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ABSTRACT

There is concern as to the possible implications rising
atmospheric carbon dioxide concentrations will have on the

quality and guantity of water resources.

The River Network Water Quality Model, QUASAR (Quality
Simulation Along Rivers) has been calibrated for the lower
reaches of the Thames, from Cookham to Teddington, using data
from 1974, and validated using data from 1975. Climate change
scenarios were applied to data from 1974, 1975, 1976 and 1989
to assess the impact of changes in precipitation and

evapotranspiration on water quality.

The model can be used in a stochastic or a dynamic mode,
simulating a total of eight water quality variables in
addition to flow, including dissoclved oxygen, biochemical
oxygen demand, nitrate, ammonia, temperature, ortho-phosphate,

pH and any conservative pollutant.

Significant changes were only observed for dissolved oxygen
and biochemical oxygen demand. Although there was little
change in the annual mean values of these parameters, the
changes 1in the distributions of the dissolved oxygen were
sufficient in some cases to lower the water quality
classification. The results of the model output suggest that
under such climatic changes, investment would be needed to
maintain water quality objectives and consent discharges may

have to be reassessed.
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CHAPTER ONE

INTRODUCTION

Growing attention is being paid to climate changes that may
result from increasing atmospheric concentrations of carbon
dioxide and other trace gases. If decisions in relation to the
allocation of capital and current expenditure to water
resource systems are to be improved, then a clear
understanding of the sensitivity of the hydrological cycle to

climate change is of great importance.

How these climate changes manifest themselves on a regional
basis, the spacial and temporal redistribution of water
resources and the environmental consequences are the main

questions of practical importance for which answers are

currently being sought.

It is the policy of the National Rivers Authorities in England
and Wales to control river quality through the achievement of
river quality objectives. The Emission Standards for
discharges which would achieve the river quality objectives
are called the Long Term Consent Conditions and methods of
calculating Long Term Consent Conditions have been devised
which ensure correct match with the river quality objectives

(Warn & Brew, 1980; warn, 1982}.

In order to make correct use of sampling to assess compliance,

the quality required of discharges and rivers has been defined



statistically. The favoured statistic is the 95-percentile;
the concentration which can be exceeded only S5 percent of the
time. This type of target concentration is called a 95-
Percentile Limit. The reqguirement to achieve a particular

concentration 1s called a performance target.

In recent years the world-wide tendency to degradation of the
environment, due to man’'s activities, has provided an
increased motivation for the analysis and control of the state
of the environment. In particular, water quality modelling and
management have become the subjects of systematic

investigation.

The objectives of this study are to assess the likely effects
of climate change on the quality of water in the River Thames.
By using a water quality model, {(QUASAR), on the lower reaches
of the Thames and applying climate change scenarios, the
changes in the distribution of water quality parameters can be

assessed.



CHAPTER TWO

LITERATURE REVIEW

2.1. THE GREENHOUSE EFFECT AND CLIMATE CHANGE.

The greenhouse effect is a natural phenomenon that plays a
central role in determining the Earth’s climate and is, to a
great extent, responsible for making the Earth conducive to
life. In it’'s absence the Earth would be approximately 30
degrees coclder. The physical mechanisms by which greenhouse
gases warm the atmosphere are relatively well established and
have been widely publicised in both scientific and non-
scientific press (e.g. MacDonald, 1989; Luther & Ellingson,
1985; Doornkamp, 1989; Henderson-Sellers & Blong, 1989;

Rowntree, 1990).

Terrestrial radiation emitted from the Earth’s surface is
partly absorbed by greenhouse gases, principally water vapour,
carbon dioxide, methane, CFCs and nitrogen dioxide. With the
exception of water vapour, all these gases have been
increasing in concentration as a result of man‘s activities
and their absorption maxima are in the 8-16 um range of the
spectrum where absorption by water vapour is weak (Figure
2.1). The longwave radiation re-emitted by the gases (at the
temperature of the air at their level) is partly radiated back

to the Earth where it warms the land, water and air masses



{Figure 2.2).

There 1s ample evidence that the atmospheric concentration of
CO, has been rising steadily over past decades {(Figure 2.3).
The combustion of fossil fuels has been implicated as a
primary cause of this increase (Figure 2.4. Jager, 1973;
Lashof & Tirpack, 1991); a fact reflected in the global
distribution of atmospheric CO, being greatest over the less
vegetated and more industrialized Northern latitudes (Figure
2.5). As world population increases so too does the demand for
energy {(Figures 2.6 and 2.7) which, often being associated
with increased standards of living, means that developing
countries may well increase their relative contribution of CO,

to the greenhouse effect (over that in the past; Figure 2.8).

Tropical deforestation accounts for approximately 10-35% of
the annual anthropogenic CO, emissions (Figure 2.9), and 5-35%
of the total anthropogenic N,0 emissions are attributed to
nitrogen fertilizer consumption (Figure 2.10). Clearly,
uncertainties arise as to the future levels of greenhouse
gases emitted, when the underlying social, political and
economic factors that govern production are far from

predictable and clear-cut.

The consequences of increasing atmospheric concentrations of
radiation absorptive gases are controversial (Arnell et al.,
1990) . Uncertainties exist as to the rate at which gases are

being emitted; which is dependent on the levels of economic



0 0 0000006006000 000600 0090

activity. The rate at which the C0O, can be absorbed by plants
and the oceans is far from certain (Volk, 1989), and, hence

the importance of understanding the processes behind the ocean
carbon cycle and its interactions on a global scale (Figure
2.11) has been highlighted by many authors {(e.g. Mix, 1989;

Harvey, 1989}.

Reactions between important trace gases, their effects on
sources and sinks of radiation absorptive gases, the feedback
processes (Figure 2.12) and the implications for warming are
all areas of uncertainty (Heymsfield & Miloshevich, 1991;
Wigley, 1989; Covey, 1991). There is, however, agreement
within the scientific community that increasing concentration
of greenhouse gases will have far-reaching environmental and
sociceconomic implications through the changes in climate it

induces (Askew, 1987).

The Intergovernmental Panel on Climate Chaﬂge (IPCC) Working
Group II, responsible for assessing the impacts of such
changes, has implicated the following global medifications
(WMO, 1990):

1) an effective doubling of CO, in the atmosphere
between now and 2025 to 2050 for a "business-
as-usual" scenario;

ii) a consequent increase of global mean
temperature in the range of 1.5°C to 4°-5°C;

111) an unegual global distribution of this

temperature increase, namely a smaller increase



iv)

of half the global mean in the tropical regions
and a larger increase of twice the global mean
in the polar regions; and

a sea-level rise of about 0.3-0.5m by 2050 and
about 1lm by 2100, together with a rise in
temperature of the surface ocean layer of

between 0.2° and 0.25°C.



2.2. CLIMATE CHANGE AND THE HYDROLOGICAL CYCLE.

The Earth’s climate is a result of the interplay of a vast
variety of mechanical, physical, chemical and even biological
processes which occur in our environment. Even if we
understand the physical component of that complex interactive
system, we have to contend with the behaviour of the:

- global atmosphere

- world oceans

~ land surface hydrology

- sea-ice and polar ice-caps

Despite recent advances in climatology, climate forecasting is
still a very complex and difficult task. Predictions of the
climate and its effects on a global scale are now feasible by
the utilization of general circulation models (GCMs). These
are detailed, time-dependent, three dimensional numerical
simulations that include atmospheric motions, heat exchanges

and important land-ocean-ice interactions.

Hartmann (1990) briefly described the elements of current
climate models and the physical processes incorporated in
them. The structure of a typical GCM, designed for climate
simulation during the 1970s and 1980s, is shown in Figure
2.13. A GCM uses the eqguations of motion to predict the
temporal evolution of wind fields, which transport heat and
moisture in the atmosphere. Models of vertical transport of

heat by radiation and small-scale convection are included. The



latter is a highly simplified parametric model because the
motions in these small-scale systems cannot be explicitly
calculated in a global model with current computer technology.
A GCM must also predict temperature, moisture content and snow

cover for land surfaces.

However, the resolution of GCMs 1s not such that they are
capable of providing necessary information on regional
hydrological effects, and Gleick (1989) has argued in favour
of water balance modelling as a method for obtaining more
detailed estimates. In addition to the problem of coarse
resolution, different GCMs present discrepancies on
forecasting the regional distribution of the changes in
climatic variables that determine regional hydrology (Dooge,

1989} .

There 1s however, a certain degree of agreement between
different GCMs regarding zonal estimates of the key
hydrological parameters, temperature and precipitation. By
constructing hypothetical scenarios of temperature and
precipitation changes, based on the most recent and plausible
scientific foresight, the sensitivity that watersheds exhibit

in response to climatic perturbations may be investigated.

Increasing concentrations of greenhouse gases would have both
direct and indirect effects on the hydrological cycle;
initiating feedback mechanisms which in turn would influence

climate at local and regional scales. It is clear to say that



changes in water resource availability consequent upon
climatic change may be very significant, particularly if
coupled with the changes in demand for water. Figure 2.14
summarises the key inter-relationships between climate change

and water supply, demand and resource availability.

The most obvious effects of c¢limate change would be on the
magnitude, intensity, duration, frequency and timing of
rainfall events. These changes cannot be predicted well on a
regional scale. Increased heat will lead to greater
evapotranspiration but the increase is expected to be partly
offset by reduced plant water use in a CO,-enriched atmosphere.
Higher temperatures will have an impact on transitional snow
zones, and greater precipitation will fall as rain instead of
snowltherefore/increasing winter runoff and decreasing spring
and summer snow melt volumes. If additional winter run-off can
not be stored, then this may result in the loss of valuable
water resources. In addition, higher temperatures will
increase biological and chemical reaction rates, which will

have further implications on the hydrological cycle.

Manabe and Wetherald (1986) used an atmospheric GCM coupled
with a static mixed-layer ocean model to investigate the
change in soill wetness in response to an increase {doubling)
in atmospheric CO,. Responding to an increase in CQ,, soil
moisture in the model would be reduced in suﬁmer over
extensive regions of the middle and high latitudes, such as

the North American Great Plains, Western Europe, Northern



Canada and Siberia. According to the comparison of the surface
water budget between the normal and high CO, experiments, the
CO,-induced reduction in soil moisture in summer over Siberia
and Northern Canada results from the earlier disappearance of
snow cover in the warmer climate. Since the snow cover has a
high surface albedo, its disappearance increases the surface
adsorption of solar energy and accordingly the rate of
potential evapotranspiration. Thus the earlier termination of
the snow-melt season results in the earlier commencement of
the spring-to-summer reduction in soil moisture, causing the

CO,-induced reduction in soil moisture in summer.

Thornthwaite’s water balance method and combinations of
temperature and precipitation changes representing climate
change were used by McCabe and Ayers (1989) to estimate
changes in seasonal soil-moisture and runoff in the Delaware
River basin. They found that winter warming could cause a
greater proportion of precipitation in the northern part of
the basin to fall as rain, which may increase winter runoff
and decreases spring and summer runoff. In this humid
temperate climate, where precipitation is evenly distributed
throughout the year, decreases in snow accumulation in the
northern part of the basin and increases in evapotranspiration
throughout the basin could change the timing of runoff and

significantly reduce total annual water availability unless

. precipitation were to increase concurrently.

Chunzhen and Yuying {1990}, investigation the impact of

10



climatic change on the water resources for basins located in
three climatic regions. Their results showed that runoff 1is
highly sensitive to climatic changes in humid areas, and is
weakly sensitive in nearly tropical areas. The variability of
sensitivity depended mainly on the combination on increases
{(or decrease) of precipitation with decrease (or increase) of

potential evapotranspiration in the various climatic regions.

Idso and Brazel (1984) point out the short comings of a study
carried out by the US National Research Council. The NRC
analysis suggested that watersheds in the western US will
suffer 40-75% reductions in stream flow for a doubling of the
atmospheric CO, content, leading to a 2°C rise in air
temperature and a 10% drop in precipitation. However, this
study made no attempt to include the direct antitranspirant
effect of atmospheric CO, enrichment that would accompany any
CO,-induced climate chan;e, whereby increasing CO, content of
the air tends to induce partial stomatal closure, so reducing

plant transpiration and thereby conserving soil moisture and

increasing run-off to streams.

Idso and Brazel used an identical model employed by the NRC,
to ensure valid comparability, then superimposed the
antitranspirant effect on those results. When applied to 12
drainage basins in Arizona, their results indicated that 40-
60% increases in stream flow may well be the more likely
conéeqﬁences of a CO, concentration doubling, even in the face

of adverse changes in temperature and precipitation.
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Aston (1984) simulated the effects of changed stomatal
resistance likely under increased CO, content of the atmosphere
on streamflow of an experimental catchment and a large water
supply area. The results indicated that stream flow would be
likely to increase from 40 to 90% as a consequence of doubling
of atmospheric CO, concentration. Generally it was found that
photosynthesis, growth and yield of C, plant species increased
with higher ambient CO, levels, while the C, plants increases

were insignificant.

Palutikof (1987) employed two methods to derive scenarios of
runoff changes due to increasing concentrations of the
greenhouse gases in ten drainage basins in England and Wales.
The first method compared reconstructed riverflow data for the
warmest and coldest twenty-year periods this century. This
suggested riverflow would decrease in southern England and
Wales and increase in northern areas. The second method
attempted to introduce the direct effects of CO, on plant
respiration into the analysis. In this scenario riverflow was

expected to increase throughout the country.

