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This report has been produced in fulfillment of Contract
EV4V.0033 UK (H), a contract between the CEC and the UK Natural
Environment Research Council (NERC). The work has been undertaken
at the Institute of Hydrology, a component institute of NERC.
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EXECUTIVE SUMMARY

•
Within the framework of this completed research programme a

number of major conclusions have been reached:

(i) 	 The acidity of lakes and streams across a wide area of


the UK has increased substantially in the last 30

years. This increase in acidity, and so increased

aluminium concentrations, has in many cases caused the

impoverishment and/or loss of fish populations.

411 (ii) A decrease in sulphur deposition of at least 30% will


be needed to arrest the declining water quality in most

impacted systems. Furthermore, to achieve any

substantial improvement in acid status, a decrease of

at least 60% is necessary.

(iii) Land use, and in particular forestry practices, plays a

considerable role in the determination of surface water

acidity.

411 In addition, a number of modelling techniques have been

developed:

•
(iv) The incorporation of a monte-carlo technique for

evaluation of surface water changes across whole

regions.

•
(v) Fuzzy optimisation techniques have improved our

understanding of model sensitivity and enabled the

assessment of uncertainty within model application.

s
(vi) Incorporation of hydrological routing has enabled

preliminary analysis of short-term changes in stream

chemistry

•

411
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•

(vii) The resulting modelling 'package' represents a powerful

research and analysis tool which will be essential to

existing parallel research programmes assessing

critical loads across Europe.

411
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0
1 . 1 Obj ectives

The objectives of the research were to apply mathematical
models of catchment acidification processes to several key
catchments, extend the modelling to a regional scale, link
models to an air pollution model and investigate the effects of
different emmission strategies on stream water quality.

•
1.2 Modellin Lon Term Trends in Acidification

•
The MAGIC model (Model of Acidification of Groundwaters in
Catchments) has been applied to a range of catchments in Scotland
and Wales.

•
Section 2 of this report describes the application of MAGIC to the
Llyn Brianne catchments in South-West Wales and to the Plynlimon
Catchments in mid-Wales. In both areas MAGIC is shown to provide
an excellent description of long term catchment acidification
processes. For both grassland and forested catchments the model
reproduces observed chemistry and can be used to assess the
impacts of land use change such as afforestation. It is shown
that afforestation increases the sulphate loading into a catchment
by up to 80% and this has a major detrimental effect, increasing
water acidity and increasing aluminium levels.

The MAGIC model has also been applied to several catchments in
Scotland including Loch Dee in South-West Scotland and the Allt a
Mharcaidh in the Cairngorms. Section 2 of this report describes
the model's applications in these two areas. The Loch Dee
catchments show a similar response to catchments in Wales in that
historical acidification has been significant. However, the Allt
a Mharcaidh catchment appears to be undergoing a transition from a
relatively unacidified system to an acidified catchment. The
major factor that has prevented rapid acidification has been the
ability of the soils in the Allt a Mharcaidh to adsorb sulphate

•
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•
deposited in the catchment. As this natural buffering capacity is

utilised stream acidity will increase and so the Allt a Mharcaidh

represents a site in a transition from a pristine, moorland

towards an acidified moorland stream.

A crucial aspect affecting acidification in the UK and elsewhere

in Europe is the degree and type of afforestation. A conceptual

model of the combined effects of afforestation and acidic

deposition has been applied to two forested sites in central

Scotland. Refinements are made to the model inputs specifically

to include: increased dry deposition to the forests (in excess of

the dry deposition expected for moorland sites) as the forest

canopy develops; uptake of ions by the growing forests; and

increased evapotranspiration (and thus decreased water yield) as

the forests mature. The model is calibrated using a fuzzy

optimisation technique (see section 2.6) which incorporates


uncertainty in target variables (stream base cation

concentrations and soil exchangeable bases) and uncertainty in

selecting values for fixed and adjustable parameters which

describe the physiochemical characteristics of the catchments.

Simulated present day stream and soil chemistry closely match

observed values at both sites. The calibrated models indicate

that while the patterns of acidification in the two catchments

are broadly similar, some differences do exist between the

sites in the responses of the soils to acidic deposition and

afforestation. It is concluded that the calibrated models

provide a tool for; a) comparison of the relative effects of

deposition and afforestation on soil and surface water

acidification; and b) assessment of the likely effects of

reductions in future deposition combined with future forestry

management practices.

•
The model is further used to perform a series of simulation

experiments to assess the relative effects of afforestation and

acidic deposition on soil and surface water chemistry. The

experiments compare and contrast: a) the simulated historical

effects of increased acidic deposition and forest growth, both

•
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•
individually and in combination; and b) the simulated future

effects of various levels of reduction of deposition in

combination with the forestry strategies of harvesting with and

without replanting. Results indicate that historical

acidification of surface waters in areas receiving high levels of

acidic deposition has been exacerbated by afforestation practices.

Afforestation in the absence of acidic deposition, however, has

had a lesser effect on surface water acidification even though the

nutrient demands of forest growth have caused significant soil

acidification. Comparisons of future forest management strategies

in conjunction with likely deposition reductions indicate that, in

sensitive areas replanting of a felled forest without treatment of

the soil by addition of base cations, should not be undertaken

even if significant deposition reductions are realised.

•
1.3 Com arisons with Paleoecolo ical Evidence

•
MAGIC has been applied to a range of catchments in Scotland

subject to different pollution inputs and land uses. The

calibration technique developed (see section 2.6) allows

1111 sensitivity bands to be constructed around the 'mean' MAGIC

output as illustrated in section 3 of the report. In this

way, simulated historical trends in pH are compared with data

from palaeolimnological reconstructions undertaken at the same

sites. Both techniques produce similar historical

acidification trends and closely match observed present day

pH. Since the two methods of reconstruction represent very

different modelling strategies the similarity of the output

increases our confidence in both approaches and the

independence of the two approaches makes this a good

validation of the MAGIC model.

•
1.4 Linkin Short-term and Lon -term Res nse Model

•
A hybrid deterministic statistical approach has been developed for

•
7
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modelling extremes of water quality in catchments subjected to
long-term acidification. The approach is based on the MAGIC model
describing long-term variations in mean chemistry. Superimposed
on these mean projections are distributions providing information
on the extremes of water quality. The distributions are fitted to
catchment data using maximum likelihood techniques. The approach
is general and can be applied to the prediction of other water
quality variables where samples can be regarded as belonging to a
parametric probability distribution. A simple implementation of
the approach using chemical data and a calibrated deterministic
model for the Allt a Mharcaidh is used as an illustrative method
in section 4.

An alternative approach to linking short-term behaviour has also
been developed using mixing concepts, whereby the flow is assumed
to be a mix of water from two distinct sources. Acidic water from
the upper soil horizons and well buffered water from deeper
'groundwater' sources are used to represent the two endmembers and
a chemical hydrograph separation technique is used to estimate the
mean proportions of mix. The MAGIC model is calibrated in its two
layer mode to these two endmember chemistries. The model produces
a good fit to observed present day stream, soil and baseflow
chemistry. Future predictions of changes in endmember chemistry
are made so as to enable future episodic response to be modelled.

•
1.5 Re ional Modellin

In order to assess the impact of acidification across a country or
region it is necessary to employ a Monte Carlo strategy coupled to
the MAGIC model. In this approach key parameters are identified
and their variability across a region assessed. For example, soil
base saturation levels will range from low levels on thin granitic
systems to high levels on calcareous soils. Similarly,
hydrological and chemical inputs will vary across a region. These
regional variations are incorporated into the Monte Carlo approach
and distributions of water quality across a region are simulated.•

8•
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•
The regional simulations for South-West Scotland and Wales are

presented in section 5 of the report and for both areas the

observed distributions match the simulated distributions. The

Monte Carlo approach provides a particularly useful technique for

simulating regional behaviour.

•

1.6 Ecos stems Modellin and Reversibilit

An approach to modelling the impact of acidification on the

ecology of two Welsh streams is given in Section 6. Output from

MAGIC is used to drive empirical models for predicting brown

trout density, survival and invertebrate assemblages. The

modelling shows that trout survival markedly decreased between

1844 and 1984 with the most severe decrease occurring in a stream

draining a conifer afforested catchment. Here, the high aluminium

concentration caused the virtual elimination of trout in the

system. Forecasts shows that at least a 50% decrease in sulphate

deposition is needed to retard the further decline in trout

population.

The regional application of MAGIC to Wales is also assessed with

respect to the biological models and detailed in Section 6.2. Some

sites in Wales shows increased pH and alkalinity following a 30%

decrease in deposition from 1984, however, even under this

improvement in water quality, further biological impoverishment

occurs on the regional scale due to continued mobilisation of

aluminium.

In section 2 of this report examples are given of the effects

of deposition reductions on stream water quality. At sites in

Scotland and Wales and in the regional studies,reversibility is

shown to be feasible although there is evidence that a significant

and sustained reverse will only be achieved by major reductions in

deposition levels of the order of 60%. For catchments with

particularly thin soils and low buffering capacity a smaller

reduction will produce a short term recovery but the continuing

9
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•
loss of soil base cations will eventually lead to increased
stream water acidification. Particular problems are envisaged for
forested sites.

•
At the afforested Scottish sites the modelling results indicate

1111 that, combined with deposition reduction of the order of 70%, a

second generation forest planted on a recently felled site would
not cause significantly greater acidification in the stream. Soil
acidification, on the other hand, would continue to occur. To
enable a significant recovery in these areas, which constitute
a significant proportion of acid vulnerable sites in the UK,
forests should not be replanted without considering the
application of soil dressings such as limestone. Better

still, second generation planting should not be carried out.
In terms of critical load calculation, this work shows how
land use change can affect the susceptibility of a site.
Felling the forest in conjunction with a decrease in
atmospheric deposition significantly improves stream acidity
and this must be considered when critical loads are calculated
for these sites.

1.7 Conclusions 


The modelling studies have been particularly successful with
applications to a wider range of moorland and forested catchments
in Scotland and Wales. Comparisons with paleoecological evidence

supports the modelling conclusions, that acidification of
catchments, soils and streamwater has occurred on a major scale
with particularly severe impacts on thin soils with granitic bedrock
and in forested catchments. In addition, the techniques developed
for regional analysis have proved to give excellent results
for Wales and the Galloway Region of South West Scotland.
Reversibility has been assessed on a site specific and regional
basis and the major conclusion is that reversibility will be
achieved at many sites given at least a 60% reduction in

deposition. Higher reductions will be required for forested
catchments or catchments which have to been subjected to very high

10
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•
levels of acid deposition. Similarly, fisheries and stream
invertebrate populations have been affected by acidification and
major improvements in stream chemistry are required before
reversibility can occur.

The models and modelling techniques which have been developed,
calibrated and applied over a wide variety of regions and
across a large sulphur deposition gradient within the UK, are
particularly useful for determining critical loads for both
soil and aquatic ecosystems. The models (defined as level II
analysis under the UNECE Critical Loads Mapping Procedure) add
an extra dimension to the simplified empirical techniques of
critical load determination in that they enable: (i) the time
aspect of critical loads to be determined for a particular
ecosystem; for example, the critical load to achieve a
critical level of stream ANC = 0 within 50 years will be
greater than for achieving the same critical level within 10

411 years; (ii) the effect of changing land use, in particular
afforestation or deforestation can be incorporated into the
critical load analysis; and (iii) target load scenarios can be
assessed.

11
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ABSTRACT

Whitehead, P G . Bird. S.. Harming. M Cosh>, J.. Neal, C and Pantos. P.. 1988 Stream Acidifi-

cation trends in the Welsh Uplands — A modelling study of the Llyn Brianne catchments. J

Hydrol.. 101.191-212.

Historical reconstructions and predictions of streamwater acidification are presented for

moorland and afforested catchments in the Welsh Uplands at Llyn Brianne. The model MAGIC

(Model of Acidification of Groundwater in Catchments) is calibrated using data from a moorland

catchment and validated by application to a forested catchment While atmospheric deposition is

shown to be the primary cause of stream acidification, conifer afforestation can enhance stream

acidity. The historical trends determined by the model indicate that acidification has been present

since the turn of the century and will continue unless either deposition levels are reduced

significantly or other land management actions such as liming are undertaken on a major scale.

INTRODUCTION

Catchment studies investigating the acidic behaviour of upland streams are

expensive, time consuming and difficult to establish due to the complexity of

hydrological, chemical and biological interactions. Nevertheless many

catchment studies have been and are being established to evaluate short-term

and long-term fluctuations in stream water chemistry. For example as part of

the joint Scandinavian-British Surface Water Acidification Programme

(Mason and Seip, 1985) major studies are being established in the U.K. and

Scandinavia. Other studies have recently been established in the U.K. such as

the Welsh Water Department of Environment Llyn Brianne Study (Stoner et

al., 1984), the Solway River Purification Board Loch Dee Study (Burns et al..

1982). the Freshwater Fisheries Laboratory Loch Ard Study (Harriman and

Morrison, 1981) and the Generating Board (CEGB) Loch Fleet Study (Howells,

1986). These studies follow mounting concern over the loss of fisheries in

Scotland and Wales and the possible detrimental effects of stream acidity on

0022.1694/8850a 50 (i•. 198$ Elsevier Science Publishers ay
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water resources. Several researchers involved in these studies (Harriman and
Morrison. 1981; Stoner, 1985) have reported elevated acidity and aluminium
levels in upland streams draining afforested (conifer) catchments in the U.K.
Moreover in many of the studies fish populations have deteriorated and
restocking programmes have been unsuccessful.

It is with these problems in mind that the Institute of Hydrology has estab-
lished and supported catchment studies in Scotland and Wales. In Wales, the
Institute of Hydrology is involved in two principal study areas, namely
Plynlimon (see Hornung. 1986: Neal et al., 1986; Whitehead et al., 1988) and
Llyn Brianne (Stoner et al.. 1984). As part of the Llyn Brianne study the
Institute of Hydrology is responsible for developing hydrochemical models
which can be used to assess both short-term acid pulses and long-term trends
in catchment acidity. In this paper the MAGIC model has been applied to
moorland and forested catchments at Llyn Brianne to investigate long-term
trends in acidification and to test the model validity.

THE LLYN BRIANNE CATCHMENT STUDY

Recent work by the Welsh Water (Stoner et al., 1984; Stoner and Gee, 1985)
has suggested that acidity and aluminium levels in many of the streams of the
Upper Towy catchment, in which the Llyn Brianne river regulation reservoir
is situated, are episodically very high. Moreover many streams cannot support
fish and have depleted populations of aquatic plants and animals. Problems
appear to be most acute in afforested catchments. particularly those where
streamwaters are characterised by total hardnesses of less than 8 mg I -1 (as
CaC00. Furthermore, the problem appears to be widespread in the extensive
area of upland Wales underlain by chemically inert Ordivician and Silurian
rocks which are characterised by acid, often peaty, soils and streamwater of
very low hardness. Acid rainfall appears to be a contributory cause of stream-
water acidity, despite the fact that the area lies to the west of the urban/
industrial areas of Great Britain. Recent surveys have suggested that the
rainfall is on average as acid as many sites in Scotland and Northern Europe
(Donald et al.. 1986).

Because of general concern about acid streamwaters and acid rainfall, a
major multidisciplinary research programme was commissioned in 1984 by the
Department of the Environment and the Welsh office, the project being co•
ordinated by the Welsh Water. The project has as its primary aim an
assessment of the effects of different types of land use (particularly afforest-
ation) and land management practice on stream acidity. Fourteen catchments
were selected for intensive study in the Llyn Brianne area: five acting as
controls; eight are used to assess the impact of a variety of land management
treatments; and one to assess the effects of artificial acidification experiments

Fig. I. Maps showing Llyn Hrianne area geology, land use, annual rainfall and monitoring sites.
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TAI3LE 1

The study catchments: basic information

Site


—

Land use/treatment Area

(km')

Year of

treatment

1.11 Close canopy conifer forest control 2.53




1.12 Bankside clearance and liming of close canopy forest 1.05 1986
123 Bankside clearance of close canopy forest 0 64 1983
124 Bomb liming of close canopy forest 0.33 1987
LI6 Unacidified moorland control 0.68 -
L17 Moorland used for artificial acidification studies 0.68 1985. 1986
LIN Juvenile open canopy forest 0.66 -
G11 Acid oak woodland 0.18* -
C12 Strip liming of acidified moorland 0 59 1987
C13 Land improvement of acidified moorland 0.84 1986
CI1 l'Ioughing without planting of moorland 0.19 1986
C15 Surface liming of acidified moorland 0.31 198;
C16 Acidified moorland control 0.72 -
UC4 Ploughing and planting of moorland 2.60' 1967

• Estimated





(Table I and Fig. 1). The present study concentrates upon conditions prevailing

in just three of the fourteen catchments (LI I, Cl5, and LIG) and looks at the

possibility of modelling the long-term trends in acidification at Llyn Brianne.

CATCHMENT DESCRIPTIONS

LI1 is the largest catchment being studied (2.53 km') and CI5 is one of the
smallest (0.34 km'). LI6. although fairly small (0.68 km2). exhibits the highest
drainage density (2.74 km km '3) and channel slope (194 m km- I), and hence
exhibits a distinctly more rapid hydrological response.

All three catchments are underlain by Lower Silurian shales, mudstones,
greywackes and grits, with the shales and mudstones being dominant (Fig. 1).
The drift materials present are only locally derived and lie mainly on the
interfluves and upper slopes in thin layers ( < 1 m). although some of the lower
slopes and valley bottoms have thicker masses of up to Sm in depth, particu-
larly in LI6 where the drift appears especially base rich (Hornung, 1986).

Available soil information indicates that Lit is dominated by brown podzolic
soils (34%). ferric stagnopodzols (19%). cambic stagnohumic gleys (12%).
humic gleys (19%), and raw peat soils (12%) at an average depth of 0.75 m. CI5
is dominated by brown podzolics (21%). ferric stagnopodzols (23%), and cambic
stagnohumic gleys (25%1. all of a similar depth. LI6 is dominated by brown
podzolic soils (ca. 40%), stagnopodzols (ca. 50%), peat (ca. 5%), and a valley
bottom complex located on thick drift (ca. 5%), again at a similar depth.

The chemistry of the main soils in each catchment is summarised in Table 2.
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All the soils are acid, with low percentage base saturations and exchange

complexes dominated by aluminium. The subsoil, 13s and C horizons show little
variation in chemistry. The main differences occur in the surface horizon and

reflect the accumulation of varying amounts of organic matter and the develop-
ment, in some of the soils, of an eluviated E horizon. The differences in the
surface horizons reflect the accumulation of humus and, in the stagnopodzols,
the development of a very acid, peaty horizon. The E horizons tend to have
higher levels of exchangeable aluminium than the underlying Bs and C
horizons. More importantly, the Iron pan stagnopodzols under 25 year old Sitka
Spruce are remarkably acid throughout their profile, especially in catchment
LI I More detailed soil information is available elsewhere (Hornung, 1986).

The vegetation cover of 1.16 and CI5 is dominated by grass moorland, princi-
pally Festuca spp.. Agrostis spp..  Nardus  spp., and Molinia caerulea. However.
LI1 has been totally afforested largely with Sitka Spruce (Picea Sitchensis),
planting having commenced in 1958 (Fig. 1).

PRESENT DAY RAINFALL ANI) STREAM QUANTITY AND QUALITY

Rainfall quantity and quality

The mean annual rainfall at Cl5 has been estimated at 1800 mm, while at 1.11
and LI6 the corresponding figure is at least 1900mm (Fig. However.
catchrnent rainfall amounts can vary considerably with both altitude and
aspect (Hornung. 1986).

TABLE 3

Bulk precipitation chemistry at sites C7 and U for 1984

C7 L3

mean v.( m sil n mean %it m sd

p11 34 4 ; 4.2 0.b 33 4.9 4 0.9

NH, 35 31 31 37 34 40 39 46

NO, 35 41 44 71 34 36 37 49

Cl 35

35

177

	

16

142

	

71

241

	

56

34 144

86

113 183

SO, 34 77




65
Na 34 147 114 198 32 109 90 108

li 34 b 6 b 32 7 8

II. Mg 34 36 26 48 32 30 25 30

Ca 33 21 17 22 32 30  28  36

li ' 34 63 59 143 33 44 50 73

All units 3n ;ail I ' except pH. n is the number of samples. wtm is the volume weighted mean: and
scl is standard deviation

•
•
•
•
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Two bulk precipitation sampling sites are monitored in the area. The first
(C7) is located in the Camddwr catchment near CI5 (Fig. 1), while the second
(1.3), is located between LI1 and IX Table 3 summarises the composition of
bulk precipitation at both sites for 1984. At C7 pH ranged from 3.1 to 6.9, with
a volume-weighted mean of 4.19. Corresponding levels at L3 ranged from 3.4 to
7.1 and averaged 4.12. Acidity levels can thus be considered high and extremely
high acid events do occur from time to time. Indeed, 25% of all those samples
analysed, exhibited a pH of 4.4 or less.

SO, concentrations also exhibited a large range at both sites, with rainfall-
weighted means of 71 peq 1 ' and 77 peq I at C7 and L3 respectively. Moreover,
25% of all those samples taken exceeded 83 peq I- (C7) and 117 peq 1 ' (L3). The
higher levels at L3 probably reflect its forest location which encourages
enhanced occult and dry deposition of airborne contaminants.

In addition the high Na and CI concentrations at both rainfall sites confirm
the importance of marine salts. NO, and NH, levels however are low and thus
appear relatively unimportant.

Streamwater quantity and quality

On average, runoff coefficients in all three catchments exceed 0.75. However,
preliminary examination of the available flow records suggest that the coef-
ficient is likely to be considerably higher in L16; partly due to its reduced
evapotranspirational losses compared to forested LII, and partly due to its
higher relief, steeper slopes, increased drainage density and compact shape. In
addition, despite the enhanced evapotranspirational losses caused by the forest
land use (Law, 1956: Calder, 1985). LI1 also appears to exhibit enhanced storm
runoff volumes relative to C15. This can probably be attributed to the presence
of drainage ditches and macropore flow in the shallow soils which drain the
forest floor (Neal et al., 1986). Further investigations into the catchment
hydrology are continuing (Hornung. 1986).

The streamwater quality of each catchment is summarised in Table 4.
compared to CI5 and 1.16, is significantly more acid, with pH averaging 4.87. In

, addition. 25% of all spot samples taken in LI1 registered a pH of 4.6 or less.
Such levels are comparable to the mean of the bulk precipitation samples.
suggesting that L11 has a limited buffering capability. SO, concentrations are
also highest at L11, averaging 154 peq I with 25% of all samples exhibiting
concentrations of 170peq I ' or more. Hence, on average, concentrations are
more than double those found in the bulk precipitation and presumably reflect
the effects of large evapotranspirational losses (typically 30%) and an
enhanced sulphate scavenging capacity associated with the forest land use.

NO, concentrations are low at LI1, averaging 11 peq 1- '. some 25-30% of that
found in the bulk precipitation. Clearly these low levels reflect the uptake of
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TABLE 4

A comparison of streamwater chemistry for 198485




El5 L11 LI6

pil mean 5.2 4.87 6.9




std. dev. 0.34 0.44 0.30




MAX 6.0 7.0 7.9




min 4 6 4.3 6.2




no. samples 103 101 97

II' mean 8 18 0.15




std. dev. 5 11 6 0.1 1




max 25 50 0.63




min 1 0.1 0.01




no. samples 103 101 97

SO, mean 102 154 103




std. des. 19 30 26.2




Max 150 260 198




min 60. 98 23




no. samples 100 95 93

NO, mean 13 11 10




md. des. 12 5 6 5




MX ti6 29 50




min 7 7 7




no. samples 103 102 98

NH, mean 1.5 1.5 1.6




std. des. 0.41 0 4 1.07




max 5.0 5.0 11.4




min 1 4 1.4 1.4




no sample: 104 102 98

. Nn mean 149 204 138




stddev. 31 52 29




Max 9 83 434 267




min 90 4 36




no. samples 94 99 95

CI mean 165 247 155




md. des. 42 61 24




max 226 367 197




min 85 113 85




no. sample. 104 102 98

Mg mean 56 60 146




md. des. H 15 77




max 61 102 420




min 33 24 44




no. samples 95 99 96

Ca mean 44 59 146




st des. / I 20 81




May 71 129 456




min 20 13 2:1




no. samples 95 1(X1 96';
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TABLE 4 (continued)




mean

suf. dev.

Tax

min

CI5

6.6
3.9

21

0.5

4.11.

5
3.9

26
1

LI6

II
8.8

43
3




no samples 93 95 94

Al mean 18 42 7




std. dev. 13 22 6




max 70 94 53




min 0.6 3 0.6




no. samples 96 100 96

• All units pep I' except pH. Al assumed to be trivalent.

available nitrates by the mature conifer vegetation cover. N114 concentrations

are similarly low.

The marine salts are present at much higher concentrations in LII. Na

averaging 204 peq and CI, 247 peq V'. These levels are more than double

those found in the bulk precipitation, reflecting the strong sea salt influence,

effective scavenging capability and larger evapotranspirational losses, of the

forested catchment.

On the other hand, Ca and Mg concentrations are low, averaging 59 and

GO peg respectively. Such levels further support the suggestion of a very

limited buffering capability in LII linked to its base poor rocks and soils. The

low alkalinity levels also confirm the above.

Aluminium concentrations are very high at LI I averaging 42 peq I ', with a

peak of 94 peg 1- being recorded These levels represent a major increase over

those found at other sites and as will be seen later, clearly reflect the enhanced

dissolution of aluminium silicates in the forest soils. The aluminium concen-

trations also exhibit a clear negative correlation with pH (r = — 0.70), while

pH and Ca concentrations are positively correlated (r = 0.75). These corre-

lations further highlight the importance of a limited buffering capability

during individual acid storm events.

In C15, despite its nonforested land use. pH levels are only slightly higher.

averaging 5.2. with 25% of all samples exhibiting a pH of 5.0 or less. SO,

concentrations average 102peq I ', only 66% of the sulphate concentrations at

LII. but still 30% greater than bulk precipitation chemistry. Presumably the

reduction in evapotranspiration and scavenging in the moorland catchment

has contributed significantly to the above. NO, and NH, levels however, are

similar to those found at LII.

Na and CI both exhibit quite high concentrations averaging 149 and

168 peq I respectively. However, again these are much lower than those

found in LII, reflecting its reduced evapotranspirational losses and scavenging
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capacity. More surprisingly, base cation concentrations averaging 44 and

56 peq for Ca and Mg. respectively. are even lower than in LA 1. Hence, the


buffering capacity in this acid moorland catchment is also very limited,

although it is not exposed to the  extremes  of acidity found in LII.

Not surprisingly dissolved aluminium levels are moderately high. averaging

18 peq I with extremes reaching 60peq I Hence slightly less acid waters


when combined with such a limited buffering capacity are still likely to result

in considerable biological stress during acid events. Moreover pH and

aluminium concentrations (r = - 0.76, and pH and Ca (r = 0.51) are

correlated as at LII.

LW however, displays very different stream quality. First, pH averages 6.9

and never falls below 6.2. As a result, none of the problems associated with high

aluminium concentrations are apparent. Moreover. SO, levels although similar

to those found at CI5 (averaging 103 peq ' ) cause few water quality problems.

Clearly the key factor in this catchment is the high level of base cations

available to buffer any acidity. For example, concentrations of Ca and Mg both

average 146peq I.

In summary, while the bulk precipitation quality in the area is dominated by

marine salts and terrestrially derived anions, moderately acidic events do still

occur. Moreover, the area receives large volumes of mildly acid precipitation.

In addition within the study area, conifer afforested catchments. such as LII,

clearly exhibit the most acid streamwaters and highest aluminium concen-

trations, due to their limited buffering capacity. Conditions within the acid

moorland catchinents such as CI5 are also by no means satisfactory, despite

their reduced scavenging capacity and evapotranspirational losses, since they

too only possess a limited buffering capacity. Only the unacidified moorland

site LI6 exhibits totally satisfactory stream conditions, principally as a product

of the enhanced buffering capability derived from its soils and drift deposits.

•
CONCEPTUAL BASIS OF THE MODEL

The most serious effects of acidic deposition on catchment surface water .

quality are thought to be decreased pH and alkalinity and increased base

cation and aluminium concentrations. In keeping with an aggregated approach

to modelling whole catchments. a relatively small number of important soil

processes — processes that could be treated by reference to average soil

properties — could produce these responses. In two papers. Reuss (1980, 1983)

11,
proposed a simple system of reactions describing the equilibrium between

dissolved and adsorbed ions in the soil and soil water system. Reuss and

Johnson (1985) expanded this system of equations to include the effects of

carbonic acid resulting from elevated CO, partial pressure in soils and demon-

strated that large changes in surface water chemistry would be expected as

either CO, or sulphate concentrations varied in the soil water. MAGIC has its

roots in the Reuss-Johnson conceptual system, but has been expanded from

their simple two-component (Ca-A1) system to include other important cations

and anions in catchment soil and surface waters. MAGIC has been described in

detail elsewhere (Cosby et al.. 1984, 1985a, b, c. 1986). A further brief descrip.

•
•
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tion is presented here to address questions such as gibbsite equilibria controls
and the role of CO2 in determining acidity.

Atmospheric deposition, mineral weathering and exchange processes in the
soil and soil water are assumed to be responsible for the observed surface water
chemistry in a catchment. Alkalinity is generated in the soil water by the
formation of bicarbonate from dissolved CQ and water:

CO, + H20 = H + HCO; (1)

Bicarbonate ion concentrations in soil water are calculated using the familiar
relationships between the partial pressure of CO, (P(.0,. atm) and hydrogen ion
activity in the soil water:

Pc
f H CO; I Ke  (2)

[H j

where the combined constant  K,  is known for a given temperature.
The free hydrogen ion produced. eqp. (1). reacts with an aluminium mineral

(e.g. gibbsite) in the soil:

+ Al (OH)3„, = Al'' + 31-1,0 (3)

The MAGIC model assumes a cubic equilibrium relationship between Al and H
The equilibrium expression for this reaction is:

KM
[Al)

— 	 (4)[II

where the brackets indicate aqueous activities. Classically this relationship
describes Al (OH), solubility controls. However, as in most previous modelling
studies where a cubic relation:hip is still used, it represents potentially a
variety of chemical reactions. As such the equilibria constant does not have to
have the value for the solubility product for gibbsite. Several aqueous com•
plexation reactions of Al' are included in the model (Cosby et al., 1985). These
reactions are temperature dependent and appropriate corrections for tem-
perature and ionic strength are made in the model.

