield   
Perennial  Grapevines, 

orchards, soft fruit 
Increased yield variability for 
grapes. Fruit trees and bushes 
may have vernalisation 
requirement  

Increased yields Substitution of cultivars.  Expansion of areas north and 
eastwards 
Change from apples, pears and 
cherries to peaches in southern UK 

Willow Increased growth     
Forage crops 
and grass 

Determinate e.g. 
whole wheat 

Increased digestibility but 
decreased yield 

Increased yield but 
decreased digestibility 

Change in type to indeterminate 
crops 

Increase in forage maize in northern 
areas 

Indeterminate e.g. 
sugar beet, silage 
maize 

Increased yield Increased yield  Requires sufficient water  

Intensively 
managed grass 

Positive – increased yield Positive – increased yield Requires water management  

N-poor and 
species-rich grass 

Varies depending on species mix Little response short-term, 
but positive long-term due 
to increased fixation 

Maintain species richness. 
Change cutting height 

Area reduced due to expansion of 
cropped area 

Legumes  Positive - due to increased 
fixation 

  

Livestock Grazing  Increase in milk 
production for clover 
swards 
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Table 3 Estimated annual nitrate leaching losses beneath individual crops in northwest Europe 
and Canada (ADAS, 1991; Gasser et al., 2003; Johnsson et al., 2002; MAFF, 1999) 

Crop Nitrate leaching (kg N ha-1) 
Outdoor vegetables 120 
Potatoes 80-120 
Oilseed rape 65-100 
Peas & beans 60-80 
Sugar beet 45-60 
Indoor vegetables and flowers 60 
Barley 35-50 
Oats 48 
Wheat 40-50 
Grazed grass (250 kgN ha-1 applied) 40 
Cut grass (250 kgN ha-1 applied) 20 
Ungrazed or fertilised grass 10 
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Table 4. Climate change impacts on crop yield, distribution, leaching process and non-
agricultural nitrogen sources 

Factor Scale of changes 

Short term- 2020 Longer term- 2050 

Changes in crop yield and distribution   
Increased temperature Increased yield Decreased yield 
 Northwards extension 

within UK  
Decline in southern 

parts of UK 
Decreased summer recharge Decreased yield Decreased yield 
Increased variability of recharge & extreme events Decreased yield Decreased yield 
Increased atmospheric CO2 Yield increase 30% yield increase 
New crops Northwards extension within UK 
Pests Increase Increase 

Impact of climate change on leaching processes   
Increased temperature Increase 2 kg ha-1 yr-1 Increase 
Increased winter soil moisture Increase 
Decreased summer soil moisture Decrease 
Increased leaching due to storm events Increase 
New crops ? 

Other sources   
Nitrogen deposition Small change 
Urban areas Not known Small change 
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Table 5. Projected impacts of climate change on recharge and water resources for other areas 

Area Assumptions Model Projected result Reference 

Ireland HadCM2 
Recharge held constant 

HYSIM Overall decrease in effective run-off with increase in winter 
and larger decrease in summer.   

Charlton et al. (2001) 

Seine Basin, 
France 

SRES-A2 scenario CLSM, 
MODCOU,  
STICS 

Enhanced seasonal contrast in water levels. 10% increase in 
PET. 

Ducharne et al. (2007) 

Hesbaye 
aquifer, Geer 
Basin, 
Belgium 

HadCM2, ECHAM4 and 
CGCM1 scenarios 

MOHISE Decrease in groundwater levels and reserves. Brouyère et al.(2004)  

PRUDENCE RCM, SRES-
A2 scenarios 

HydroGeoSphere Decrease in annual precipitation with warmer wetter winters 
and much hotter drier summers. Increased frequency of 
summer droughts and significant reductions in groundwater 
levels by 2041 with larger decreases by 2070. 

Goderniaux et al.(2009)   

Grote-Nete, 
Belgium 

NATCC, wet cold and dry Wetspass, 
ModFlow 

Groundwater level increase by up to 0.8 m for wet high 
temperature scenario, but decrease by 0.5 m for dry scenario. 

Woldeamlak et al. (2007) 

Ucker 
catchment, NE 
Germany 

PICIR, variants of the A1B 
scenario 

 Groundwater recharge decrease by an order of magnitude Wegehenkel and 
Kersebaum (2008) 

Southeast 
Spain karst 

Actual over last century   ERAS Simulated observed decreases in effective precipitation and 
groundwater recharge.  

Aguilera and Murillo 
(2009) 

Northern 
Portugal. 

 Various Decrease in recharge of 70% for a 30% reduction in actual 
recharge. 

Oliveira et al (2005) 

Denmark SRES-A2 and B2 scenarios  Annual recharge increased significantly (especially under the 
B2) giving higher groundwater heads.  

Van Roosmalen et al. 
(2009)  

Grand Forks, 
Canada 

CGCM1 scenarios HELP Increased winter and spring recharge (affected by 
considerable winter snow cover). 

Scibek and Allen (2006), 
Scibek et al. (2007)  

Great Plains, 
Oklahoma, 
USA 

3 scenarios using 1999 
climate values 

 Where the water table is shallow changes are primarily a 
function of temperature increase and for deeper water tables a 
function of precipitation. 

Maxwell and Kollet 
(2008) 

CGCM1 – Canadian Centre for Climate Modelling and Analysis. ECHAM4- German Climate Research Centre, NATCC – North Atlantic Thermohaline 
Circulation Change, PICIR-Potsdam Institute of Climate Impact Research
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Table 6  Environmental responses to climate policy (from Baker and Murray, 2009) 

Climate policy scope  Groundwater extraction Nitrate leaching 
Decrease Increase Decrease Increase 

Bioenergy only No Yes No Yes 
Bioenergy and CO2 only If cost effect 

dominates 
If price effect 
dominates 

No Yes 

Bioenergy and greenhouse 
gases except CO2 

No Yes Yes No 

Bioenergy and all greenhouse 
gases 

If cost effect 
dominates 

If price effect 
dominates 

If cost effect 
dominates 

If price effect 
dominates 

 



Stuart et al . Nitrate and CC in the UK  

  43

 

 

Fig. 1.  Simplified nitrogen cycle highlighting soil processes  
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Fig. 2.  Interrelationship of impacts of climate change on soil nitrate available for leaching 
from agricultural areas 
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Fig. 3. Routes for climate change impact on nitrate leaching pathways  

 