Bultot et al. (1988; 1989) describe the likely modifications
of meteorological variables in Belgium under the 2 x CO,
climate conditions. They ran the daily-step conceptual
hydrological model developed at the Royal Meteorological

- Institute of Belgium using data from typical Belgian
catchments having sharply distinct characteristics: the Dyle

catchment which has a thick aquifer in a sandy-loam soil; the

12



rock-bottomed Semois catchment; and the Zwalm river basin with
sandy-clayey soils. The IRBM model was designed for the
simulation of:

1) the water transfers:- interception of
precipitation by vegetation, infiltration,
evapotranspiration, surface run-off, deep
percolation etc.;

1i) the status of the various phases of the water
cycle:- water equivalent of the snow cover,
water deposited on the vegetation canopy and on
the ground surface, water content of the
aeration zone of the soil as well as the zone
of saturation etc. and;

111) the flows at the outlet:- surface flow,

baseflow, interflow, alluvial-zone flow.

To highlight the intricacies of such a simulation, a flow
chart of the IRBM model is shown in Figure 2.15. Input
climatological data are precipitation and potential
evapotranspiration (PE), this latter element is computed by
the energy balance method. Catchment particulars were taken
into account: areas covered by various types of vegetation,
éibedos, leaf area indices (LAI), soil types (with a view to
assessing the water retention capacity of the zone of
aeration), and urbanization. These were assumed to remain

constant throughout the course of time.

From November through March, the total flow augments

13



considerably in the three drainage basins. For the Semois and
the Zwalm, the sole cause of this increase was attributed to
the increases in surface flow. For the Dyle, the baseflow also
contributed to the strengthening of the total flow, especially
from January through March, as the precipitation influences to
a larger extent the recharge of the aguifer in the Dyle basin.
Due to its thick aquifer the strengthening of the baseflow is
maintained all year round, so that the total flow is
strengthened during summer also, and the risk of river
pollution is thus lessened. In the Semois basin, between April
and October, the total flow was found to decrease considerably
as a result of a diminution of the surface flow {(diminution of
precipitation), of the interflow and of the baseflow
(augmentation of the evapotranspiration). Hence, the Semois
region could be exposed to a considerable increase of the
pollution risk in the July and August period of low river

stages.

Using a conceptual model of the water balance type, Mimikou et
al. (1991) assessed the regional hydrological effects of
climate change in a mountainous region of Greece, comprising
three drainage basins: the Mesohora and Sykia basins of the
Upper Acheloos River and the Pyli basin of the Portaikos River
in west Thessaly. From their results, they concluded that
mountainous, snow-covered Mediterranean basins with effective
water-retentive characteristics under temperature increéses
exhibit reductions of soil moisture in general and more

severely 1in summer, serious reductions of mean annual runoff,

14



even more serious reduction of mean summer runoff and
increases of mean winter runoff accompanied by a shift of
spring run-off. In warmer, humid basins or in general in
basins where regional characteristics limit water retention, a
minimal sensitivity of runoff to temperature change is

exhibited.

Basin aridity appeared to be positively associated with the
sensitivity of runoff to precipitation changes, and runoff, on
an annual basis, seemed to be independent of temperature
whereas on a seasonal basis it depended on the snow cover and
hence on the temperature. Their results implicated snow
{accumulation and melting) as the most significant and
determining factor of basin response to climate change. This
factor in turn depends on the orographic characteristics of
the basin (altitude, area-elevation relationship, orientation)
besides the general climatic ones. Additional characteristics
were shown to be important, such as the coefficient of runoff
which, when unusually high, does not permit other hydrological
processes, sensitive to climate change, to be completed or

even to take place at all.
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2.3. RIVER WATER QUALITY.

The current trend in water management is towards multipurpose
water use, and new legislation means that the "in-stream®

quality is becoming as important as the *on-tap®" quality.

Water pollution control activities are directed principally to
protecting aquatic life and preventing undesirable conditions
in streams that could arise as a result of low dissolved
oxygen (DO) concentrations. To that end, most regulatory
programs are heavily orientated toward controlling oxygen-
demanding materials (BOD) in wastewater discharges. Therefore,
the rationale behind planning, designing, operating, and
monitoring wastewater treatment facilities is based largely on
understanding the DO balance in water courses and maintaining

desirable DO concentrations.

Classification systems for river quality has been proposed
(e.g. Table 2.1) which restrict the use of a river's water
with regard to its guality. Here, quality criteria are devised
in terms of percentage saturation of dissolved oxygen,
biological oxygen demand, pH, concentration of nitrates,
ammonium nitrogen and unionized ammonia in the water. This
means that consent discharges are often formulated with
respect to the potential effects of these discharges on the

fore mentioned quality parameters.

The oxygen balance in a watercourse is a result of combined
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deoxygenation and reoxygenation reactions. Deoxygenation
refers to the utilization of oxygen by various chemical and
biological reactions, excluding the consideration of any
reoxygenation that might occur simultaneously. The reactions
may include immediate oxygen demand (caused by relatively
rapid reactions between certain types of chemicals, for
example sulphites, and DO in water), carbonaceous or
biological oxygen demand (BOD), nitrogenous oxygen demand

(NOD) and conceivably others as well.

Table 2.1. River Quality Standards.

Class
1A 1B 2A 2B 3
DO (min) 80% 60% 40% 40% 10%
BOD {(max) 3 5 9 9 17
Amm. N {max) 0.4 0.9 3.0 - -

Unicnized (max) 0.025 0.025 0.025 - -

ammonia as NH,

PH a a a b b

| Nitrate 0.2 0.2 0.5 - -

(a} range 6.0-9.0; (b) range 5.0-9.5
N.B. Figures are expressed (in general terms) as a 95%ile.
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Figure 2.16 shows the major sources and sinks of carbonaceous
BOD (CBOD) in natural waters. Anthropogenic inputs include
point sources and non-point sources such as urban runoff and
feedlot runoff. Autochthonous sources derived from the aquatic
biota (particularly algae) can be important in some systems.
Also, entrainment of oxygen-demanding material from benthic
deposits may occur. Removal of CBOD from the water column
occurs through sedimentation, microbial degradation and the
sorption onto or uptake by the benthic flora. Some components
of BOD may also volatilize from the water column. Carbonaceous
material which has settled or been sorbed becomes part of the
benthic oxygen demand, and from their study of the River Lark,
Owens and Edwards (1963) stressed the importance of this
demand in determining the overall oxygen distribution within

shallow rivers in particular.

A number of factors such as water temperature, flow
hydraulics, stream geometry and the nature of the carbonaceous
material are known to influence the rate at which CBOD is
removed from the water column. Like all biochemical processes,
the CBOD decay rate increases with increasing temperature to a
point where protein denaturation begins. Water turbulence is
recognised as influencing the rate of BOD depletion in a
receiving water in a number of ways. It influences the CBOD
settling rate by controlling such processes as scour and
sedimentation, and may enhance contact between the substrate

and the benthic biological community.
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Bioclogical self-purification is the process by which organic
wastes are broken down by the respiration of micro-organisms
into stable end products. It is a biochemical oxidation
process through which organic wastes are consumed leaving
behind end products such as carbon dioxide, phosphates and
nitrates. The water is ‘purified’ in the sense that the
concentration of waste material has been reduced. Organic
materials which can be broken down (i.e. are biocdegradable)
include natural materials such as simple sugars, starch, fats,
proteins as well as more complex natural or synthetic

compounds which are found in sewage or other wastes.

The interaction between BOD and DO downstream of a discharge
may be illustrated in a simple manner as shown in Figure 2.17.
A high initial BOD exerts a large demand for oxygen and as the
in-stream organic matter decays the oxygen level becomes
depressed. The river, however, has the capacity to recover
naturally from this situation by reaeration at the atmosphere-
water interface. This reaeration process (oxygen transfer) is
primarily controlled by the degree of oxygen saturation, but
is also enhanced by lower atmospheric temperatures and

turbulence.

At the minimum point of the oxygen sag curve a high level of
reaeration occurs and as the BOD level declines the DO level
increases. The minimum is influenced by various factors

including the type of effluent and the rate of discharge, a

higher organic load producing a lower minimum. In addition, at
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high river flows the location of the minimum shifts

downstream.

Typically, the net transfer of oxygen is from the atmosphere
and into the water, however, in circumstances when
photosynthesis produces supersaturated DO levels, this net

transfer is reversed.

Figure 2.18 illustrates nitrogen transformations in river
systems. The transformation of reduced forms of nitrogen to
more oxidised forms (nitrification) consumes oxygen. This is a
two-stage process, the first being the oxidation of ammonia to
nitrite by Nitrosomonas bacteria:

NH, + 1.50, -> NO,” + H,0 + 2H'
Stoichometrically 48/14 or 3.43 gm of oxygen are consumed for
every gram of ammonia-nitrogen oxidised tb nitrite-nitrogen.
During the second stage of nitrification Nitrobactor bacteria
oxidise nitrite to nitrate:

NO,” -+ 0.50, -> NO,
Stoichiometrically 16/14 or 1.14 gm of oxygen are consumed per
gram of nitrite-nitrogen oxidised. If the two reactions are
combined, the complete oxidation of ammonia can be represented
by :

NH,” + 20, -> NO,” + H,0 + 2H"
As expected, 64/14 or 4.57 gm of oxygen are required for the

complete oxidation of one gram of ammonia.

In the reactions above, the organic-nitrogen form does not
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appear since organic-nitrogen is hydrolysed to ammonia, and
does not consume oxygden in the process. However, organic
nitrogen will eventually contribute to the NBOD, as the
following equation shows:

NBOD = 4.57 (N, + N,) + 1.14 N,

where:
N, = organic-nitrogen concentration,
N, = ammonia-nitrogen concentration,
N, = nitrite-nitrogen concentration.

The stoichiometric coefficients of 3.43, 1.14, and 4.57 in the
previous equations are actually somewhat higher than the total

oxygen reguirements because of cell synthesis.

Modellers typically consider only temperature effects on
nitrification, although a few do model DO limitations.
However, additional factors including pH, ammonia and nitrite
concentrations, suspended solids, and organic and inorganic

compounds effect the rate of nitrification.

Oxygen demand by benthic sediments and organisms can represent
a large fraction of oxygen consumption in surface waters.
Benthal deposits at any given location in an aquatic system
are the result of the transportation and deposition of organic
material. The material may be from a source outside the system
such és leaf litter or wastewater particulate BOD
(allochthonous material), or it may be generated from inside

the system as occurs with plant growth (autochthonous
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material). In either case, such organic matter can exert a
high oxygen demand under some circumstances. In addition to
oxygen demand caused by decay of organic matter, resident
invertebrates can generate significant oxygen demand through

respiration.

It is generally agreed that the organic matter oxygen demand
is influenced by two different phenomena. The first is the
rate at which oxygen diffuses into the bottom sediments and is
then consumed. The second is essentially the rate at which
reduced organic substances are conveyed into the water column,
and are then oxidised. Traditional measurement techniques do
not differentiate between the two processes but measure,
either directly or indirectly, the gross oxygen uptake. Hence,
in modelling DO, a single term in the DO mass balance
formulation is usually used for both processes. The process is

usually referred to as the sediment oxygen demand (SOD).

The major factors affecting SOD are: temperature, oxygen
concentration at the sediment-water interface {available
oxygen), makeup of the biclogical community, organic and
bhysical characteristics of the sediment, current velocity
over the sediments, and chemistry of the interstitial water.
Each of these factors is a resultant of other interacting
processes occurring elsewhere in the aquatic system. For
example, temperature and available oxygen can be changed as a
result of transport and biochemical processes in the water

column or system boundaries. Another important linkage is that
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the biological community will change with the water quality
(e.g. oxygen and nutrient concentrations) and productivity of
the system. The organic characteristics will change over the
long term due to settling of organic matter (detritus, faecal
matter, phytoplankton) and its subsequent degradation and/or
burial by continued sedimentation. The biological community
and the organic and physical characteristics of the bottom
sediments are usually treated as a composite characteristic of

the particular system.

Photosynthetic oxygen production (P) and respiration (R} can
be important sources and sinks of DO in natural waters. Many
models simulate these processes directly on terms of algal
growth and respiration. However, some water quality models use
the approach that P and R can be modelled without the
necessity of simulating algal activity. This approach is valid
where P=0 and R=0, or else some type of curve, such as a sine
curve or more generally a Fourier series, 1s used instead,
where certain parameters must be delineated to characterise
the curve. Other models simulate only daily averaged values.
If, on a daily average basis, P-R 1is practically zero, these
models would predict little effect of algal activity on DO.
However, i1f P and R are both large numbers, Ehen actual DO
levels will be higher during the day and lower at night than

predicted by the models.

In a collaborative study with Thames Water Authority,

Whitehead and Hornberger (1984) developed algal models for the
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River Thames. They examined the non-linear processes
controlling algal growth using a generalized sensitivity
analysis technique (Monte-Carlo simulations). The dominant
parameters controlling system behaviour were identified as the
growth rate, a power term included to enhance the self-shading
factor at high algal concentrations, and the optimal solar
radiation level which accounts for the decrease in algal
growth under low light intensity and the apparent decrease in
growth under extremely high intensity conditions in the

Thames.
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2.4. RIVER QUALITY MODELLING.