Generally, the cation exchange sites on the soil matrix have higher affinity
. for the trivalent aluminium cation than for di• or monovalent base cations. An

exchange of cations between the dissolved and adsorbed. phase results:

Al" + 3BCX,., = + aBC (5)


where X is used to denote an ad:orbed phase and BC' represents a hase cation.
The net result of these reactions is the production of alkalinity [e.g.
Ca(HCQ)..,[. As CO2 partial pressure or the availability of base cations on the
soil exchange sites increases, the equilibrium reactions proceed further to the
right-hand side of eqn. (5) in each case resulting in higher alkalinity.

When the solution is removed from contact with the soil matrix and...is
exposed to the atmosphere (i.e. when soil water  enters  the stream channel). the
CO, partial pressure of the solution declines. The pH of the solution increases
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as CO, is lost to the atmosphere. Because the solution is no longer in contact
with the soil matrix, cation exchange reactions no longer occur. The alkalinity
and base cation concentrations are thus unchanged.

If the exchangeable base cations on the soils become depleted, less
aluminium is exchanged from the soil water. eqn. (3), and the concen•

tration in the water entering the stream is higher. As the streamwater loses
Ca and the pH begins to rise, the solubility of aluminium species in the stream
is exceeded and a solid phase of aluminium precipitates. These aluminium
precipitation reactions retard the increase of streamwater pll as the CO,
degasses, resulting in lower streamwater pH for the case where exchangeable
cations are less available.

Less adsorption of aluminium by the soils also decreases the soil and surface
water alkalinity. Consider an abbreviated definition of the alkalinity of soil
and surface waters:

ALK = (HCO; ) - (H') - 3 (Al' ) (6)

where the parentheses indicate molar concentrations. It is apparent that as the
ability of the catchment soils to exchange Ar' declines and aluminium and
hydrogen ion concentrations increase, the alkalinity of the solution must

decline, even though the source of HCO; is not affected.

The process of acidification is controlled in part by the rate at which the
exchangeable base cations on the soil are depleted. This in turn is affected by
the rate of re-supply through weathering of base cations from primary minerals
and the rate of loss through leaching of base cations from the soil. Leaching of
base cations is affected mainly by the.concentration of strong acid anions (i.e.
SW," . NO; . CI' . and F ) and base cations in the solution moving through the
soil. As anions increase in concentration, there must be an equivalent increase
in cation concentration to maintain a charge balance.

The model calculates the concentrations of four strong acid anions in both
soil and streamwater (S02,' . Cl• . NO; and F. ). Sulphate has an adsorbed
phase in soil and the relationship between adsorbed sulphate (E,. meq kg I )
and the concentration of dissolved sulphate (SO; , meq m -3) in soil water is

assumed to follow a Langmuir isotherm:

= E,,,  	
(SO.; )

(7/' C + (SO;

where E 1 = maximum adsorption capacity of the soils (meq ), and

C = half saturation concentration (meg m -1).

If anions derived from atmospheric deposition are accompanied by H ' , as is
the case for acid deposition, the excess H will initially displace base cations
from the soil exchange sites. As the base saturation declines, aluminium and
hydrogen ion become increasingly important in maintaining the ionic charge
balance in solution. The water delivered to the stream becomes more acidic as
the acidic deposition persists.

•
•



The model assumes that only Al" and four base cations are involved in
cation exchange between soil and soil solution. The exchange reactions are
modelled assuming an equilibrium•like expression: 110

[RC • 13 EXI
&RC -

[AP" 17 EL
(8)

•
or:

IBC' E,
SAIHC 11 13- J

For divalent or monovalent base cations respectively, where the brackets

•indicate aqueous activities, Smile is a selectivity coefficient (Reuss, 1983) and
the E„s indicate exchangeable fractions of the appropriate ions on the soil
complex. If the amount of Ca' on the soil of a catchment were given by X
meq kg- then:

X
E.

CEC (9)
•

where CEC is the cation exchange capacity of the soil (meq kg
The base saturation (BS) of the soil is then the sum of the exchangeable

fractions of base cations:

BS = 4- Es. ± EK = - E, (10)

If the aluminium-base cation exchange equations in the model. eqn. (8), are
combined with the aluminium solubility equation. eqn. (4), the resultant

equations are the Gaines-Thomas expressions for hydrogen ion-base cation

•exchanges.
The parameters describing the cation exchange process in the model are the

selectivity coefficients, Saw. (one coefficient for each base cation. Ca' , Mg" ,
•" , K. ) and the soil cation exchange capacity. CEC.

The MAGIC model is thus composed of: (1) a set of equilibrium equations
which quantitatively describe the equilibrium soil processes and the chemical

•changes that occur as soil water enters the stream channel; (2) a set of mass
balance equations which quantitatively describe the catchment input-output

relationships for base cations and strong acid anions in precipitation and
•streamwater; and (3) a set of definitions which relate the variables in the

equilibrium equations to the variables in the mass balance equations.
betails of the equations and the model structure have been given by Cosby

•et al. (1985a).

SIMULATION RESULtS FOR CI5 •
MAGIC had been applied to C15 assuming a sulphate deposition pattern as

shown in Fig. 2; significant increases in sulphate loadings have occurred since

1900 with a peak in 1970 and thereafter levels have fallen by approximately
25%.

•••
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Fig. 2 Sulphate deposition pattern assumed for MAGIC

•
An optimisation was applied initially to provide best estimates of the key

parameters in the model. These include E„ the maximum sulphate adsorption

rate, nitrate and ammonia uptake rates, weathering rates, selectivity coef-

ficients and the partial pressure of CO,. From the optimisation runs the

parameters shown in Table 5 were obtained.

Em, is particularly low suggesting that the soils at Llyn Brianne have a

relatively low capacity to adsorb sulphate, compared with catchments in the

U.K. (Jenkins et al.. 198;). Nitrate and ammonia uptake rates are high and

reflect nutrient uptake by the vegetation. Weathering rates are low and this,

coupled with the low base saturation levels, indicates the limited ability of the

TABLE 5

Optimal parameters tor MAGICapplied to CI5

E,, 0.01 meg kg

Nitrate uptake rate 68 9 meg m 'yr •

Ammonia uptake rate 99 I meg m yr'

Weathering rates:
Onicy rn yr '

Mg 15.0meg in 'yr '

Na 10 0meg m 'yr
1 0 meg m 'yr "I

Selectivity coefficients:

1A.g10 K Al-Ca 1 9.1

1,01210K Al Mg

Logi() K AI*Na

1.67

- 2.10

LogIO K Al;K - 5 3.1

pCO: in the soil 0

Dry/occult deposition factor

	 02 Atm

1.2

•

•
•
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Fig. 3. Simulated pH in C15 from 1844 to 2124 for moorland and forest conditions. Forest effects from

1958 shown as a dotted line

soils to buffer incoming acidity. The dry/occult deposition factor reflects the

relatively low scavenging rate of moorland compared to forest catchments. In

the moorland situation only 20% sulphate additional to that deposited by wet

deposition, enters the catchment via deposition of dry particles, aerosols and

TABLE 6

Simulated runoff chemistr  for CI5




Without forest growth

(1984/85)(2)241

With forest growth from 1958

(1984/85)(2124)

Ca 43 7 36.8 54.1 44.8

Mg 55.3 43.0 71.6 56 0

Na 149.4 141.2 202.4 194.8

K 8.0 7 7 10.4 9.7

NH, 1.6 1.6 2 3 2 3

50, 98 8 98.4 147.1 146.2

CI 168.3 168 3 235 7 23.1:

NO4 15.3 15.4 21.5 21.5

Alkalinity 19 0 9.0 - 64.8 - 98.2

Al 19.2 41.9 53.7 ti 0

pH 4.8 4.7 4.7 4.6

Soil base sat. (%) 9.6% 8.0% 9.0% 7.0%

All units peql“ except pll.
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Fig. 4. Simulated base saturation in C15 from 1844 to 2124 for moorland and forest conditions

Forest effects from 1958 shown as a dotted line.

droplets of mist, fog and cloud (occult deposition). In the forest catchment this

- additional- deposition can increase to 60% or more.

Table 6 shows that the model-simulated chemistry matches closely the .

observed values for C15 (see Table 4) and Figs. 3, 4 and 5 show the historical

reconstruction of ph . base saturation and aluminium trends for the catchment.

: act.6i3:52::__„

212

••a-

Fig. 5. Simulated aluminium concentrations in CI5 from 1844 to 2124 for moorland and forest

conditions Forest effects from 1958 shown as a dotted line



207

The significant decrease in the period 1940-1960 is very similar to the South

West Scotland trends reported by Batterhee et al. (1985) and Cosby et al. (1986).

Recent research by Batterbee and co-workers indicates that similar trends are

observed in lakes in Wales (Battarbee, 1988). Figures 4 and 5 suggest

that base saturation levels and aluminium concentrations have changed sig-

nificantly over the same period with base saturation falling to very low levels

and aluminium concentrations increasing to 19 peq1-1. The future predictions,

assuming constant future deposition of sulphate at 1984 levels, as illustrated in

Fig. 3, suggest a further slight deterioration in catchment pH, although, as

shown in Table 6, aluminium levels will continue to rise significantly (Fig. 5).

These future changes are accompanied by the continuing reduction in base

saturation levels shown in Fig. 4.

Effects of afforestation on C15

The effects of afforestation can be illustrated using the model. Table 6 and

Figs. 3, 4 and 5 show the chemistry of the runoff and base saturation over time

assuming a forest is grown on C15 from 1958. This is achieved in the model by

increasing the dry/occult deposition factor and by increasing evapotranspi-

ration. These enhance the sulphate input to the system to 80% compared to

20% for the moorland situation. Sea salts are also increased by 40% during the

transition from moorland to forest. The transition is presumed to occur linearly

over a fifteen year period from 1955 to 1973 when canopy closure is assumed to

occur. The effects of uptake of cations by trees during the early stages of

growth are not included in this simulation: also excluded are the effects of

hydrological changes caused by increased drainage immediately prior to affor-

estation. As discussed by Whitehead et al. (1986b) the latter can have signifi-

cant effect on stream quality as the proportion of surface runoff to baseflow is

increased by the additional drainage. However for the purposes of the current

modelling exercise these two effects are ignored. Despite these omissions the

simulated chemistry shown in Table 6 compares well with observed chemistry

of the forest catchment I..11 shown in Table 4. The chemistry of the forest

catchment differs markedly from that of the moorland catchment and the fact

that the model can reproduce the principal changes in the anions and cations

is very encouraging. It suggests that the MAGIC model does indeed capture the

main componenLs controlling stream acidification and can therefore be used

for management purposes. The simulated long-term responses of the moorland

catchment with and without the forest are illustrated in Figs. 3, 4 and 5. The

effect of the forest is to reduce pH and base saturation slightly but to increase

aluminium levels rapidly. Ormerod et al. (1987) have shown that fish are

particularly sensitive to aluminium levels and the simulation results suggest

that aluminium levels will rise to 85 peq I in the long term. The model results

illustrate that acidification problems in the uplands will be with us for many

years unless direct management action is taken and that afforestation does

enhance the acidification levels.
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Fig. 6. Simu lated pH in CI5 from 1844 to 2124 for moorland conditions assuming constant deposition
from 1984 (continuous line) and deposition reduced by 50% since 1984 (dotted line).

Effects of reduced future deposition on C15

The effects of reducing deposition in the future are illustrated in Fig. 6
which shows the pH in CI5 assuming a 50% reduction in deposition from 1984
levels phased in over a 20 year period. The effect on pH is not particularly
striking: a slight recovery in pH or the continuation of current pH levels is
shown in Fig. 6. This poor recovery is not surprising given that base
saturations and weathering rates are low. In the afforested catchment
siinulation the long-term recovery in pH is similarly quite small. However
aluminium levels are significantly changed as illustrated in Fig. 7 but even
these changes will be of no benefit from a fisheries viewpoint (Ormerod et al.,
1987).

SIMULATION OF CATCHNIENTS LI1 AND LI6

The afforested catchment LI1 and t he -unacidified- moorland catchment 1.16
have been simulated using the same procedure as for C15. In the case of LI1 the
forest effect is simulated from 1958 with canopy closure occurring after 15
years. The dry/occult deposition factor increases linearly from 1.2 in 1958 to 1.7
for sulphate over this forest growth period. Sea salts are presumed to increase
from 1.0 to 1.6 over the same period. In the case of 1.16 the moorland catchment
is highly buffered and this effect is simulated by increasing the weathering
rates of both Ca and Mg to 170 peq m • 'yr .
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Fig. 7. Simulated aluminium in CI5 from 1844 to 2124 assuming forest growth from 1958 and with
constant and reduced deposition levels. Effects of 50% reduction in deposition shown as a dotted
line.

TABLE 7

LI1 and L16 simulated chemistry




1.11




L16




(1981) (2124) (1984) (2124)

CI. 62.9 46.5 146.9 144.2
Mg 60.9 41.4 145.3 141.1




Na 205.9 191.0 138.9 
 133.8
K 5.2 0.0 10.4 11.5 .
NH, 0.0 0.0 2.1 2.1
SO, 152.4 150.7 109.2 109.3
Cl 249.9 249.9 156.2 156.2
NO, 14.0 14.0 12.8 12.8
Alkalinity - 83.3 - 139.6 165.1 153.9
Al 70.8 124.7 
 1.6 1.5
PH 4.6 4.5 6.4 6.4
Soil base sat. (%) 6.2 3.8 13.4 12.4

All Units except peq 1-1 except pH.

With these three major changes the simulated current and future chemistry
obtained from the model is illustrated in Table 7. The simulated 1984 chemistry
for both L11 and L16 compare well with the observed chemistry (Table 4). The
contrast between the catchments is enormous with LI1 exhibiting very atid
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..Fig. 8. Simulated pH in L16 from 1844 to 2124 for moorland and forest conditions. Forest effects from
1958 shown as a dotted line.

conditions, low alkalinities and high aluminium levels and with LI6 showing
highly buffered waters rich in cations, high alkalinities and very little
aluminium. The long-term simulations for LI6 show that even growing a forest
on the catchment would only reduce pH from 6.4 to 6.3, as illustrated in Fig. 8.
Thus the internal sources of alkalinity in the catchment, probably generated
by calcite intrusions, will buffer incoming acidity in the long term.

In the case of the forest catchment these highly acid conditions are unlikely
to be affected even by 50% reduction in deposition.

CONCLUSIONS

The current research has illustrated the ability of the MAGIC model to
reproduce catchment chemistry in both moorland and forest streams at Llyn
Brianne. The model reconstructs historical trends in acidification; compares
well with the trends in acidification derived from paleoecological analysis and
provides some measure of confidence in using the model to predict future
trends.

The poorly buffered upland catchments in Wales at Llyn Brianne are signifi-
cantly affected by acid deposition, and are likely to be affected for some time
even if deposition is reduced. Any short-term improvement will probably be
effected by liming and land management.

Afforestation in the poorly buffered Welsh Uplands regions causes a major
increase in acidification following the increased scavenging of sea-salts and
anthropogenic sources of acidity.
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Small variations in catchment hydrology, soils and geochemistry can have

significant effects on the long-term behaviour of stream chemistry. It is

essential therefore to collect detailed data on hydrology, geology and soils

prior to modelling studies.
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ABSTRACT

411 Historical reconstructions and predictions of streamwater acidification are presented for moorland and afforested

catchments in the Welsh Uplands at Plynlimon. MAGIC (Model of Acidification of Groundwater In Catchments) is


validated by application to an afforested catchment. MAGIC is used to illustrate that atmospheric deposition is

primarily responsible for stream acidification hut that conifer afforestation can enhance stream acidity. The historical

trends determined by the model illustrate that long-term acidification has been present since thc turn of thc century

and will continue unless either deposition levels are reduced significantly or liming is undertaken on a major scale.

•
INTRODUCTION

Stream acidification can be considered as a problem involving two timcscalcs. On the one hand there are

significant short-term pulses or flushes of acidity which, in small upland catchments occur on an hourly

timescale and reflect hydrological changes (e.g. storm events) in the catchment (Whitehead et al., I986a).

These acid pulses may be very severe causing considerable damage to fisheries (Stoner et al., 1984). The

short lived acid events are superimposed upon thc effects of longer term acidification processes. Upland

catchments in Western Britain have been subjected to high levels of acid deposition for many years, sincc

the start of the industrial revolution in the nineteenth ccntury. The buffering ability of thc soils and rocks

can, however, delay any resulting catchment acidification for many decades. The magnitude of thc

short-term pulscs are highly dependent on how far the long-term process of acidification has progressed

within a catchment. IA any acidification study it is inti-,Ortani-to evaluate the currcnt status of:catchment

acidity and the historical trends and processes that have occurred.

It is with these problems in mind that the Institute of Hydrology (11-1) and :Institute of Terrestrial

Ecology (1TE) have established catchment studies in Scotland and Wales. In Wales there arc two

principal study areas, namely Plynlimon (see Hornung et at, 1986; Neal et al., 1985) and Llyn Brianne

(Stoner et at , 1984). In both studies III is responsible for developing hydrochemical models which can be
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used to assess both short-term acid pulses and long-term trends in catchment acidity. In Scotland

catchments in the Galloway Region of southwest Scotland at Loch Dec are being investigated (Burns et

al., 1982; Cosby et al., 1986) and a new catchment study has been established in the Cairngorms at the

Allt a Mharcaidh under the auspices of the Royal Society Surface Water Acidification Project (Mason

and Seip, 1985; Jenkins clot. 1987).

I n this paper the long-term acidification processes at Plynlimon arc considered and the model MAGIC

applied to a small grassland catchment. Thc effects on the grassland catchment of growing a forest arc

also investigated using the model and MAGIC is validated by reference to forest stream chemistry.

THE PLYNLIMON EXPERIMENTAL CATCHMENT

Thc Plynlimon experimental catchments comprising the headwaters of the Rivers Wye and Severn arc

located in thc eastern slopes of the Plynlimon massif, approximately 24 km from thc west coast of Wales,

at altitudes which range between 300 m and 750 m above sea level. The arca is underlain by base-poor

Lower Palaeozoic mudstones, shales, and grits upon which a mosaic of acid upland soils (stagnopodzols,

glcys, brown podzolic soils, rankers, and pcats) have developed. Underlying the soils in sonic parts of the

catchment are drift deposits of boulder clay and colluvium derived from thc bedrock. bind-use in thc

upper Wye consists of sheep grazing on acid seminatural Nardus-Agrostis-Festuca grassland and areas

improved by the application of lime and compound fertilizer (Hornung et al., 1986). The average grazing

density is 1-1 ewe ha- I. The majority of the upper Severn catchment is covered by plantation conifer

forest consisting mainly of Sitka spruce (Picea sitchensis) and Norway spruce  (Picea chits)  planted in

three phases between 1937 and 1964. The forest has bccn extensively drained by ploughing and ditching;

these ditches cut through the various soil horizons and, in some cases, penetrate to bedrock. The

catchments  are  described in greater detail by Newson (1976).

Data from two first-order catchments are presented in this paper. The seminatural grassland

catchment, C2, is located in the Cyff catchment of the Upper Wye (Figure I). The forest site, E2, is

situated in the Hore catchment of the Upper Severn, and was planted with Sitka spruce in 1949. Both

catchments are of similar size (2-4 ha) and contain a similar range and distribution of soils; they differ

only in land-use and vegetation.

The rainfall and runoff chemistry for thc unimproved grassland catchment. C2, and thc forest stream.

F2, is shown in Table I.

The forcst catchment runoff is significantly more acidic with an average pH of 4-7 compared to that of

the grassland site C2, with pH 5-3. The region is subject to high rainfall (3030 mm per year) and rainfall

chemistry is dominated by marine salts (Na, K, Mg, and CI), however sulphate levels arc high and well in

excess of marine levels, indicating that anthroprogenic sources of sulphate are significant, (Reynolds et

al., 1984).

Soils are thin (depth  c.  0-75 m) and base poor with a base saturation of 7-5 per cent and cation exchange

capacity of 48-3 peg kg-I.

CONCEPTUAL BASIS OF MAGIC

The most serious effects of-acidic deposition on catchment-surface water- quality are thought to t)e

decreased pH and alkalinity and increased base cation and aluminium concentrations. In'keeping with an

aggregated approach to modelling whole catchments, a relatively small number of Important soil

processes—processes that could be treated by reference to average soil properties—could produce these

responses. In two papers, Reuss (1993, 1983) proposed a simple systcm of reactions describing the

equilibrium between dissolved and adsorbed ions in the soil-soil water system. Reuss and Johnson (1985)

expanded this system of equations to include the effects of carbonic acid resulting from elevated CO2

partial pressure in soils and demonstrated that large changes in surface water chemistry would be

expected as either CO2 or sulphate concentrations varied in the soil water. MAGIC has its roots in the
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Figure I. Location of the study sitcs

Reuss-Johnson conceptual system, but has been expanded from their simple two-component (CA-Al)

system to include other important cations and anions in catchment soil and surface waters.

Atmospheric deposition, mineral weathering, and exchange processes in thc soil and soil water arc

assumed to be responsible for the observed surface water chemistry in a catchment. Alkalinity is

generated in the soil water by the formation of bicarbonate from dissolved CO2 and water:

CO2 + 1-120 = 11 + HCO3- (1)
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Table I. Rainfall and runoff diennstry

Ca nen I-'
Mg ney1-1
Na nail- I
K peg 1- I
NI I, peg 1-'
SO,  I &al 1-'
C.1 peg I -1
NO, ney I-1
Alkalinity net.' I-1
p11 nail- I
Al ing1-1
% base saturation
Years of Record

Rainfall

13-0

19 -7

79 -6

C2

54-9
57-6

134-9

F2

37.9
70-7

205-3
2-3 2-6 4-6

15-7 0-0 11-0
62-5 99-9 173-7
98-7 141-1 7 22-6
16-4 5-0 7 1-4
— 20-8 -15-5
4-2 5-3 4 -7
— 0-0 11-42
-- 7-5 6-0

1980-81 19801-81 1984-85

fiittattr

Bicarbonate ion concentrations in soil water are calculated using the familiar relationships between the
partial pressure of CO2 (Pc02, atm) and hydrogen ion activity in the soil water:

PC-0,
[FIC031 =

[1-1+
(2)

where the combined constant Kc is known for a given temperature (Stumm and Morgan, 1970).
The free hydrogen ion produced (Equation I) reacts with an aluminium mineral (e.g. gibbsite) in the

soil:

31-11- + Al(011)3(s) = A13+ + 31120 (3)

The MAGIC model assumes a cubic equilibrium relationship between AI and H. The equilibrium
expression for this reaction is:

K - 	
[A13+1

	

[Hit
(4)

where the accolades indicate aqueous activities. Classically this is considered as relationship to Al(OH),
solubility controls. However here, as in most previous modelling studies, while a cubic relationship is still
used it represents potentially a variety of chemical reactions. As such the equilibria constant does oot
have to have the value for the solubility product for gibbsite. Several aqueous complexation reactions of
Al3+ are included in the model (Cosby et at, 1985a). These reactions are temperature dependent and
appropriate corrections for temperature and ionic strength are made in the model.

Generally, the cation exchange sites on the soil matrix have higher affinity for the trivalent aluminium
cation than for di- or 'Monovalent base cations. An exchange of sations :between the dissolved and
adsorbed phase results:

Al3 + 3BCX(s) = AIX3(s) + 3BC+ (5)

where X is used to denote an adsorbed phase and 8C+ represents a base cation. The nct result of these
reactions is the production of alkalinity (e.g. Ca(1-1CO3)2). As CO2 partial pressure or the availability of
base cations on the soil exchange sites increases, the equilibrium reactions proceed further to the right
hand side in each case resulting in higher alkalinity.



MODELLING STREAM ACIDIFICATION TRENDS 361

When thc solution is removed from the contact with the soil matrix and is exposed to thc atmosphere

(i.e. soil water enters the stream channel), thc CO2 partial pressure of the solution declines. The of

the solution increases as CO2 is lost to the atmosphere. Because the solution is no longer in contact with

the soil matrix, cation exchange reactions no longer occur. The alkalinity and base cation concentrations

are thus unchanged.

If the exchangeable base cations on the soils become depleted. less aluminium is exchanged from the

soil water (Equation 3) and the AP' concentration in thc water entering the stream is higher. As the

streamwater loses CO2 and the pH begins to rise, the solubility of aluminium species in thc stream is

exceeded and a solid phase of aluminium precipitates. These aluminitun precipitation reactions retard the

increase of streamwater pll as the CO2 degasses, resulting in lower streamwatcr pH for the case where

exchangeable cations are less available.

Less adsorption of aluminium by the solid also decreases the soil and surface water alkalinity. Consider

an abbreviated definition of the alkalinity of soil and surface waters:

ALK = (1-1CO3-) - (11+) - 3(A13') (6)

where thc brackets indicate molar coacentrations. It is apparent that as thc ability of thc catchment soils

to exchange A13 declines and aluminium and hydrogen ion concentrations increase, the alkalinity of thc

solution must decline, even though the source of 1-1CO3- is not affected.

The process of acidification is controlled in part by thc rate at which the exchangeable base cations on

the soil are depleted. This in turn is affected by the rate of re-supply through weathering of base cations

from primary minerals and the rate of loss through leaching of base cations from the soil. Leaching of

base cations is affected mainly by the concentration of strong acid anions (i.e. S042-, NO3-, 0-, and

F-) and base cations in the solution moving through the soil. As anions increase in concentration, there

must be an equivalent increase in cation concentration to maintain a charge balance.

The model calculates the concentrations of four strong acid anions in both soil and streamwater

(S042-, Cr, NO3-, and F-). Sulphate has an adsorbed phase in soil and the relationship between

adsorbed phase (E„ meq kg-1) and the concentration of dissolved sulphate (S0,2-, meq m-3) in soil

water is assumed to follow a Langmuir isotherm (Singh, 1984).

(S042-

If anions derived from atmospheric deposition arc accompanied by If , as is the case for acid

deposition, the excess 1-1" will initially displace base cations from the soil exchange sitcs. As thc base

saturation declines, aluminium and hydrogen ion become increasingly important in maintaining thc ionic

charge balance in solution. Thc water delivered to thc stream becomes more acidic as the acidic

deposition persists.

The model assumes that only Al3+ and four base cations arc involved in cation exchange between soil

and soil solution. The exchange reactions are modelled assuming an equilibrium-like expression (Gaines

and Thomas, 1953):

(BC24 13 E2A,

SAI BC =
( A1312

PIC" I3E./0
Of SAI BC -

IA13+1 ac
(8)

For divalent or monovalent base cations respectively, where the brackets indicate aqueous activities.


SA1 gic is a selectivity coefficient (Reuss. 1983) and thc En's indicate exchangeable fractions of the

E
C + (5042-)

= maximum adsorption capacity of the soils (meq kg- 1)

C = half saturation concentration (mcq m-3)

(7)
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appropriate tons on the soil complex. If the amount of Ca24 on the soil of a catchment were given by X
meq kg-1, then

X
(9)

CEC

94103efet

where CEC is the cation exchange capacity of the soil (meq
The base saturation (BS) of the soil is then sum of the exchangeable fractions of base cafions:

I3S = Ec „ + EM + EN ;, EK = I - EA1 (10)

If the aluminium-base cation exchange equations in the model (Equation 8) are combined with the
aluminium solubility equation (Equation 4), the results arc equations that arc Gaines-Thomas
expressions for hydrogen ion - base cation exchanges.

Thc parameters describing thc cation exchange process in the model are thc selectivity coefficients.
5A1 nc (one coefficient for each base cation, Ca2, Mg2, Nat, K.) and thc soil cation exchange capacity.
CEC.

Thc MAGIC model is composed of:

I. A set of equilibrium equations which quantitatively describe the equilibrium soil processes and the
chemical changes that occur as soil water enters the stream channel
A set of mass balance equations which quantitatively describe the catchment input-output
relationships for base cations and strong acid anions in precipitation and streamwater
A set of definitions which relate the variables in the equilibrium equations to the variables in the mass
balance equations.

Details of the equations and the model structure have been given by Cosby et al. (1985a).

SIMULATION RESULTS

MAGIC had been applied to the grassland catchment, C2, using the pattern of emissions shown in Figure
2 to drive the model. The assumed deposition shows the significant increases in sulphate loadings since
1900 with a peak reached in 1970. Since 1970 levels have fallen by approximately 25 per cent.

A Rosenbrock optimization was applied initially to provide best estimates of thc key parameters in the
modeL These include E„,„ thc maximum sulphate.adsorption rate, nitrate and ammonia uptake rates.
weathering rates, selectivity coefficients, and the partial pressure of CO2. From the optimization runs the
parameters shown in Table II were obtained. This is the first research at Plynlimon in which such
parameters have been estimated and laboratory analysis is currently being undertaken to evaluate thc
selectivity coefficients for comparison with model estimates.
These optimal parameter values indicate

The high rates of uptake of ammonia and nitrate, presumably by the vegetation
The high rates of weathering of Ca, Mg, Na •
The significant additional loadings of sulphate via the pccult.and dry.deposition factor
The relatively high storage of sulphate on thc soils. Hire the.E„„ represents the, maximum uptake
capacity and at 3-38 meq kg- is fairly high compared to other catchment studies (sec Whitehead et al.,

1987).