Streeter and Phelp’s (192%) basic dissolved oxygen reaeration
equation facilitated the use of mathematical models in the
management of water quality in river basins. With increasing
public awareness, pollution control legislation and improved
computing techniques, the accuracy of these models has been
improved. River quality models (RQMs) have now become
important tools for managers and planners} to aid the
management and control of river water quality and effluent

discharges.

The application of mathematical models to water quality and
pollution transport has been reviewed by many authors (e.g.
Whitehead, 1984; Beck, 1985; BHRA, 1986). Crabtree et al.
{(1987) have briefly distinguished between types of RQMs in
terms of their application (use:- research or management) and
the representation of relationships and processes modelled
(stochastic/deterministic, dynamic/steady-state,
mechanistic/black box). There are three components within a
river system which can be modelled to varying degrees of
complexity:
i) the number and type of water quality parameters
simulated;
11) the temporal variability of the inputs and forcing
functions (e.g. discharge quality and quantity);
iii) the simulation of the flow regime in the river

system.
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Hines et al. (1975) have diagrammatically illustrated the
increasing complexity in the various biochemical interactions
that can be modelled (Figure 2.19). This ranges from the
simple mass balance representation for conservative minerals,
through simple DO models to modelling complex eutrophic
processes. The data requirements will increase as the
complexity of the model’'s representation of the system

increases.

The stages involved in the selection and use of RQMs are shown
systematically in Figure 2.20. Clearly, the nature of the
modelling problem will determine the type of model required,
hance the design and thus capabilities of the models developed

are often specific to these requirements.

To simulate the distribution of water quality in a river
system throughout the year, with any accuracy, will require a
ROM with a relatively complex representation of the river
system. This should include the ability to model:
1) the effect of cyclic variations (e.g. seasonal and
diurnal) in input parameters and system parameters;
11) the correlation between inputs, so that realistic
flow and quality mixing 1s maintained;
i11) the various potential consent limiting water quality
constituents, and the significant factors affecting
their concentration; and
iv) the complexity of river basins as physical and

ecological systems.
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In the UK there has been a tendency for the development of
ROMs to suit specific problems. This has been due to the
fragmentation of the agencies carrying out modelling
exercises. In the USA the Environmental Protection Agency
exerts a controlling influence on the development of water
quality models. It has models and documentation for a wide
range of applications, all of which are freely available. As a
result there is a larger reservoir of knowledge and published

data for each model.

Although there are differences in the modelling requirements
in the UK, the lack of central development has produced
duplication in modelling effort. This has led to little
continuity of further application of models beyond their
immediate implementation in a particular catchment and to a

particular problem. (Crabtree et al., 1985).

Thames Water Authority have produced a long-term consent
setting model for catchment systems. The major constituent
interactions in ‘TOMCAT’ are shown in Figure 2.21. This multi-
shot model produces a series of independent quality
simulations of the river system. During each ‘shot’ the
various input values are randomly generated in such a way as
to include the underlying cyclic variations found in the

observed data.

The parameters modelled are DO, carbonaceous BOD, ammoniacal

nitrogen and unionized ammonia. The DO balance is influenced
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by reaeration, nitrification and BOD. Unionized ammonia is
calculated from the concentration of ammoniacal nitrogen, the
simulated pH and temperature. A plug-flow in the river is
assumed, which does not take into account longitudinal
dispersion. As it simulates high as well as low flow
conditions this is a major simplification. The time of travel
along any reach of the system is calculated using channel

hydraulic characteristics and flow.

Any number of tributaries can be simulated, as well as
effluent discharges, bifurcations, abstractions, weirs and
river sampling points. As analytical solutions are used for
the rate equations, there is no problem with numerical errors.
However, there are system simplifications which could cause
significant errors. These include plug-flow, the assumption
that the underlying distribution of the residual errors do not
vary with time, and the simplicity of the constituent

interactions.

The USEPA general purpose model QUAL-II, has been successfully
applied to the Blackwater catchment, a tributary of the River
Thames, to examine the effects of various quality management
options (Crabtree et al., 1985; 1986). This model has produced
better predictive results than simpler UK developed
deterministic models. However, in its standard form it has no
stochastic components and cannot be used for consent setting;
Its process representation is more sophisticated than

"TOMCAT’, but its input requirements are similar. Ongoing
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development with QUAL-II at Birmingham has produced a
multishot stochastic-deterministic, one-dimensional, steady-
state river model (SQUAL-1D} based upon the deterministic
processes represented in QUAL-II. In effect QUAL-II forms the
deterministic model which has stochastic input and output
generated by Monte-Carlo simulation techniques. This approach
was developed from the conceptual representation of temporal

variability and mixing used by the ‘TOMCAT’' model.

A catchment simulation model (SIMCAT) has been used by Anglian
Water for planning investment for river quality (Warn, 1987).
Output from the model takes the form of a profile of water
quality down the river. This shows the lengths of river where
quality requires improvement. SIMCAT also employs the well
established Monte-Carlo technique to calculate water quality
standards for effluents by accounting for the variability of
the polluting load and the variability of the dilution
provided by the river. The effluent standards needed to bring
all stretches of the river up to the required degree of
compliance with the river quality targets can then be

calculated, along with the costs of achieving these standards.

James and Elliott (undated) describe a dynamic water quality
model (NUT) which is able to determine the frequency
distributions of quality parameters such as DO and BOD with
associated percentage compliance. These distributions can be
determined over an annual period or shorter, for example

during summer, when critical conditions are more likely to
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occur. The duration or concentration relationships for each

failure with compliance together with the time intervals

between can also be calculated. This model has been applied to

the Ely catchment to assist management in the evaluation of

optimal consent conditions compatible with agreed river

management strategies and objectives (Bird & Inverarity,

1988).

The NUT model has a modular structure. The main elements of

the model may be briefly characterised as follows:

1)

11)

iii)

iv)

hydraulic inputs - data about flow, velocity, depth
and cross-sectional area are read in at known
sections for the times of observation. Intermediate
values are obtained by interpolation in space and
time. Coefficients of dispersion, reaeration and re-
suspension are calculated from the hydraulic data;
quality inputs - data on water quality at upstream
boundary and initial conditions are read in together
with loads. Loads and boundary conditions are
specified at particular times and interpolated;
coefficients for processes like BOD, SOD,
photosynthesis etc. are read in at selected points
and times and interpolated. Temperature corrections
are applied;

subroutines for handling all the main operations
like interpolation, finite difference scheme, soﬁrce

and sink routines, output routines.
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One main drawback of a model such as this is the additional
data required for the calibration and validation procedures,
however, this type of dynamic model approach does provide
useful information for judging the consequences of alternative

pollution control strategies.

There is, at present, considerable research into in-stream
algae productivity and the consequences on water quality (e.g.
Brinkman et al., 1987). Auer and Effler (1990) have examined
three methods for calculating daily average net photosynthetic
oxygen production (net photosynthesis) in the water column
with the goal of demonstrating the implications of method
selection on the computation. Their results were intended to
provide modellers guidance in selecting a particular approach.
Their work would perhaps be a good starting point from which
to build into QUASAR a more dynamic simulating of the function

of algae.

The first method examined by Auer and Effler uses the
photoperiod-average incident photosynthetically available
radiation (PAR; 400-700nm) and Beer’'s law to compute
irradiance at the middepth of the water column. That light
value is applied to the P-I curve (which relates net
photosynthesis and PAR; where I is the incident light) to
determine the net photosynthetic rate corresponding to the
photoperibd—average PAR at middepth. This rate is multiplied
by the photoperiod (number of daylight hours/24) to yield the

photoperiod-average rate of net photosynthesis. The dark-
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period respiration is then subtracted to yield the daily

average rate.

In the second method they employed, the incident light is
attenuated over the water column to gene%ate a vertical-light
profile corresponding to the photoperiod-average PAR.
Corresponding rates calculated from the P-I curve are then
integrated over the water column to obtain the water-column
average rate corresponding to the photoperiod-average PAR.
This value is then corrected for the length of the photoperiod
and dark-period respiration, to yvield the daily average rate
of net photosynthesis.

;
In method three, hourly integrated incident PAR is attenuated
over the water column according to Beer’s law to generate an
hourly vertical PAR profile. Corresponding photosynthetic
rates are calculated from the P-I curve and are vertically
integrated to estimate the hourly average net photosynthetic
rate. The daily average rate of net photosynthesis is
calculated by integrating the houly water-column averages over

the 24-hour period.

The use of the first and second methods introduces systematic
errors because of the nonlinear character of the light
attenuation and P-I functions. Method three avoids the
systematis errors by calculating rates integfated over depth
on an hourly basis and integrating over the day. Methods one

and two overestimate the rate of the net photosynthesis at
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average daily incident PAR values below about 100HEinsteins m,

and overestimates rates above that level.

Whitehead et al. (1989%) have reviewed models used in planning,
design and operational management in the UK and Europe. They
focused on the problems presented in relation to the control
of agricultural nonpoint-source pollution. Among the likely
future requirements that would be placed on existing models,
they highlighted the need to improve techniques of parameter

estimation, calibration and identification.
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CHAPTER THREE
METHODOLOGY

3.1. THE THAMES STUDY SITE.

Figure 3.1 shows the Thames catchment area. The Thames study
site from Cookham to Teddington is shown in Figure 3.2. The
length of the main river is 236 kilometres with a fall of 108
metres. There are many locks and weirs along the course of the
river. The welrs have a large effect on water gquality since in
addition to regulating depth, they largely control mixing and
aeration in the reaches. Except in times of high flow the
depth regulation results in low velocity of flow, long
retention times, and a lower rate-of aeration. The majority of
the discharge within the Thames is from direct discharges,
with little attributed to diffuse input along the course of
the river. The river is navigable and is used by numerous
small boats in the spring, summer and early autumn. This tends
to increase the turbidity of the water as a result of scouring
of bottom silts. The increased residence time associated with
the resulting weirs is an important factor when considering

water quality.

The quantities of sewage and trade effluent discharged to the
Thames catchment above Teddington forms a high proportion of
the total flow of the Thames at times of low flow. The
location of principal sewage outfalls is an important

consideration in defining the river reaches.,
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Whilst some water 1s abstracted for public water supplies from
the River Thames above Oxford, from the River Kennet at
Reading, and from a number of chalk and limestone springs the
largest abstractions are made from the reaches of the Thames
between Windsor and Hampton. The main abstractors are the
Thames Water Authority, the North Surrey Water Company (NSWC)
and Three Valleys Water Company, all of whom have intakes
along these lower reaches. The principal reaches of concern in
this study are shown diagrammatically in Figure 3.3 together
with abstraction and discharge sites and tributaries. The
length of the Thames modelled, from Cookham to Teddington has
abstractions at:

- Staines

- Datchet

- Sunnymeads

- Egham

- Laleham

- Chertsey

- Walton (NSWC)

- Walton (TWA)

- Thames-Lee-Tunnel
and direct discharges from sewage treatment works at:

- Slough

- windsor

- Chertsey

- Surbiton

- Hogsmill

- Esher
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3.2. THE QUASAR MODEL.

QUASAR (Quality Simulation Along Rivers) 1is a watersquality
and flow model. The model has been designed at the Institute
of Hydrology to assess the impacts of pollutants on river
systems. The model was originally developed as part of the
Bedford Ouse Study, a Department of Environment and Anglian
Water Authority funded project initiated in 1972. The primary
objective was to simulate the dynamic behaviour of flow and
water quality along the river system (Whitehead et al., 1979;
1981). Initial applications involved the use of the model
within a real time forecasting scheme collating telemetered
data and providing forecasts at key abstraction sites along

the river (Whitehead et al., 1984).

The model was also used within a stochasﬁic or Monte-Carlo
framework to provide information on the distribution of water
quality within river systems, particularly in rivers subjected
to major effluent discharges (Whitehead & Young, 1979). This
technique was also used by Warn and Brew (1980) and Warn and
Matthews (1984) to assess mass balance problems within river
systems. There has also been a range of model applications to
other UK rivers such as the Tawe in South Wales to assess
heavy metal pollution, and the Thames to assess the movement
and distribution of nitrates and algae along the river system

(Whitehead & Williams, 1982; Whitehead & Hbrnberger, 1984).

A total of eight water guality variables can be simulated in
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addition to flow, including nitrate, ionized and unionized
ammonia, dissolved oxygen (DO), biochemical oxygen demand
(BOD), pH, temperature, ortho-phosphate and any conservative
pollutant or inert material in solution. To model these
parameters the river is divided up into reaches. The reach
boundaries are determined by points in the river where there
is a change in the water guality or flow due to the confluence
of a tributary, the location of a sewage treatment final
effluent discharge, abstraction, or location of weirs. ’
However, there 1s an underlying factor which promotes reaches
of equal length for modelling purposes. Water quality changes
due to biological or chemical reactions are also considered by

ensuring appropriate reach lengths.

Two sets of equations have been developed to represent these
nine parameters. One set consists of the differential
equations relating to the rate of change of these parameters
with time. These equations are solved by a "differential
equation solver" subroutine in the program. The other set
consists of "analytical solutions" or the integrated
differential equations. These equations are solved at discrete
time intervals, specified in the program as the model time

step. The equations solved by QUASAR are given in Appendix A.