A typical simulation of pH in the catchment (see Figure 3) shows relatively high background pH with a
decreasing trend which accelerates in the period 194(1-1970 to give a rapid fall in'-p1-1. Note, however, a
slight recovery in pH in the early 1980s which represents response to the falling deposition levels. Table
III shows the simulated catchment chemistry which compares extremely well with the observed chemistry
for C2 shown in Table I. The (rends in pH decline match closely with the trends in algal changes
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Figure 2. Sulphate deposition pattern 1844-2124 assutinng etinstant deposition since 1954

Tahle II. Optimal paratneter values

Ern, = 3-3S meg kg.-: _
Nitrate uptake rate = 73-4 meg in: year:
Ammonia uptake rate = 99.7 meg nt : year I
Weathering rates Ca = 116.9 miry ro-: year-I

Mg 88-2 megnt-- yearil
Na 66-4 met] tit

,
-- year I

Selectivity Coefficients
Logi" K Al Ca 2-70
Logo, K Al Mg 3-27

Logo. K Al Na -11-65
' Logio K Al K - -4-70

p CO: atm . 0-0328
Occult and Dry deposition factor I .3

determined by Fritz  et at (1986),  Battcrbee  et al.  (1985) in Wales and Galloway respectively. The long

term decline is a result of progressive lowering of base saturation (see Figure 4) caused 6y the weathering
of cations by incoming acidity. In Plynlimon the base saturation is initially high at 18 per cent but by 1984
has been reducedito 4-2 per cent, a very low level for soils. 5

An important aspecebf acidification is the release of aluminium into the soil and stream wateli Fish arc
particularly sensitive to elevated aluminium levels and it is important water quality parameter with regard
to other stream fauna such asinvertebrates. Figure 5 shows the simulated total aluininium levels for the
grassland catchment, historical levels are very low but by 1980 arc just beginning to rise.

EFFECTS OF AFFORESTATION


The effects of afforestation on acidification trends can be highly significant Firstly hydrological flowpaths

change following increased drainage, then enhanced evapotranspiration concentrates solutes, and finally
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Figure 4. Simulated Base Saturation % trends in moorland (—) and forest (---) catchments

once canopy closure is complete a major additional influx of sulphate and marine salts is achieved via

occult and dry deposition. The effects of hydrological changes have been investigated by Whitehead  et al.

(1986b). In the current study the effects of altering the evapotranspiration rate and dry and occult

deposition following afforestation are considered. The MAGIC model can be used to simulate these

effects by allowing the concentration of the incoming marine salts (Na, K, Mg. and CI) to increase by a

factor of 60 per cent and allowing incoming sulphate concentration to increase by 80 per cent.

These increases are phased in over a ten year period from 1949 to 1959 the approximate dates of

afforestation and canopy closure at Plynlimon. The effects of this are shown in Table III which presents

Os*
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Table III. Simulated stream chemistry
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NO,- peq
Alkalinity
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Al (assuming A11) pay 1-'
% Base saturation)

•

simulation chemistry. The results arc close to the observed chemistry from the forest catchment at

Plynlinion (see TAble 1-) and this has been achieved without recalibrating the model and therefore

provides a validation of the model. That the model can reproduce the forest 'chemistry by simply

increasing the occult/dry deposition factors is particularly interesting since it suggests that these processes

are dominant and other effects such as uptake of cations by the growing trees may be of less importance to

the final equilibrium chemistry.

Afforestation has a significant effect on acidification trends as shown in Figures 3, 4, and 5 for pH, base

sa turation, and total aluminium (A131. In the case of pH a very significant decline is simulated with final

equilibrium levels at 4-8 per cent. Base saturation falls to 3-9 per cent and aluminium concentrations

increase dramatically to equilibrium levels of 2Oueq r'.

•
•
•

Grassland

stream

5.3
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134.9
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0- I
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140-6
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stream
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224-9
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2(1-5
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EFFECTS OF REDUCED DEPOSITION

One possible managetnent option to control acidification is to reduce sulphate emissions from power
stations and thereby reduce deposition of sulphate on remote catchments. Unfortunately, because of the
complex nature of physical and chemical processes operating. the relationship between emission and
deposition is non-linear (Derwent and Nodop. 1986). Nevertheless it is possible to simulate the effects of
reduced deposition using MAGIC. With the future deposition reduced by 50 per cent over thc next  20
years and thereafter remaining constant, there is a marked effect on simulated catchment chemistry, as

illustrated in Figures 6 and 7. which show the pH and aluminium (All ) changes over time for the

7.
MAGIC Simulation oP Plynilmon ( C2 )

pH

6 .

S.

!I60 1880 !900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100 2120
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Figure 6. Simulated id in forest catchment assuming conshint (— ) and reduced (---) future deposition
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40.
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Figure 7. Simulated al mm inium in forest catchment assuming constant (—) and reduced (---) future deposition le.els
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afforested catchment. Aluminium levels fall significantly and plf recovers to reasonable levels. These
results indicate that a 50 per cent reduction in deposition may have an effect if it could be achieved.

Atmospheric modelling studies are required, however. to convert this reduction in deposition to a

reduction in emission.

CONCLUSIONS

The current research has illustrated thc ability of the MAGIC model to reproduce catchment chemistry in

both grassland and forest streams at Plynlimon. Of particular interest is the ability of thc model to

reconstruct historical trends in acidification derived from palacological analysis (Batterbee  ci al.,  1985;

Wright  a (Il.,  1987) and provide some measure of confidence in using the model to predict future trends.

Thc upland catchments in Wales are significantly affected by acidic deposition and will continue to he

unless deposition is reduced or liming is undertaken on a large scale. Also the effects of afforestation are

severe causing a major increase in scavenging of sea-salts and anthropogenie sources of acidity. Finally

from a process point of view the MAGIC model appears to be the most appropriate model to date for

simulating long-term chemical changes in catchment acidification. The validity of thc model has been

demonstrated by application to thc forest catclunent and this has been an important aspect of the

modelling study.
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Modelling the effect of acid deposition in upland
Scotland

P. G. Whitehead and C. Neal

ABSTRACT: As part of the joint British-Scandinavian Surface Waters Acidification Pro-
gramme, the Institute of Hydrology is establishing catchment studies in Scotland. Data from
these catchment studies are being used to develop a range of models for investigating short-term
and long-term changes in catchment acidity. Information on the modelling techniques available
at the Institute of Hydrology is presented together with applications of the models to catchments
in Scotland.

KEY WORDS: acidification, afforestation, catchments, models.
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Catchment studies investigating the acidic behaviour of
upland streams are expensive, time-consuming and difficult
to establish due to the complexity of hydrological, chemical
and biological interactions. Nevertheless, many catchment
studies have been and are being established to evaluate
short-term and long-term fluctuations in stream water
chemistry. For example as part of the joint Scandinavian-
British Surface Water Acidification Programme (Mason &
Seip 1985) major studies are being established in the United
Kingdom and Scandinavia. Other organisations such as the
Welsh Water Authority (Llyn Brianne Study; Stoner a al.
1984) the Solway River Purification Board (Loch Dee study;
Burns et at 1982) and the Freshwater Fisheries Laboratory
(Harriman & Morrison 1981) have also established
catchment studies following mounting concern over the loss
of fisheries in Scotland and Wales and the possible
detrimental effects of stream acidity on water resources.
Several researchers involved in these studies (Harriman &
Morrison 1981; Gee & Stoner 1984) have reported elevated
acidity and aluminium levels in upland streams draining
afforested (conifer) catchments in the United Kingdom.
Moreover, in many of these areas and particularly in
forested catchments fisheries have deteriorated and
restocking programmes have been unsuccessful.

It is with these problems in mind •that the Institute of
Hydrology has established a catchment study in Wales at
Plynlimon (see Neal ei al. 1986). The Institute of Hydrology
is also establishing a catchment study in the Cairngorm
region of Scotland in collaboration with The Department of
Agriculture and Fisheries for Scotland, the Macaulay
Institute of Soil Science and Imperial College, Department
of Civil Engineering. The Institute of Hydrology is
responsible for providing stream-gauging, rainfall stations, a
weather station, snow surveys, sampling and continuous
water quality monitoring. The Institute of Hydrology is also
responsible for the subsequent data management, analysis
and interpretation. The Department of Agriculture and
Fisheries for Scotland is responsible for all chemical and
biological analysis, with the exception of snowmelt
chemistry, which will be undertaken by The Institute of
Hydrology. The Macaulay Institute is responsible for
soil-surveys and soil-water chemistry and Imperial College
are establishing plot studies.

The hydrological and chemical data collected from the
catchment studies form the basis of a comprehensive 


.modelling research programme by The Institute of
Hydrology. Recently there has been considerable use of
mathematical models to describe the dominant interactions
and processes operating in catchments and to simulate
catchment behaviour. Steady state models have been used
prescriptively to demonstrate the long term consequences of
changes in the industrial emissions of SO, (Cosby et al.
1985a; Kamari et at 1984). Correspondingly, dynamic
models have been successfully applied descriptively to
several catchments (Christophersen et al. 1982, 1984). For
example, Christophersen et al. 1982 have developed a
simple conceptual model that reproduces major trends in
chemical and hydrological behaviour in Norwegian catch-
ments. This model has been successfully extended (Seip et
al. 1985) and applied descriptively to the Harp 'Lake
catchment in Canada. The model has also been applied to
two forested catchments in Sweden (Grip et aL 1985).

A wide range of mathematical modelling techniques are
available at The Institute of Hydrology for analysing
catchment data. These include CAPTAIN (Computer Aided
Package for Time Series Analysis and the Identification of
Noisy Systems; Venn & Day 1977; Whitehead et al.
1986a, b), MIV (Multivariable time series-model; Young &
Whitehead 1977), the BIRKENES model (Christopherson et
al. 1982), MAGIC (Cosby et al. I985a), EKF (Extended
Kalman Filter; Beck & Young 1976) TOPMODEL (Beven
et al. 1984) and IFIDM (Institute of Hydrology Distributed
Model; Morris 1980). In this paper three of these techniques
are described and applied to investigate short-term
catchment responses or events and long-term acidity of soil
and stream waters..

1. Time series or 'event' type models and
their application to Loch Dee

Time series models are suitable where the overall
input-output behaviour is of prime importance and where
internal mechanisms are particularly complex. It is assumed
that a law of large systems applies (Young 1978) whereby
the combination of all the complex non-linear and
distributed elements gives rise to an aggregated system
behaviour that is relatively simple in dynamic terms.

Loch Dee has a remote setting in the Galloway Hills in
SW Scotland. The catchment is made up of three sub-basins:
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Dargall Lane to the W, White Laggan Burn with its
tributary the Black Laggan towards the S. and Green Burn
entering from the SE. The outflow at the NE end of the loch
is the source of the River Dee. Catchment altitudes range
from 225 m on the loch shore to 716 m on Lamachan at the
head of the Dargall Lane. Nearly two-thirds of the
catchment lies above 305 m. Geologically the area comprises

two distinct rock types: Ordovician greywackes/shales and
granites of Old Red Sandstone age (Burns et al. 1982).

In Loch Dee an extensive record of hydrological water

quality data has been collected over a five year period

(Burns a al. 1982). Analysis has been restricted initially to a

time series model relating flow to hydrogen ion concentra-
tion fof the White Laggan sub-catchment. The White
Laggan is subject to episodic acidification, primarily
attributed to atmospheric inputs. The model fitted is an

autoregressive moving average type of the form

x, = —61x,_1 + coo,

where x, is the hydrogen ion concentration (pert r-t) and u,
is the flow (m3 sec-') in the stream at time t. The parameters
6, and too were estimated using a time series algorithm
applied to 200 hourly observations of pH and flow. The
parameters were estimated to be

6, = —0-680 (standard error 0.012)

= 0.659 (standard error 0-022)

and Figure 1 shows the simulated hydrogen concentration

against the observed concentration. A remarkably good fit
to the data is obtained with 93% of the variance explained
and suggests that H ion and flow are closely related.

However a true test of the model would be to use an

additional data set; Langan (1986) has applied the approach

AND C. NEAL

to all three subcatchments of Loch Dee and found that
equally good models have been obtained for a wide range of

storm events. In the case of the White Laggan a mean
response time (T) of 2-6 hours is obtained, reflecting the
fast response time between output flow and hydrogen ion
concentrations. Further applications of the time series
techniques to data from Welsh and Norwegian catchments
are given by Whitehead er al. (1986a).

2. Applications of the `Birkenes' models

A second class of models has been applied to data from the

Loch Dee study. These include the 'Birkenes' model

developed by Christophersen et al. (1982, 1984). The model
comprises a simple two-reservoir hydrological model
operating on a daily timestep upon which has been
superimposed the important chemical processes that control
the acidification of catchments. Inputs to the model are

precipitation, mean daily temperature, mean daily soil
temperature and sulphate deposition rates. Figure 2 shows

the principal hydrological and chemical processes operating.

The model outputs daily concentrations of hydrogen ion,

aluminium, sulphate, calcium + magnesium (M”) and

bicarbonate in the stream along with predicted flow.
The 'Birkenes' model has also been used to assess the

sensitivity of stream acidity to hydrological parameters and
changes in baseflow. Flow movement between the soil and

groundwater compartments is restricted by a "percolation"
equation as follows;

A516= P —(B — B„,,,,)Il3„ for B> 8„,th

and

A510 = 1-33P — 0-33P(B/Bna for B < B,,
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where B refers to the groundwater compartment water level

and Br„, and B. refer to minimum and maximum water
levels, respectively (see Fig. 2). The parameter, P. can be

considered as a percolation parameter so that increasing P
increases the fraction of flow, A, routed to the lower SIG

reservoir. This leads to an increase in the baseflow
contribution to the stream. The model also includes a piston
flow component to describe the hydraulic movement of
water out of the groundwater compartment.

The change in stream water concentrations for H ion and
A11* in response to varying baseflow is highly non-linear.

This is illustrated in Figures 3 and 4. which show W and
Al'' maximum and mean values for a range of baseflow
conditions; all concentration values fall as the baseflow
increases, the rate of decrease varying from one variable to
another. In general increases in basetiow result in
significant reductions in I.( ion and Al concentrations.

Studies by Seip and Rustad (1983) show a similar non-linear
behaviour when upper and lower soil horizon waters are
mixed. Further results arc given by Whitehead et aL (1986b)
and confirm the sensitivity of the model to parameter, and
hence baseflow, changes.

P: Precipitation

E: Evapotranspiration
Q:Water flux

RAIN P

SNOW

SNOW

Ea t 


Bare rock

shalbw soil
Amin Qa

E bt
B max

8 min
Deeper soil

layers

STREAM

Processes operating

Shallow soil reservoir Deeper soil reservoir

1120 precipitation, evapotranspiration,
infiltration to lower reservoir,
discharge to stream

S024- wet + dry deposition, adsorption/
desorption, mineralisation

Ca2. + Mg24 ion exchange

II4 ion exchange and equilibrium
with gibbsite

Al34 equilibrium with gibbsite 


infiltration, evapotranspiration, dis-




charge to stream, piston flow

adsorption/desorption, reduction

release by weathering. adsorption/
desorption

consumption by weathering,
adsorption/desorption, equili-
brium with gibbsite

equilibrium with gibbsite,
adsorption/desorption

equilibrium with a seasonal varying
CO2 pressure

Figure 2 I lydrological model used for Harp Lake catchment and Mill processes Operating.
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3. Application of MAGIC to Loch Dee

MAGIC (Model of Acidification of Groundwater In
Catchments; Cosby  a al.  1985a, b, 1986) is explicitly
designed to perform long term simulations of changes in
soilwater and streamwater chemistry in response to changes
in acidic deposition. The processes on which the model is
based are: anion retention by catchment soils (e.g. sulphate
adsorption); adsorption and exchange of base cations and
aluminium by soils; alkalinity generation by dissociation of
carbonic acid (at high CO, partial pressures in the soil) with
subsequent exchange of hydrogen ions for base cations;
weathering of minerals in the soil to provide a source of
base cations; control of A131" concentrations by an assumed
equilibrium with a solid phase of Al(OH). A sequence of
atmospheric deposition and mineral weathering is assumed
for MAGIC. Current deposition levels of base cations,
sulphate, nitrate and chloride are needed, along with some

estimate of how these levels have varied historically.
Historical deposition variations may be scaled to emissions
records or may be taken from other modelling studies of
atmospheric transport into a region. Weathering estimates
for base cations are extremely difficult to obtain.
Nonetheless, it is the weathering process that controls the
long-term response and recovery of catchments to acidic
deposition and some estimate is required. The MAGIC
program has been applied to the Dargall Lane sub-
catchment in Loch Dee and a detailed description of the
application is given by Cosby  a al.  (1986).

Several chemical, biological and hydrological processes
control stream water chemistry. These processes are often
interactive and not easily identifiable from field observation.
Modelling allows separation of the different factors and the
establishment of their relative importance quantitatively.
Here the factors considered are afforestation, dry and occult
deposition, variations in acidic oxide loading and
deforestation.
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Figure 3 Maximum 1-1` and Al3+ concentrations in the stream, showing variation over a range of baseflow
conditions (Three Year Simulation 1977-1980).
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conditions (Three Year Simulation 1977-1980).
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4. Long-term acidification trends for
Dargall Lane

Figure 5 shows a simulation of long-term acidity for the

Dargall Lane catchment. The sulphate deposition history is
shown in Figure 5a and this drives the MAGIC model. The
historical simulation of pH shown in Figure 5b is similar to
the values obtained from the diatom records of lochs in the

region in that a significant decrease in pli from 1900
onwards is inferred (Battarbee  el al.  1985; Rower &

Battarbee 1983). The steeper decline from 1950 to 1970
follows from the increased emission levels during this

period. The model can also be used to predict future stream

water acidity given different future deposition levels. For
Dargall Lane, stream acidity trends are investigated

assuming two scenarios for future deposition. Firstly,
assuming deposition rates are maintained in the future at
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1984 levels, the model indicates that annual average stream
pH is likely to continue to decline below presently measured
values. Secondly, assuming deposition rates are reduced by

50% from 1984 levels (between 1985 and 2000) the results
indicate that current stream water acidity will be maintained

(Fig. 5b). Further details of the application of this model are
given elsewhere (Cosby  et al.  1986). Note an increase in
stream water pH about 1980; this follows a significant drop
in sulphur emissions during the 1970s. Note also that an
earlier decline in streamwater acidity is predicted if there
had been no reductions in emissions since 1970.

5. Afforestation

Afforested systems are more complex to model than

grassland systems because the introduction of the forest

perturbs a grassland ecocystem which in itself is difficult to

1980 2020 2060 2100 a

--------

1860 1900. 1940 1980 2020 2060 2100 b

Figurc  S (a) Sulphate deposition history used as input for the MAGIC reconstruction of pH in the Dargall
Lane moorland catchment: (b) Simulation of the pl-I of streamwater in thc Dargall Lane moorland
catchmcnt assuming three sulphate deposition scenarios:—historical levels to 1984 and constant 1984 levels
thereafter (see Fig. 5(a));   historical levels to 1984 and 1984 levels reduced by 50% by the year 2000,
and constant thereafter:- - - - historical levels to 1970 and constant 1970 levels thereafter.
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model. The effects of the forest root system, leaf litter layer
and drainage ditches will change the hydrological pathways,
this will control the nature and extent of the chemical
reactions in the soil and bedrock. Further, the additional
filtering effect of the tree on the atmosphere will enhance
occult/particle deposition, and evapotranspiration will
increase the concentration of dissolved components entering
the stream. The magnitude of these different effects varies
considerably; for example, evapotranspiration from forests
in the British uplands is typically of the order of 30% of the
precipitation which is almost twice the figure for grassland.
This will have the consequence that the total anion
concentrations within the stream and soil waters increase by
14% following afforestation. The forest will also increase
anion and cation loading due to the enhanced filtering effect
of the trees on air and occult sources. The filtering effects
will apply both to marine and pollutant aerosol components.
Altering the hydrological pathways can also have a major
effect on stream water quality, since the forest tends to
increase surface runoff thereby flushing/displacing highly
acidic water from the surface layers, the soil zone acts as a
proton and aluminium source, while the bedrock, if silicate
or carbonate bearing, provides proton consumption by
weathering reactions. To illustrate the effects of
afforestation simply in terms of increased concentrations
from both enhanced dry deposition and evapotranspiration,
the MAGIC model has been applied to the Dargall Lane
catchment assuming that a forest is developed over the next
forty years. It should also be noted that, here, no allowance
has been made for the effects of cation and anion uptake by
the trees during their development; the incorporation of
base cations into the biomass would result in an enhanced
acidification effect during this period.

Of critical importance is the relative and absolute
contribution of marine and pollutant inputs from dry and
occult deposition. Figure 6 shows the effects of increasing
evapotranspiration from 16% to 30% over the forest growth
period with varying levels of marine, pollutant, and marine
plus pollutant inputs. Increasing either marine or pollutant
components leads to enhanced stream water acidity, the
greatest effects being observed when both components are
present; the effect of simply increasing evapotranspiration
from 16% to 30% is similar, but the changes are much
smaller. The important features of these results are that the
enhanced acidic oxide inputs from increased scavenging by
the trees result in a marked reduction in pH levels and that
there is an additive effect when both processes are
combined. These reductions are much greater than the
effect of evapotranspiration.

D AND C. NEAL

7. Deforestation
While afforestation increases stream acidity, as shown both
by the model predictions and field evidence, deforestation
will result in a reduction in stream water acidity. Figure 8
shows the effects of deforestation from the present time for
a range of acidic input loadings. The result shows that while
there is a short-term improvement in stream acidity, the
long-term acidification trend is maintained. It is interesting
to note that the recovery following deforestation at the
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6. Atmospheric acidic oxide inputs

An important factor in determining stream acidity in the

upland United Kingdom is the level of acidic oxide

deposition; rates of deposition (non marine wet deposition
and dry deposition) can vary from 0-5 to over 6g S yr'
and from 0•1 to over 0-5 g N Figure 7 shows the
effects of such variations for both moorland and forested
catchments; the highest lniel corresponds to areas with
high atmospheric acidic oxide rates (three times the historic
and 1984 deposition levels observed in the Southern
Uplands of Scotland). With increasing atmospheric acidic
oxide pollution, the decline in stream pH is accelerated, the
changes occur much earlier, and the final pli of the stream
water is lower.

Figure 6 (a) Simulation of the pH of the streamwater from the
Dargall Lane catchment, comparing: the moorland catchment
response assuming Figure 5(a) deposition rates (—), the effect of
14% additional evaporation following afforestation (....), the
effect of 14% additional afforestation in 1985 (- - -), and the effect of
14% additional evaporation plus 30% additional input of natural
sca salts following afforestation in 1985 (-----). (b) Simulation of
the p1-1 of streamwater from thc Dargall Lane catcthment,
comparing the moorland response (—) to the forested catchment
response, assuming increased evaporation. (---•-) with different
levels of pollutant scavenging (.... 20% additional sulphate; -- -
40% additional sulphate; --60% additional sulphate). (c)
Simulation of thc pH of streamwater from the Dargall Lane
catchment. showing the moorland rcsponsc (—) and the com-
bined effects on the forested catchment of increased evapotranspi-
ration, increased scavenging of natural sea salts, and various levels
of increased scavenging of pollutant inputs ( zero additional
pollutant scavenging- 20% pollutant scavenging; --- 40%
pollutant scavenging; 60% pollutant scavenging).
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intermediate deposition levels is greater than that at the
higher levels. This is because base saturation has not been
completely depleted, and the reduced deposition following
deforestation can be buffered by the available cations.
Under the higher deposition levels, base saturation is
reduced to very low levels, making recovery much less
significant. Note that afforestation following tree harvesting
will negate the improvement in stream water acidity.
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Figure 7  (a) Simulation of the pH of strearnwater from the Dargall
Lane moorland catchment, assuming sulphate deposition patterns
(shown in Fig. 5(a)) modified by various factors to reproduce a
range of loading conditions (i.e. from pristine to heavy pollution)
— background rates (pristine conditions). 0.5 x Figure
5(a) deposition concentrations (low pollution);   1 X Figure
5(a) deposition concentrations (intermediate pollution); -- I 5 x
Figure 5(a) deposition concentrations (intermediate pollution);
– – 2 x Figure 5(a) deposition concentrations (heavy pollution);
– • •– • • 3 x Figure 5(a) deposition concentrations (heavy pollution).
(b) Simulation of the pH of streamwater from the 'forested' Dargall
Lane catchment, assuming afforestation from 1844 onwards and
sulphate deposition patterns (see Fig. 5(a)) multiplied by various
factors to reproduce a range of loading conditions from pristine to
heavy pollution; see caption to Figure 7(a) for key.
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Figure 8  Simulation of the pH of streamwater for the Dargall
Lane catchment, assuming afforestation from 1844 and deforesta-
tion in 1990; sec caption to Figure 7(a) for key.

Implications

The modelling enables assessment of the relative effects of
atmospheric acidic oxide pollution and conifer afforestation,
as well as highlighting some of the topics that need further
consideration. For example, the long-term trends in stream
water acidification for the grassland catchment suggest that
for at least part of the upland United Kingdom, acidic oxide
pollutant inputs are the dominant source of increased stream
water acidity. The model predictions are similar to
observations of stream acidity found in southern Scand-
inavia and add weight to the conclusion that such pollutant
inputs are also a major source of stream acidification in
those countries as well. How important this acidification
process is on a regional basis in the upland United Kingdom
cannot be gauged immediately, because many unresolved
factors remain, as mentioned above. However, much of the
British uplands has soils which are susceptible to acidic
Inputs; it is therefore reasonable to assume the results of this
present modelling exercise are widely applicable. If the
above results are representative of sensitive upland areas,
then reductions in present acidic emissions of the order of
50% are required to prevent further increase in stream
acidity of moorlands; afforested catchments require greater
reductions. The study points to the need for further regional
analysis of soil and stream water chemistry, as well as a
better understanding of hydrogeochemical processes operat-
ing within catchments. Further, the study provides an
example of the need to establish the extent of scavenging of
aerosols onto plant surfaces, and more generally on the
benefits of multidisciplinary catchment studies. Finally, the
detrimental effect on stream water quality caused by conifer
afforestation in uplands subject to acidic deposition is
irrefutable. While there is uncertainty regarding the nature
and the extent of the hydrogeochemical processes operative,
there is a need to change existing forestry practices which
are of immediate pragmatic concern.

Conclusions

The model techniques applied at the Institute of Hydrology
have proved to be particularly useful, yielding information
on the catchment responses, processes and possible future
behaviour. On the hydrological side, time series techniques,
lumped and distributed hydrological models are available.
In the case of chemical processes, time series techniques can
be applied, but the principal models available at the
Institute of Hydrology are the BIRKENES and MAGIC
models. Modifications such as the introduction of sea salt
will be necessary in the case of the BIRKENES model
before application to the Loch Dee and Plynlimon
catchments is possible. Also, it may be necessary to reassess
the dominant equilibria used in the model; for example, is
aluminium controlled by AKOH), Aff0H)S0 or by
Al(OH),_ SO,.  We  hope to develop a modified and
combined BIRKENES and MAGIC chemistry and couple
this with the distributed models to provide an additional tool
with which to investigate catchment bebaviour.
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reproduced from Whitehead  et al.  (1986a, b) by kind
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Abstract. A modeling study of the AlIt a Mharealdh catchment in the Cairngorm region of Scotland has
been undertaken to investigate long term trcnds in acidification and model sensitivity to soil physical and
chemical characteristics. The MAGIC model (Model of Acidification of Groundwater In Catchments) is
used to demonstrate that the sulphate adsorption ability of the soil and quality and quantity of rainfall inputs
have significant effects on model output Optimal weathering rates and predicted present day ion concentra-
tions in streamwater compare well with measured and observed values. The analysis shows that the
catchment has become progressively acidified since pre-industrial times but major changes in stream acidity
have yet to occur.

•

1. Introduction

The case for development and implementation of process-based models describing the
response of surface waters to acidic deposition has been widely and eloquently stated
in recent literature (e.g., Cosby  et at,  1985a; Neal  et at,  1986). For the purpose of such
deterministic modelling exercises, acidification of surface water may be considered to
be essentially a problem over two very different time scales. Short term fluctuations in
surface water acidity caused by the flushing of near surface waters or snowmelt are
generally driven by the hydrological processes operating in the catchment. The timescale
of these events is of the order of hours, or at most days, and the level of acidity will be
largely controlled by the ability of the catchment to buffer incoming acidity within the'
catchment hydrological response time. Models addressing this dynamic response have
been developed, for example, by Christopherson  et aL (1984)  and Schnoor  et at (1984).
On the other hand, the Model of Acidification of Groundwater in Catchments
(MAGIC), developed by Cosby  et at  (1985a, b) addresses the changes in buffering
capacity that occur over long periods (i.e., decades) where short term hydrological
response is assumed to bc negligible and yearly averages of deposition levels provide
the principal driving force to the model.

111/The MAGIC model is a relatively simple yet process-orientated model wherebylong-term dynamic equations based on input-output mass balances for all major ions
in atmospheric deposition are linked with equilibrium equations that describe soil
processes. It has been applied to a variety of catchments in the U.S., Scandinavia
(Wriht  et aL,  1985), Scotland (Cosby  et aL,  I986a) and Wales (Whitehead  et at,  1988)
and has proved a useful tool for assessing future acidification levels in response to

•
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various deposition scenarios. The results of these simulations show that thc model

adequately reproduces present day observed stream chemistry but its performance has

not been assessed against measured values of soil chemical parameters and estimates

of weathering rates. Indeed, all previous applications of MAGIC have been undertaken

in catchments with only one dominant soil type or, in areas of more than one soil type,

have assumed some 'mean' characteristics for the whole catchment.

This study sets out to attempt a more rigorous application of the MAGIC model

against a comprehensive soil data set from the Allt a Mharcaidh catchment in the

Cairngorm Mountains of Scotland. We examine the validity of using a 'mean' catchment

soil approach and assess the sensitivity of the model to two soil types. The analysis is

also employed to identify the most important processes affecting stream water acidity

within this area and the parameters which most influence model behaviour. Catchment

response is assessed given that this area is not presently acidified but is thought to be

at risk from future acidification problems.

2. Methods and Materials

2.1. STUDY SITE

The Allt a Mharcaidh catchment lies on the western flank of the Cairngorm Mountains

draining an area of approximately 10 km2 into the River Feshie which is a tributary of

the River Spey. Altitude ranges from 225 m at the catchment outflow to 1111 m at the

highest point. The catchment is underlain by intrusive biotite-granite of Lower Old Red

Sandstone age associated with the late stages of the Caledonian Orogeny. Thick

deposits of boulder clay, derived from local rock, cover much of the valley floor overlain

by a covering of peat. Vegetation is mainly a mixture of heather and fescue grassland

although a sparse stand of natural, native pinewood covers an area of c. 1 km2 near the

outflow on the lower slopes. Soils are essentially of three main types, as shown in

Figurc 1, being c. 60% alpine and peaty podsols of the Countesswells Association and

c. 40% blanket peat. Table 1 shows the chemical and physical characteristics of both

the organic (peat) and mineral (podsols) soils, together with a 'mean' catchment soil with

characteristics ratioed areally from two main soil types.