The model can be used in a planning mode or a dynamic mode. In
the stochastic or planning mode a cumulative frequency curve
and distribution histogram of a water quality parameter are

~

generated. This provides information to aid in long term
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planning of water quality management. In this mode statistical
data of the water quality and flow in the first reach at the
top of the river, and in tributaries, sewage treatment works
discharges, and abstractions at key locations along the river
are required. This data includes the mean, standard deviation,
and shape of the probability distribution i.e. lognormal,
rectangular, or gaussian. From these characterized
distributions random numbers are generated as water quality
énd flow values. These values are then input into the model
which essentially consists of a set of equations representing
the water quality and flow. The values generated from the
model equations represent the water guality and flow at the
end of the reach. This cutput value is compared with the input
value. If there is a difference of 1% or greater then the
model 1s run again for that reach. {The same random number for
the input value is used but the initial conditions generated
from the current run is compared with the output value
generated from the previous model run and are kept in the
model equations.) This process is repeated either until steady
state has been reached (i.e. the previocusly and currently
generated value do not differ by greater than 1%) or up to 30
time periods. Five hundred and twelve random numbers and
ocutput are generated. The output 1s stored and used in
producing cumulative frequency distributions and distribution

histograms.

In the forecasting or dynamic mode the water quality and flow

are simulated over selected periods. This allows the possible
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affects of a pollution event on a river to be investigated. In
this mode time series data is required for water quality
parameters for the first reach of the river and for the
tributaries, sewage treatment works discharges and
abstractions along key locations on the river. The model run
time step, i.e. the time interval over which the model will
dynamically compute river quality and flow, and the run output
length, i.e. the number of output steps that the model runs
for, must also be specified. Once this data has been input the
model can be run. A mass balance is performed at the beginning
of each reach for inputs such as tributaries entering at that
point on the river. The concentration change over the reach is
solved using differential or analytical equations and the
output from each reach is stored and used for the input of the
next reach. The model is run for 20 time periods before the
specified start of the model run using the *default®” values to
ensure that the system has reached equilibrium. The output
values are used in generating profiles of water quality
parameters along the river at a given time or in generating

time series data at a specified location.
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3.3. APPLICATION OF QUASAR TO THE THAMES.

There are two basic requirements before validation and
calibration of the model to any catchment. First, water
quality and flow data must be available for the river input at
its top boundary and all subsequent key reaches. Secondly, the
model must be able to accurately simulate the hydrograph at

all locations using the dalily data.

QUASAR models flow and water guality using data which it
stores 1in the form of a map file. This data may be input to
the map file by means of a program, written in Fortran 77,
which will prompt the user for an output file name (i.e. the
map file in which the data is to be stored), and the values to
be input. The program then converts the data into the required
format necessary for future use in running the model. Ideally,
daily values for flow and water quality parameters are used as
input to the model. This was the case for streamflow, but in
some cases only data collected on a monthly basis was
available, such as data for tributaries and discharges. In
these circumstances the monthly average values may be
interpolated and used on a daily basis. Data for the Thames
River from Cookham to Teddington collected in 1974 was used to
calibrate the model, and validation was carried out using data
from 1975. These annual data sets, along with those collated
for 1976 and 1989 were used in this study.. The contrast in
data, 1976 and 1989 being dry years, 1974 and 1975 being

"normal" years, was an adequate test of the validity of the
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model. A brief explanation of the structure of the map files

is given in Appendix B.

Each map file thus contains all the data describing the river
system to be modelled. Before running the model, a parameter
set must be created from the map file which assembles all the
input data into a format which can be easily edited by the
user. A menu-driven display allows easy access to spatial data
(reach length, width, depth, latitude and longitude) as well
as flow volumes, water temperatures and rate coefficients
(denitrification, BOD decay, nitrification, oxygen uptake by
sediment, addition of BOD by dead algae, and photosynthetic

oxygen production).

Once the map files and parameter sets are set up the model can
be run. The user can specify the starting date and the time
intervals of the run within the parameter sets, as well as the
mode of running (i.e. planning or dynamic). After the model
has been run, output data from any of the modelled reaches:

- Cookham to Boulter

- Boulter to Barge

- Barge to Down

- Down to Boveney

- Boveney to Datchet

- Datchet to Sunnymeads

- Sunnymeads to Egham

- Egham to Walton

- Walton to Teddington
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are availlable for plotting. Further information on running the

QUASAR model can be obtained from Black and McDougall (1989).

A range of climate change scenarios envisaged for the year
2050 were applied to the four years of data to assess the
impacts on water quality and stream flow. Arnell (1991) has
quantitatively assessed the impacts of climate change on river
flow regimes in the UK. He applied a simple water balance
model with a number of feasible change scenarios to 15 case
study catchments. The model he used has three parameters
notionally representing:
i) the proportion of rainfall which runs off directly
into rivers;
ii) the lag between the creation of effective rainfall
and its passage out of the catchment, and
11i) the relationship between actual and potential

evapotranspiration.

From Arnell's work there are basically four (at least
partially) independent variables:
1} summey change in rainfall (-16%, 0%, +16%)
11) rest-of-year change in rainfall (0%, +8%, +16%)}
111} change in potential evapotranspiration (PE) in the
summer (+7% and +15%)
iv) change in PE during the'rest of the year (+7% and

+15%)
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These give rise to several (3x3x2x2=32) different scenarios.
However, it is assumed that the wettest scenario for a given
period of time corresponds to the lower increases in PE, and

the driest scenario corresponds to the higher increase in PE.

The following eight tables illustrate these scenarios. N/A
indicates where changes are not applied in view of the above
assumptions. The numbers in each column are for winter,
spring, summer and autumn respectively. The occasional
additional number in brackets at the end of a column
corresponds to the respective climate change scenario selected

for application in this study.

Tables 3.1. Changes in Runoff.

Table 3.1la. Summer PE +7%, Rest of Year PE +7%.

i
AUTUMN, WINTER AND SPRING

SUMMER
0% 8% 16%
-16% N/A N/A N/A
7.5 36
0% N/A 5 26.5
3 3
5.5 39.5
7.5 36
+16% N/A 5 26.5
25.5 25.5
5.5 39.5
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Table 3.1b. Summer PE +15%, Rest of Year PE +7%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
7.5 36
-16% N/A S 26.5
-27 -27
5.5 39.5
7.5 36
0% N/A 5 26.5
-6 -6
5.5 39.5
+16% N/A N/A N/A
Table 3.lc. Summer PE +7%, Rest of Year PE +15%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
-16% N/A N/A N/A
-31.5 -4.5
0% -26.5 -6 N/A
3 3
-26.5 -5.5
-31.5 -4.5
+16% -26.5 -6 N/A
25.5 25.5
-26.5 -5.5
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Table 3.1d. Summer PE +15%, Rest of Year PE +15%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
-31.5 -4.5
-26.5 -6
-16% -27 -27 N/A "
-26.5 -5.5
(4)
-31.5 -4.5
0% -26.5 -6
-6 -6 N/A
-26.5 -5.5
{2)
+16% N/A N/A N/A
Tables 3.2. Changes in Temperature,
Table 3.2a. Summer PE +7%, Rest of Year PE +7%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
-16% N/A N/A N/A
2.9 2.3
2.0 1.2
0% N/A 2.0 2.0
2.0 1.2
(1)
2.9 2.3
2.0 1.2
+16% N/A 1.2 1.2
2.0 1.2
(3) |
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Table 3.2b. Summer PE +15%, Rest of Year PE +7%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
2.9 2.3
-16% N/A 2.0 1.2
2.6 2.6
2.0 1.3
2.9 2.3
0% N/A 2.0 1.2
2.0 2.0
2.0 1.2
+16% N/A N/A N/A
Table 3.2c. Summer PE +7%, Rest of Year PE +15%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
-16% N/A N/A N/A
3.5 2.9
0% 2.6 2.0 N/A
2.0 2.0
2.6 2.0
3.5 2.9
+16% 2.6 2.0 N/A
2.0 2.0
2.6 2.0
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Table 3.2d. Summer PE +15%, Rest of Year PE +15%.
AUTUMN, WINTER AND SPRING
SUMMER
0% 8% 16%
3.5 2.9
2.6 2.0
~-16% 2.6 2.6 N/A
2.6 2.0
(4)
3.5 2.9
2.6 - 2.0
0% 2.0 2.0 N/A
2.6 2.0
(2)
" +16% N/A N/A N/A

It is from the

scenarios used
Scenario
Scenario
Scenario

Scenario

previous tables that the four *"best choice"®

in this study were selected:
1:

2:

"best" rainfall estimate:

"best" rainfall estimate:

"wettest®

"driest™

estimate: PE +7%

estimate:

PE +15%

PE +7%

PE +15%

A Fortran program was used to adjust the basic map files

(herein after referred to as "original® data or map files) by

applying the following changes to incorporate the potential

effects on the hydrological cycle of a change in climate:
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Table 3.3. Percentage change in runoff for selected
climate change scenarios,.
Scenario Winter Spring Summer Autumn ]
1 7.5 5 3 5.5
2 -4.5 -6 -6 -5.5
3 36 26.5 25.5 39.5
4 -31.5 -26.5 -27 -26.5

Table 3.4, Changes in temperature {(celsius) for selected
climate change scenarios.

__Scenario Winter Spring Summer | Autumn
1 2.9 2.0 2.0 T 2.0
2 2.9 2.0 2.0 2.0
3 2.3 1.2 1.2 1.2
4 3.5 2.6 2.6 2.6

The temperature is gainéd from an estimate of +2.2 degrees
overall (including winter and subject to errors of +0.6 or -0.7)
and winter increases of +2.3 to +3.5. The runoff was calculated
from CCIRG (Climate Change Impact Review Group) rainfall

scenarios.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Model output was generated for Datchet, Egham and Teddington
(Figure 3.2). These sites were selected in view of their
separation along the river system and, therefore, contrasting
water quality. They are also sufficiently downstream of
Cookham, the upper most site of the reach system and the
location where input data was generated for the model. The
results of the climate change scenario runs (1-4) are given in
Tables 1 to 4 1n Appendix C; these correspond to the results
using data from years 1974, 1975, 1976 and 1989 respectively.
These tables present the changes observed, from modelled
original data (for the four years), under specified climate
change scenarios. Firstly, comparisons of the original data
are made between the years. With the inherent variability in
year to year climate borne in mind, the impact of the climate

change scenarios on water quality is assessed.

4.1. MODELLED ORIGINAL DATA.

4.1.1. Flow and Temperature.

Figure 4.la compares the original annual flow regimes for the
years 1974, 1975, 1976 and 1989 at Datchet. The general
seasonal regime is clearly visible, with lower summer and
higher winter discharges. The annual variation in flow is a
reflection of the changes in precipitation, evapotranspiration

and storage throughout the year. Increased biomass production
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during warmer summer months promotes higher evapotranspiration
rates, which, together with reduced precipitation, lead to
lower river discharges. As precipitation increases in winter,
soil moisture deficits will be reduced and will, along with
reduced evapotranspiration {(due to biomass decline and lower
temperatures) yield higher flows. The annual variation in
demand for water can also feature heavily in the flow regime
of a river system, particularly once such as the Thames, with
a highly populated catchment. Data for 1974 typifies this
annual regime with peak discharges of greater than 250 cumecs
in February, and about 300 cumecs in November. 1975 also has
similar flows in February, but the summer minimum flows barely
increase at the end of the year. 1976 was a particularly dry
year with very low flows throughout most of the year and only
returned to normal during September. Similar low flows were
experienced in the summer of 1989 but, in contrast to 1976,

spring and autumn discharges were approximately normal.

Similar annual variation is observed at Teddington (Figure
4.1b). Here, downstream of Datchet and Egham, the flow is
somewhat higher as a direct result of the increased drainage
area and limited water abstraction points. Table 4.1 compares
the flow distributions at the three sites during each year.
Along with Figures 4.la and 4.1b, this table highlights the
very low flows during 1976 and 1989, the S-percentile flow
distribution (Q95) being particularly low during 1976 at S
cumecs at all three sites. (Clearly, Datchet and Egham are

similar in flow regime, as indeed they are in most aspects,
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i.e. water quality, see Tables 1 to 4 in Appendix C). Due to
this lack of contrast results are only presented for Datchet

and Teddington,

The original river water temperatures throughout the four
vears at Datchet and Teddington are shown in Figure 4.2a and
4.2b, respectively. At both sites the temperature was
generally lower throughout 1974 than any other year. This
difference 1s even more evident during the summer, where at
both sites the temperature fails to rise above 20°C compared to
peaks above 20°C during 1975 and approaching 25°C in 1976 and
1989. In addiction, there 1s less variation in the daily
temperatures in 1974 than during subsequent years. In
particular, perturbations in the temperatures are observed

during 1975 and 1976.

4.1.2. Dissolved Oxygen.

The original % saturation of dissolved oxygen during the four
years for both sites are shown in Figures 4.3a and 4.3b for
Datchet and Teddington, respectively. Table 4.2 shows the
corresponding distributions at these sites. At both Datchet
and Teddington all 4 years begin and end (i.e during January,
February and December) with similar concentrations.
Progressing through each year, the saturation rises to 150% at
both Datchet and Teddington during all four years except at
Datchet in 1974 and 1989, where maximum concentrations in both
cases fall slightly short of this value. This rise in

concentration 1s observed earliest in 1976 and additionally,
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is steeper at Teddington than Datchet. A steeper rise in
concentration is also observed during the remaining years
(with the rise occurring in the order 1974, 1989 and lastly
1975). At this point it is worth noting that the plateaux
observed when DO reaches 150% saturation are due to the nature
of the model QUASAR which does not permit DO saturation to
exceed this value (DO greater than 150% saturation would be

unlikely to occur to occur in the Thames).

At Datchet these optimum % saturation of DO arising in April
to May time remain until mid June, when dramatic decreases to
zero occur during 1976 and 1989, and below 50% saturation
during 1975. In 1974 however, the $% saturatid; remains above
50% throughout the entire year. In addition, the minimums
observed under the different years are displaced somewhat,
with the minimum in 1976 occurring earliest in the year,
followed by that for 1989 and 1975. After returning to its
maximum value of 150% saturation at the beginning of August,
the % saturation in 1976 declines again to a second minimum of
just below 50% saturation. It recovers from this around mid
September, where again, it reaches 150% saturation. After
this, Oniy the reduction in % saturation to its December value
1s observed. A similar pattern is observed during 1989 but
there 1s only one minimum and the recovery of the % saturation
of dissolved oxygen is slightly later than during 1976 (and
does return to the brior % saturation value). In 1975, after
the recovery from the minimum, which occurs later still than

during 1989 {August as opposed to July), the maximum %
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saturation 1s maintained into December.

At Teddington, the DO remains above 60% saturation for all
four years (Figure 4.3b). Although depressions occur at this
site, they are not as low as those observed at Datchet. The
most dramatic difference between Datchet and Teddington is
that during 1976 no exceptional minimum is observed during the
summer months, but wvalues decline from about the end of
September, in two steps (the first in October,at about 120 %
saturation, and the second in November), to eventually reach
the December value of about 95 % saturation. In addition, the
minimum concentration observed during 1989 has a steeper
descent and 1s sooner than at Datchet, but recovery 1is also
sooner and steepelr than at Datchet. The same 1is true for the
1975 minimum, meaning that these low oxygen conditions are
maintained over a shorter time than at Datchet. The other
notable difference between the two sites is the second minimum
observed at Teddington at the start of November 1989. No such
phenomenon occurs at Datchet. This may be a consequence of the
warmer temperatures at Teddington during October and November
1989 (Figure 4.2b), which may well have promoted algal growth
late in the year with the resultant oxygen depletion. This
reduced oxygen content 1s however, short-lived and constitutes
no great threat to the river ecosystem as concentrations above

60% saturation are still maintained.

4.1.3. Biological Oxygen Demand.

In general, BOD (mg/1l) increases during the summer months as
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higher temperatures facilitate faster chemical and biological
reactions. This was typical for all years at both Datchet and
Teddington (Figures 4.4a and 4.4b respectively). At Datchet
the BOD remains below 7 mg/l throughout each year except 1974,
where a peak of almost 12 mg/l is observed in mid May. The
maxima during the other years are observed in mid April in

1976, mid June in 1975, and the end of July in 1989.

At Teddington the BOD is higher, with the yearly maxima for
1974 at approximately 10 mg/l. During 1974 three periods are
observed where the BOD rise is significant. The first of these
corresponds to that found at Datchet, but is of a higher
magnitude, approaching 10 mg/l. The second peak of 44 mg/l may
be attribucted to a series of sewage effluent inputs to the
river at Hogsmill. Here, the BOD of effluent discharged
upstream of Teddington was higher than 79 mg/l over the period
from 11" to 16' June and peaked at a value of 249 mg/l on 13

June.



4.2. MCDELLED CLIMATE CHANGE SCENARIOS.

Preliminary i1nvestigation of the results from the climate
change scenario runs, both in terms of the changes in
distributions of the water quality parameters and in terms of
time series analysis, disclosed significant changes to occur
under the scenarios for the DO concentrations and the BOD. No
significant changes were observed in the concentrations of
nitrates, ammonia or ortho-phosphate, and no water quality

class boundary changed.

The effect of the climate change scenarios may be more
pronounced in the results of the dissolved oxygen and
biochemical oxygen demand than for the remaining parameters
modelled because there are many processes within the model
which are linked to DO and BOD, and are affected by the change
in climate (i.e. will change with temperature in particular)
and which then affect the DO and BOD. In contrast, fewer
process 1in the model affect the concentrations of nitrates
ammonia and ortho-phosphate, so these parameters remain more
stable when rhe climate change scenarios are applied. In view
of these results, presentation of the details of the impact of
climate change on water quality are only discussed for DO and

BOD.

4.2.1. Flow and Temperature.
The application of the climate change scenarios to the

original flow and temperature data has very predictable
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results. From Tables 3.3 and 4.4 it is clear how these changes
will manifest themselves. The temperatures under the climate
change scenarios will simply alter according to the seasonal
adjustments given in Table 3.3. The absolute changes in flow,
on the other hand, will be dependent on the original flow as
adjustments are made in terms of percentage changes. Figures
4.5 and 4.6 have been included to highlight this point. Figure
4.5 shows the original temperature throughout 1974 at Datchet
with the changes induced under scenarios 3 and 4, these being
the most extreme changes of all the scenarios. Figure 4.5
shows the original flow throughout the same year, also at
Datchet. Here the adjustments under the extreme scenarios are
also shown, but unlike the temperature changes, the high
original flows cause even higher ({(under the “"wetter"®
conditions of scenario 3) or lower {under the *drier*
conditions of scenario 4) resulting flows due to the
percentage changes in Table 3.4. As a consequence, little
absolute change is observed during the typical low summer

flows, but greater change under the higher winter flows.

4.2.2. Nitrate, Ammonia and Ortho-phosphate.

The maximum change in nitrate concentration was observed in
1974 under scenario 4 where the 95-percentile value at
Teddington increased by 18%, however, this constituted an
absolute change of less than 1.5 mg/1. The maximum change in
ammonia concentration Qas observed in 1976, also under
scenario 4 where the 95-percentile value increased, again at

Teddington, by 20%. Once more, this constituted an absolute



increase of only 0.14 mg/l. An absolute increase of 0.86 mg/l
in the 95-percentile value for the ortho-phosphate
conicentration was observed in 1989 at Teddington under
scenario 4, and was the greatest change in this parameter

observed under the scenarios.

4.2.3. Dissolved Oxygen and Biochemical Oxygen Demand.

Tables 4.4 to 4.7 show the changes in the mean values of DO
and BOD when the climate chanyge scenarios were applied. These
changes are expressed 1n both percentage terms and as absolute

values, and were derived from Appendix C.

The mean concentrations of DO (mg/l) were found to at both
Datchet and Egham. The relationship between DO concentration
and flow volume and water temperature suggests that under the
highest temperarures and evapotranspiration rates (i.e.
climate change scenario 4) the greatest decrease in
concentration could be expected. This is because the‘pOtential
for reaeration from the air-water interface will be reduced
when the stream is less turbulent under the lower flows. In
addition, longer residence times will facilitate greater
oxygen consumption, and increases in temperature will lower
the solubility of oxygen. Conversely, the "wettest® conditions
(1.e. scenario 3}, with highest flow volumes and smallest
temperature 1increases would be expected to present the
smallest change in DO. This was generally found to be the
case, as shown by the changes in mean values in Tables 4.4 to

4.7.



Tables 4.4 to 4.7 also show the changes in the mean DO in
terms of percentage saturation observed under each scenario.
During every year the original mean % saturation of DO
increases from Datchet to Teddington, and the changes induced
under the scenario runs decrease. Generally, the % saturation
of DO decreases under every scenario, more so during the
*drier* conditions of scenario 4, and to less of an extent
under the "wettest" conditions of scenario 3. The intermediate
climate change scenarios, 1 and 2, generally give rise to

intermediate changes.

Tables 4.4 to 4.7 also show the changes in mean BOD (mg/l)
observed under the climate change scenarios. The original mean
BOD increases from Datchet to Teddington as the sewage
effluent input from Datchet to Teddington increases, and it
appears that only at Teddington was there any significant

change 1n this value. Here, decreases in the mean occurred

under scenario 3, and increases under scenario 4. This is 9(

perhaps not unexpected as during wetter vears higher flows
will allow greater dilution. There is however, a decrease in
the residence time under increased flow conditions, which will
mean there 1s essentially less time over which biological and
chemical activity <an reduce the BOD. There 1s thus conflict
between .the dilution effect and the BOD decay rate and further
attention to the distribution of the BOD over time must be
paid in order to clafify this situation. During drier and
warmer years there is every possibility that increased BOD is

a result of increased 1n-stream algal productivity leading to
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growth and decay cycles which can have a profound effect on

the BOD.

Of greater significance, as far as water quality objectives
and setting consent discharges are concerned, is the
distribution of water quality parameters throughout the year.
In particular, the 95-percentile distributions for BOD (mg/l)
and the S5-percentile distributions for DO (% saturation) are
of great importance. Tables 4.8 to 4.19 show the changes in
the S-percentile and 95-percentile distributions observed
under the climate change scenarios for the four years of data.
It has been established that changes observed under scenarios
1l and 2 are generally intermediate in magnitude to those
observed under the extreme scenarios, 3 and 4. This being the
case, time series graphs have been produced, for the
parameters of concern, which compare the original data for
each year (as shown in Figures 4.la and 4.1b to 4.4a and 4.4b)
with the results obtained under the "wettest" and "driest"

climate change scenarios, i1.e. scenarios 3 and 4 respectively,

The changes to the original DO (% saturation} observed at
Datchet under scenarios 3 and 4 for data from 1974, 1975, 1976
and 1989 are shown in Figures 4.7a to 4.10a respectively.
During every year, the % saturation of DO begin at more or
less the same values under both scenarios shown as under the
original data. The increase in DO towards the summer months -
observed in the original data is replicated in both scenarios,

however, under scenario 4 this increase occurs to a greater
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extent than in the original. Under scenario } no real
difference from the original is observed during this
beginning-of-year increase. The first depression in the
original data near the middle of the year is also replicated
to some degree by both scenarios. Under the dry conditions of
scenario 4, the decrease towards the minimum summer value
begins slightly sooner than under the original climate, and
also reaches a lower value, particularly in 1974, where the
original DO does not fall so low {(in 1974 the original minimum
remains above 50% saturation, whereas in the other years this
minimum approaches zero). The recovery observed towards the
end of the summer occurs later under scenario 4; at about the
beginning of September in 1974, but not until the end of
September in the other years. At this point in time in 1975
(Figure 4.8a), the % saturation of DO increases above the
original until the end of November. In 1976 (Figure 4.9a),
where a second depression 1s observed in the original data,
the depression :s again lower under scenario 4, and in fact
recovery of the DO between these two depressions is poor;
under scenaric 4 the DO saturation remains below 40%
saturation, compared to a recovery up to 150% under the
original data. At the end of the year the DO under both
scenarios levels off at about the same value as the original

(1.e. 100 % saturation).

Under the “wettest".conditions of scenario 3 a similar
situation is observed as under scenario 4, except to less of

an extent. Figures 4.7a to 4.10a clearly show the values under
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scenario 3 to be generally between those of the original data

and those of scenario 4.

The changes in % saturation of DO from the original
concentrations observed under scenarios 3 and 4 at Teddington
are shown in Figures 4.7b to 4.10b during 1974, 1975, 1976 and
1989 respectively. As with Datchet, the original summer
increase in DO is reproduced under scenario 3 and observed
earlier under scenario 4. However, this is only true for 1974
and 1975, and no change from the original is found under the
other two vears. The maximum concentrations during the summer
months observed under the original climate are reproduced
under both scenarios. During 1976 however, an additicnal
decrease in concentration at the end of June to about 70%
saturation 1s observed under scenario 4 which was not found
under the original climate. This may be caused by the higher
temperatures under scenarios 4 (and particularly during this
drought year) increasing biomass production which then adds to
the BOD. The decreases in summer concentration in the original
data for 1975 and 1989 is reproduced under both scenarios, and
like at Datchet, this decrease is shown sooner {and remains
for a longer time) under scenario 3 {and more so under
scenario 4). At Datchet 1in 1976, recovery from the first
minimum before entering the second was less under both
scenarios. At Teddington in 1975, recovery from the first
minimum before the second, (Figure 4.8b) was greater under
scenario 4 and less under scenaric 3 (than the original). The

remaining three years show the reduction in concentration
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towards the December value to he later under scenario 4 and
sooner undeyr scenario 3 than under the original climate.
Towards the end of every vear an additional minimum in DO
concentration 1s observed under scenaric 4, The timing of this
event varies from year to vear; in 1974 at the beginning of
September, 1975 at the end of September, 1976 at the end of
October, and extending through November until nearly the end
of the year in 1989. A reason for this may be the fact that as
the years become generally warmer from 1974 to 1989 (Figure
4.2b), particularly from September to December, the algal
growing season 1s extended and oxygen reduction as a result of
their death and degradation occurs later on in the annual

cycle.

These DO time series indicate the impact of enhanced water
temperatures may have on the stream biota. Increased summer
temperatures may cause prolific oxygen exhaustion during decay
of algae which, under the aforementioned conditions have grown

rapidly. It may be the case that the summer blooms cause

. 3 K
concentrations of DO to plummet to almost zero, as was '7#%

observed under scenario 4 in all years but 1976, and that as
the algae growing season is extended through to the mild
autumn the time over which this oxygen depletion occurs is

also extencded.