This work was conducted as a part of the Surface Water Acidification Programme

which was initiated in 1985 as a collaborative project of research into the causes and

effects of acidification of surface waters (Mason and Seip, 1985). Within this program

catchments were selected for detailed study to represent heavily acidified, pristine and

transitional areas. The Allt a Mharcaidh was selected as one transitional site, that is,

a catchment which is not acidified, does not receive a particularly high loading of

anthropogenic pollutants but due to its physical characteristics is thought to be at risk

as regards future acidification problems.

2.2. MEMODOLOGY

The area receives approximately 1000 mm of precipitation per annum, although this is


extremely variable from year to year and up to 30,„ of this may fall as snow. Precipitation
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Fig 1. Distribution of soil types and location uf rain samplers (RI-5) and gauging stations (CI-3)
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TABLE 1


Chemical and physical characteristics of thc organic, mineral and 'mean' catchment soils




Organic soil Mineral soil Mean soil

Soil depth (m) 0.55 0.95 0.83
Porosity (fraction) 0.65 0.45 0.51
Bulk density (kg m -3) 140 1260 924
CEC (peq g -1) 1200 100 430
Total organic's (pmol L-1) 150 100 115
PK I org 4.25 4.25 4.25
PK2 org 10.15 10A 5 10.15
% base saturation 9.07 2.58 3.3

Exchangeable Ca % 3.91 0.74 1.0

Exchangeable Mg % 3.95 0.49 0.7
Exchangeable Na % 0.56 0.63 0.61
Exchangeable K % 0.64 0.77 0.73
SO, half saturation coefficient'

(mel m-3)

100 156 156

Estimated, not measured - see Section 3.2.

was sampled weekly from five bulk collectors since January 1986. The network of
collectors was designed to account for variations in altitude and exposure within the
catchment. Stream samples have been collected bi-weekly from the catchment outflow,
GI (Figure I), since July 1985. Subsequent water chemistries were determined using the
following methodology; pH by remote KC1 electrode, anions (CI, NO3, SO4) by ion
chromatogiaphy, Ca and Mg by atomic absorption spectrophotometry, Na and K by
flame emission spectrophotometry and NH4 by colorimetric techniques. Volume
weighted mean chemistry of inputs and outputs is given in Tables II-and III, respectively.
Mean pH was calculated by conversion to H concentrations.

Soil samples were taken from four profiles from each of the three dominant soil types
(Figure 1). Cation exchange capacity and exchangeable bases were measured at pH 7
using a barium acetate exchange procedure. Total organic concentrations in soil waters

TABLE II

pli and volume weighted mean ion concen-




trations (peg V') in bulk precipitation

for 1986

pH 4.63
Ca 10.3
Mg 213
Na 84.0




7.5
NI -14 7.3
SO,
a

52.0

96.5

NO1 5.4
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TABLE III


Predicted and observed (in brackets) soil and stream chemistry (pcq ) for 1986

Soil Org. soil Min. soil Mean soil

% BS 6.7 (9.1) 1.9(2.6) 2.1(3.3)
Exchangeable Ca % 3.5 (3S) 1.0(0.7) 0.5 (1.0)
Exchangeable Mg % 2.6 (3.9) 0.5 (0.5) 1.0(0.7)
Exchangeable Na % 0.5 (0.6) 0.5 (0.6) 0.6 (0.7)
Exchangeable K % 0 (0.6) 0.0 (0.8) 0.1 (0.9)
pI4 4.6




4.7




4.7




Stream






pH 5.1




5.2




5.2 (5.7)
Ca 38.8




38.3




38.0 (37.1)
Mg 32.3




31.3




31.0(39.9)
Na 118.3




117




117.2(116.1)
K 11.7




9.8




9.7 (8.4)
NH, 2.0




2.0




2.0




SO, 59.9




50.1




50.2(50.1)
CI 111.0




I 11




111.0(111.0)
NO3 2.3




2.1




2.0 (2.1)
Total Al 5.5




33




3.8




Alkalinity 30.5




36




35.7(33)




were determined by UV-persulphate digestion and dissociation constants (PK1 and

PK2) were obtained from Perdue (1985).

2.3. MAGIC MODEL

The MAGIC model assumes a catchment to be represented by essentially three homo-

geneous compartments representing the biomass (soil), soil solution and stream/ground

water. Five chemical processes are taken to govern the response of surface water quality

to acidic deposition from the atmosphere. These are: (i) anion retention by soils;

(ii) cation exchange by soils; (iii) solubility and mobilization of Al; (iv) weathering of

minerals as a source of base cations; (v) dissociation of carbonic acid (resulting from

elevated partial pressure of CO, in soils). Alkalinity is generated by formation of

bicarbonates when CO,, under high partial pressure in the soil, dissolves with the soil
water;

CO2 + 1120 = H + FICO . (I)

Soil Al chemistry is assumed to be controlled by the equilibrium of a solid phase of
aluminium hydroxide with frec H ions;

3H + Al(OH),(s) = Al3' + 31120 . (2)

The Al released may complex with F, SO, or OH but generally exchanges with base


cations as the trivalent Al ions are retained by the soil matrix in preference to mono-



280 ALAN JENKINS ET AL

or di-valent base cations;

+ 3BCX(s) = MX,(s) + 3I3C • , (3)

where X represents an adsorbed phase and BC represents a base cation. Cation

exchange equilibria are evaluated using Gaines-Thomas expressions.

Dynamic simulation of stream and soil water chemistry is achieved by coupling the

equilibria concepts (Equations (1) to (3)) with dynamic mass budgets for each base

cation and strong acid anion in the soil model. Sulphate has an adsorbed phase in the

soil and the relationship between adsorbed phase  (Es,  mei kg - ') and concentration of

.dissolved sulphate (SO3 -4, meq m "3) in soil water is assumed to be described by a

Langmuir isotherm (Singh, 1984) of the form;

" C +

where  E„,,  is the maximum adsorption capacity of the soil (meq kg- ) and C is the half

saturation concentration (meq m

Acid anions are linked to base cation by assuming a charge balance for soil water

and so the movement of strong acid anions through the soil is accompanied by leaching

of base cations from the soil.

The mathematical representations of these processes and detailed model structures

are discussed by Cosby  et al.  (1985a, b, I986b).

2.4. APPLICATION TO ALLT A MI1ARCAIDH

The MAGIC model has been applied using the pattern of deposition shown in Figure 2


(Warren Spring Laboratory, 1983) to produce historical recontructions of streamwater

7

" 200.0

cr

0

— 150.0

0


a,

04
0
in 50.0

0.0

1860 1900 1940 1980 2020 2060 2100

Fig.2. Sulphate deposition pattern 1845-2125 assuming constant deposition since 1985.
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and soil chemistry. An automatic calibration procedure was utilized to provide optimalvalues for the parameters governing the chemical reactions. A Rosenbrock techniqueformed the basis of this optimization procedure and this was applied in two stages.Initially an anion optimization was carried out on Emxand nitrate and ammonia uptakerates, thereby obtaining a best fit for the concentration of anions in the streamwater.In the second stage the optimal values for the anion parameters are incorporated andthe weathering rates of base cations, selectivity coefficients controlling base cationexchange and partial pressure of soil CO, are optimized to produce a best fit to presentday observed streamwater concentrations and base saturations in catchment soils. Theoptimization procedure was applied assuming the catchment to consist of entirelyorganic soil, mineral soil, or of a `mean'catchment soil.
Optimized weathering rates, selectivity coefficients, pa), and E„,„, are given inTable IV. Comparison of the three catchment soil types shows consistent weatheringrates although selectivity coefficients vazy considerably between soils reflecting dif-

TABLE IV
Optimized values for selectivity coefficient (S) weathering rates (v), 13032 andE„is in the organic, mineral
and mean catchment soils; observed weathering rates in brackets

•
•
•

W CA (meq m -2 yr)
W Mg (meg rn -2 yr - )
W Na (meq m -2 yr )
W K (meq m 2 yr ')

S CA
S Mg
S Na
S K
pCO2 (atm)
E„,„ (meq kg - ')

Organic

24.7 (0.8)
5.7 (0.9)

20.6 (3.5)
2.7 (2.9)

- 0.33
- 0.17
- 0.23

0.39
2.0
0

Mineral

22.7 (7.0)
4.5 (8.0)

17.9 (30.8)
1.0 (26.1)

1.94

2.57

- 0125
2.22
2.0
9

Mean

23.3
4.6

17.1
0.8

2.7
1.49

- 0.21
- 0.32

2.0
14.4

ferences in soil base saturations. The most significant difference between, the optimizedsolutions, however, lies in the anion budget and in particular the E„,,. The optimizedE„,x's for the organic and mineral soils are zero and nine, respectively, whereas theoptimal E,,,, for the mean soil is 14.1. The fact that this lies outside the range of theorganic and mineral soil values may reflect an instability in the model or optimizationprocedure but is more likely a reflection of the physical characteristics incorporated inthe application of the Langmuir isotherm. . -

3. Results

3.1. CATC1IMENT RESPONSE

Present day stream chemistry has been reproduced by thc model (Table 11) regardless
of the soil type used. pH is predicted to be 0.5 units lower than observed but this is



282 ALAN JENKINS ET AL

directly attributable to the inclusion of organic matter in both soils and streamwater.

Further model runs excluding the organic components reproduce observed stream pH

without affecting any other parameters. Clearly further work is necessary on this aspect

of the MAGIC model as organic matter simply acts as a further source of 11 + and no

account is taken of cation complexation and chelation. Table III also shows that

predicted base saturation for 1986 is well reproduced with the exception of K. This is

due to the low optimal value for K weathering rate.

Figure 3 shows the reconstructed and forescast response of pH, alkalinity, Al and

sulphate in the stream and the percentage base saturation in the soil for the three model

runs. Results are shown as mean annual concentrations and assume model fixed

parameters (e.g., rainfall quality and quantity, evaporation, etc.) are constant through

time. All of the curves converge around 1986 but show very different patterns prior to

that time. The organic soil shows the most variable response as a result of the very low

E„,, and consequently a very rapid response to changing acidic input. Both the mineral

soil and the mean soil respond much more smoothly to changes in input due to their

ability to adsorb sulphate. Following 1986 further changes in stream chemistry occur

but these tend towards an equilibrium value because of the constant level of inputs. The

organic soil is the least acidic due to the high base saturation maintaining a supply of

base cations and the absence of adsorbed sulphate. This is also seen in the equilibrium

values reached for sulphate, alkalinity and total Al.

3.2. SULPHATE ADSORPTION CHARACTERISTICS

The levels of soluble and adsorbed sulphate were measured in the three major soil types

in the Allt a Mharcaidh (n.b. the alpine and peaty podsols are lumped together for the

model application). Figure 4 shows the accumulation of high levels of adsorbed sulphate

in thc lower mineral horizons, particularly those containing sesquioxides. The high level

of soluble sulphate in the organic horizons is due to mineralized S associated with the

organic matter. The levels of sulphate in these soils vindicate the choice of a relatively

high value for C (half saturation coefficient) for each of the soils and this represents a

measured soil water sulphate concentration from the lower mineral horizon.

Studies were undertaken to assess whether the mineral soils were capable of adsorbing

further inputs of sulphate. The adsorption isotherms for the peaty podsol arc shown in

Figure 5 and indicate that the mineral horizons can adsorb sulphate from solutions at

similar concentrations to those found in the field. Furthermore, if a Langmuir isotherm

is used to describe the adsorption characteristics of these soils it is likely, from these

data, that E„,„ will be a high value. Peat has a limited ability to exchange sulphate on

any available positively charged sites on the organic matter but has no real capacity for

adsorption as in the mineral soils.

3.3. ASSESSMENT OF WEATHERING RATES

Rate of loss of base cations in the catchment scale has been calculated by Mellor and


Wilson (1987) by comparing the chemical composition of individual soil horizons with


that of the parent material (Table IV). Their data show that in absolute terms K and
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N a exhibit greater rates of loss than Ca and Mg. If the results are recalculated in terms
of element loss as a percentage of the original total in the parent material Ca and Mg
are lost more rapidly than Na and K. From the model optimisations for the three types
of soil, however, Ca and Na consistently show the highest weathering rates. It should
be remembered though that the figures of Mellor and Wilson represent a total elemental
loss rate from the catchment and as such are not direct estimates of weathering because
changing inputs and biomass uptakc will directly affect cation exchange processes in
the soil.

4. Discussion

MAGIC is capable of reproducing present day stream and soil chemistry and the
chemical and physical characteristics of the soil determine the pattern of change both
historically and in the future. The different model responses for the soil types represent
the range of stream chemistry which might be expected in using a 'mean' soil type for

-
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the catchment, assuming all other model parameters can be correctly specified. From

this point of view the effect of the different soil types on water quality implies that key

soil parameters and model variables are determining catchment response to incoming

acidity. This analysis has highlighted the importance of sulphate dynamics within the

soil as a major determinant of stream chemistry. It is essential that further work in the

field and laboratory be undertaken to improve the specification of the Langmuir

parameters, in particular the half saturation values required to run the model give values

far greater than any sulphate concentrations found in the field. Nevertheless, the soils

in the Allt a Mharcaidh catchment have a high sulphate adsorption capacity which is

surprising and contrary to the findings of Wright  et al.  (1985) who applied MAGIC to

four lakes in the U.S.A., Norway, Sweden, and Scotland. They concluded that at all

four sites where young, post-glacial podsolic soils dominated, the choice of parameter

values for sulphate adsorbtion was not of critical importance because such soils typically

have little ability to adsorb sulphate. Clearly, in the case of the Allt a Mharcaidh, where

similar soils exist, this does not appear to be the case.

One of the major difficulties encountered in the application of the model was

accurately specifying the quantity and quality of inputs, both of which are highly variable

from year to year, and are difficult to measure (Ferrier  et at,  1988). Clearly both the

mean annual rainfall quantity and quality directly affect the chemical budgets and so

also partly determine the sulphate adsorption characteristics. In terms of rainfall quality,

a discrepancy in inputs will affect both weathering rates and selectivity coefficients

because model calculations are dependent upon an input-output balance. Increasing

inputs will lower optimized weathering rates and vice versa, and a change in the relative

concentrations of ions in precipitation will affect the magnitude of the selectivity

coefficients.

Future work must concentrate on assessing the sensitivity of the model to changes

in deposition parameters and work on a multi-box approach to model the two catchment

soils simultaneously by incorporating some flow routing structures is currently in

progress.

In terms of the Surface Water Acidification Programme the choice of the Allt a

Mharcaidh catchment as a transitional site is vindicated in that serious stream acidifi-

cation has not yet taken place and the model predictions suggest that a drop in

streamwater pH will occur even if deposition levels are maintained at present values.

Acknowledgments

This research is supported by the Royal Society as part of the Surface Water Acidifi-

cation Programme. The authors wish to thank R. Harriman, B. Smith, J. D. Miller, and

H. Anderson for soil and water chemistry and the journal's editor and referees for

comments on an earlier version of this paper.



•

•
AMODELING STUDY OF LONG-TERM ACIDIFICATION 291


References

411 Christophersen, N., Rustad, S., and Scip, II. M.: 1984, Philos. Trans. R. Soc. London, Ser. B 305, 427.
Cosby, 13..1., Wright, R. F., liornberger, G. M., and Galloway, J. N.: 1985a. Water Resour. Res. 21, 1591.
Cosby, B. 1., Hornberger, G. M., Galloway, J. N., and Wright ft. F.: 19851%Waxer Resour. Res. 21, 51.
Cosby, B. J., Whitehead, P. G., and Neale, R.: 1986a, J. IlycIrd. 84, 381.
Cosby B .1 liornberger, G. M., Wright R. F., and Galloway, J. N.: 1986b, Water Resour. Res. 22, 1283.
Ferrier, R. C., Jenkins, A., Miller J. D., and Walker, T. A. B.: 1988, (in prep-)
Mason, 13. J. and Seip, II. M.: 1985, Ambio 14, 49.
Mellor, A. and Wilson, M. J.: 1987, 'Processes and Products of Mineral Weathering in Soils of the SWAP

Catchments in Scotland and Norway', SWAP Mid-Term Conference Proceedings, Bergen.
Neal, C., Whitehead, P. G., Neale, 12. and Cosby, J.: 1986, J. Hydro!. 86, 15.
Perdue, E. M.: I985,'Acidic Functional Groups of Humic Substances', in G. IL Aiken, D. M. McNight, R. L

Wershaw and P. MacCarthy (eds.), Hu/nit Substances in Soil. Sediment and Water, Wiley & Sons, New
York.

Schnoor, J. L., Palmer, W. D., Jr., and Glass, G. E: 1984 'Modeling Impacts of Acid Precipitation for
Northeastern Minnesota', in!. L Schnoor (ed.), Modeling of Total Acid Precipitation Impacts, Butterworth,
Boston, pp 155-173.

Singh, B. R.: 1984, Soif Sci. 138, 189.
Warrcn Spring Laboratory Report: 1983,Acid deposhion in the U.K., Warren Spring Laboratory, Stevenage,

U.K.
Whitehead, P. G., Bird, S., Hornung, M., Cosby,I Neal, C., and Paricos, P.: 1988, J. Hydro!. (in press).

Wright, R. F., Cosby B J , Hornberger, G. M., and Galloway, J. N.: 1985, 'Interpretation of Palaeolimnologi-




cal Recontructions Using the Magic Model of Soil and Water Acidification', Proceedings of the Muskoka
Conference, September 1985.

•
•
•
•
•
•
411
•
•



2.5 Loch Chon and Kelt Water - Scotland

17



Journal of Hydnilogy.  120 (1990) 143-162 143
Elsevier Science Publishers Amsterdam — Printed in The Netherlands

(31

MODELLING STREAM ACIDIFICATION IN AFFORESTED
CATCHMENTS: LONG-TERM RECONSTRUCTIONS AT TWO SITES
IN CENTRAL SCOTLAND

B.J. COSBY', A. JENKINS', R.C. FERRIER', .1.D. MILLER' and T.A.B. WALKER'
'School of Forestry and Environmental Studies. Duke University, Durham, NC 27706 (U.S.A.)
'Institute of Hydrology, Wallingford, OX 10 8138 (U.K.)
'Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen (U.K.)
(Received December 30, 1989; accepted after revision February 28, 1990)

ABSTRACT

Cosby, 13.J., Jenkins, A., Ferrier, R.C., Miller, J.D. and Walker, TA.B., 1990. Modelling stream
acidification in afforested catchments: long-term reconstructions at two sites in central
Scotland. J. Hydrol., 120: 143-162.

A conceptual model of the combined effects of afforestation and acidic deposition is applied to
two forested sites in central Scotland. Refinements are made to the model inputs specifically toinclude: increased dry deposition to the forests (in excess of the dry deposition expected for
moorland sites) as the forest canopy develops: uptake of ions by the growing forests; and increased
evapotranspiration (and thus decreased water yield) as the forests mature. The model is calibrated
using a fuzzy optimisation technique which incorporates uncertainty in target variables (stream
base cation concentrations and soil exchangeable bases) and uncertainty in selecting values forfixed and adjustable parameters which describe the physico-chemical characteristics of the
catchments. Simulated present-day stream and soil chemistry closely match observed values atboth sites. The calibrated models indicate that while the patterns of acidification in the two
catchments are broadly similar, some differences do exist between the sites in the responses of thesoils to acidic deposition and afforestation. It is concluded that the calibrated models provide a toolfor: (a) comparison of the relative effects of deposition and afforestation on soil and surface wateracidification; (b) assessment of the likely effects of reductions in future deposition combined withfuture forestry management practices.

INTRODUCTION

Lakes and streams in large areas of eastern North America and Northern
Europe have become increasingly acidified during the past several decades (e.g.
Likens et al., 1979; Wright, 1983; Haines, 1986). The principal cause of this
acidification has been attributed to atmospheric deposition of sulphur (Likens,
1976; Wright and Henriksen, 1979; Overrein et al., 1980; Haines, 1986), although
land use changes on the acidic soils which may dominate sensitive regions have
also been held partly or wholly responsible (Krug and Frink, 1983; Rosenquist,
1980). In the U.K. a determined land management strategy of conifer afforesta-
tion, implemented since the 1940s, has also been held responsible for surface
water acidification as a result of proton fluxes connected with plant uptake and

0022-1694190/$03.50 ci) 1990 Elsevier Science Publishers B.V.



144 tIJ. COSI1Y ET AL

mineralisation of organic matter (Nilsson, 1985). Indeed, many studies have
reported that compared with moorland sites, conifer afforestation enhances the
acidity of drainage waters (Harriman and Morrison, 1982; Nilsson et al., 1982;
Stoner et aL, 1984).

Three mechanisms may increase the acidity of water draining forested
catchments: (I) increased water losses through evapotranspiration thereby
concentrating dissolved pollutants entering the stream; (2) uptake of base
cations by the growing forest; (3) the increased ability of the forest canopy to
scavenge acidic material from the atmosphere (Law, 1956; Calder and Newson,
1979; Miller, 1984; Grennfelt and Hultberg, 1986). Increased scavenging
includes contributions from both wet and dry deposition (Fowler, 1984). All of
these factors are interactive and, solely on the basis of catchment input-output
budgets, it is difficult to discriminate among the effects of the deposition,
leaching, interception and vegetation uptake processes.

A modelling approach to examine the relative importance of deposition and
afforestation on surface water acidification has therefore been adopted. The
model used is Model of Acidification of Groundwater in Catchments (MAGIC),
an intermediate-complexity process-oriented model for soil and water acidifica-
tion. To enable the model to be used in a predictive mode for assessing the
relative acidifying effects of forest growth and atmospheric acidic deposition,
it is first necessary to calibrate the model to forested sites. The model was
applied to two catchments. Chon and Kelty, in the Loch Ard Forest area of
central Scotland. These catchments have been subjected to similar deposition
and land management histories and have similar (but not identical) bedrock
geology. Tree species and soil types on the catchments are, however, different.
The waters draining both of these catchments are acidified to differing degrees.
The historical development of acidification at the two sites, as simulated by the
model, is used to interpret the relative effects of deposition and afforestation
on present-day streamwater chemistry.

Previous applications of MAGIC to assess forest effects identified canopy
scavenging and increased dry deposition as important factors causing
reductions in the pH of surface water (Neal et aL, 1986; Whitehead et al.,
1988a,b). Those studies, however, were preliminary applications of the model to
afforested sites; they only included increased foreSt filtering and a simple
representation of increased evapotranspiration effects and made no attempt to
include uptake of ions from the soil by the vegetation. Here a revised and more
thorough application uses a refined version of the model with time-varying
inputs reflecting the dynamic effects of afforestation and forest growth. It
incorporates cation and anion uptake by the vegetation, pre-afforestation dry
deposition inputs, enhanced deposition input (both wet and dry) through
canopy filtering processes and a continuously variable water yield factor as
evapotranspiration increases in response to forest growth.

The structure, calibration procedure and output of the refined model are
presented in this paper for the Chon and Kelty catchments. In a companion
paper (Jenkins et al., pp. 163-181). the model calibrated for the Chon catchment
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is used to perform a series of simulation experiments to assess the relative
effects of afforestation and acidic deposition on soil and surface water
chemistry. Those experiments compare and contrast: (a) the simulated
historical effects of increased acidic deposition and forest growth both in-
dividually and in combination: (b) the simulated future effects of various levels
of deposition reduction in combination with the forestry strategies of
harvesting with and without replanting.
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Fig. 1. The Loch Ard study arca.
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STUDY AREA

As part of the Surface Water Acidification Programme (Mason and Seip,
1985) integrated monitoring of hydrology, chemistry and biology is being
undertaken in two forested catchments, Loch Chon (L87 km2) and Kelty Water
(1.32 km2), in the Queen Elizabeth Forest Park, Loch Ard (Fig. 1). This area is
-- 40 km north of Glasgow and is subject to high levels of anthropogenic
deposition (ca. 20 kg ha-1 year' sulphate). Rainfall volume in the area varies
from 1.8 to 2.4 m year'. The entire area, including that of the two catchments,
has undergone extensive conifer afforestation with planting initiated in 1950.
The catchment of Kelty Water was planted with Sitka spruce  (Picea sitkensis)
while the catchment of Loch Chon was planted with Norway Spruce  (Picea
abies).  The geology of both catchments is mainly Dalradian metamorphic-
igneous rocks comprised of fine grained slates, phyllites and mica-schists
(Anderson, 1947). This is overlain by glacial till deposits derived from local
rocks. Sampling at Loch Chon and Kelty Water was initiated in the autumn of
1986 (Miller et al., 1990). We use data for calendar year 1987 in this study.

Field sampling strategies and laboratory analyses of the precipitation and
streamwater samples are described by Jenkins et al. (1988) and Miller et al.
(1990). Bulk deposition and precipitation volumes were collected bi-weekly at
both sites in open, nipher-shielded, funnel gauges situated 6 m above the
ground in open areas of the forests. The volume weighted mean bulk precipita-
tion chemistries in 1987 are similar for both catchments (Table 1). Streamwater
was also collected bi-weekly at both sites using flow-proportional samplers.
Despite similar bedrock characteristics and deposition inputs to the two
catchments, the volume weighted mean streamwater chemistries for both sites

TABLE 1

Volume weighted mean bulk precipitation concentrations at Chon and Kelty for 1987.  Mean
annual precipitation volume was 2.3m at both sites




Chon Kelly

Ca?' 19.1 16.8
Me• 19.4 26.9
Na • 112.4 135.5
IC 7.5 5.5
NH: 16.3 25.0
SO:- 56.2 60.4
Cl- 130.5 148.3
NO; 11.4 11.0
H• 22.4 31.0
pH 4.6 4.5

Concentrations are given in  peqr,.






•
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TABLE 2

Volume weighted annual stream concentrations observed and simulated at Chon and Kelty for
1987

	

ChonKelty

	

ohs.Sim.ohs.

Ca2+43.345.419.020.1
Me'48.346.036.935.5
Na'181.3184.1200.9199.9
K•7.18.27.88.1
NFL•7.26.913.212.9
SO:-93.3102.8100.0106.1
CI-224.5217.7216.5214.7
NO;3.02.910.210.1
AP•20.048.8
1-1•24.524.4

24.4

	

95.548.2 95.2
PH4.64.64.04.0
Organic anion14.2
Suitt base cations15.3'

	

280.0283.795.4'95.2

	

264.6263.6
Sum acid anions320.8323.4326.7330.9
Cale. alkalinity- 33.6- 32.8- 48.9- 54.4

'Observed organic anion concentrations calculated as difference between the sum of concentra-
tions of positively and negatively charged ions.
Concentrations are given in peq l-'.
Sum base cations = sum of calcium + magnesium + sodium + potassium concentrations; sum
acid anions = sum of chloride + sulphate + nitrate concentrations; calculated alkalinity =
sum base cations plus ammonium minus sum acid anions.

are different in some respects (Table 2). Kelty Water has higher concentrations

of aluminium, sulphate, nitrate, and organic ions, and lower pH and calcium

concentrations than Loch Chon. Kelty Water is no longer capable of sustaining
a viable fish population but Loch Chon maintains a reduced fish population.

Physical and chemical parameters of the soil in the two catchments were
determined by a detailed sampling and analysis strategy at the outset of the
project (Hudson and Hipkin, 1986; Henderson and Campbell, 1986). The soils in
both catchments belong to the Strichen association and consist of peaty gleys
at Kelty and humus iron podsols at Chon. Soil parameters were measured for

1111 individual horizons from a number of soil pits within the catchments.
Individual horizon values were weighted using the depth of each horizon to
give a vertically aggregated value for each soil type. These vertically
aggregated values were then weighted by percentage area of each soil type
within the catchment to give weighted mean values of the soil physical and
chemical characteristics for use in the model (Table 3).

•

•
•
•
•
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TABLE 3

Observed soil characteristics at Chon and Kelty. Weighted mean values for the aggregated soils
in each catchment (see text)

Depth (m)
Cation exchange
' capacity (meq kg-I)

Sulphate adsorption
maximum capacity (meq kg-')

Chon

1.0

204

7.0

Kelty

1.0

410

3.5

Sulphate adsorption
half saturation (men m-2)

1200 1200

Bulk density (kg m-3) 964 844
Base saturation (%) 3.0 3.5
Exchangeable Ca" (%) 1.2 1.9
Exchangeable Mg" (%) 0.6 0.7
Exchangeable Na• (%) 0.5 0.6
Exchangeable K • (%) 0.7 0.3

MODELLING TECHNIQUES

The  MAGIC  model

The MAGIC model is a lumped parameter, long-term simulation model of soil
and surface water quality (Cosby et al., 1985a,b). It consists of the following: (1)
a soil—soil solution chemical equilibria section in which the concentrations of
major ions are assumed to be governed by simultaneous reactions involving

Atmospheric
deposition

Cations in biomass

Uptake Decomposition

Chemical
weathering

Exchangeable cations


in soil

Soil solution

To groundwater

and runoff

Fig. 2. Schematic representation of the MAGIC model.
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sulphate adsorption, cation exchange, dissolution and precipitation of
aluminium, speciation of organic acids, and dissolution and speciation of
carbonic acid; (2)a mass balance section in which the flux of major ions to and
from the soil is assumed to be controlled by atmospheric inputs, chemical
weathering inputs, net uptake in biomass and losses to runoff (Fig. 2). At the
heart of MAGIC is the size of the pool of exchangeable base cations in the soil.
As the fluxes to and from this pool change over time as a result of changes in
atmospheric deposition and biological uptake/release, the chemical equilibria
between soil and soil solution shift to give changes in surface water chemistry.