There may be cause for concern if this 1s the case as the
distribution of DO through the year changes. Tables 4.9, 4.12,

4.15 and 4,18 show the changes in the S-percentile values and
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the 95-percentile values observed under all the climate change
scenarios. On the whole, little change is observed in the 95-
percentile values under the scenarios, but for DO (%
saturation) it is the S-percentile value that is of importance
in determining the water quality objectives. The water quality
classification system outlined in Table 2.1 specifies the
minimum concentrations of DO (% saturation) over 95% of the
time for five water quality classes. These concentrations
correspond to the S-percentile values in Tables 4.9, 4.12,

4.15 and 4.18, and clearly a great deal of change is observed

under most scenarios.

The changes from the original BOD over the four years at
Datchet ocbserved under the extreme climate change scenarios
are shown 1in Figures 4.1la to 4.14a. On the whole the climate
change scenarios induce little change in any year. In all but
1975 the climate under scenario 4 causes the summer peak in
BOD to be slightly reduced and to be slightly increased under

scenario 3. This 1s reversed during 1975.

Figures 4.11b to 4.14b show the changes from the original BOD
at Teddington observed under the extreme climate change
scenarios over the four years. For all years the BOD observed
under scenario 4 is generally higher than that originally
observed. In 1974 this still holds true, but in the main
summer peak, the maximum under scenario 4 is slightly lower
than the original, but resumes a higher value than the

original once the peak subsides. In both 1974 and 1975 an
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additional peak in the BOD over and above that found in the
original data 1is observed in September under scenario 4. The
most dramatic change observed under scenario 4 is during 1989,
where, as well as the original perturbations in the data being
increased in magnitude, additional maxima in BOD are observed
at the beginning and end of the year. These periods of high
BOD, not surprisingly, correspond to the periods of low DO
concentration observed in Figure 4.10b (from the intrinsic

nature of the relationship between the two).

Generally little change is observed under scenario 4 in the
95-percentile distribution of BOD (Tables 4.10, 4.13, 4.16,
and 4.19). The only notable changes were at Teddington in
1975, 1976 and 1989 where this distribution increases by 18,
25 and 21% respectively, which could have great impact on

water gquality objectives (Table 2.1).

In every year the BOD under scenario 3 was generally less than
that observed in the original data. Under these wetter
conditions the higher flow regime gives rise to a greater
dilution etfect. As may be expected, the 95-percentile

distribution decrease slightly under scenario 3.

4.2.4. Implications Of Climate Change Impacts On Water Quality
Classification.
Under the climate change scenarios applied in this study, no

changes in the river quality class (Table 2.1) would be
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expected 1in terms of BOD and the other modelled water quality
variables. However, when consideration is taken of the DO (%
saturation), and the changes in its distribution observed
under the scenarios, important river quality class changes
will occur. The most deleterious changes in river guality
would occur under drier years such as 1976 and 1989. For
example, during these years the water quality class at
Teddington is reduced form class 1A to class 1B under scenario
4. Whereas no change in water quality class is observed here
in 1974 under the same scenario, and the quality (as
determined by the S-percentile distribution) actually

increases for 1975.

Table 4.20 summarizes the changes in the water gquality class
that would be likely under the extreme climate change
scenarios. All three sites (Datchet, Egham and Teddington) are
included in this table, and reference is only made to changes
that would occur in regards to the % saturation of DO. The
original water quality class is also specified with regards to
the DO (and would, in reality, be determined from a number of

other additional parameters).
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Table 4.1 Distribution of original flow data.

FLOW DISTRIBUTION

ORIGINAL DATA YEAR

{cumecs)
| 1974 1975 1976 1977 "

DATCHET
Mean 62 55 -23 45
Standard Deviation 53 56 33 44
S-percentile 14 13 5 15
9S-percentile 172 184 96 150 - |

EGHAM
Mean 62 57 20 38
Standard Deviation 59 62 35 42
5-percentile 11 12 5 10
95-percentile 184 204 97 140
TEDDINGTON

Mean 80 73 24 39
Standard Deviation 82 81 © 45 51
S~-percentile 12 14 5 6
9S5-percentile 258 156 118 161
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Table 4.2 Distribution of original dissolwved

oxygen (% saturation).

DISSOLVED OXYGEN
DISTRIBUTION
(% SATURATION)

ORIGINAL DATA YEAR

DATCHET
Mean
Standard Deviation
S5-percentile

95-percentile

EGHAM
Mean
Standard Deviation
S-percentile

SS5-percentile

TEDDINGTON
Mean
Standard Deviation
5-percentile

95-percentile

1974 1975 1976 1977
91 95 99 95
16 30 44 29
71 42 3 18
123 150 150 132
86 105 120 107
18 25 26 28
91 78 90 72
133 150 150 150
106 105 128 118
23 25 27 28
84 78 87 82
150 150 150 150
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Table 4.3

Distribution of original biochemical oxygen demand.

|

BIOCHEMICAL OXYGEN

DEMAND (mg/1l) ORIGINAL DATA YEAR
DISTRIBUTION
1974 1975 1976 1877
DATCHET
Mean 3.7 3.4 3.4 2.4
Standard Deviation 2.2 1.6 1.1 1.1
S-percentile 2.0 1.4 2.0 2.3
95-percentile 9.5 6.7 6.9 4.8
EGHAM
Mean 3.7 3.5 3.8 2.6
Standard Deviation 2.0 1.3 1.3 1.1
S-percentile 2.2 1.8 1.9 1.3
9S-percentile 9.0 6.0 7.1 4.6
TEDDINGTON
Mean 4.3 4.2 5.8 3.2
Standard Deviation 1.7 1.7 2.8 1.2
S5-percentile 2.8 2.4 2.8 1.9
95-percentile 8.6 7.3 9.2 5.2
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Table 4.4. changes in mean values from 1974 original data

observed under climate change scenarios.

CLIMATE CHANGE SCENARIO
SITE ORIGINAL
MEAN 1 2 3 4
% A % A % ' A s | A
DO (mg/1l)
D 9.90 -8 i .84 | -9 E .86 ~4 g .38 | -14 E 1.37
E 10.53 -5 ; .56 | -5 ; .50 -4 E .39 -5 ; 0.57 |t
i T 11.51 -3 §.32 -2 i .25 -3 E .33 -2 E 0.27 "
DO (% SAT) JI
D 91.07 -5 i 4.2 1 -5 i 4.45 | -1 E .79 | -10 E 8.89
E 95.91 -1 73| - 15 | -1 574 - - .29
T 106.19 2 E 2.1 3 E 2.86 + i .18 4 g 4.32
BOD (mg/l)
3.67 -1 .02 | -2 .07 2 .07 ) .20
E 3.67 -1 ] .02 { -1 .05 2 .05 4 .16
4.29 -1 1 .06 | -1 .03 -2 | .09 4 .18
N.B. % = Percentage change from mean of original 1974

data observed under climate change scenarios.

A = Change from mean of original data in absolute
cerms.

+ or - alone denotes possitive or negative values
less than 0.5%.

D = Datchet E = Egham T = Teddington
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Table 4.5. Changes in mean values from 1975 original data
observed under climate change scenarios.

CLIMATE CHANGE SCENARIO Il
SITE ORIGINAL ]
MEAN 1 2 3. 4
s 2 |+ A+l a5 A
DO (mg/1)
D 10.41 -11 E 1.2 | -11 i 1.1 | -8 E .84 | -13 E 1.3
E 11.44 -7 i 79 | -6 E 67 | -7 §.77 -6 E .69
T 12.57 -5 i .66 -5 i .63 | -4 E .50 -7 i .89
DO (% SAT)
D 95.24 -9 E 8.12 -8 g 7.9 -6 E 5.9 | -10 E 9.2
E 105.28 -3 E 340 -2 t22)-alas| -1 1 1.2
T 105.28 9 E 9.45 9 E 9.8 9 g 9.3 8 E 8.9
BOD (mg/1) '
D 3.41 -1 E .03 -2 i .06 1 E .04 -5 E .16
E 3.45 -1 E .04 -1 E .04 | -1 E.OS -1 é .05
T 4.22 -2 + .10 | o+ 1 .01 | -7 .29 | 12 1 .51
N.B. % = Percentage change from mean of original 1975

data observed under climate change scenarios.
A = Change from mean of original data in absolute

terms.

+ Oor - alone denotes possitive or negative values
less than 0.5%.

D = Datchet E = Egham T = Teddington
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Table 4.6. Changes in mean values from 1976 original data
observed under climate change scenarios.

CLIMATE CHANGE SCENARIO
SITE ORIGINAL
MEAN 1 2 3 4
% i A 3 E A % g A $ E A
DO {mg/1l)
D 10.77 -12 E 1.34 | =12 i 1.31 ] -9 E .92 | -16 E 1.69
E 12.72 6 | .77 | -5 L 64 61 74| -4 !o0.56
T 13.48 -3 i .41 -3 E .37 -2 E .31 -7 E 0.93
DO (% SAT)
D 99.46 —10§ g.81 -10i 9.55 —7E 6.8 ] -12 §12.4
E 120.78 1 i1.40 | - IRIE 134 1 ! 1.5
T 128.07 1 i 1.52 2 E 2.06 + i .47 - E .61
BOD (mg/l)
D 3.39 2 1 06 | -3 10 | 2 07| -7 | .25
3.75 + E .01 -2 E .06 —2E .06 0 E 0
T 5.7G ~4 ¢ .24 1 b 07 | - % 3] 24t 1.4
a ; 11 | ;
N.B. % = Percentage change from mean of original 1976

data observed under climate change scenarios.
A = Change from mean of original data in absolute

terms.

'+ Oor - alone denotes possitive or negative values
less than 0.5%.

D = Datchet E = Egham T = Teddington
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Table 4.7. Changes in mean values from 1989 original data

observed under climate change scenarios.

CLIMATE CHANGE SCENARIO
SITE ORIGINAL
MEAN 2 3 4
k3 E A % g A $ E A $ E A
DO (mg/l)
D 10.08 11 1.08 | -11 1 1.07 | -7 | .66 | -15 } 1.56
E 11.17 -8 i .91 -7 i .79 -7 E .78 -8 E 0.88
T 12.13 70 88 | 71 .87 | -5} 63| -1411.72
DO (% SAT)
D 95.43 -7 1 7.14 -7 i 6.94 | -4 i 0 -12 Ell.ﬁ
E 107.21 -5 E 4.90 -3 E 3.56 | -5 E .0 -3 E 3.2
T 117 .62 -4 E 4.72 -4 i 4.46 | -3 i .6 { -10 211.3
BOD (mg/1)
D 2.39 -1 E .03 -1 E .03 - E .01 -2 E .05
E 2.55 -2 E .05 -1 i .03 -3 E.OB 2 E .05
T 3.22 -4 0 .12 |+ 01 | -9 ' 28 | 20 | .64
N.B. % = Percentage change from mean of original 1989

data observed under climate change
A = Change from mean of original data in absolute

scenarios.

terms.
+ Or - alone denotes possitive or negative values
less than 0.5%.
D = Datchet E = Egham = Teddington
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Table 4.8.

Percent change in 5 and 95 percentile distributions

for dissolved oxygen concentration (mg/l) under selected
climate change scenarios using data from 1974.

SITE L CLIMATE CHANGE SCENARIO _
B 1 2 3 o
5% é 95% | 5% § 95% | 5% E 95% | 5% i 95%
-32 E 0.2 | -34 E 2.5 | -4.4 é-z.s -60 i 5.2
8.6 1 0.5 | -8.41 3.2 |-2.1{-3.7| -16 { 6.9
T -2.2 1 -3.5[-2.31-1.2|-1.3:-2.3|-5.31 1.7
D = Datchet E = Egham T = Teddington

Table 4.9. Percent change in 5 and 95 percentile distributions
for dissolved oxygen (% Sat.) under selected climate change
scenarios using data from 1%74.

SITE CLIMATE CHANGE SCENARIO
1 2 3 4
5% 1+ 95% | 5% i 95% | 5% i 95% | 5% 1 95%
-20 i 4.7 -22 i 6.7 1.5 i 0.2 -53 i 13
-15 i 1.8 -14 5 4.6 -14 i -4.4 | -18 i 12
T 3.0 1 0.0 { 3.0 1 0.0 [ 1.7 4 0.0 | 2.1 0.0
D = Datchet E = Egham T = Teddington
Table 4.10. Percent change in 5 and 95 percentile distibutions

for biological oxygen demand (mg/l) under selected
climate change scenarios using data from 1974.

SITE CLIMATE CHANGE SCENARIO
1 2 3 4
5% 1 95% | 5% i 95% 5% 1 95% | 5% | 95%
-1.5 i-o.s -4.1 i-2.4 3.1 i 3.0 -10 i -6.0
-0.9 5—0.9 -2.7 i—2.6 g 1.8 -8.95 -5.7
T 0.7 1 -1.4|-1.41-1.4] 0.7 1-0.2]|-2.21 -1.3
D = Datchet E = Egham T = Teddington
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Table 4.11. Percent change in 5 and 95 percentile
distributions for dissolved oxygen concentration (mg/l) under
selected climate change scenarios using data from 1975.

SITE CLIMATE CHANGE SCENARIO
1 2 3 4
5% E 95% | 5% E 95% | 5% E 95% | 5% E 95%
-84 E -2.1 | -84 E -1.4 | -63 ; -5.8 | -91 E -1.0
=30 ; -2.0| -28 { -0.8| -20 {-7.2| -35 1 1.0
-12 1 -4.4 | -10 1 -3.9}-6.0!-4.4 | -51 | -6.7

D = Datchet E = Egham T = Teddington

Table 4.12, Percent change in 5 and 95 percentile
distributions for dissolved oxygen (% Sat.) under selected
climate change scenarios using data from 1975.