Sulphate adsorption is treated in the model by a Langmuir isotherm. A
detailed investigation of the sulphate subsection of the model is given by Cosby
et al. (1986a). Aluminium dissolution and precipitation is assumed to be
controlled by equilibrium with a solid phase of Al(OH),. Speciation of
aluminium and inorganic carbon is computed from known equilibrium
equations. Cation exchange is treated using equilibrium (Gaines-Thomas)
exchange equations. Weathering rates are assumed to be constant with time in
the model. Organic acids are modelled as diprotic acids using equilibrium
expressions for dissociation based on the pK values of the acid. Given a
description of the historical deposition and afforestation effects at a site, the
model equations are solved numerically to give long-term reconstructions of
surface water chemistry.

Application to Chon and Kelly
•

Until afforestation in 1950 both sites were under moorland vegetation and_

a water yield of 90% was assumed. This figure is consistent with other model
applications to moorland sites in Scotland (Jenkins and Cosby, 1989).
Following planting in 1950 a 15-year growth period is assumed before canopy
closure, during which time evapotranspiration increases linearly with age of
the forest. At the point of canopy closure, evapotranspiration was assumed to
be at its maximum and a water yield of 75% was chosen. The net result of this
sequence on annual streamflow volumes is shown in Fig. 3(d).

Historical loadings to the catchments for use in the simulations were
derived in two stages. First, the historical loadings in the absence of growing
forests and in the absence of anthropogenic acidic deposition were estimated
for both sites for both wet and dry deposition. Second, the moorland wet and
dry loadings were modified subsequent to 1950 to reflect the effects of afforesta-
tion.

Current (1987) mean annual precipitation input is 2.3 m at both sites; the
mean composition of the bulk rainfall is shown in Table I. These measurements
are made in forest clearings with bulk collectors and are taken to be approxim-
ately equal to the wet deposition loading in the absence of enhanced
scavenging by the forest canopy. These wet loadings can be partitioned into
natural (sea salt) and anthropogenic components. Wet loadings for sulphate,
nitrate and ammonium in excess of sea salt contributions (anthropogenic

•
•
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Fig. 3. Variable inputs used in the model simulations at both sites: (a) wet deposition; (b) dry
deposition; (c) vegetation uptake: and (d) dry deposition due to canopy filtering processes. Wet and
dry deposition and uptake are scaled to present-day values.

components) were assumed to have increased following the sequence of
sulphur emissions described by the Warren Spring Laboratory (1983, 1987) up
to 1973, with a modification based on sulphur emission data from 1973 to 1987
(Warren Spring Laboratory, unpublished data, 1988): The resulting trajectory
for wet loading of anthropogenic components in the absence of a forest canopy
is shown in Fig. 3(a). The historical wet loadings of sea salt in the absence of
a forest canopy are assumed to be constant.

Particulate or occult (dry) deposition loadings for both sea salt and an-
thropogenic components were simulated by multiplying the wet loadings by
'deposition factors' to obtain total (wet plus dry) loadings; the deposition
factors for sea salt are based on occult sea salt deposition calculations for two
nearby moorland sites in the region (Jenkins and Cosby, 1989). These factors
were derived by calculating the additional sea salt necessary to give a conser-
vative mass balance for chloride, given the measured wet atmospheric
deposition and stream export for those moorland sites. The sea-salt deposition
factors used in the simulations prior to afforestation in 1950 were 1.10 for Chon
and 1.01 for Kelty. A deposition factor of 1.24 for anthropogenic components
was used for both sites prior to 1950 to represent dry deposition of particulate
and gaseous sulphur to moorland sites. This factor was derived by calculating
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the additional sulphate necessary to give a conservative mass balance for
sulphate, given the measured wet atmospheric deposition and stream export for
nearby moorland sites (Jenkins and Cosby, 1989; the soils at the sites had low
sulphate adsorption capacities as do the soils at Chon and Kelty). Because the
deposition factors are multipliers for wet deposition, the effective dry
deposition of anthropogenic components increases along the same trajectory
as the wet deposition until 1950 (Fig. 3a); the effective dry deposition of sea salt
components remains constant.

The deposition factors for sea salt and anthropogenic components were
increased after 1950, to represent the increases in both wet and dry loadings
resulting from the increased scavenging by the forest canopies in Chon and
Kelty. For the 15-year tree growth period between planting and canopy closure,
the forest filtering effect is assumed to produce a linear increase in total
deposition. The assumed pattern of increase in the deposition factors due to
forest effects is shown in Fig. 3(b). Deposition factors for sea salt components
increased to 1.3 for Chon and 1.1 for Kelty. The magnitudes of the increases
were calculated to give simulated streamwater chloride concentrations equal
to observed chloride concentrations in 1987 with forests present at both sites.
Throughfall and stemflow measurements from the two sites indicate that the
different -tree species in each catchment have different characteristics of
pollutant scavenging and canopy leaching, especially with respect to sulphate.
Kelty shows consistently higher sulphate concentrations in throughfall and
stemflow. The deposition factor for anthropogenic components at Kelty was
increased to 1.35 after afforestation while that for Chon was maintained at 1.24.
The final deposition factors for the anthropogenic components resulted in good
agreement between simulated and observed sulphate for the two sites (Table 2).

The estimation of net nutrient uptake by vegetation is problematic given the
difficulties of assessing processes such as crown leaching and below-ground
turnover (Miller, 1984). A general pattern of net uptake, may, however, be
estimated. Miller (1981) showed that, in even-aged forests, the greatest demand
for soil nutrients occurs early in the life of the crop, during crown development
and the rapid build-up of foliar biomass. The demand for soil nutrients reaches
a maximum well before the time of maximum stem growth. As the forest
matures, nutrients progressively accumulate on the forest floor as organic
litter, at a rate broadly proportional to that of tree growth rate (Miller and
Miller, 1976). The nutritional requirement of maturing trees may be much
larger than that of younger trees but a larger component is met through
recycling of nutrients in litter (Miller, 1981). Older trees recycle a greater
proportion of their annual uptake through the litter, and there is an increasing
dependence upon nutrient cycling within the organic horizons (Khanna and
Ulrich, 1984). The resultant decrease in rates of uptake from the soil, combined
with efficient capture of atmospheric nutrients and rapid cycling in the litter,
results in a decline in net nutrient demand from the soil as the forest matures.
This relative pattern of net nutrient uptake from the soil (Fig. 3c) is used in
simulations of forest growth. The simulated net uptakes of calcium,

•
••
•
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magnesium, sodium, potassium and sulphate in the simulations are scaled to
the shape in Fig. 3(c) using maximum uptake rates estimated from biomass

concentrations of the ions and biomass accumulation rates (Miller and Miller,

1976).
In Scottish forest soils over three-quarters of the nitrogen uptake by trees is

in the form of ammonium (Williams et al., 1979) and therefore trees accumulate

an excess of cations over anions balanced by a reverse flux of hydrogen from
the roots to the soil. This nitrogen accumulation thus results in a net acidifica-

tion of soils by forest growth (Brand et al., 1986) and, although rates of acidifi-

cation vary with productivity of the stands, the pattern of acidification over
time remains the same (Nilsson et aL, 1982). In the simulations, uptake of

nitrogen species (NO; and NI-1; ) from the soils is modelled as a first order
process. The first order rate constant for each catchment is selected such that
simulated streamwater concentrations of nitrate and ammonium match

observed concentrations.

Calibration of the model

The calibrations proceeded in a sequential manner. First, the concentra-
tions of chloride and sulphate were calibrated by adjusting occult and dry
deposition of sea salts and gaseous/particulate sulphur compounds under the
assumptions outlined in the previous section. Base cation concentrations were
then calibrated using an optimisation procedure based on the Rosenbrock
(1960) algorithm (see below). Finally, the organic acid concentrations in the
streams were calibrated to match the organic anionic charges observed.

The base cation calibration involved fitting the results of long-term model
simulations to currently observed water and soil base cation data (surface
water concentrations of calcium, magnesium, sodium, and potassium, and
soil exchangeable fractions of calcium, magnesium, sodium and potassium).
These 'target variables' thus comprise a vector of measured values all of which

must be reproduced by the model if a calibration is to be successful. The use of
multiple, simultaneous targets in an optimisation procedure provides robust
constraints on model calibration (Cosby et al., 1986b).

Those physico-chemical soil and surface water characteristics measured in
the field are considered fixed parameters in the model (Table 4). These measure-

ments, are, however, subject to error and so ranges were chosen to represent
this error and the spatial heterogeneity within the catchment. A range of
uncertainty for each observed, weighted-mean soil parameter was defined
using the maximum and minimum vertically-aggregated single-pit values for
each parameter. These estimated uncertainties in the observed values (Table 4)
were used in the calibration procedure. For those fixed parameters for which
no direct measurements were available (i.e. CO2 partial pressure and organic
acid content), single values with no range of uncertainty were assumed.

Base cation weathering rates and base cation exchange selectivity coeffi-
cients for the soils are not directly measurable and were used as 'adjustable'
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Soil
Depth (m)
Bulk density (kg m-3)
Cation exchange

capacity (meg kg-I)
Sulphate adsorption

maximum capacity (meg kr')
Sulphate adsorption

half saturation (meg m-3)
Al solubility

coefficient (logw)
CO, partial

pressure (atm)
Organic matter

content (m moL m-3)
Organic matter

pK, (log„)
Water

Runo ff (rn year')
Al solubility

coefficient (logw)
CO, partial

pressure (atm)Organic matter
content (in mol. ni-3)

Organic matter


PK,og)Bw

Chon

Range

0.9-L1
864-1064
154-254

5.0-9.0

8.7-9.4

1100-1300

-

1.56-1.90-

-

-  

-

Mean

1.02
962

202

7.0


1211

9.1

0.033

60

4.25

1.78
8.6

0.0033


20

4.25

Kelty

Range

0.9-1.1
744-944
360-460

2.0-5.0

1100-1300

8.7-9.4

-

1.56-1.90

-

Mean

1.00
842


410

3.4


1190

9.1

0.033 


150

4.50

1.74
7.2

3000.0033


4.40

model parameters to be optimised in the calibration procedure. The calibra-
tions were performed on simulations run from 1847 to 1987. After each
historical simulation, the model variables in 1987 were compared with observa-
tions in 1987, the adjustable parameters were modified as necessary to improve
the fit, the historical simulation was re-run and the procedure was repeated
until no further improvement in the fit could be achieved.

Because the measurements of the fixed parameters and the target variables
are subject to errors, a 'fuzzy' optimisation procedure was implemented for
calibrating the models. The fuzzy optimisation procedure consisted of multiple
calibrations of each model structure, using perturbations of the values of the
fixed parameters and estimated uncertainties of the target variables. The sizes
of the perturbations of the fixed parameters were based on known measurement
errors or spatial variability of the parameters. The uncertainties in the target
variables were estimated as the measurement errors of the variables (5 peer '

111

•

TABLE 4

The ranges and mean values of fixed parameters used in the optimisation procedure

•

•
•

•

•

•

•

•

•

•
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or 10%, whichever was the larger, for concentrations of surface water
variables; 0.5% for soil base saturation variables).

Each of the multiple calibrations began with: (a) a random selection of
perturbed values of the fixed parameters; (b) a random selection of the starting
values of the adjustable parameters; (c) specification of uncertainty in the
target variables. The adjustable parameters were then optimised using the
Rosenbrock algorithm to achieve a minimum error fit to the target variables.
The optimisation algorithm was stopped and the calibration considered
complete when the simulated values of all target variables were within the
pre-specified uncertainty limits for the observations. This procedure was
undertaken ten times for each site. The final calibrated model for each site
consists of the mean parameter and variable values of at least 8 successful
calibrations.

Using the fuzzy optimisation based on multiple calibrations, uncertainty
bands for the model simulations can be presented as maximum and minimum
values for output variables in any year derived from the group of successful
calibrations. These uncertainty bands encompass the range of variable values
which were simulated, given the specified uncertainty in the fixed parameter
values and measured target variables. When examining simulation results, the
maximum and minimum values are both plotted through time. The 'true' model
calibration is taken to fall between these lines. When comparing simulation
results from two model structures, the overlap of the uncertainty bands
provides a measure of the degree to which the structures behave similarly.

Organic anions in the model

Organic anions in MAGIC are simulated by specifying the total amount of
a diprotic organic acid (in m mol.1-' of carboxyl groups) and the two pK values
(for dissociation of the carboxyl groups). Thus, a total organic acid content of
10 m mol. I-I (as 112A) would produce 10 peq 1-1 of organic charge when the first
proton was totally dissociated (all acid as HA ) and 20  pecil-I  of organic charge
when the second proton was also totally dissociated (all acid as A2- ). By
selecting appropriate values for the total organic acid content and the pK
values, the total organic charge ([HA-] + [A2- ]) can be adjusted for any pH.
The ratio of total organic charge to the total dissolved organic carbon con-
centration (DOC, on a weight per volume basis) is referred to as the effective
charge density of the organic acid. In calibrating the model, therefore, either
the total organic acid content or the effective charge density and DOC of the
organic must be specified along with the pK values. These values are needed for
both the soil and surface water compartments of the model.

As seen from the measured ionic concentrations in the streams of the two
catchments (Table 2), organic anions comprise a significant proportion of the
total ionic charge at each site. No direct measurement of the dissolved organic
charge was available for either soil or stream water. The DOC was available for •

the streams (Chon = 6 mg l -I; Kelty = 16 mg 1-'). These measurements were



•
•
•

MODELLING ACIDIFICATION IN AFFORFSTED CATCHMENTS 155

TABLE 5

Percentage values of observed and simulated soil chemistry variables

Chon Kelty

Obs. Sim. Obs. Sim.

•


•

Exchangeable Ca2'
Exchangeable Mr
Exchangeable Na'
Exchangeable K '
Base saturation

TABLE 6

1.2
0.6
0.5
0.7
3.0

1.2
0.6
0.5
0.4
2.7

1.9
0.7
0.6
0.3
3.5

1.7
0.9
0.6
0.4
3.6

••
•


•


•

Optimised weathering rates and soil exchange selectivity coefficients for the Chon and Kelty
models

	

Chon Kelty

Weathering rates

Calcium (meg m-2 year')53.30.6
Magnesium (meg m-2 year-1)
Sodium (meg m-2 year')58.316.8

	

7.7	 26.8
Potassium (meg m-2 year')10.214.1

Selectivity coefficients
Calcium (log,o)1.16- 0.82
Magnesium (log,o)2.220.77
Sodium (log,0)0.280.07
Potassium (log,o)- 3.42- 3.62

used, with the assumption of an effective charge density of - 10 for the organic
acids, and that the organic acids in the soils were equivalent to those in the
stream, to derive the total organic acid content for the soil water at the two
sites given in Table 4. The pK values for the first dissociation in the two soils
are also given in the table. The pi< values for the second dissociation were set
to 10.5 (thus effectively producing a monoprotic acid for the low pH of these
soils). The models were calibrated to the observed base cation concentrations
observed in the streams (as described above) with these values of parameters
for the organic acids in the soils and stream.

Subsequent to the calibration of the soils, the parameters of the organic
acids simulated in the stream were modified (calibrated) to give an effective
organic charge concentration approximately equal to that calculated from the
observations (Table 2). The calibrated stream organic acid parameters (Table
4) corresponded to an effective charge density of 3.3 for the 6 mg DOC
measured at Chon, and 12.5 for the 16 mg I- DOC measured at Kelty.

•
•
•
•
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Fig. 4. Simulated values at Chon (—) and Kelty (—) of: (a) stream sulphate concentration; (14

alkalinity concentration; (c) hydrogen ion concentration; (d) pH; (e) calcium concentration. The

two curves for each site represent the confidence limits of the simulation as derived from the fuzzy

optimisation.

RESULTS

Simulated stream chemistry (Table 2) matches observed chemistry closely at

both Chon and Kelty. The model also successfully simulates present-day soil

chemistry (Table 5) as soil base exchange fractions at the two sites are well

matched with measured data. The final values of the optimised parameters
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(weathering rates and soil exchange selectivity coefficients) resulting in these


fits to the data are given in Table 6. Values of weathering of calcium and


magnesium are higher at Chon and this accords well with field observation of

a doleritic dyke within the catchment which affects the outflow concentrations

of these ions.

Stream pH, hydrogen, alkalinity (expressed as sum of base cations plus

ammonium minus sum of acid anions), calcium and sulphate hindcast recon-

structions for the two sites from 1847 to 1987 are shown in Fig. 4. Chon shows

a very low background hydrogen concentration with an increasing trend which

accelerates in the period 1950-1960 to give a rapid increase in hydrogen con-

centration (Fig. 4). Kelty shows a similar accelerated increase during that

period but has a very high background hydrogen concentration. This is

because of the high levels of organics in the catchment, which are assumed to

be at a constant level throughout the simulation. The period of rapidly

increasing hydrogen corresponds to the planting and growth of the forest. At

the time of canbpy closure, 1965, both catchments are subject to the most severe

acidifying processes; (a) total load of anthropogenic wet and dry deposition is

at a high level as the assumed deposition curve peaks at this time; (b) input

from canopy filtering is also at a maximum because canopy closure (and thus,

maximum filtering by the trees) and maximum deposition coincide; (c)

maximum cation uptake coincides with canopy closure; (d) the concentrating

effect of increased evapotranspiration is also at a maximum. Around 1970

stream concentrations level off and by 1980 have started to decrease. This is in

response to the falling deposition levels in recent years (Fig. 3a) and to the

decrease in uptake of base cations as the forest matures.

The base saturation reconstruction (Fig. 5) indicates a progressive soil

acidification through time as base cations are leached in response to the

incoming acidity. High weathering rates at .Chon produce a high initial base

saturation although this falls steadily until 1950 and then accelerates

downwards at the onset of afforestation. At Kelty, although the apparent

12^• c •0...........

to-

41 0

8 4 7 1862 t917 1952 1987

Time (year)

Fig. 5. Simulated soil percent base saturation at Chon (—) and Kelty (- - -). The two curves for


each site represent the confidence limits of the simulation as derived from the fuzzy optimisation.

•

•
•
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initial base saturation is not as high as at Chon, the model indicates that cation
losses from the soil will result in slightly higher percent base saturation. No
recovery of base saturation is seen at either site in response to decreased
emissions since 1970, although the rate of decrease slows, and this accords well
with the expected slower recovery of soils as they continue to desorb sulphate
(Wright et al., 1988).

DISCUSSION

The application of the MAGIC model to these two sites demonstrates the
effect of soil properties and forest growth on the historical acidification pattern
in this area. It also demonstrates that the two sites, in relatively close
proximity, show broadly similar responses but are quite different in detailed
Comparison. Clearly, the organics in the Kelty system have a major influence
on historical pH, although sulphate is the dominant mobile anion affecting the
historical decline in alkalinity at both sites. A discussion of the sulphate
budget and dynamics as simulated by the model, therefore, can aid understand-
ing of the acidification history of these two sites and offers an explanation for
the observed differences between them.

Observed wet sulphate loading is similar at both sites (Table 1); under the
deposition assumptions used, the total sulphate (wet plus dry) was historically
similar until afforestation in 1950 (Fig. 6a). Thereafter, differences in the
effects of tree species (altering dry deposition and interception) have enhanced
the differences in total sulphate loading between the two sites (Fig. 6a). The
decrease after 1970 at both sites is due to decreased emissions. The relative
difference between the two diminishes because the dry deposition factors for
the sites are applied as a constant proportion of wet deposition. Simulated
stream sulphate concentrations closely follow the deposition curve (Fig. 6b),
Kelty being consistently higher because of its higher input and the greater soil
adsorption at Chon (Fig. 6c).

The cumulative loss of total exchangeable base cations at the two sites
demonstrates that more base cations are lost from the exchange sites at Chon
compared with Kelty and that the relative difference in loss rates intensifies as
anthropogenic sulphate input increases over time (Fig. 7). At the period of
forest planting and growth the two curves converge as loss from soil exchange
sites is dominated by plant uptake which exceeds losses of base cations
associated with mobile sulphate anions. At canopy closure, uptake rates
decrease and the differences between the two sites become apparent again.

Forest growth at the two sites accelerates acidification of the surface water
from the steady pre-afforestation decline caused by the gradual increase of
anthropogenic deposition. The model clearly demonstrates that evapotrans-
piration and cation uptake cause a significant acidification of the soil on top
of the effect of canopy interception. This can at times cause enhanced surface
water acidification, the degree depending on the dynamics of the mobile-anion
and the base cation status of the soil. At Kelty the increased soil acidification
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Fig. 6. Components of the sulphate budget at Chon (--) and Kelty (---): (a) total deposition
loading; (b) total stream output; and (c) soil adsorbed sulphate.

appears to lead to water acidification because hydrogen is leached from the
soil, whereas at Chon, the exchange of base cations affords some buffer to the
stream acidity.

If uptake is an important process affecting the surface water and soil
responses at these sites, the mechanisms and processes of uptake need adequate
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Fig. 7. Cumulative loss of total exchangeable base cations from the soils at Chon (—) and Kelty

representation in the model. Uptake has been treated relatively simply, and no
account is taken of organic matter build-up in the litter layer. It is, however,
impossible to separate true vegetational uptake from immobilisation in the
organic matter accumulation. Owing to the role of the latter in nutrient
cycling during growth, it is assumed to be an inseparable component of vegeta-
tional uptake within the context of the model. Also, at no time in the lifespan
of the forest did nutrient requirements exceed supply from the soil, i.e. no stand
fertilisation was required for major elements and no trace element deficiencies
developed. Finally, it is assumed that deposition levels of anthropogenic
pollutants in this area of Scotland do not have a direct effect upon tree
physiology, through direct physical damage, mineral nutrition, metal toxicity,
or increased susceptibility to biological attack.

CONCLUSIONS

The use of a relatively simple model of soil/water chemistry with inputs
reflecting the effects of forest growth can provide a conceptual basis for
comparing the relative effects of afforestation and acid deposition on surface
water acidification.

When applied to two forested sites in Scotland, the model successfully
simulates present-day chemistry at both sites and can be used to examine
current and historical differences in the responses to acidification between the
sites.

These successful applications suggest that the coupled model can be used in
speculative simulation experiments to assess the relative effects of land use
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changes and/or deposition reductions on soil and surface water acidification.

The results of these experiments are presented in the companion paper by
Jenkins et al. (pp. 163-181).
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ABSTRACT

Jenkins, A., Cosby, BA., Ferrier, R.C., Walker, T.A.B. and Miller, J.D. 1990. Modelling stream
acidification in afforested catchments: an assessment of the relative effects of acid deposition
and afforestation. J. Hydrol., 00: 000-000.

A model of the combined long-term effects of acidic deposition and forest growth has been
developed and calibrated for an upland site in Scotland. The model is used to perform a series of
simulationexperiments to assess the relative effects of afforestation and acidic deposition on soil
and surface water chemistry. The experiments compare and contrast: (a) the simulated historical
effects of increased acidic deposition and forest growth, both individually and in combination; (b)
the simulated future effects of various levels of reduction of deposition in combination with the
forestry strategies of harvesting with and without replanting. Results indicate that historical
acidification of surface waters in areas receiving high levels of acidic deposition has been exacer-
bated by afforestation practices. Afforestation in the absence of acidic deposition.,  however,  has
had a lesser effect on surface water acidification even though the nutrient demands of forest
growth have caused significant soil acidification. Comparisons of future forest management
strategies in conjunction with likely deposition reductions indicate that, in sensitive areas,
replanting of a felled forest without treatment of the soil by addition of base cations, should not
be undertaken even if significant deposition reductions are realised.

INTRODUCTION

In large areas of eastern North America and Europe a recent trend toward
increased acidification has been observed in lakes and streams (e.g. Likens et;
al., 1979; Wright, 1983; Haines, 1986). This has occurred in surface waters
draining both moorland and afforested catchments although paired catchment
studies have concluded that runoff from forested catchments is more acidic
than from moorland catchments (Harriman and Morrison, 1982; Stoner et al.,
1984). Many studies of soils in forested areas have demonstrated that enhanced
soil acidification has occurred and that the effect of coniferous trees
themselves is stronger than that resulting from atmospheric deposition
(Troedsson, 1980). On the other hand, in moorland areas, no clear evidence

0022-1694/90/$03.30 43 1990 Elsevier Science Publishers RV.
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exists as to whether acidic precipitation has enhanced the podsolisationj
process (Linzon and Temple, 1980); yet many studies in moorland areas demon-j
strate increased surface water acidity in response to acidic deposition;
(Battarbee, 1988).

Empirical evidence from catchment monitoring experiments is difficult toi
interpret because of the synergistic nature of afforestation and of acid:
deposition in causing acidification. Recent modelling studies have indicated.
that forests promote acidification by a combination of increased deposition:
increased evapotranspiration and increased uptake of base cations to support;
tree growth (Neal et aL, 1986; Whitehead et al., 1988a, b; Cosby et al., this;
volume, pp. 00-00). These findings lend support to the results of the paired'
catchment studies. Whether the trees themselves, in the absence of acidic
deposition, would decrease surface water alkalinity to the sante extent remains
uncertain.

Considerable debate has arisen in the U.K. as to whether afforestation in the
uplands should continue without due recourse to the sensitivity of drainage
waters to acidification (Department of Environment, 1989). Nisbet (1989) and
Bancroft (1988), argue that evidence for the acidifying effect of forests from
paired catchment studies is not conclusive because of physical and chemical
differences between the study catchments and suggest that only long-term
studies can provide acceptable data. Historical data from upland areas,
however, are insufficient to show changes following afforestation and the
gathering of suitable data will require considerable time (Department of En-
vironment, 1989).

This contribution to the debate uses the MAGIC model for long-term soil and
water chemistry reconstructions. The model has previously been applied suc-
cessfully to afforested catchments in central Scotland and performs well in
capturing the major processes thought to be operating. These applications are
fully described in a companion paper (Cosby et al., this volume, pp. 00-00). Here
the calibrated model for one of the sites is subjected to a series of hypothetical
land use and deposition scenarios to assess the relative contribution of forests
and acid deposition to soil and water acidification. The model is also run in
predictive mode to explore the recovery of soils and surface water in response
to planting/harvesting and to decreased atmospheric emission strategies.

MODELLING PROCEDURE

The MAGIC model is a lumped parameter, long-term simulation model of soil
and surface water quality (Cosby et al., 1985a, b, c). The application of a
modified version of MAGIC to two forested catchments in the Loch Ard area
of central Scotland describes in detail the calibration and parameterisation of
the model to these sites (Cosby et aL, this volume, pp. 00-00). The modified
model incorporates cation and anion uptake by the growing forest, pre-affores-
tation dry deposition inputs, enhanced deposition input through canopy 1
filtering processes and a continuously variable water yield as evapotranspira-1
tion changes in response to the water demand of the forest. For this study the
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calibrated model for the Loch Chon site is chosen to manipulated input and
land use scenarios.

The Chon site was afforested in 1950. The area currently receives an acidic
deposition loading of - 20 kg ha' year' sulphate. Surface water is acidic but
relatively high concentrations of calcium and magnesium, possibly owing to
the existence of a doleritic dyke within the catchment area, facilitate the
maintainance of a fish population. Cosby et al. (this volume, pp. 00-00) suggest
that both soils and surface water have undergone severe acidification since
pre-industrial times and that the rate of acidification increased markedly
following the period of afforestation. In the simulation experiments which
follow, the values for all fixed parameters (hydrological and soil physical
parameters) and chemical variables (weathering rates and initial base
saturations) were taken from the previously calibrated model (Cosby et al., this
volume, pp. 00-00).

Relative effects of historical acid deposition and afforestation

Three simulation scenarious were implemented to assess the relative effects
of afforestation and acid deposition on historical changes in soil and surface
water chemistry. The base line scenario consists of (a) the model as calibrated
by Cosby et al. (this volume, pp. 00-00) with both acid deposition and afforesta-
tion present. By modifying wet and dry deposition, runoff yield and vegetation
uptake sequences, two further hindcast simulations are undertaken here.
These describe the historical build-up of soil and water acidification through
time for an area with identical chemical and physical characteristics of the
Chon site but with (b) acid deposition with no forest growth and (c) no acid
deposition with forest growth.

(a)  Acid deposition with afforestation
This represents the historical and prevailing deposition and land use

scenario at the site. Present:day observed amounts of deposition area increased
by dry deposition of sea salts and dry deposition of sulphate (Cosby et al., this
volume, pp. 00-00). Deposition of all ions is assumed to be constant throughout
the hindcast period except for sulphate, nitrate and ammonium which increase
as a result of anthropogenic sources. The trajectory for those ions which
increase follows that described by the Warren Spring Laboratory (1983, 1987) 0
for anthropogenic emmissions with a modification based on sulphate

, deposition data from 1973 (Warren Spring Laboratory, unpublished data). 1,
Background sulphate concentration is assumed to be equal to sea-salt con-'
centration. Background concentrations of nitrate and ammonium are assumed
to be zero.

Prior to afforestation in 1950 the Chon catchment was under moorland
vegetation and so a runoff yield factor of 90% was assumed which is consistent
with previous model calibrations to moorland sites in 'Scotland (Jenkins and
Cosby, 1989). After afforestation the trees are assumed to decrease runoff yield,
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through increased evapotranspiration, at a linear rate until the canopy closed
in 1965 when a yield of 75% is assumed. The increased ability of the growth
forest to scavenge atmospheric pollutants is achieved by incorporating an,
explicit, time-varying dry deposition factor. This increased deposition is
assumed to begin when the forest is planted and increases linearly until a
maximum is reached at canopy closure; thereafter, this maximum level o
enhanced input continues for the life of the forest. Uptake of base cations and
sulphate ions from the soil in response to the nutritional requirements of the
growing forest are pre-specified in the model (Cosby et al., this volume, pp.
00-00).

(6) Acid deposition with no forest growth
Deposition of base cations, ammonium, and acid anions follow the same

assumptions as (a). There is no forest growth and so the runoff yield factor
remains constant at 90%. Dry deposition is constant at the level calculated for
moorland conditions (see Cosby et al., this volume, pp. 00-00) and there is no
increased deposition from canopy scavenging. Vegetation uptake is not
included except for the first order functions for nitrate and ammonium.

(c) No acid deposition with forest growth
There is no change in atmospheric deposition of any ion throughout the

hindcast simulation. That is, the deposition of anthropogenically derived
sulphate, nitrate and ammonium remain at the background levels, while
deposition of base cations and chloride are assumed to be at present-day
observed concentrations adjusted to account for sea-salt contributions.
Sulphate is Resigned the relevant sea-salt fraction whilst nitrate and
ammonium are assumed to be zero to maintain consistency with (a) and (b)
where background concentrations of these ions in rainfall are assumed to be
zero. The forest uptake and runoff yield sequence described in (a) is followed
and increased scavenging by the forest canopy is assumed to be in ratio only
to sea-salt concentrations.

Relative effects of future deposition reductions and forestry strategies

Fifty-year forecast simulations were carried out to investigate the future
course of acidification for the three historical situations under consideration:
(a) the current 'true' situation of afforestation with acid deposition; (b) the
simulated situation of acid deposition with no afforestation; (c) the simulated
situation of afforestation with no acid deposition. The forecasts examine a'
combination of future emission scenarios and forest management options (Fig.:
la).

Three future deposition strategies were simulated; (1) constant deposition at
1987 levels until the year 2037; (2) a linear decrease to 50% of 1987 levels by the
year 2000 with deposition held constant at the reduced level thereafter until the
year 2037; (3) a linear decrease to background sea-salt levels (i.e. no acid
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Fig. I. The combination of land use and deposition reduction scenarios adopted to assess: (a) the
degree of reversibility and (b) the implications of currently proposed emissions reduction and land
management strategies On stream water and soil acidification.
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deposition) by the year 2000 with deposition held constant at background level
thereafter until the year 2037. For the deposition reduction scenarios, only the
anthropogenically derived components of current deposition were reduced
(sulphate, nitrate and ammonium).

Three future forest management options were also simulated: (1) leave the
existing forest in place for the 50-year simulation; (2) harvest the forest
assuming clear felling in 1990, leaving the site as moorland after the harvest;
(3) harvest the forest assuming clear felling in 1990, followed by replanting the
forest in 1992. For the cases of clear felling, the simulated runoff yield canopy
enhanced dry deposition, and uptake all revert to the pre-afforestation values
described above for the historical simulations. For the case of re-planting in
1992, these model inputs follow the same temporal patterns described above for
the historical afforestation (see also Cosby et aL, this volume, pp. 00-00).

These future land management and deposition scenarios represent extreme
options in some cases e leaving a 50-year-old forest in place for a further 50
years, or complete reduction of anthropogenic deposition) and in reality are
unlikely to be employed. However, these assumptions were made to examine
the maximum degree of reversibility, or further deterioration, which may be
expected in the future.

Most probable forestry and emissions reduction strategies

Further 50-year forecast simulations were used to examine the response of
the hypothetical systems to deposition and land management scenarios
considered most likley in the light of currently proposed reduction strategies
and forestry options (Fig. lb). Land management practices most pertinent to
upland forestry in the U.K. currently consist of planting or not planting a
moorland site (future land use for historical situation (b), above), and felling a
forested site and planting or not planting a second generation crop on the same
site (future land use for historical situation (a), above). The most probable
deposition reduction strategies are the accepted U.K. policy to reduce
emmissions by 30% and the recently proposed reduction to 705 of present-day
levels by 2003.

RESULTS AND DISCUSSION

The effects of the various combinations of historical/future forestry
practices and deposition on stream chemistry were examined by considering
two important chemical characteristics of surface waters: hydrogen ion con-
centration (W, peq r 9 and alkalinity concentration (ALK, pea l', defined
here  as the sum of base cation concentrations plus ammonium concentration
minus the sum of acid anion concentrations). These stream variables are
measures of the acid neutralising capacity or acidity of stream waters. The
effects on soils were examined by considering two soil chemical characteris-
tics: the soil base saturation (BS, %) and the total exchangeable bases in the
in chloride and sodium scavenged by the canopy and passed through the soil
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soil (TEB, eq m -1, defined here as the product of base saturation times cationexchange capacity times bulk density of the soil times depth of the soil). Thesesoil variables are measures of the buffering capacity of soils.

Relative effects of historical acid deposition and afforestation

For the case of afforestation with no acid deposition (Case c) stream
chemistry remains constant (Fig. 2) until it is perturbed by afforestation. The
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growth of the forest is associated with a decrease in alkalinity form a pre-
afforestation value of 76.5 peq I" to 69.6  peq  I' at the end of the simulation.
This decrease in alkalinity is accompanied by only a slight increase in
hydrogen. ion concentration from 1.1 to 1.6 peq l'. The net effect of' afforesta-
tion on the stream water is a loss of alkalinity, but no significant increase in
mineral acidity. The effect of forest growth on the soils, however, is more
pronounced. Soil base saturation responds to the varying nutritional require-
ment of the growing trees for base cations. This requirement is assumed to be
at a maximum at the time of canopy closure whereafter it falls slowly to a
constant level 20 years after canopy closure (see Cosby et al., this volume, pp.
00-00). In response to this uptake sequence, the rate of decline of percent base
saturation is initially large, then decreases and begins to level off by 1980 (Fig.
3).

The interaction between increased dry deposition of sea salts and uptake by
the forest explains these observed changes in soil and stream water chemistry.
Both the sum of acid anions (SAA, sum of nitrate plus chloride plus sulfate
concentrations) and the sum of base cations (SBC, sum of calcium plus
magnesium plus sodium plus potassium concentrations) in the stream increase
after the forest is planted (Fig. 4). This effect occurs largely through increases
to the stream. The base cations other than sodium tend to decrease in con-
centration as uptake requirements of the growing forest exceed increases in
input and the base saturation of the soil decline& The net effect is a slower
increase in SBC than SAA and a subsequent decline in alkalinity. The model
supports the hypothesis that in the absence of acidic deposition afforestation
will not lead to increases in mineral acidity of the stream but will tend to lower

10
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Fig. 3. Simulated soil percent base saturation for the three historical scenarios. Forest with acid
deposition. i.e. past and prevailing situation (—). no forest with acid deposition (—) and
forest with no acid deposition (— —
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Fig. 4. (a) Simulation stream water sum of acid anion concentrations. (SAA) and (b) sum of base
cation concentrations (SBC) for the three historical scenarios. Forest with acid deposition i.e. past
and prevailing situation (—), no forest with acid deposition (—) and forest with no acid
deposition (— —

the stream alkalinity and the base status of the soil. Such declines in soil base
status under afforestation have been documented by Hallbacken and Tamm
(1986) and Falkengren-Grerup (1987).

The moorland site under acid deposition (Case b) shows a progressive
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streamwater acidification as sulphate emissions  increase  (Fig. 2). Alkalinitydrops from 76.5 to 18.6 peg 1" and hydrogen increases from 1.1 to 7.2  peg  I"
(Table 1). These changes in stream water chemistry are greater than those
produced by afforestation in the absence of acid deposition. Some recovery in'
alkalinity is simulated, however, after 1976 as sulphur emissions have.
decreased. Soil percent base saturation declines gradually to 4.8% at present.
from a background value of 8.7% (Fig. 3, Table 1), as base cations are leached
in response to increased input of mobile sulphate ions. This decrease represents'
a loss of 50% of the total exchangeable bases held on the soil (Table 1). As:
for the stream variables, the simulated changes in soil variables produced by,
acid deposition are greater than those produced by afforestation alone (acid;
deposition results in almost twice the loss of soil base cations, Table 1). This;
pattern of acidification is characteristic of previous model applications to
moorland sites in Scotland and compares well with palaeoecological recon-
structions at those sites (Jenkins et al., 1990).

Growing a forest on a site receiving acid deposition (Case a) produces the
most severe acidification response in both soils and stream water (Figs. 2 and
3). The net result is not simply the sum of the two previously discussed
situations. The combined system perturbations produce enhanced ionic input,
and the model responds by producing very different chemical dynamics. Stream
water alkalinity decreases from 76.5 to - 32.5 peg and hydrogen increases
from 1.1 to 24.2 peg (Table 1). Soil base saturation is depleted from a
background level of 8.7-2.7% at the present day, a loss of -60% of total
exchangeable cations held on the soil (Table 1). Stream and soil acidification
intensifies as the increased sulphate input from canopy filtering far exceeds the
forest uptake requirement. At the same time, occult inputs of base cations are

TABLE I

Simulated background (1847) and present-day (1987) stream hydrogen ion (H) and alkalinity (ALK)!concentrations, soil percent base saturation (BS) and total exchangeable base cations (TEB). Thel:magnitude of the change from 1847 to 1987 is shown in parentheses

Hindcast
scenario

1847





1987





ALK EI BS TEB ALE Fl BS TE13

Forest/ 76.5 LI 8.7 17.3 59.5 1.6 6.3 12.5no acid
deposition





(- 17) (+0.5) (-2.4) (-4.8)

No forest/ 76.5 1.1 8.7 17.3




7.2 4.8 9.5acid
deposition





178..96)(-5
(+6.1) (-3.9) ( - 7.8)

Forest/ 76.5 1.1 8.7 17.3 -32.5 24.2 2.7 5.4acid

deposition





(- 109) (+23.1) (-6.0) (-11.9)

ALK, II = peq ', 88 = %, TEBen m "2.
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far lower than uptake requirement and so the soil must contribute an
increasing amount of base cations to support tree growth, thereby enhancing
soil acidification. This is reflected in the sharp decrease in percent base
saturation following planting (Fig. 3). This simulation corresponds to the
currently observed conditions at the site.

Relative effects of future deposition reductions and forestry strategies

For the situation of historical afforestation with no acid deposition (Case c),5 recovery was assessed for three future forestry strategies: leave the forest, cut
the forest, and cut and replant the forest. Fifty-year forecasts with the forest
left in place indicate that there will be essentially no recovery in hydrogen ion
or alkalinity concentrations of the stream, and that total exchangeable bases
in the soil will continue to decline (Table 2). If the forest is felled and not
replanted, significant recovery is simulated for stream alkalinity and total
exchangeable bases over the 50-year forecast period (Table 2), although
hydrogen ion concentration changes little. Replanting a forest on a clear felled
site, however, produces a further deterioration in all variables over the 50-year
future simulation (Table 2), largely as a result of the uptake requirements of the
second forest exceeding input loadings. It must be noted, however, that the!
simulated changes in all of the forecast scenarios are small (in the absence of!
acid deposition) and even under the replant scenario the stream retains a high
positive alkalinity and low hydrogen ion concentration.

For the situation of a moorland site subjected to historical acid deposition!
(Case b) recovery was assessed under three deposition reduction scenarios: 0%,
50% and 100% reduction. The major effect of the 50-year simulations with no:
reduction of acid deposition is a further loss of soil base cations (Table 2). In!

411 general, little improvement in stream chemistry is found for this scenario. A:
significant recovery in streamwater chemistry is achieved by a 50% reduction
in deposition although recovery of the soil base status is markedly slow (Table

411 2). Total reduction of emissions produces the largest simulated changes in both
stream and soil variables (Table 2). Comparing simulated historical changes
(Table I) with forecast changes for the 50-year simulation (Table 2), indicates
that the stream has recovered 67% of its lost alkalinity, lost 89% of the
increased hydrogen concentration and yet the soils recovered only 24% of their
lost exchangeable bases for this extreme deposition reduction.

For the situation of historical afforestation with historical acid deposition
(Case a), recovery was assessed for six future scenarios representing extreme
combinations of the various forestry and deposition reduction strategies (Fig.
la). Effects of three deposition reductions (0%, 50% and 100% reduction) were
assessed for the forestry strategy of leaving the forest in place. Because the
major interaction of forest and deposition is the increased scavenging of
pollutants, leaving the forest in place while assessing deposition reductions
should produce the greatest effect of those reductions. Effects of three forestry
strategies (leave the forest, cut the forest, and cut and replant the forest) were

411 assessed for no decrease in deposition.

5.
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If the forest is left in place for the 50-year forecast and no deposition
reductions are implemented, a slight recovery of alkalinity and hydrogen ion
is achieved with no appreciable change in soil exchangeable base cations
(Table 2). On the other hand, if the forest is felled and no deposition reductions
are implemented, significant improvements in alkalinity, hydrogen ion and

total exchangeable bases are achieved (Table 2). Replanting on the same site
with no deposition reduction causes a further serious increase in both soil and

water acidity (Table 2).

If the forest is left in place and deposition reductions are implemented,

TABLE 11

Simulated future (2037) stream hydrogen ion (H) and alkalinity (ALK) concentration, soil percent
base saturation (BS) and total exchangeable base cations (TEB). The magnitude of the change from
1987 to 2037 is shown in parentheses. 1987 values in Table 1

Hindcast
scenario

Deposition
reduction (%)

Forestry
option

2037

ALK H BS TEB

Forest/ 0 Leave forest 58.5 1.6 6.0 11.9
no acid
deposition




(-1.0) (0.0) (-0.3) (-0.6)




0 Cut forest 66.9 1.3 6.7 13.4





(+ 7.4) (-0.3) (+0.4) (+0.9)




0 Replant forest 44.2 2.4 4.4 8.6





(- 15.3) (+0.8) (- 1.9) (- 3.9)

No forest/ 0 Moorland 21.7 6.2 4.5 9.0
acid
deposition




(+ 3.1) (- 1.0) (- 1.8) (- 0.5)




Moorland 41.1 2.6 5.1 10.2





(+22.5) (- 4.6) (+0.3) (+ 0.7)




100 Moorland 58.8 1.6 5.7 11.4





(+40.2 (- 5.6) (+0.9) (+ 1.9)

Forest/ 0 Leave forest - 19.2 20.7 2.7 5.4
acid
deposition




(+ 13.3) (- 3.5) (0.0) (0.0)




so Leave forest 10.7 9.5 3.2 6.3





(+43.2) (- 14.7) (+0.5) (+0.9)




100 Leave forest 35.4 3.3 3.7 7.3





(+67.9) (- 20.9) (+ 1.0) (+ 1.9)




0 Cut forest 8.2 11.2 3.5 6.9





(+40.7) (- 13.0) (+0.8) (+ 1.5)




0 Replant forest - 46.1 27.2 1.7 3.4





(- 13.6) (+4.1) (- 1.0) ( - 2.0)

ALK, H peq11-1, BS = %. TEB en ni-2.
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improvements in both stream and soil variables are realised (Table 2). As might.

be expected, the improvements for 100% reduction are greater than for 50%

reduction, but the recoveries are not all linear with deposition reduction.

Stream alkalinity and hydrogen ion improve by approximately a factor of 2 for"

the doubling in reductions implemented, but the recovery of the soil base

cations is much slower (Table 2).

The reafforestation scenarios make no attempt to account for soil treatment

prior to replanting. Clearly, if soil fertilisation is undertaken the effect of the

second generation forest growth on soil and water chemistry may be ameliorat-

ed. However, fertilisation of these systems generally consists of an applicationi

of nitrogen, phosphorus and potassium at establishment of the stand with;

additions as prescribed until canopy closure and depending on soil type and",

tree species (Miller and Miller, 1987). Addition of base cations in the form of

lime is not a standard treatment and so the effect of the fertilisation is unlikely

to influence the acid status of the soils and surface water.

Most probable forestry and emission reduction strategies

Given that much of northern England, Scotland and Wales currently

receives (and historically have received) high levels of acidic deposition and

that large areas of these uplands are under pressure from commercial forestry

land management options, the most likely future scenarios have been

simulated (Fig. 1b).
The time sequences of hydrogen ion, alkalinity and soil base saturation

under the two probable deposition reduction strategies at a forested site that

is clear cut and not replanted all show marked improvement (Fig. 5). The

relative improvement in stream variables for the larger deposition reduction is

roughly in proportion to the relative increase in deposition reduction (Table 3).

The effects of the clear cutting are immediately apparent in the stream

variables for both levels of deposition reduction (Fig. 5). These immediate

effects are produced by the decreased scavenging of pollutants as the forest

canopy is removed, and the increased runoff as the site reverts to a moorland.

Change in the soil base saturation are much slower, not showing an

immediate response to clear cutting, but indicating slower long-term improve-

ment for both deposition reductions if the forest is not replanted. Soil acidifica-

tion has a much longer recovery period than does stream acidification.

The time sequence of hydrogen ion, alkalinity and soil base saturation under

the two probable deposition reduction strategies at a forested site that is clear

cut and then replanted differs markedly from the case where no replanting is

undertaken (Fig. 5). The initial responses of the stream variables to the clear

felling is similar, but the effects of the second forest growth produce much

lower alkalinity and higher hydrogen ion concentrations (Fig. 5, Table 3). Even

• with a 70% reduction in deposition, replanting a forest following clear felling

results in acidic stream conditions during the growth of the second forest. The

acidic conditions persist even after the forest growth is complete (Fig. 5).
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Fig. 5. (a) Simulated stream alkalinity (b), hydrogen ion concentration and (c) soil percent base
saturation for a presently forested catchment under likely future land management and emission
reduction scenarios. Replanting under 30% reduction (--), replanting under 70% reduction

 (—), felling under 30% reduction ( ) and felling under 70% reduction (— — —).
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TABLE HE

Simulated future (2037) variables for most probable future scenarios. Stream hydrogen ion (H) and
alkalinity (ALK) concentration, soil percent base saturation (BS) and total exchangeable base
cations (TEB). The magnitude of the change from 1987 to 2037 is shown in parentheses. 1987 values
in Table 1

Hincicast
scenario

Deposition
reduction (%)

Forestry
option

2037

ALK H BS TEB

No forest 30 Plant - 7.2 17.0 2.8 5.5
acid
deposition




(- 25.8) (+9.8) (-2.0) (- 4.0)




70 Plant 16.5 8.0 3.1 6.2





(- 2.1) (+ 0.8) (- 1.7) ( - 3.3)




No plant 34.0 3.5 4.9 9.6





(+ 15.4) (- 3.7) (+0.1) (+ 0.1)




70 No plant 48.5 2.1 5.3 10.6





(+29.9) (- 5.1) (+ 0.5) (+ 1.1)
Forest/ 30 Cut forst 21.6 6.2 3.7 7.4
acid
deposition




(+ 54.1) (- 18.0) (+ 1.0) (+ 2.0)




70 Cut forest 37.2 3.0 4.1 8.2





(+ 69.7) (- 21.2) (+ 1.4) (+ 2.8)




30 Replant forest - 26.3 22.7 1.8 3.6





(+6.2) (- 1.5) (-0.9) (- 1.8)




70 Replant forest - 1.1 14.9 2.1 4.1





(+31.4) (-9.3) (-0.6) (-1.3)

ALK, El = iteq la, BS = %, TEB = eq

As with the case of no replanting, there is little difference in the future soil
base saturation between the two probable deposition reduction scenarios when
a second forest is planted. Compared with the case of no replanting, however,
large differences in base saturation occur. With replanting, the soils show
further deterioration following replanting and recover only slowly following
forest maturation in either deposition case. Regardless of the deposition
reduction, the largest differences in the future soil base.saturation depend on
whether or not the decision to replant the forest is taken (Fig. 5, Table 3).

Moorland sites, as previously discussed, are subject to lower deposition
loading than afforested areas and so decreases in deposition produce a rapid
recovery in stream alkalinity if no forest is planted (Fig. 6, Table 3).
Comparison of simulated historical changes (Table 1) with forecast changes for
the 50-year simulation (Table 3), indicates that a 70% reduction in deposition
recovers 71% of stream alkalinity, allows hydrogen to decrease by 91%, and
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allows the soil to recover 23% or its lost base cations. Recoveries of this order
would allow fish populations to return to many acidified moorland areas.

On the other hand, planting a forest on these moorland areas despite large
reductions in deposition, will lead to rapid and severe acidification (Fig. 6,
Table 3); this will be particularly severe in the soil, the base saturation of which
has been steadily depleted through acidic deposition for many years prior to
future afforestation (Figs. 3 and 6, Tables 1 and 3).

CONCLUSIONS

This simulation analysis demonstrates that, in areas receiving high levels of
acidic deposition such as upland Scotland, afforestation exacerbates the
acidification problem in both soils and surface waters. Afforestation per se does
not greatly acidify surface waters in the absence of acidic deposition (although
there is a small salt effect). Afforestation does, however, lead to a significant
decrease in the base status of the soil, mainly because of the uptake require-
ments of the growing forest. This decrease in the base status of the soils can
render the soils (and surface waters) more sensitive to acid deposition. Acid
deposition, on the other hand, can directly cause acidification of surface
waters, either in the presence or absence of afforestation because of the high
input of acidic, mobile anions.

Clear-felling a forested site will cause a significant reversal in stream acidifi-
cation; it will also allow the soils to begin recoverying. Deposition reductions
produce a similar reversal of soil and surface water acidification. The interac-
tion of forestry practices and deposition reductions are not strictly additive. In
general, however, the greater emission reductions that can be achieved, the
greater the degree of soil and surface water recovery. Replanting a forest on
the same site will lead to further soil and stream acidification but, provided a
reduction in acidic deposition can be simultaneously achieved, the stream will
not deteriorate to a greater level than under the first generation forest.
Because of the slower response of soils to decreased deposition, however, the
second generation forest will cause an enhanced soil acidification effect. This
analysis indicates that in sensitive areas replanting in the absence of soil
amendments (addition of bases) should not be undertaken even in the light of
large reductions in deposition levels.

It should also be noted that the site chosen for this analysis has relatively
high calcium and magnesium input from weathering owing to the presence of
a doleritic dyke within the catchment area. In areas where soils are of lower
base status, the effects demonstrated here would be enhanced and so the
absolute levels of acidity are not necessarily representative on a wider regional
scale. The relative pattern of changes will, however, be similar across the
region if the same assumptions regarding deposition and afforestation effects
are applied.

•••
••
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Chapter 19

Modelling Surface Water Acidification

Using One and Two Soil Layers and Simple

Flow Routing

Alan Jenkins' and Bernard J. Cosby2

Summary

The Model of Acidification of Groundwater In Catchments (MAGIC) was ap-

plied to two sites in Scotland to assess the influence of model structure on hindcast

and forecast water quality variables. Three model structures were implemented for

each site; a single soil layer model, a two soil layer model and a two layer model

with simple flow routing. The structures were cafibrated using a fuzzy optimiza-

tion procedure that provided estimates of calibration uncertainty for all variables.

All three structures at both sites were capable of reproducing observed surface

water chemistry. The different model structures, however, produced significant

differences in the simulation of soil and soil water variables. These differences

were related to the difficulty of estimating base cation weathering and soil base

cation exchange in the aggregated or distributed structures. The differences in

simulation results among the model structures were small, however, compared to

measurement errors. We conclude that, given currently available data, a one-layer

model structure is sufficient for long term simulation of acid deposition effects on

the sites studied.

Introduction

The Model of Acidification of Groundwater in Catchments (MAGIC) has been applied

to individual sites in the U.S., U.K. and Scandinavia to assess the long-term acidification

of surface waters (e.g. Cosby et al. 1985a; 1985b; 1986a; Jenkins et al. 1988; Wright et

al. 1986). MAGIC has also been applied on a regional scale to reproduce the observed

disributions of water quality variables of many catchments within a geographical region

and to predict region-wide changes of water quality in response to acidic deposition (e.g.

'Inst. of Hydrology Wallingford, Oxon, UK OXIO 8BB

'Dept. of Environm. Sci., Univ. of Virginia, Charlottesville, VA, USA 22903
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Hornberger et al. 1986, this volume; Cosby et al. 1988, this volume). All of the regional
applications and many of the individual site applications have used the MAGIC model in
its simplest form, employing one soil layer. To implement the one-layer version, aggregated
values of soil physical and chemical parameters must be employed which represent the
average characteristics of spatially variable soils. The use of a single aggregated soil layer
precludes inclusion of hydrological routing of water through the simulated soil profile. An
implicit assumption in the implementation of a single layer model structure is that all
water entering the soil percolates through the entire soil column.

In the uplands of the UK, soils within a catchment are often markedly horizonated,
usually characterized by a relatively thin organic or peaty layer overlying a mineral horizon
(podzolic soils). In addition to this marked vertical layering, the mostly glaciated valleys
are often dominated by mineral soils on the steep side slopes with blanket peat covering the
'flat' valley bottoms. The distinctly different physical and chemical characteristics of peats
and mineral soils in these catchments has implications for the use of models employing
only  one soil reservoir. The two layer nature of upland U.K. catchment soils also has
implications for hydrological flow routing. Observations from a number of instrumented
catchments in Scotland frequently show flow along tlie interface of the upper organic layer
and lower mineral layer, (Howells 1986; Wheater et al. 1987). Consequently, some runoff
does not contact the mineral layer.

The simplifications inherent in a one-layer model structure obviously limit the utility
of the model for reproducing short-term, episodic responses of water quality. The question
arises whether the simplifications will also affect simulated long-term, chronic changes in
soil and surface water chemistry. To assess the effect of including a further soil layer and to
examine the appropriateness of the one-layer structure we compare long-term simulations
for two upland U.K. catchments using three modified model structures: an aggregated one-
layer soil version; a vertically-distributed two-layer version without vertical flow routing;
and a vertically-distributed two-layer version with simple vertical flow routing.

Met hods

The Conceptual Model and Structural Modifications

The structure of the MAGIC model is described in detail by Cosby et al. (1985a,b,c)
and briefly summarized by Cosby et al. (this volume). Here we calibrate three variations
of the model structure for both the Round Loch of Glenhead in the Galloway region of
southwest Scotland and the Allt a Mharcaidh in the Cairngorm Mountains of northeast
Scotland. The model structures used for the single layer application are shown in Figure
Ia. At Round Loch the catchment-to-lake area ratio is 8.6 which means that 12 % of
the precipitation enters the lake directly. Allt a Mharcaidh is a stream site and direct
precipitation to the stream surface is assumed negligible. For the one-layer structures,
all water input to the soil surface was passed through the soil to the stream/lake. For
the two-layer structures, two flow-routing schemes were devised such that: (i) 35% of the
water draining soil layer 1 passed directly to the stream/lake (Figure 19.1); and (ii) all
water flowed through both horizons (apart from direct precipitation to the water body,
Figure 19.1).
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Model Application to Round Loch of Glenhead

Lake chemistry data for Round Loch of Glenhead were taken from Battarbee et al. (1988).

The lake area comprises 12 % of the catchment although this was allowed to vary within

the range 9 % - 15% to account for possible year to year fluctuatioks in storage volumes.

Deposition data were taken from the adjacent Loch Dee deposition monitoring site
(Warren Springs Laboratory 1983, 1987); CI concentrations in precipitation were slightly
modified to give an exact charge balance and an improved Na/CI ratio. Precipitation
volume was assumed equal to that at Loch Dee (2.57 myr-'). Occult input of sea salt
was added to match the observed CI concentration in the loch given the observed CI
input and an assumed catchment water yield of 90 %. This gave an effective dry and
occult seasalt deposition equal to 1.032 times seasalt in wet deposition. Sulfate deposition
was increased by a factor of 1.37 (representing dry deposition of gaseous/particulate 5)
to match simulated to observed loch Sat concentrations. We assumed that peat soils
do not adsorb Sat and that the mineral soils have the relatively minor 504 adsorption
characteristics shown in Table 19.1.

Soils of the Round Loch catchment consist of peats, peaty rankers and peaty gleys
(Macaulay Land Use Research Institute, unpublished data). Data describing soil physical
parameters and exchangeable bases were divided into peat and mineral components.

For the one-soil-layer application, the characteristics for the aggregated soil were de-
rived from the characteristics of peat and mineral soils assuming that: a) peat soils
comprised 0.4 m peat overlying 0.4 m mineral; b) mineral soils contain no peat in the
profile; and c) the catchment area consisted of 2/3 peat soils and 1/3 mineral soils. The
aggregated soil characteristics for the one-layer application was thus weighted with 1/3
peat characteristics and 2/3 mineral soil characteristics. When the two layer model was
used, the upper layer was assumed to be pure peat (with appropriate characteristics) and
the lower layer was assumed to be mineral soil (with appropriate characteristics). The
1/3 peat to 2/3 mineral partitioning derived above was used to set the relative depths of
each layer (lower layer twice as thick as upper layer).

The ranges of lake and soil physical characteristics (fixed parameters) used for the
model calibrations at Round Loch are given in Table 19.1. The average optimal values
of the adjustable parameters (weathering and selectivity coefficients) resulting from the
multiple calibrations are given in Table 19.2.

Model Application to AlIt a Mharcaidh

Stream chemistry is sampled routinely twice a week and bulk precipitation weekly from
six collectors widely distributed within the catchment. We use data from 1986 for this
calibration of  Alit  a Mharcaidh (Jenkins et al. 1987; Harriman et al. 1987). Runoff
measurements give a mean annual streamflow of 0.945 m yH from a precipitation input  of
1.064 ra yr -1  (Institute of Hydrology,unpublished data). The water yield of the catchment
is  thus 87%.  As this is a stream site the  water  surface area of the catchrnent is very small
and so an arbitrary value of 0.1% was used. This was allowed to vary between 0.0 % and
0.2 % to account for year to year variation in catchment antecedent wetness.

Seasalt was added to measured bulk deposition to match the observed streamwater
CI concentrations given the water yield and the assumption of  CI  steady state. This
corresponds to an effective occult seasalt deposition equal to 1.153 times wet deposition.
No dry deposition of S is included because sea salt adjusted 504 deposition combined
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Table 19.1. The ranges of physical and chemical characteristics used for model optimiza-
tion at Round Loch and AlIt a Mharcaidh.

Variable AlIt aMharcaidh Round Loch
1-layer 2-layer 1-layer 2-layer

SOIL 1
Depth (m) 0.73-0.93 0.26 0.7-0.9 0.27

Bulk density (kgm-3) 824-1024 40-240 669-869 200400

Cation Exchange capacity (men kg-1) 389-480 1150-1215 165-265 1046-1146

SO4 adsorption capacity (meqkg-1) 9.8-13.8 0.01-0.5 2.5-6.5 0.01-0.5

SO4 adsorption half saturation (meqm-3) 450-650 205-405 440-640 440-640

Al solubility coefficient (loglo) 8.7-9.4 8.7-9.4 8.7-9.4 8.7-9.4

CO2 partial pressure (atm) 0.033 0.033 0.033 0.033

III Organic matter content (mmolm-3) 100 100 100 100


SOIL 2
Depth (m)0.57 0.53

Bulk density (kgm-3) 1020-1220 900-1100

Cation Exchange capacity (meqkg-1) 106-206 51-151

504 adsorption capacity (meqkg-')

SO4 adsorption half saturation (meqm-3)

13.2-15.2

	

572-772

5.75-7.75

440440

Al solubility coefficient (log10) 8.7-9.4 8.7-9.4

IIIII CO2 partial pressure (atm) 0.033 0.033

Organic matter content (mmol m-3) 100 100

WATER

AI solubility coefficient (log10) 8.6 8.6 8.6 8.6

Relative area (%) 0.0-0.2 0.0-0.2 9-15 9-15

Runoff (m yr-I ) 0.83-1.03 0.83-1.03 0.83-1.03 0.83-1.03

CO2 partial pressure (atm) 0.0033 0.0033 0.0033 0.0033

Organic matter content (mmol  I11-3) 0.0 0.0 0.0 0.0 : .
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Table 19.2. Optimized weathering rates and selectivity coefficients used in all model runs.