SITE CLIMATE CHANGE SCENARIO ]
1 2 3 s |

5% E 95% | S% E 95% | 5% f 95% | 5% E 95%

-83 ; 0.0 | -83 5 0.0 | -62 é-3.5 -91 i 0.0

24 1 0.0 | -23 1 0.0 | -15 {-4.0| -29 i 0.0

T 9.5 : 0.0 } 6.3 1 0:0 | 13 1 0.0 | =30 1 0.0

D = Datchet E = Egham T = Teddington

Table 4.13. Percent change in 5 and 95 percentile values
for biological oxygen demand {(mg/l) under selected
climate change scenarios using data from 1975,

SITE CLIMATE CHANGE SCENARIO
1 2 3 4
5% f 95% 5% E 95% 5% i 95% 5% i 95%
-0.7 5-1.1 -2 BE -2.0] 3.6 i 1.4 -j.si -4.2
-0.6 i—1.8 -0 65 -1.8] 0.0 5—0.7 —1.7; -1.7
0.4 1-2.6|-0.4! 0.4 |-0.8:-7.3] 0.8 18
D = Datchet E = Egham T = Teddington
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Table 4.14. Percent change in 5 and 95 percentile

distributions for dissolved oxygen concentration (mg/l) under

selected climate change scenarios using data from 1976.

SITE CLIMATE CHANGE SCENARIO I
1 2 3 4
5% E 95% | 5% i 95% | S% E 95% | 5% E 95%
-85 E -2.3 ] -85 E -1.8| -67 E -2.7 | -89 i 0.3
-23 §-2.9| -20 {-1.5| -19 §-2.7 | -25 | -1
- 1-3.7|-4.9:-3.7} 0.4 | -3.1| -35 ! -5.2
3.0 | ; | ;

D = Datchet E = Egham T = Teddington

Table 4.15. Percent change in S and 95 percentile
distributions for dissolved oxygen (% Sat.) under selected
climate change scenarios using data from 1976.

SITE CLIMATE CHANGE SCENARIO
n 2 | 3 s |
5% i 95% | 5% § 95% | 5% E 95% | S% E 95%
-83 i 0.0 | -83 i 0.0 | -65 i 0.0 | -89 i 0.0
7.8 4 0.0 | -4.8: 0.0 |-5.91 0.0 [ -11 | 0.0
T 4.0 + 0.0 | 1.6 + 0.0 | 5.7 0.0 | -221 0.0

D = Datchet E = Egham T = Teddington

Table 4.16. Percent change in 5 and 95 percentile
distributions for biological oxygen demand (mg/l) under
selected climate change scenarios using data from 1976.

SITE CLIMATE CHANGE SCENARIO
1 2 3 4
53 ! 958 | 5% ' 95% | 53 P 953 | 5% ! g5y
D -1.0 E -1.6 | -1.5 5—2.6 1.0 E 0.7 ~4.6é -5.7
1.6 4-2.31-2.11-0.7] 0.5 | -3.8]-6.71 4.0
3.2 +-3.5/-0.410.9 | -4.9:-8.3| 11 | 25

D = Datchet E

Egham T = Teddington
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Table 4.17. Percent change in 5 and 95 percentile
distributions for dissolved oxygen concentration (mg/l) under
selected climate change scenarios using data from 1989.

SITE CLIMATE CHANGE SCENARIO ]
1 2 3 « |

5% E 95% | S3% E 95% | 5% E 95% | 5% E 95%

-85 i 0.3 | -85 i 2.3 | -66 §-3.2 -92 é 7.9

=57 4-2.3 =57 1 -1.1| -36 1 -7.3 [ -72 1 -1.3

T -45 1 -3.7| -47 1 -1.3] -15 1 -2.3 | -87 | -2.2

D = Datchet E = Egham T = Teddington

Table 4.18. Percent change in 5 and 95 percentile
distributions for dissolved oxygen (% Sat.) under selected
climate change scenarios using data from 1989.

SITE CLIMATE CHANGE SCENARIO
1 2 3 4
5% § 95% | 5% i 95% | 5% E 95% | 5% E 95%
D -85 i 0.6 | -85 E 3.0 | -65 5—4.6 -92 E 7.1
=55 1 -0.1| -55 1 0.0 | -34 | -6.3| -71 I 0.0
-25 1 0.0 ] -27 . 0.0 | 4.3 1 0.0 | -85 i 0.0

D = Datchet E = Egham T = Teddington

Table 4.19. Percent change in 5 and 95 percentile
distributions for biological oxygen demand (mg/l) under
selected climate change scenarios using data from 1989.

SITE CLIMATE CHANGE SCENARIO ]
1 2 3 4 ]

5% E 958 | 5% | 95% | se E 95% | 5% | 95%

-0.8 E—l.9 ~o.si -4.2 —1.6? 3.5 | -1.6 i -12

1.5 1-2.4}1-0.8{-3.1/-0.81 1.5 |-0.81 -5.3

T -2.1 1-3.1]1 0.0 1.3 | -11.:-9.2]| 4.8 21

D = Datchet E = Egham T = Teddington
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Table 4.20 Changes in water quality class under extreme
scenarios from the original (as specified by the

% saturation of dissolved oxygen).

1974

Datchet
Egham
Teddington

1975
Datchet

Egham
Teddington

1976
Datchet

Egham
Teddington

1989
Datchet

Egham
Teddington

WATER QUALITY CLASS

ORIGINAL SCENARIO 3 SCENARIO 4
1B 18 3
1A 1B 1B
1a 1a 1A
2A 3 <3
2A 2A 2A
1B 1A 2A
<3 <3 <3
1A ia iB
1a 1a 1B
<3 <3 <3
1B 2A 3
1A 1A 3
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CHAPTER FIVE

CONCLUSIONS AND FUTURE RESEARCH

Flow and eight water quality parameters for four years
(1974,1975,1976 and 1989) have been modelled using the multi-
reach water quality network model, QUASAR. Four climate change
scenarios have been applied to this data, and the impacts én

the water quality parameters assessed.

The only significant changes in the water quality variables
observed under the climate change scenarios applied were for
dissolved oxygen and biochemical oxygen demand. The changes in
these variables were largely governed by the annual algal
growth pattern, so that at the end 6f the summer months the %
saturation of DO was particularly reduced, and BOD

correspondingly increased,

Under the temperatures and evapotranspiration rates envisaged,
by global climate models, to be likely in the year 2050, the
in~-stream % saturation of dissolved oxygen will decline.
Change in this parameter alone is sufficient to lower the
water quality classification of the lower reaches of the

Thames {(Table 4.20).

This deterioration in water quality will have serious
implications for the National Rivers Authorities if they are

to continue to maintain and improve the classification of the
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lower Thames. Obviously this will require capital expenditure
and resource investment, e.g. in upgrading sewage treatment
works as natural dilution from reduced flows diminishes, and
dealing with increased algae problems. In addition future
policies for discharge consents may have to be reassessed in
light of this climate change impact and possible resource

demand changes.

In the future, it will be véluable to calibrate and validate
QUASAR for catchments other than the Thames. Unregulated
lowland and upland catchments in particular will, with
different water chemistry and flow hydraulics and regimes, no
doubt show the impacts of climate change to be different from
that observed in the Thames. Modelling land use changes in
conjunction with climatic changes will be a worthwhile
exercise, as in the long term, the reliance of land use on

climate is obvious.

Additional parameters may be incorporated into QUASAR, as and
when the demand arises. At present, there are intentions to
improve the modelling of E. coli by incorporating growth
processes into the model. Applications to agricultural
catchments may instigate the modelling of pesticides as and

additional feature.

The algae processes modelled by QUASAR may be extended to
account for the annual growth and death cycles, and their

impact on oxygen dynamics., Currently, the input chlorophyll-a

79



concentrations are maintained throughout the year. This
addition would be a valuable asset as algal blooms have become
an increasing concern in water quality.

QUASAR is to be developed to run on an IBM PC which may make
the model available for wider use, and the cost more
competitive. Adjustments in data handling could create a more
user-friendly model; multiple parameter and graphics outputs

would enable easier interpretation of model results.
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Figure 2.1. Atmospheric emission spectrum obtained from 33.5km above Palestine, Texas
May 1966 using a balloon-borne IRIS breadboard instrument {Rowntrec 1990).
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Figure 2.2, The relative contributions of individual greenhouse gases to global wanming in the
1980s (Doornkamp 1989).
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Figure 2.3. The history of atmospheric CO, presented here is based on ice core measurements
(open spaces, closed triangles) and atmospheric measurements (crosses). The data show that
CO, began to increase in the 1800s with the conversion of forests to agricultural land. The
rapid rise since the 195Cs, due primarily to fossil fuel combustion, is at a rate unprecedented
in the ice core record (Lashof & Tirpak 1991).
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CO2 EMISSIONS DUE TO FOSSIL FUEL CONSUMPTION
1860-1985
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Figure 2.4. Carbon dioxide emissions from fossil fuel combustion have grown from less than
0.1 Pg C in the mid-1850s to approximately 5.4 Pg C in 1986. This is the major reason why
the atmospheric concentration of CO, increased from approximately 290 ppm in 1860 to
approximately 348 ppm in 1987 (Lashof & Tirpak 1991).
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Figure 2.5. The distribution of CO, by latitude from 1981-1985 shows that CO, is increasing
globally. Superimposed on the increasing trend are coherent seasonal oscillations reflective
of seasonal dynamics of terrestrial vegetation. The seasonal cycle is strongest in the high
Northern latitudes, and is weak and of opposite phase in the Southern Hemisphere, reflecting
the distribution of terrestrial vegetation (Lashof & Tirpack).
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REGIONAL POPULATION GROWTH
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Figure 2.6. Since about 1850, global population has grown at increasingly rapid rates. In
1850, the population doubling time was approximately 200 years; by 1975, the doubling time
had declined to approximately 45 years. Most of the growth has occurred in the developing
world, particularly Asia (Lashof & Tirpak 1991).
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Figure 2.7. Global demand for fossil fuels has more than tripled since 1950. Today, about
85% of the world’s energy needs are net by fossil fuels (Lashof & Tirpak). -
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Figure 2.8. Estimated regional contribution to greenhouse warming for the 1980s, based upon

rcg.ic,nal shares of current levels of human activities that contribute to
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Figure 2.9. Tropical deforestation accounts for approximately 10-30% of the annual
anthropogenic CO, emissions to the atmosphere. Over half of the 1980 CO, emissions from

deforestation was produced by six countries: Brazil, Indonesia, Columbia, the Ivory Coast,
Thailand, and Laos (Lashof & Tirpak).
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NITROGEN FERTILIZER CONSUMPTION
1984/1985

(Milllon Metric Tons Nitrogen)
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Figure 2.10. Distribution of the total nitrogenous fertilizer consumption of 70.5 million tons
N. China, the United States, and the Soviet Union together accounted for just over 50% of
the 1984/1985 global fertilizer consumption. Currently, 5-35% of the total anthropogenic N,O
emissions are attributed to nitrogenous fertilizer consumption (Lashof & Tirpak).
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Figure 2.14. Key inter-relationships between climate change and water supply, demand and
resource availability.
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Figure 2.15. Flow chat of the IRBM model (Bultot et al., 1988; 1989).
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Figure 2.16. Major sources and sinks of carbonaceous BOD in streams.
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Figure 2.18. Nitrogen transformations in river systems.
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Figure 2.19. Relative difficulty of applied modelling (Hines et al., 1974).
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Figure 2.20. Nlustration of modelling procedure (Crabtree et al., 1987).
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Figure 3.3. Reach structure for the study site from Cookham to Teddington.
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APPENDIX A

EQUATIONS SOLVED BY QUASAR

This appendix is divided into three sections. Because all the differential equations have
essentially the same core, this core is given under Section 1. Section 2 gives the small
changes relating to the water quality determinants, while Section 3 gives a detailed account
of the underlying processes.

SECTION 1: Derivation of the main equation:

Flow will be considered as a simple derivation. For a reach volume V and length of reach 1
provided that we are dealing with the continuous case, then:

¥ _y-x
dt

V=TC.Q

vwN

where N is the number of lags (divisions within the reach), TC is the time taken for the water
to travel down the reach with average velocity v, Q is the flow averaged over the length of
the reach and the time step, U is the input flow to the reach and X is the output flow. Then,
if we assume that the reach is a stirred tank system (which this model does assume) we know

X=Q

We also have the empirical relationship:

v=a+b.Q¢

where a, b and ¢ are constants for each reach. Almost always a is zero, and in this case it is
assumed to be zero. So: (by the chain rule)

d_ll=d(m'Q):Q dTC-O-TC .‘i_Q..
dt  dt T dt " dt




But:
a3
OGN 1 dv_ TC ,dQ° -TCc dQ
d & N de @\bo d WQ &
Co-v.?.hcttt.
So:

JM{Q’F ,[ij\ Q/Mnoo

"~\Look1n g amhe snnplcr~casc of only gnc lag, we have two cases:
b 6] Ifc=1thenU=X"
(i) If ¢ in not 1, then

dx__ U-X_
dt (1-¢)TC

as X = Q (stirred tank).

The physical reason for the two different solutions is that the ¢ = 1 case corresponds with the
linear velocity-flow relationship. For the velocity to be proportional to the flow implies that
the depth remains constant at all times. It is very rare for this condition to be satisfied by an
unregulated river. However, for the Thames (being a regulated river) this linear velocity-flow

relationship holds true.