AlIt a Mharcaidh Round Loch

Top Bottom Top Bottom
one-layer two-layer one-layer two-layer

Weathering Rates (meq yr-1)
Ca 13.8 1.0 16.6 20.0 2.6 17.4
Mg 1.9 0.2 2.8 0.6 0.0 0.0
Na 32.9 1.9 32.2 2.2 0.3 2.2

	

1.6 0.1 1.5 3.4 0.3 1.7

Selectivity Coefficients (loglo)
Ca  1.22 -1.57 2.93 -1.11 -2.06 0.02
Mg 1.12 -1.00 2.31 -0.54 -1.01 0.06
Na:  -0.35 -0.80 -0.47 -0.30 -0.26 -0.41

	

-4.67 -6.07 -4.12 -4.40 -4.60 -4.74

with the observed water yield reproduce the observed stream SO, concentrations. This
result is consistent with the remoteness of this site from sources of anthropogenic S and
our previous assumption that soils in the region do not adsorb significant amounts of SO.
(Table 19.1).

Soil parameters and percentage soil base saturation were derived from soil samples
taken within the catchment (Macaulay Land Use Research Institute, unpublished data).
The catchment consists of three main soil types, alpine podsols, peaty podsols and blanket
peat. For this application the blanket peats were considered to be relatively unimportant
and the alpine and peaty podsol characteristics were weighted by bulk density

and depth to give aggregated soil parameters for the one layer model. For the two layer
models, no weighting was attempted and the data for the organic and mineral horizons
of thc peaty podsol were used for the upper and lower layers, respectively.

The ranges of stream and soil physical characteristics (fixed parameters) used for
the model calibrations at AlIt A Mharcaidh are given in Table 19.1. The average optimal
values of the adjustable parameters (weathering and selectivity coefficients) resulting from
the multiple calibrations are given in Table 19.2.

Calibration of the Modified Structures

The calibrations proceeded in a sequential manner. First, the concentrations of the stream
CI and SO4 were calibrated by adjusting occult and dry deposition of sea salts and
gaseous/particulate S compounds under the assumption that these ions are in approx-
imate steady-state with respect to atmospheric inputs. Next, the NO3 and Nift con-
centrations were calibrated by adjusting first-order uptake functions to match observed
surface water concentrations. Finally, the base cation concentrations were calibrated using
an optimization procedure based on the Rosenbrock (1960) algorithm.

The base-cation calibration involved fitting the results of long-term model simulations
to currently observed water and soil base-cation data (the target variables). The target
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variables consisted of: surface water concentrations of Ca, Mg, Na, and K; and soil

exchangeable fractions of Ca, Mg, Na and K (for both soil layers, if applicable). The
target variables thus comprise a vector of measured values all of which must be reproduced
by the model if a calibration is to be successful. The use of multiple, simultaneous targets

in an optimization procedure provides robust constraints on model calibration (Cosby et
al. 198W.

Those physico-chemical soil and surface water characteristics measured in the field
(see Table 19.1) were considered "fixed" parameters in the model and the measurements

were directly used in the models during the calibration procedure. Base-cation weathering
rates and base-cation exchange selectivity coefficients for the soils are not directly measur-

able and were used as "adjustable" model parameters to be optimized in the calibration
procedure (see Table 19.2).

The calibrations were performed on simulations run from 1845 to 1985. The historical

deposition sequence over this period was estimated by scaling currently observed depo-

sition to a reconstruction of S emissions for the U.K. (Warren Spring Laboratory 1983,

1987). This scaling procedure has been described elsewhere for regions in North America
(Cosby et al. 1985b). After each historical simulation, the model variables in 1985 were
compared with observations in 1985; the adjustable parameters were modified as neces-

sary to improve the fit; the historical simulation was re-run; the procedure was repeated

until no further improvement in the fit was achieved.

Because the measurements of the fixed parameters and the target variables are subject

to errors, we implemented a "fuzzy" optimization procedure for calibrating the models.

111

The fuzzy optimization procedure consisted of multiple calibrations of each model struc-

ture using perturbations of the values of the fixed parameters and estimated uncertainties

of the target variables. The sizes of the perturbations of the fixed parameters were based

on known measurement errors or spatial variability of the parameters (Table 19.1). The

uncertainties in the target variables were estimated as the measurment errors of the vari-

ables (5 peq' for concentrations of surface water variables; 0.5 % for soil base saturation
variables).

Each of the multiple calibrations began with: i) a random selection of perturbed values
of the fixed parameters; ii) a random selection of the starting values of the adjustable

parameters; and iii) specification of uncertainty in the target variables. The adjustable

parameters were then optimized using the Rosenbrock algorithm to achieve a minimum

error fit to the target variables.

The optimization algorithm was stopped and the calibration considered complete when

the simulated values of all target variables were within the pre-specified uncertainty limits

for the observations. This procedure was undertaken ten times for each structure at each

site. The final calibrated model for each structure at each site consists of the mean


parameter and variable values of at least 8 successful calibrations.

Using the fuzzy optimization based on multiple calibrations, uncertainty bands for
the. model simulations can be presented as maximum and minimum values •for output
vanables in any year derived from the group of successful calibrations. These uncertainty
bands encompass the range of variable values Which v.iere simulated given the specified

uncertainty in the fixed parameter values and measured target variables. When examining
simulation results, the maximum and minimum values are both plotted through time. The

"true" model calibration is taken to fall between these lines. When comparing simulation
results from two model structures, the overlap of the uncertainty bands provides a measure

•

•
•
•
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of the degree to which the structures behave similarly.
The calibrated models were used for 140 year hindcast reconstructions of lake and

soil water chemistry and for 50 year forecasts under two different scenarios of future
deposition: 1) constant deposition at 1985 levels until the year 2035; and 2) a 30%
decrease in deposition by year 2000 with constant deposition at that level until year 2035.
The effects of the structural modifications were assessed by comparing hindcasts and
forecasts for the different structures.

Results and Discussion

Succesful calibrations were obtained for all three model structures at both sites. The
simulated fits to observed chemistry were within 5 peci for all surface water variables
and within 0.5 % for soil base saturation variables. A detailed examination of 'goodness
of fit' of any single structure to the observed data is not included here because the inter-
comparison of model structures is the primary interest. Our evaluation of the inter-
comparisons focuses on differences in hindcast and forecast values of several variables
that are important in the assessment of effects of acidic deposition (Ca, Mg and alkalinity
concentrations in surface water and the base saturation of the soils).

The first comparison is of the effects of one-layer  vs  two-layer structures utilizing the
simple flow routing implementation of the two-layer model (all water flows through both
soil layers). This comparison is made for both catchments. The second comparison is

of the effects of flow routing  vs  no flow routing utilizing the two-layer structures only.
This comparison is performed only on the Allt a Mharcaidh (the presence of the loch
at the Round Loch site serves to integrate and perhaps obscure the effects of two-layer
interflow).

ne-layer/Two-layer Co mparison

Simulated Ca and Mg concentrations ;or the Allt a Mharcaidh catchment show distinctly
different patterns for the one-layer vs the two-layer structure when examined over the
period 1845 to 2035 (using the constant deposition scenario for the period 1986 to 2035;
Figure 19.2). The differences are not as pronounced for the Round Loch catchment (Figure
19.2). We would expect that a more complex (two-layer) structure containing a greater
number of parameters would be less constrained than a simpler (one-layer) structure when

given the same data availability. This implies that simulations derived from the different
structures would be expected to differ at times when observations are not available (e.g.
the hindcast and forecast years 1845 and 2035 in Figure 19.2). The differences in hindcast

and forecast values for the two structures applied to Allt a Mharcaidh (Figure 19.2) are
thus to a certain extent expected. An objective choice of a "correct" structure for Allt a
Mharcaidh cannot be made given the data used here. At the only times in the simulations
when observations are available to constrain the model (1985), the two structures fit the
observations equally well.

The differences that do exist in hindcast and forecast Ca and Mg concentrations be-
tween the two structures at Allt a Mharcaidh are only on the order 5 peq1-1 which is

approximately the magnitude of measurement error. These differences are thus not op-
erationally important. Furthermore, the differences between the simulations based on
the two structures diminish as the simulations approach the calibration year. Given
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Figure 19.3. Simulated annual average soil water alkalinity and per cent base saturation

for Allt a Mharcaidh for the hindca.st year, calibration year and two forecast years. Shaded

bars are for the one-layer structure; open bars are for the two-layer structure without flow

routing.

the relative unimportance of the differences between structures for the Allt a Mharcaidh

(and the lack of differences between structures for Round Loch), we conclude that the

performance of both the one-layer and two-layer structures are similar for these two catch-

ments. A one-layer structure is sufficient for long-term simulation of these systems given

currently available data. Nevertheless, the differences in hindcast and forecast Ca and

Mg concentrations at Allt a Mharcaidh point out a problem with identifiability of model

structures. Improved confidence in the structures might be achieved by a more rigorous

parameterization of the models using data from additional sources (such as calibration to

paleo-ecological pH reconstructions).

A gradual acidification of soil and soil water is evident in both the one-layer and two-

layer structures at Allt a Mharcaidh (Figure 19.3). This is seen as aa historical decrease

in soil water alkalinity and a decrease of soil base saturation between 1844 and 1985. For

the constant deposition scenario there is a further small acidification response between

1985 and 2035 while the 30% deposition reduction scenario shows a slight increase in both
variables (Figure 19.3). Simulated soil and soil water characteristics from the one - layer

structure are not simply the means of the simulated characteristics for both soils in the

two-layer structure.

The behavior of the soils in the two - layer structure highlights some important differ-
ences in their responses to acid deposition. The upper soil layer has a high base saturation
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compared to the lower soil layer. Because of the low bulk density in the upper soil (Ta-




li ble 19.1), however, there are fewer exchange sites and fewer base cations held on the soil.

Consequently, the upper layer responds quickly to changes in atmospheric deposition with

base saturation falling from 10.5% in 1845 to 8.9 % in 2035 (assuming constant present
day deposition levels from 1985 to 2035) whereas the lower mineral layer changes from
29 % to 2.3 % under the same scenario. Soil base saturation in the one-layer structure,
on the other hand, changes less rapidly than the upper soil of the two-layer structure
(Figure 19.3) because of the aggregated nature of the soil characteristics in the one-layer
s tructure.

With respect to soil water chemistry, the one-layer model demonstrates a drop in al-
Icalinity of 28 peql-1 between 1845 and 2035 (constant deposition for 1985 to 2035). The
upper layer of the two-box structure drops 38 peg I-1 over the same period and the low
layer drops by 36 peq1-1. These predicted relative changes in alkalinity are consistent
with the expected behavior of organic and mineral soils and the absolute levels of alka-
linity are important with respect to streamwater acidification. The predicted alkalinity
of the organic top layer is negative in 1985 whereas the mineral lower layer retains a high
alkalinity (Figure 19.3). Clearly, if we assume that during baseflow the dominant flow
path is through the entire soil column the surface waters will be well buffered by base
cations from the bottom soil layer and will not show rapid acidification. During storm
events, however, if we assume that a high proportion of water will flow along surface
and near surface preferential pathways thereby only contacting the organic top soil layer,
the water will not be buffered by base cations from the soils and severe acid shocks will
occur in the drainage waters. The one-layer structure is incapable of reproducing such
episodic responses. It may be that short-term episodic data will prove the most useful for
discriminating  between  one-layer and two-layer structures.

Routing/No-Routing Comparison

The differences between simulations (based on two layers) with  vs  without flow routing
are again operationally small for simulated Ca and Mg concentrations in Allt a Mharcaidh
(Figure 19.4). The differences are less than 5 peq VI, the measurement error. This result
suggests that annual average surface water data alone are not sufficient to constrain the

••

203

Alit a Marcaidh

Figure 19.4. Simulated annual average Mg and Ca concentrations for Allt a Mharcaidh.
Solid lines are maximum and minimum values for the two-layer structure without flow
routing; dashed lines are maximum and minimum valuei for the two-layer structure with
flow routing.
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• Figure 19.5. Simulated annual average soil water alkalinity and soil water hydrogen ion
concentrations for Allt a Mharcaidh for the hindcast year, calibration year and two forecast
years. Shaded bars are for the two-layer structure without flow routing; open bars are for
the two-layer structure with flow routing.

calibration of a model if preferential flowpaths are important. Based on this interpretation,
we can conclude that two-layer structures will be identifiable and necessary for long-term
simulation of surface water chemistry only in those cases where the hydrological routing
results in a significant proportion of annual through-flow bypassing a significant portion
of the soil. In upland catchments the soils are generally thin and bypassing flows may
be rare except during extreme events. Thus, a one-layer structure may be sufficient for
long-term simulation of annual surface water concentrations in many cases.

If, however, the intent of the modelling exercise is to simulate changes in the soil
or soil water characteristics, two-layer structures may be necessary even in the absence
of flow routing. Clearly, the upper soil will exhibit the same characteristics for both
structures because all water flows through the layer in each case (Figure 19.5). The
effect of the flow routing is demonstrated by the higher alkalinity and lower hydrogen ion
concentration in the lower soil layer for the structure with flow routing compared to the
structure without flow routing (Figure 19.5). The flow routing allows 35% of the water
draining the upper layer (which is high in acidity) to bypass the lower layer. Hence, the
exchangeable base cations and alkalinity generated by weathering in the lower layer are
not as rapidly depleted.
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Conclusions

We have compared the effects of inclusion of one or two soil layers and flow routing on the
simulation of long-term acidification of surface waters for two upland U.K. catchments.
The comparisons were based on MAGIC using modified structures for the soil compart-
ments. Three model structures were implemented for the catchments; a single-soil-layer
model, a two- soil-layer model and a two-layer model with simple flow routing. The struc-
tures were calibrated using a fuzzy optimization procedure that provided estimates of
calibration uncertainty for all variables. All three structures at both sites were capable

1111
of reproducing observed, present-day surface water chemistry. Differences were evident
among the various model structures, however, in the simulated soil variables. These dif-
ferences were related to the difficulty of estimating base cation weathering and soil base
cation exchange inthe aggregated or distributed structures. The differences in simula-
tion results among the model structures were small, however, compared to measurement
errors. We conclude that, given currently available data,a one-layer model structure is

sufficient for long-term simulation of acid deposition effects on the sites studied.
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Cell-division sequence motif
Sot —We wish to point out that a struc-

tural motif shared among three transform-

ing protein classes, the papovavi ra

large-T antigens. the adenoviral El A pro-

teins and the v- and c-myc oncoproteins'

is also present in the E7 transforming

proteins of human papillomaviruses' and

the CDC25 gene, that is a mitotic regula-

tor of yeast. The region encoding the

shared motif has recently been demon-

strated to be required by the large anti-

gen of simian \ lilts 40 (SV40) both for

transforming function and for its specific

binding to the 'negative oncoprotein' RB',

the putative human retinoblastoina gene

product, to which thc El A protein also

binds specifically'. I n addition, this region

of SV40 large-T. El A and human c-myc

has been shown to be required for co-

transformation with ras oncogenes of pri-

mary cells (see bibliography in ref. I).

The motif is:

-Ben tarn-

ISE
NIc
D

where the brackets indicate alternatives at

' a given position; the dashes, any amino

acid; N. asparagine; D, aspartic acid; C,

cysteine; E. glutamic acid; S. serine; T.

thrconine; and X, a spacer of I -8 amino

acids, often containing a proline and.ser-

ines. There is a strong correlation between

the presence of an aspartic acid in the first

position .and a hydrophobic amino acid in

the second position. Thc predicted alpha

helix is dominated over thc remainder of

its length by polar residues. Studies on the

S V40 large-T and the adenoviral E I A pro-

teins show that mutation of the glutamic

acid in the sixth position of this descriptor

to a positive amino acid inactivates the

transforming activity of thc .proteins'. In

one of the v-rnyc oncoproteins, at least

one serine/threonine site in this region is

phosphorylatet This may also be how

the region is activated in normal cellular

proteins that contain the motif. while 61

Maine oncoproteins activation may be the

result of the substitution of scrinc or th re-

onine by glutamic acid of aspartic acid.

This fits the apparent and unusual equiva-

lence of all four amino acids in at least one

position in the motif.

Using a sequence regular-expression

handler and a modified Chou- Fasman

secondary-structure prediction algorithm

to annotate sequences with potential

secondary structure, all matches to thc

descriptor within the NBRF protein

sequence database (release 16) and the

translated Genbank database (release 55)

• were identified out of over 11,000 proteins.

They included nearly all of the v-myc and

c-nwe proteins, nearly all of the El A and

large  -r proteins, and six of the eight E7 


proteins. Additional matches among prii-

te ins related to either cell transformation

or division include a deer papillomavirus

protein, a glycoprotein of Rift Valley fever

virus and, pedraps most importantly, the

CDC25 protein of yeast'. Only 12 func-

tionally unrelated proteins were clearly

identified. It is difficult to assess whether

or not the pattern fails to match other

known tninsforming proteins (for exam-

ple. fos, jun and myb) because their mol-

ecular mechanisms are different or

because the pattern itself is incomplete.

Given the functional complexity of onco-

nenesis, we currently favour the former

and therefore, believe the pattern's speci-

ficity to be nearly 10n. In which case,

this may be one of the most diagnostic

protein functional patterns known.

Thc importance of the match with the

CDC25 protein is that it interacts with a

known protein kinase WEE1 + and appa-

rently modulates the activity of CDC2,

another mitotic regulator protein': inter-

estingly, the ability of CDC2S to initiate

cell division shows dosage effects, which

arc compatible with a protein -protein

binding titration, such as is now known for

the interaction of SV40 large-T or El A

with RB.

Thus, we propose that the majority of

proteins containing the motif carry out

one of the required steps in thetell divi-

sion competency cascade of deactivating a

cell division repressor (or activating a cell

division activator). That these proteins

will only transform primary cells in the

presence of  ras  oncogenes suggests that at

least one other cell-division signal trans-

duction pathway exists.
JAMES F1(1(11:

TI:nwl.c F. Siu

Dana-larher Cancer Institute,

Harvard University,

44 (Haney Street.

Boston,

Massachusetts 02115. USA

I. Fi5ge.1..WcInter.T..5maIi.rt.& I ind. 61.
114IJ-Das (191 141.
titalwi.s.. Arr.?... I'. tic Enna J. 4.2329-2334

(1'110).
Phan.. w.C.. I rc. Munro. 1Inw1.1`.31.  Ceti


53. Mg-547 11443113
IleCaprio.1.  al. 64/Iin Ow plc..).
Whyie. et al. Nature  331. 124 - 1

O. MN!! K.. 1behmans3 C.. Linen. &

PaNdlimkr, I.  Oaraxene I.  47-1041191:71.
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Reversal of acidification
Si R—Battarbee et at.'  recently provided a

reassuring account, based on diatom and

lake-water records. that lake acidification

in Scotland has either been reduced or has

been reversed because of reductions in

SO„ emissions since 1970. Our recent

modelling results simulating long-term

changes in the acidity of Scottish lake and

stream waters?' also suggest a recent

8.

5.

pH 5

ONN N 0
NINO

no Qom 0  yeaf


44-.4

Fig. I Round Loch of Glenhead simulation of

pli compared with palacoecological data'.

Solid line, palaeoccological reconstruction;

dashed line. MAGIC reconstruction with

95% confidence bounds; dot. MAGIC

reconstruclion.

6-

5.5

pH 5.0

" • ,

1660 1900 1240 1060 2020 2060 2100

Fig. 2 Dargall Lane stream pH MAGICsimula-

tion'. Solid line, prediction with future emis-

Mins at 1955 values: dotted line, prediction

with emissions declining a further 5(1to from

1955 values over the next 2(1 years.

stabilization for some ca tchments.

Figure I. for example, shows a pli

simulation for Round Loch of Glenhead

(south-west Scotland). using t he MAGIC

model. which compares well with the

diatom reconstructed  p  Figure 2 shows

the response for Dargall Lane. •a

stream draining into Loch Dee in the

Galloway region of south-west Scotland.

which shows similar declines over the past

100 years up to the TM% The model

response also indicates a recovery in the

1980s which corresponds closely with the

recovery of Battarbee  et al.

Long-term predictions with the

MAGIC model suggest that the recovery

or stabilitation is probably temporary,

provided recent (1985) deposition levels

are maintained. Qualitatively, this result

may seem surprising. But the predicted

decline results from the -low rate of

weathering and the_highly base-depleted

cation-exchange store which continues to

be depleted  at  current acidic-oxide depo-

sition rates. To avoid further declines

in stream pH and ensure a significant

recovery, for Dargall Lane. larger reduc-

tions in deposition of acidic oxides are

required. To stabilize stream pH to pro-

vide a very modest improvement at

Dargall Lane. for example, a further 50

per cent reduction in deposition from 1985

levels is needed. according to the esti-

mates in Fig. 2.

Different catchments will show differ.
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cnt responses dependent on factors such
as soil-base saturation levels, sulphate
adsorption and release mechanisms,
weathering rates, hydrological factors and

deposition rates. Although there are
many uncertainties in the MAGIC
model', the diatom records suggest that
the model is applicable under these cir-
cumstances. Indeed. thc model provides
the only means of making site-specific or
regional predictions of long-term future
behaviour of stream and lake acidity.

On this basis, the observed improve-
ments in Scotland, which are also sug-
gested by the MAGIC model, should not
be viewed as a case against further con-
trols of acidic oxide emissions. Indeed, the
modelling evidence suggests that further
large-scale reductions are required and
the amelioratory effects will be relatively
rapid. Preliminary estimates for the
United Kingdom. using thc MAGIC
model, indicate deposition reductions of
around 50 per cent from 1985 levels are
required to obtain significant long-term
recovery"' for much of the British uplands.

NeAl.
PAUL WI OTEMEAD

ALAN JENKINS

Institute of Hydrology,
Crovenarsh Gifford.
Wallingford OX 10888, UK
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73.385-392 (1987).
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Punctuation and selection
SIR - Radical theoretical positions in
science are like programme trading in the
securities markets: during euphoric
uptrepds their authors are not averse to
taking full credit; but in thc downward
spiral that inevitably follows whcn reason
returns, those associated with thc move-
ment no longer wish to bc acknowledged.

This parallel came to mind as I read
Steven Stanley's charge that John
Maynard Smith. in his criticism' of
Eldredge and Gould's punctuational
model Cif evolution, has seriously mis-
represented Stanley's writings on species
selection. Actually, Maynard Smith men-
tioned Stanley only twice. Thc sccond
mentioned deals with a dispute over
whether the evidence for punctuation has
been in thc form of measured morpholo-
gical change or. instead, thc duration of
named taxa in the fossil rccord Stanley
does not mcntion this in his reply, so we
can assumc that his discomfort focuses on
the other point: the decoupling of macro-
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evolution front microevolinion, acid the
role of random elements therein.

Specifically, Maynard Smith is charged
with having "quoted out of  context-  a
statement of Stanley's that refers to a
-strong random element" in speciation.
have checked the passage in question
(p.187 of ref. 3) and find my reading to be
the same as Maynard Smith's. Indeed.
shortly afterwards (p.193 of ref. 3) Stanley
makes Ole Case that species selection should
not be considered as a subdivision of
natural selection, and he asserts (p. 212)
that "transitions arc opportunistic in
nature, reflecting the *experimental'
nature of specialion":

In the matter of quotes out of context,
however, readers should consider Stan-
ley's own statement that "although he
never considered the process in detail,
Wright asserted that selection operates at
the level of the species...." Wrir,lit's
paper' thus referenced is his classic  Modes
of Selection,  in which thc concluding
sentence takes the rather more eclectic
stance that -The course of evolution of
vertebrate life and of life in general 'has
been guided throughout by a hierarchy of
processes of selection ranging from selec-
tion between genes to selection between
orders, classes and even phyla." Signifi-
cantly. the same paper opens with what
Wright adled the dogmatic statement of
his general position with regard to CVO II-

lion: "Adaptation rather than mcrc
change seems to me to bc t hp central prob-
lem. The only mechanism for evolution-
ary adaptation that has held up under
invesligation is natural selection." In
Stanley's main publication on patterns of
evolution', the concept of adaptation is
conspicuous by its virtual absence.

Romucr B. ECK1 IA RI it
The Pennsylvania State University.
University Park,
Pennsylvania 16802. USA

I. Stanley. ti.M.  Meare  333,214 (1911%).
Maynard Suitt/J. Nanire3.10.516 1987):)32. 311 (19KM.
stinky.  S.M.  Maentewdution  Erceerun. San Eranciww.
E(N).
Wright. 5,  Am. Nat.  10. 5 0956).

Understanding aggression
SI R- Had Melvin Konncr been willing to
take our book  (Aggression: Conflict in
Animals and Humans Reconsidered) a  little
more seriously, he might have understood
it rather better'. We are not, as he sug-
gests, anti-sociobiological; on the con-
trary, we endorse the sociohiological
enterprise and attempt to reassess the
significance of evolutionary theory for an
understanding of aggression.

In this process of reassessment wc do

indeed criticize the work of several
sociobiologists, including Konner himself
(though not, as hc suggests, either Robert
Axelrod or Richard Dawkins). Our
quarrel with Konncr has to do with his

NATURE VOL. 334 14 rity )988 •
Use of selected ethnographic material to
support the view that "no cultural training,
however designed. can eliminate the basic
core of capability of violence that is part of
the makeup of human beings'. Since our
book was sent to press, the authors of the
relevant ethnographic material have
themselves complained about this misuse
of their work'.

The proper response to criticism is •
counter-criticism. Konner ignores this and
all other substantive issues, contenting
hi nisei( instead with a rhetorical plea: •
- Respected critics of sociobiology! Surely
you can do better than this!". The answer
is obvious: "Respected sociobiologists!
Surely you can do better than Konner!".

Joins R. DORANE

Department for External Studies.
Univershv of Oxford

Oxford OX1 ilA.U1:

I. Koitnsw. M. Meure333.40511M41.
2. Konnet. M. Me ning/ed 87.1e.267 (1 leinentson.1.961on.

4.
). Robareha. CA. & Mum. R.K.  Ana Andtropol. *NCI.

356- 30 09/04

Segregation of cystic
fibrosis allele

a-Kitzis et at (Nature  333. 215; 1988) •
suggest that the high frequency of the
cystic fibrosis (CF) mutant gene in Cau-
casian populations may have arisen from
die preferential inheritance of the CF
chromosome from male to male. This
intriguing hypothesis was based on the
haplotyping of 60 asymptomatic siblings
of CF patients by DNA probes. Twenty of •
22 normal homozygotes were girls, 16 of
21 paternal CF chromosomes were inheri-
ted by boys. This is at odds with our own
haplotyping of 60 unaffected siblings from
41 German CF families. Tcn girls and 10
boys were typed Komozygous normal.
Eight of 17 paternnl CF chromosomes and
15 of 23 (65%) maternal CF chromosorries
had been passed to boys.

studies. thc pro
If onc compiles the data from the twoportion of maternal and •

paternal CF alleles is about I to 1 in both
male and female CF carriers, as expected
for autosomal mendelian inheritance.
Flence, an unfortunate sampling bias may
he the most likely explanation for the
unexpected segregation of the CF allele to
the male germline observed by Kitzis  et al. •
The data still do not exclude thc possibility
of a slightly more frequent transmission of
CF chromosomes to males. More exten-
sive data from pedigree analyses and
population studies on unrelated indi-
viduals should settle the issue.

B. Temarata64 •

A. Asoignirxmv
T, PARNEDDE

E Ht1,413121E- SER
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4111 INTRODUCTION

In recent years many lakes and streams in upland Scotland have demonstrated increased
surface water acidity (Harriman & Morrison 1981). This has been attributed to the effect of
increased anthropogenic sulphur deposition since pre-industrial times in both -moorland
catchments and afforested systems (Flower  el al.  1987). The timing of response of the surface
water to increased input of anthropogenic sulphate is thought to be controlled by the
physiochemical characteristics of the catchment, namely, bedrock, soils and vegetation.
Evidence for the processes and mechanisms involved in the titration of acidity from catchment
inputs to outputs is still being gathered, but a quantification of the change in water acidity and
the timing of changes in acid status has been derived from two approaches: long-term
hydrochemical simulation models and palaeolimnological reconstructions. The two approaches
differ in that the palaeolimnological reconstruction may be viewed as a direct measure of a
surrogate acidity indicator whereas the models, although having their roots in hydrochemical
laws, draw largely on a conceptualized representation of the major processes thought to be
operating, and so at best can only be regarded as a simplification of the catchment system.
Given this situation, model hindcast simulations require validation against long-term water-
quality data sets. Clearly, few data sets of sufficient time period exist with which to test and
validate either approach but increased confidence in both techniques would be gained if the
reconstructions from the two are found to be consistent. Furthermore, the international
concern over the problem of surface water acidification and its ecological effects and a stated
policy of promoting amelioration strategies (Mason & Seip 1985) demands that predictions of
surface water quality are made to assess the ability of systems to reverse acidification under
different emissions and land-use strategies.

•

•

•

•
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Modelling long-term acidification: a comparison with diatom

reconstructions and the implications for reversibility

BY A. JENKINS', P. G. WHITEHEAD', B. J. COSBY' AND H. J. B. BIRKS'

Institute of Hydrology, Wallingford, Oxfordshire 0 X10 8BB, U.K.