.

SECTION 2: General equations:
In the same way equations may be derived for the other determinants.

It must be noted that when dissolved oxygen levels go to zero, the K, K and K, terms are
left out {(which is equivalent to setting these constants to zero) in all equations.

-If ¢ is not equal to 1 then we have:

Flow:
dX, U-X,
dt (1-¢).TC

where X, is the output flow and U, is the input flow (listed as X and U in the derivation for
clarity).

Ammonia:

dX,  Ug-Xs
— =K X
dt (1-0)TC

where X is the output ammonia concentration, U, the upstream ammonia concentration and
K,; the ammonia nitrification rate.

Nitrate:

aX, U,-X,
— =K X
d (1-0TC

where X, is the output nitrate concentration, U, is the upstream
nitrate and K; is the denitrification rate.

Temperature:

dx, U,-X,

dt (1-¢)IC

where X, is the output temperature (or concentration of conservative or hydrogen ions if these
parameters are to be modelled), and U, is the corresponding upstream temperature.

Biochemical Oxygen Demand:



dX,  Ug-X,

& 'm -K, XK. X ;4K

where X, and U, are the BOD concentrations, K, is the BOD decay rate, K, is the
sedimentation rate and K, is the BOD contribution by algae.
Dissolved Oxygen:
dX, U,-X,+WEIR
d  (1-9TC

+Ky K Kg X, +K,(CS-X )-4.43.K X~ K, X,

where X, and U, are dissolved oxygen concentrations, K,, is the net algae contribution, K,
is the rate of sediment oxygen uptake while Ky is a term depending on temperature and depth
combining to give the benthic oxygen demand, K, is the reaeration rate with CS being the
saturation concentration, WEIR is the contribution to the dissolved oxygen from any weirs
in the reach (which is considered scparately from the mass balance performed at an earlier
stage).

Ortho-phosphate:

dX, U,-X,

—8__8°8 k X
d (1-o1Cc  '¢7¢

where X, and U, are the ortho-phosphate concentrations and K, is the decay rate.

-If ¢ is equal to 1 then we have:

Flow:
X,=U,
Ammonia:
X¢= UG-KH.XG.TC
Nitrate:

X,=U,-K, X,. TC+K,. X, TC

Temperature etc:



Biochemical Oxygen Demand:

Xy=Uy-(K,-Xg+K 5. X~ K, )TC

Dissolved Oxygen:
X,=U +WEIR+ [Ky K Ks X+ Ky(CS-X)-4.43.K ( X,-K, . X,]TC

Ortho-phosphate:
Xy=Uy-K; (. X,.TC



SECTION 3: Processes in detail:
NITRATE PROCESSES:

Nitrification is the process resulting in the conversion of ammonium to nitrite and then to
nitrate. The two biochemical reactions are shown below:

2NH,® + 3H,0 - - (Nitrosomonas bacteria) - - -> 2NO, + 4H,0"
2NO2 + O, - - (Nitrobactor bacteria) - - -> NO,

Curtis ef al. (1974) studied nitrification in rivers in the Trent basin and found growth rates
for Nitrosomonas and Nitrobactor were virtually the same. Laboratory work by Alexander
(1965) showed Nitrobactor was five times as efficient as Nitrosomonas in doing its job. This
indicates that ammonia (ammonium ion) concentration is the rate controlling process. Knowles
and Wakeford (1978) modelled the change in nitrate concentration to be dependent on the
ammonia and Nitrosomonas concentration and the temperature. In QUASAR the rate of
change of nitrate concentration is dependent on the concentration of ammonia, the temperature
and the ammonia nitrification rate, K,,, which is usually in the range of 0.01 to 0.5 days". The
value for the ammonia nitrification rate can be edited by the user. The equation is given
below where T is the temperature in Celsius and K, is the nitrification rate in days™.

Nitrification=K ;.1007%D x

Denitrification involves the reduction of nitrate to nitrogen gas and oxygen by denitrifying
bactena. The simplified reaction is given below:

2NO, - - (denitrifying bacteria) - - -> 30, + N,

The oxygen produced is consumed by the bacteria as an oxygen source so does not add to
the oxygen in the river. Toms et al. (1975) studied the factors affecting the denitrification
process. These researchers found that the process is first order and proportional to the nitrate
concentration, and required the presence of mud. They also found that for every 10°C increase
in temperature the rate of denitrification increased by a factor of 1.9 which can be described
in the equation as 10°*™™. The relationship they developed is:

dNO;

=-KA.CN,1000537-0.0294)

where A(m’) is the surface area of the mud in contact with the water, CN is the concentration
of nitrate in contact with the water in mg/l and T is the average temperature in Celsius. K is
a value in the range of 0.29 (clean gravel type bed), to 3.0 (soft muddy bed supporting

denitrifying bacteria). In QUASAR modelling of denitrification is based on this work, but the
constants are put together giving:



Denitrification=K,.1.0698.1009%37x,

Note that 1.0698 = 10°®*, K, is in units of day" and in the range of 0.0 to 0.5 and can be
edited by the user.

OXYGEN PROCESSES:

The contribution to or loss of dissolved oxygen due to the presence of a weir in a river is
described by the equation (DOE 1973):

Cs-U,
x‘=cs-£—‘-)-

where CS is the oxygen saturation, U, is the upstream DO concentration and RT is the deficit
ratio. This ratio takes into account the type of weir using a factor B, the pollution of the water
(percent saturation) A, the height from the top of the weir to the downstream level H {(m), and
the temperature t (°C) of the water as shown below:

RT=1+0.384.B.H(1-0.11H)(1+0.46T)

There are 4 types of weirs; free, slope, step and cascade. A free or normal weir takes a B
value of 1. A step weir has a B value of 1.3. A cascade weir consisting of a large number of

steps has a B value of 0.4 and a sloping weir has a sloping face down and has a B value of
0.2.

Algae, aquatic plants and phytoplankton utilize water, carbon dioxide and sunlight to
photosynthesize simple sugar and oxygen which is released to the water column. Respiration,
which depletes the dissolved oxygen store in the water, occurs throughout the 24 hours. These
two processes result in the highest dissolved oxygen concentration at mid afternoon and the
lowest just before dawn. The two processes are described below and related in the differential
equation by K,, = P - R where P is photosynthetic oxygen production and R is respiration.

Photosynthesis oxygen production in a river system has been described by Owens et al.
(1969) in which oxygen production is related to the light intensity and plant biomass or algal
levels. They found that once there is sufficient plant biomass to provide adequate and uniform
cover of the river bed the plant biomass has apparently no effect on the rate of photosynthesis
due to self-shading. Whitehead ez al. (1981) used a modified version of the Owens model and
estimated the relevant parameters for the Bedford Ouse. A similar approach was adopted for
QUASAR and the following relationship developed:

Chlorophyll-a concentrations less than 50 mg/l:

P(mgi~'day™")=K,(1.08¢-2/°7%0,317C!-a)



Chlorophyll-a concentrations greater than 50 mg/l:

P(mgl 'day-1)=1.08%21°7(K (0.317x50)+K;0.317Ci-a)

Here the user specifies the two rates at which photosynthetic oxygen production occurs, one
when the chlorophyll-a concentration is greater than 50 mg/l, K,, and one when it is less than
50 mg/, K,. K, is usually in the range 0.0 t0 0.3 day", and K, is in the range of 0.0 to 0.02
day”. The two rates are to take account of the self shading effect at high algae concentrations,
Cl-a is the chlorophyll-a concentration (gm™), 1 is the solar radiation level at the earth’s
surface (W hr m* day") (= 1724 J m* s"). I is only input during sunlight hours determined
from longitude and latitude data and also from the time of year. This assumes no cloud cover.

Respiration of algae giving rise 1o loss of oxygen is described by an equation developed from
Kowalczewski and Lack (1971) based on observed algae concentration measured as
chlorophyll-a and respiration rate for the river Thames. Cl-a and T are as before.

R(mgl '\day")=(0.14+0.013CI~-a)1.08¢20

Oxygen is also lost by benthic oxygen demand (river bed or mud respiration). There has been
considerable research into this process (Edwards & Rolley, 1965) and the following equation
has becn used, where M is the benthic oxygen demand:
1.087-2 k, X343
d

where X, refers to the DO concentration (mg/l), d is the river depth in metres, K, is the rate
of oxygen uptake by the sediment and T is the temperature in degrees Celsius. The original
work of Edward and Rolley was conducted on the highly polluted mud of the river Ivel and
later studies by Rolley and Owens (1967) showed that the parameter K, of 0.15 day” was
found to provide the best fit to the observed DO data. K, is the oxygen uptake rate by
sediment, usually in the range of 0.0 to 0.1 day". This value can be edited by the user. d is
the river depth in metres and is specified in the spacial data for the reach and T is the
temperature in Celsius.

Oxygen is added to the system by the natural reaeration of the river at the surface. Several
workers have developed empiricaily and physically based equations. Edwards & Gibbs
combined previous work of Churchill et alf. (1962) and Gameson (1955) to derive the

equation:

Reaeration=K,(CS-X)

where K, is given by



APPENDIX B

EXPLANATION OF THE MAP FILE

The map file ‘describes’ the river network and the reaches etc. within a river. Each river is
described in its entirety before the next one is begun. The rivers are listed in 'run’ order. The

first record for a river describes the number of tributaries in the river and also the name of
the river.

POINTS/TRIBUTARIES/RIVERS

These records describe each of the points or tributaries in each reach of the rivers of the
network. The first record gives the name of the point/tributary and the river and reach into
which if flows. Also included is the type of point: ABStraction, RIVeR, DISCharge,
EFFLuent, TRIButary or NONE. The first character of the record is % to allow programs to
check synchronisation while reading the map file. For example a point which flows into reach
6 of river 4 has the following record:

7%006_004 TYPE Name of point/tributary

The next record defines the number of reaches, the number of indirect (additional) inputs to
this point (such as Sewage Treatment Works). The format of this record is: (216).

If there are indirect discharges then the next records describe them. There is one set of
records for each indirect discharge. The first record simply gives the name of the discharge.
Following this are N_DET determinants. The first record of each set specifies the source of
the data, this maybe followed by none, one or more records depending on the source. The
detenminants appear in the order:

Flow (cumecs)

Nitrate (mg/t)

Chloride (mg/)

Dissolved Oxygen (mg/)
Biochemical Oxygen Demand (mg/l)
Anunonia (mg/l)

Temperatre (Celsius)
Ortho-phosphate

pH

The indirect discharges are then followed by N_DET sets of records for the
point/tributary/river in the same order.

The first three characters of the first record are an integer code that indicate the source of the

data, the forth character is left blank and the remainder of the record is specific to the source
type if required. Access codes used are:

0 The value for this determinant is obtained elsewhere.

1 The data is obtained from a network outstation.



Current understanding is: Station name is a six character Mnemonic,
detenminants are six character Mnemonics, Values available from the VAX
RDB are integer values which must be scaled, provide an offset and slope.

2 The data is obtained from the equation:

FLOW=EXP(A+BxInFLOW)

where A and B are constants returned from the remainder of the record. This
equation can therefore not be used to find the flow determinant.

3 The data is obtained from the equation:

FLOW=EXP(A+BxFLOW)

where A and B are constants returned from the remainder of the record. This
code can not, therefore, be used to find the flow determinant.

4 The data is the constants in the table of mean monthly  values for this
detenmninant.
5 The data is the constants in the table of mean daily values for this determinant.
REACHES

The river is split into onc or more rivers. The first record of the river is the same as the
point/tributary introduction record (they are basically the same thing anyway). A river may
flow into another river. The type code for a river is RIVR and the name is (of course) the
name of the river. The next records are the same as the above (and are for the river, not its
reaches,which have their own special records).

The next record gives the bit array specification for the 32 bit mask which indicates which
other rivers must be run to run this one. Each river has a 32 bit mask which says which of
the other rivers flow into it (and therefore must be run to run that river). The rivers are
numbered in order of distance up the network (i.e. the main river has the highest number, and
the river that flows into it has a lower number, and any river that flows into that has an even
lower number). The MSBit of the mask is in column one.

The records following this describe data relevant to the reaches. Each reach is listed in the
order in which it appears in the river. The first of these records gives the reach 'name’. The
reach name is usually in the form of "head - tail". The next record gives the reach length (m),
the mean width (m), the mean depth (m), the time zone, the latitude and longitude. The next



record contains the number of lags and the flow - velocity relationship (three values). The
next record contains the rate coefficients for the reach:

Denitrification rate 0.01t0 0.5
Biochemical oxygen demand decay rate 0.0t 2.0
Ammonia nitrification rate 0.0t 0.5
Rate of oxygen uptake by sediment 001w 1.0
Rate of biochemical oxygen demand addition

by dead algae 0010 0.1
Rate of photosynthetic oxygen production for

chlorophyll-a concentrations of 0.001-50 mg/11 - 0.0 10 .03
Rate of photosynthetic oxygen production for

chlorophyll-a concentrations above 50 mg/l 0.0t .02

Rate of ortho-phosphate sedimentation
Rate of ortho-phosphate re-suspension

The next record defines the weir type code (if any) and of the height of the weir if present.



APPENDIX C

Table 1: Results for data from 1974.
Table 2: Results for data from 1975.
Table 3: Results for data from 1976.

Table 4: Results for data from 1989.
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