'Department of Forestry and Environmental Studies, Duke University, Durham,


North Carolina  22706,  U.S.A.
Botanical Institute, University of Bergen, Allegaien  41, N-5007  Bergen, Norway

A model of long term acidification (MAGIC) is applied to a range of catchments in
Scotland that are subject to different pollution inputs and land uses. The simulated
historical trends in pH are compared with data from palaeolimnological recon-
structions undertaken at the same sites. Both techniques produce similar historical
acidification trends and, with some exceptions, closely match observed present day
pH. The MAGIC model results indicate that pollution inputs and land-use, particularly
afforestation, have significant effects on surface water acidification. Moreover, the
model indicates that reversibility may be occurring at several sites. Reversibility of
acidification is further explored by using the model in predictive mode under several
scenarios for reduction deposition.
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We use the model of acidification of groundwater in catchments (MAGIC) to simulate

historical water quality and to compare the pH reconstruction to those determined by diatom

analysis of sediment cores from the same lake sites. Six sites are chosen to cover a range of

deposition loadings, land-use and bedrock geology in Scotland (Battarbee & Renberg, this

symposium). The results from the calibrated models are compared both historically and to

present-day water chemistry; the models are run forward to assess reversibility under a range

of scenarios for deposition reduction.

THE STUDY SITES AND DATA SOURCES

The sites selected are Round Loch of Glenhead, Lochan Uaine, Loch Tinker, Loch Chon,

Loch Doilet and Lochan Dubh (Battarbee & Renberg, this symposium). Rainfall amount and

chemistry are taken, wherever possible, from nearby collectors operated by the Warren Springs

Laboratory under the Department of the Environment monitoring network (Warren Spring

Laboratory 1987). At L. Tinker and L. Uaine, because of the lack of a nearby D.O.E.

collector, mean bulk precipitation data for 1987 for the L. Chon ( Jenkins et al. 19894) and Allt

a Mharcaidh ( Jenkins et al. 1988) catchments were used, respectively. Sea-salts dominate

rainfall at the sites in the west and although sulphate concentrations are at a consistent level

at all of the sites, rainfall quantity is substantially greater on the west coast thereby increasing

the total loading. Mean present day observed water chemistry is taken from the SWAP

Palaeolimnology Programme data-base (Munro el al., this symposium).

To achieve a charge balance to both input and output it was necessary in some cases to add

or subtract cations or anions. Where this was necessary concentrations of chloride or sodium,

or both, were adjusted and the result of the changes generally improved the sea-salt ratio. In

all cases, the changes implemented were within the annual variation in chemistry at each site.

RECONSTRUCTION TECHNIQUES

Details of diatom analysis ( Jones et al. and Kreiser et al., this symposium), dating procedures

(Appleby el al., this symposium) and techniques for reconstructing historical pH (Birks et a/.,

this symposium) are fully documented in this volume. A full description of the MAGIC model is

given by Cosby et al. (1985 a, b, 1986) and details of the optimization and calibration procedure

used for these applications are identical to those given in Jenkins and Cosby (1989). Partial

pressure of CO, in soil and lake water was identical for all applications. Organic matter

concentration in soil water was 100 mmol rn-3 at all sites and proportional to measured total

organic carbon (TOC) in the surface water.

COMPARISON OF RECONSTRUCTION TEcnNioues

The historical pH reconstructions at each site are given in figure 1. The MAGIC pH

reconstruction is shown as an envelope curve, the width of which represents uncertainty in the

model output; the 'true' pH value may lie anywhere within the envelope. These uncertainty

bands encompass the range of variable values that were simulated given the specified

uncertainty in the fixed parameter values and measured target values used in the optimization

procedure ( Jenkins & Cosby 1989). Values for pH inferred from the diatoms are represented
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FIGURE 1. Historical pH trends reconstructed by MAGIC (thick lines) and diatoms (thin lines with asterisks) at
(a) Round Loch of Glenhead, (6)Lochan Uaine, (c)Loch Tinker, (d)Loch Chon, (e) Loch •Doilet and
(I)Lochan Dubh.

•

as a series of points (asterisks), connected by thin lines. These represent the upper and lower

standard errors of prediction for the weighted average pH reconstructions, estimated by

bootstrapping (Birks ela/.,  this symposium). The overlap between the two reconstructions

demonstrates a close agreement between the techniques in terms of the general pattern of

historical acidification and timing of change. At L. Dubh and L. Uaine, however, the

uncertainty bands from the two methods demonstrate the poorest agreement. These are high

altitude sites where little pH change is predicted from a slightly acidic (pH 5.5-6.0)

background (1847) level. At L. Uaine, MAGIC predicts a higher background pH although the

uncertainty bands converge from 1940 onwards. At L. Dubh the diatom reconstructed pH is

consistently lower than the MAGIC reconstruction. The predicted magnitude of pH change

through the reconstruction period is consistent, however, being only  ca  0.3 pH units for both

methods. The background pH derived from both techniques for all lakes are in close agreement

(figure 2a) and neither method shows a systematic bias. Comparison of observed and simulated

present day pH (figure 2  b),  however, shows that both the tirnoic reconstructions, and to a lesser

extent the diatom reconstructions, tend to underestimate observed mean pH. This problem

[ 211 ]•
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FIGURE 2. A comparison of (a) MAGIC and diatom reconstructed background (ca. 1850) pH and (6) present-day
observed mean pH and that predicted from MAGIC (*) and diatom (o) reconstructions at Round Loch of
Glenhead (I), L. Chon (2), L. Dubh (3), L. Tinker (4), L. Doilet (5) and L. Uaine (6). Solid bars represent
the range of present-day measured pH values at each site.

tends to be exacerbated at pH greater than 5.5 although the simulated pH is almost always

within the range of measured pH values at any site (figure 2b).

5. REVERSIBILITY OF ACIDIFICATION

All of the MAGIC reconstructions demonstrate some degree of reversibility since the late 1970s

(figure 1) as a direct consequence of the reduction in sulphate deposition since 1970. The

deposition trajectory used in the model is based on data from the Warren Spring Laboratory

(1987), which reports an almost linear decrease to approximately 50% of the 1970 level. This

simulated recovery in pH is not always consistent with the diatom reconstructions although at

Round Loch of Glenhead there is an agreement between the two techniques. A possible

recovery is also indicated in the diatom reconstruction at L. Tinker. Battarbee el al.  (1988)

note a trend towards improved pH conditions at several other moorland sites in Scotland. The

implication at the other four sites included in this analysis, however, is that the deposition

trajectory is not applicable at all of the sites or that the pH change is as yet too small to be

identified by diatom analysis.

It is predicted by MAGIC that under a range of deposition reduction scenarios reversibility of

surface water acidification will continue and that greater deposition reductions will lead to

increased surface water recovery (table 1). The simulations are run forward for 50 years to

TABLE 1. SIMULATIONS FROM MAGIC OF MEAN pH BY YEAR 2037 UNDER THREE FUTURE


DEPOSITION REDUCTION SCENARIOS

(See text for details.)
deposition reduction

site
no


reduction
30%


reduction
70%


reduction

Loch Doilet 5.0 5.2 5.4
Loch Chon 5.0 5.4 5.7
Lochan Dubh 5.2 5.3 5.4
Round Loch of Clenhead 4.7 4.8 5.0
Lochan Uaine 5.6 5.7 5.9
Loch Tinker 5.6, 5.7 5.8

I 212 )



•
MODELLING LONG TERM ACIDIFICATION 439

2037 on the basis of three different sccnarios: no deposition reduction from the present day;

a 30% linear reduction to the year 2000, then held constant at that level until 2037; a

70% reduction to the year 2000, then held constant until 2037. At Round Loch of Glenhead,

L. Chon and L. Doilet, a decrease of 70% does not return the surface water to its background

pH level and indeed, the predicted pH may still be too low for a self-sustaining fish population

to be maintained (i.e. mean pH < 5.5) although this will depend on other chemical and

biological factors. It is clear that at these sites further recovery of the surface water pH will only

occur following more rapid recovery of the soil-base exchange capacity. A modelling analysis

of the L. Chon system by Jenkins el al. (19890 demonstrates that soil recovery occurs more

slowly than surface water, even with relatively large reductions in sulphate input. At L. Chon

and L. Doilet, however, the simulated pH reported in table 1 depends not only upon sulphate

deposition levels but also on land management. The reported pH assumes that the forest,

planted in-the 1920s and 1950s at L. Doilet and L. Chon,respectively, remains in place for a

further 50 years. This is unlikely in a commercial forest where trees are normally harvested

after about 60 years. The surface water pH will then depend upon whether the forest is

replanted or not and such considerations are detailed by Jenkins el al. (1980). Furthermore,

at L. Chon the high degree of recovery, simulated by MAGIC, in recent years (figure 1) and the

level of future recovery (table 1) is greatly influenced by the very high calcium weathering

rates, associated with a doleritic dyke, within the catchment. From this point of view L. Chon

is not necessarily typical of forested catchments on bedrock with very low acid neutralizing

capacity, which will recover only slowly (cf. L. Doilet).

•

Soil physical and chemical data were provided by Bob Ferrier, Bruce Walker, Basil Smith

and Cyril Bown of the Macaulay Land Use Research Institute.
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Discussion

D. F. CHARLES (Indiana University, Indiana, U.S.A.). A concern has been raised at this meeting

and elsewhere that computer models such as MAGIC do not account well for organic acids,

especially for any change in output of organic acids from watersheds that may occur in response
to increased acidic deposition.

A. JENKINS. The MAGIC model incorporates only a simple representation of the effects of

organics on water chemistry. Organic matter concentrations for the soil water and stream

water are specified, usually in proportion to TOC, together with dissociation constants derived

from empirical relations. Organic concentrations are held constant at the specified level

throughout the model simulation. In this form, the model has been applied to a Finnish lake

(Liuhapuro) with high DOC (17.2 mg l') and succesfully reproduces the pH decline indicated

by palaeolimnological reconstruction. At present, the effect of increased acid deposition on the

output of organic acid is not well documented and so cannot be represented in the model.
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ABSTRACT

A hybrid deterministic statistical approach is proposed for
modelling the extremes of water quality in catchments subjected
to long-term acidification. The approach is based on process
models describing the long term variations in mean chemistry.
Superimposed on these mean projections are distributions
providing information on the extremes of water quality. The
distributions are fitted to catchment data using maximum
likelihood techniques. The approach is general and can be applied
to the prediction of other water quality variables where samplescan be regarded as belonging to a parametric probability
distribution. A simple implementation of the approach using
chemical data and a calibrated deterministic model for the Allt a
Mharcaidh is used as an illustrative method.
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INTRODUCTION

Mathematical models of complex environmental processes are often

only capable of reasonable prediction of long term mean values of

some quantity of interest. In the area of acidification

modelling, long term models such as MAGIC (Model of Acidification

of Groundwater In Catchments) have been developed to simulate

long term trends and have been applied to a wide range of

catchments (Cosby et al, 1985a,b, 1986; Wright et al, 1986; Jenkins

et al, 1988, 1989; Whitehead et al, 1987, 1988). Whilst MAGIC may

produce acceptable historical and future trends based on average

annual chemistry, there are difficulties in modelling

acidification at time scales of the order of hours and days

(Neal et al, 1988). On this short time scale severe acid pulses

are associated with hydrograph events.

Predictions of the extremes of behaviour during storm periods are

difficult to obtain. Yet knowledge of the extremes is required

in order to assess the likely biological effects of increased

acidification in certain catchments or, alternatively, the

biological recovery given reductions in acid deposition (Ormerod

et al, 1988).

••
•
•
•
•••
•
•
•
•
•
•

Process knowledge gaps, spatial heterogeneity and the cost of

data acquisition contribute substantially to the difficulties

besetting the prediction of extremes solely from process models.

Nevertheless there are strategies at our disposal to provide

information on extremes even when the environmental processes are

very complex.

1
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Much prior information may be obtained from statistical analysis

of the characteristics of data already accrued. There are many

examples where modellers analyse historical data to find a

prescriptive solution to their problem. Simple parameterisations

of probability density functions are fitted to outputs of

processes for river flow management (Chow, 1964) air quality

management (Jakeman and Taylor, 1989) and industrial

manufacturing (Bain, 1978). In these cases, analysis should be

undertaken to guarantee that the data being fitted are

sufficiently independent and identically distributed (i.i.d.) so

that the models can be used to synthesise more random samples or

to extrapolate extreme values with acceptable confidence.
•

Another example where modellers ignore physically based process

knowledge is the use of purely stochastic models. A great deal

of attention has been paid to the construction of autoregressive

moving average models for forecasting (EI-Shaarawi and Esterby,

1982) and, in application, the analysis depends on the

stationarity (or absence of trend) of the data being fitted.
•

In the case of stream acidification the associated time series

often contain long term trends. We cannot solely appeal to

stationarity properties over the longer term to make predictions.

Furthermore, if we wish to improve understanding of the processes

associated with acidification and if we wish to assess control

strategies, then we do need a process based description which is

sensitive to, or largely determined by, the major forcing

0
2

0

0



factors.

Fortunately, it is possible to combine the advantages of

deterministic and statistically based-approaches into one that is

hybrid. This has been constructed by Jakeman et al. (1988) for

predicting extremes of air pollutant concentrations but the

approach is a generic solution to many modelling problems.

In this paper we show a deterministic model, MAGIC, that predicts

the long term trend of stream acidity variables in combination

with probability distribution models that characterise the

variability of the trend. These probability distributions must

belong to some parametric family, our choice here being among two

and three parameter Weibull, gamma and lognormal forms (see

Jakeman and Taylor, 1989, for their mathematical definition). We

develop and apply this hybrid model using data from the Allt a

Mharcaidh catchment purely to illustrate the approach. It is

stressed that insufficient years of data were available to

confirm the validity of all the assumptions underlying the hybrid

approach.

The paper is organised as follows. The general hybrid approach

is stated in the next section. This is followed by a brief

description of MAGIC used to predict the mean annual stream

concentrations. Another section is devoted to analysis of the

characteristics of stream concentration data. The statistical

results allow us to subsequently devise a particular

implementation of the hybrid approach. Predictions of the hybrid

3



•
model are given and some analysis is reported of the sensitivity


of the method to its underlying assumptions. We illustrate the

practical use of the model by applying it to output from the

MAGIC model. The conclusions suggest how the approach could be

further explored and developed.

e
THE HYBRID APPROACH

The hybrid deterministic statistical distribution approach of

Jakeman et al (1988) can be stated in four steps as:

(1) Select a deterministic or physically-based process model of

the phenomenon of interest to make predictions at the desired

intervals (eg annually as in MAGIC).

(2) Identify, from a range of alternatives, the parametric form

of the probability distribution (ie 2 or 3 parameter

Weibull, gamma or lognormali of historical observations

within individual intervals (eg weekly) and assess its

•
consistency over all intervals;

(3) For each prediction interval, fit the predictions of the

model output in (1) to the parametric form identified in (2)

so that its parameters can be estimated;

(4) Calculate the extremes of the probability distribution

function (pdf) for each interval from a knowledge of the

estimated parameter values.

•

The major assumptions of the approach are:

(Al) Within an interval, the probability distribution can be

•
4•

•



characterised by a simple parametric form;

The parametric form (but not the parameter values) of

the pdf at a fixed site remains consistent from one

interval to another;

The deterministic model yields sufficiently accurate

properties of the pdf, such as the mean, to determine the

parameter values.

In the case of stream acidification MAGIC is not presently

capable of predicting any properties of the pdf other than the
mean. Therefore, additional assumptions related to the values of
some of the pdf parameters must be made.

The analytical tools required for the statistical component of
the hybrid approach are:

parameter estimation or fitting methods for probability

density functions;

identification criteria for discriminating among pdf

alternatives.

THE DETERMINISTIC MODEL MAGIC

MAGIC (Model of Acidification of Groundwater In Catchments) is
explicitly designed to perform long term simulations of change in
soilwater and streamwater chemistry in response to changes in
acidic deposition (Cosby et al, 1985a, b). The processes on

which the model is based are:

anion retention by catchment soils (eg sulphate adsorption);

5
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•
adsorption and exchange of base cations and aluminium by soils;

alkalinity generation by dissociation of carbonic acid (at high

CO2 partial pressures in the soil) with subsequent exchange of

hydrogen ions for base cations;

-

weathering of minerals in the soil to provide a source of base

cations;

control of A13+ concentrations by an assumed equilibrium with a

solid phase of A1(OH)3.

A sequence of atmospheric deposition and mineral weathering is

assumed for MAGIC. Current deposition levels of base cations,

sulphate, nitrate and chloride are needed along with some estimate of

how these levels have varied historically. Historical deposition

variations may be scaled to emissions records (Cosby et al, 1986) or

may be taien from other modelling studies of atmospheric

transport into a region (Derwent, 1987). Weathering estimates

for base cations are extremely difficult to obtain. Nonetheless,

it is the weathering process that controls the long term response

and recovery of catchments to acidic deposition, and some
1.estimate is required. An optimization scheme is used to

determine key parameters (Jenkins and Cosby, 1989).

•
The MAGIC programme has been applied extensively to a range of

catchments as mentioned previously and details of the model and its

application are presented elsewhere (see Cosby et al, 1985a,b, 1986)
•

The approach suggested in this paper, to investigate the extremes

of water quality behaviour, is to analyse the observed chemistry

data from a catchment and quantify the inherent variability in

•
6•
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such data. The data used here are taken from the Allt a

Mharcaidh catchment in the Cairngorm region of Scotland and

represent a site which is not at present chronically acidified

but is subject to severe acid pulses during high flow events.

DATA, DESCRIPTION AND PRIOR ANALYSIS

The Allt-a-Mharcaidh catchment lies on the western flank of the

Cairngorm Mountains draining an area of approximately 10km2.

Vegetation is mainly a mixture of heather and fescue grassland.

The soils are essentially of three main types with c60% alpine

and peaty podsols and 40% blanket peat. The site was selected as

a transitional site, that is, a catchment which is not acidified

but is thought to be at risk as regards future acidification

problems.

Two years of approximately biweekly chemistry data are available

from the catchment. For each year, two and three parameter

versions of the Weibull, gamma and lognormal distributions were

fitted and compared. These distributions are skewed shape-scale

location distributions which were felt to cover a large range of

possible shapes from which the historical data could be assumed

to be derived. The normal distribution was not fitted to the

data because it will predict negative (and hence physically

meaningless) values of concentration for its lowest extremes.

Furthermore, the three selected distributions are capable of

fitting a symmetric bell-shaped density ie near enough normal.

Table 1 lists the chemical species studied together with basic

7



statistics (mean, standard deviation etc). Figures 1 and 2 are
10 time series plots of Alkalinity and Calcium over the two year

period of 1986 and 1987. For some of the measurements such as
alkalinity, pH and sulphate there appears to be a reasonably
constant trend over the two years. For most of the remaining,
there are higher levels on average in the first half of 1986

while the trend is reasona]Sly constant but lower fOr the
remaining one and a half years. This category includes
conductivity, sodium, calcium, potassium, magnesium and nitrate.•••

••••••
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TABLE 1 The Allt a Mharcaidh Catchment Chemistry Data
for 1986 and 1987

1986




Mean
Standard
Deviation Min. Max.

Alkalinity 120 46.0 21.8 3 97
Ph 90 6.0 0.4 4.7 6.5
Conductivity 97 27.3 5.2 18 45
Na 117 129.5 21.5 81 196
Ca 117 43.3 10.3 25 70
K 117 7.4 2.0 5 13
Mg 117 31.0 8.1 19 66
SO4 114 53.8 8.7 34 83
NO3 114 1.6 2.7 0 16

1987






Alkalinity 99 51.0 14.0 17 76
Ph 97 6.0 0.3 4.8 6.4
Conductivity 95 24.5 2.5 17 29
Na 102 124.8 12.6 92 145
Ca 102 40.5 5.5 25 57
K 102 6.5 2.5 3 20
Mg 102 26.4 3.8 14 37
504 102 53.6 7.4 32 79
NO3 102 1.0 1.4 0 6

In terms of the assumptions required to fit probability

distributions to these data, two points should be made. First,

the data sets generally appear generally stationary (ie of

constant trend) in 1987, and for some of the sets, this property

also applies in 1986. Second there appears to be only a modest

level of autocorrelation in all the data. Although application

of probability distribution models to the data assumes

independent random samples, Jakeman et al (1988) point out that

quite high levels of autocorrelation can be tolerated and provide

9
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some quantification of the errors to be expected for varying• degrees of autocorrelation. Jakeman et al (1989) also

demonstrate that non-stationarity in time series of data does not

represent a problem provided the samples can be regarded as

111/ belonging to a well-identified probability distribution.

•
Table 2 shows some of the likelihood values obtained from fitting

our range of pdf models to the chemical species available for the

Allt a Mharcaidh. Various criteria which trade off model fit against

model complexity are available for using the likelihood to

discriminate among model (parametric) alternatives. The criteria

chosen should reflect the intended use of the model. A well known

criteriou4;hich is biased towards overfitting is the Akaike

Information Criterion (Akaike, 1972). The AIC is defined as

AIC(m) = -2 log(likelihood) +2m

where m is the number of independent parameters. This criterion

therefore only accepts a three parameter model if its log likelihood

411is more than one unit higher than a two parameter model. We have

used this criterion to indicate our preliminary choice of superior


model for each chemical species and each year in Table 2. The

4111results for only two years are expectedly mixed, there not being
4111 enough years to determine if there is a consistently superior

parametric model for any particular pollutant. The same

distribution type is identified in each year for alkalinity, Na,

Ca and NO3. For SO4 the two parameter gamma is the superior one

for 1987, for 1986 this distribution is almost as good an

assumption as the two parameter lognormal. For the other

• 10
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chemical species, pH, conductivity, K and Mg, the distribution

identified depends upon the year. Finally for 6 of the 9

species, a two parameter assumption is preferable to a three

parameter in both years, the exceptions being K, Mg and NO3. As

will be seen, this is an advantage in constructing a hybrid model

because a two parameter model requires less information for

calibration.

Figure 3 shows the fit of the two parameter Weibull distribution

to the empirical cumulative distribution function of the

alkalinity data for the years 1986 and 1987. The agreement between

the observed and fitted distribution functions is good in both

cases.

A HYBRID METHOD AND PREDICTIONS

We demonstrate one possible implementation of the hybrid approach

using the alkalinity data set only. The intention is to

illustrate the method as simply as possible rather than draw

conclusions about the extremes of acidification in the Allt a

Mharcaidh catchment. Alkalinity is the obvious species to

select for this purpose since both the 1986 and 1987 data sets

visually conform to the i.i.d. assumption and a two-parameter

Weibull distribution is preferred for both years. However, it is
_

stressed that independence and stationarity of the time series of

a variable are not necessary conditions to obtain good parametric

fits and hence hybrid model results.•
In choosing a method it must first be appreciated that the•

• 11
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deterministic model MAGIC at present predicts only mean annual values

(see Jenkins et al, 1988). No variability of this mean is yet


reliably available as the model output. Because the distribution

identified for alkalinity is a 2-parameter version, two pieces of

information are needed to describe it. An obvious strategy is to

use the deterministic model to provide the mean of the

identified distribution (Weibull for alkalinity) assume a range

of values for the shape parameter of the distribution, compute the

scale parameter from the mean and shape and look at the

sensitivity of the result to values within the shape range.

Table 3 contains the parameter values for the model fit to the

1986 and 1987 Weibull alkalinity data sets. These were two

extremely different years, in terms of snowfall. In other years


we might therefore expect the shape parameter to lie between or

nearby the 1986 and 1987 estimates. On this basis, we select a

shape parameter range of 1.5 up to 6 in an attempt to cover most

possibilities.

TABLE 3 Parameter values for Weibull model fit to alkalinity
data set

Year Shape parameter Scale parameter

1986 2.230 51.81
1987 4.341 56.17

The mean of the Weibull distribution is given by

12



••• mean = scale x Gamma (1 + 1 )
shape•

ipso that kn
owledge of scale straightforwardly ensues from a fixed

shape. Figure 4 shows the result of calibrating the scale


*parameter for a range of assumed shape parameter values, using the

0 known mean alkalinities from 1986 and 1987 (ie we do not bother to

use our deterministic model to predict the mean, accepting that this

can be done to an acceptable accuracy). It demonstrates the

nature of the above relationship that the scale parameter has a

low sensitivity to changes in the value of the shape parameter

and is largely determined by the mean, especially if the mean is

large compared to the shape.

Figure 5 shows the sensitivity of percentile predictions to

errors in knowledge of the shape parameter. The observed

percentiles are indicated as are the predicted results if the

best shape parameter value was that underlying the Weibull

description of the 1986 or 1987 alkalinity data sets. Figure 6

shows the errors in the estimated 67% and 95% percentiles. The

error is expressed as a percentage of the observed percentile

values (assumed to be correct).

•
The results were obtained from the Weibull cumulative

I distribution function for a range of shape parameter values and

the known mean. The 67% and 95% upper percentiles were

arbitrarily chosen (5% and 33% percentiles, which in the case of•
13••



alkalinity would correspond to harmful extremes, could equally

well be considered). For both 1986 and 1987 the estimated 67%

upper percentile was not sensitive to the choice of shape

parameter value. However the 95% upper percentile expectedly

showed more sensitivity particularly when the shape values were

low (as was the case in 1986). With additional years of data it

should be possible to determine a realistic range for the shape

parameter and hence a range for each percentile. Even more

desirable would be an extension of the deterministic model so as

to calculate not only the mean but also accurate predictions of

percentiles close to the mean which would enable improved

estimation of the shape parameter. In any case the percentile

value for a very low shape parameter choice serves as an upper

bound on the extreme value.

In its simplest form the hybrid approach, as outlined in this

paper, may be implemented using the mean value, M, the

percentile, p, where 0<p<100 and the shape parameter, c, to

estimate the percentile

LP = M Iin

of interest,

(12(22
)

Lp, as follows:

1/c



100




Gamma (1 + c-1)

or Lp = M x F(c,p) 





where F(c,p) is a shape factor

14
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Table 4 lists values of the factor F(c,p) for varying values of

the percentile and the shape parameter. In order to implement

the hybrid approach using Table 4 all that is required is an

estimate, derived from the deterministic model, of M and an

estimate of the shape parameter. If no estimate of the shape

parameter is available then a middle range of c=2.5 could be

assumed. Then, based on the percentile for which-a prediction is


411required and the value of the shape parameter a value for F(c,p)
may be selected from Table 4. The estimate of the percentile

follows simply according to equation (2).•• It should be noted that a bound of uncertainty could be

approximated by estimating Lp at the highly skewed c=1 and• nearly unskewed c=6 shape parameter values.

•
APPLICATION TO THE MAGIC MODEL

MAGIC has been used to predict past and future mean alkalinity

values. The hybrid approach has been applied to these

predictions and estimates of the 95% and 5% percentiles have been

derived. The predicted means and estimated percentiles are

411plotted in Figure 7. Two estimates of each percentile are

plotted - these are based on shape parameter values for the

years 1986 and 1987. The wide spread of behaviour reflects the

variability associated with catchment chemistry especially those
subject to snow melt and extreme hydrological events.

Nevertheless the ranges provide valuable information to

biologists to assess fishery survival in acid streams (Ormerod et

15
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Table 4: The factor F(c,p) for the two parameter Weibull distribution calculated

over a range of percentiles and shape parmneter values.

SHAPE PARAMETER (C)

67 75 80 85

Percentile (p)

9095 97 99

1 1.11 1.39 1.61 1.90 2.30 3.00 3.51 4.61
1.25 1.17 1.39 1.57 1.79 2.09 2.58 2.93 3.64
1.5 1.19 1.38 1.52 1.70 1.93 2.30 2.56 3.07
1.75 1.19 1.35 1.47 1.62 1.81 2.10 2.30 2.69
2 1.19 1.33 1.43 1.55 1.71 1.95 2.11 2.42

2.25 1.18 1.31 1.39 1.50 1.64 1.84 1.97 2.23
2.5 1.17 1.28 1.36 1.46 1.57 1.75 1.86 2.08
2.75 1.17 1.27 1.34 1.42 1.52 1.67 1.77 1.96

3 1.16 1.25 1.31 1.39 1.48 1.61 1.70 1.86
3.25 1.15 1.23 1.29 1.36 1.44 1.56 1.64 1.78

3.5 1.14 1.22 1.27 1.33 1.41 1.52 1.59 1.72
3.75 1.14 1.21 1.26 1.31 1.38 1.48 1.55 1.66
4 1.13 1.20 1.24 1.29 1.36 1.45 1.51 1.62
4.25 1.13 1.19 1.23 1.28 1.34 1.42 1.48 1.57

4.5 1.12 1.18 1.22 1.26 1.32 1.40 1.45 1.54
4.75 1.12 1.17 1.21 1.25 1.30 1.38 1.42 1.51

5 1.11 1.16 1.20 1.24 1.29 1.36 1.40 1.48
5.25 1.11 1.16 1.19 1.23 1.27 1.34 1.38 1.45

5.5 1.10 1.15 1.18 1.22 1.26 1.32 1.36 1.43

5.75 1.10 1.14 1.17 1.21 1.25 1.31 1.34 1.41
6 1.10 1.14 1.17 1.20 1.24 1.29 1.33 1.39

•••
•
•
•
••
•
•
•
•
•
•
•
••
•
••
•



pp al, 1988)

Further years of data can be used to assess the general adequacyof assumption (A2) in the hybrid approach as well as the most
likely range of shape values for the identified parametric form.Whenever sufficient years are available, the method then can be

1/ used to investigate important biological questions for a
catchment of interest from more comprehensive analysis than is10 illustrated here.•
CONCLUSIONS

In this paper we have seen how the hybrid approach can be used tosupplement the predictions from process models such as MAGIC.
Data froth- an existing catchment have been analysed and a
preliminary form for the distribution has been chosen. The meanvalues produced by the MAGIC model have then been combined withthis knowledge of the distribution and estimates of the extremesderived. The approach is general and can be applied to the
prediction of other water quality variables where samples can beregarded as belonging to a parametric probability distribution.

Further work is required to examine the validity of our
assumption that, for a given catchment, the selected form of
distribution does not change substantially over time. Data fromlong term catchment sites such as that of Birkenes in Norwaycould profitably be studied (Christophersen et al, 1989). The
approach also has potential use in the study of catchments where

16•
•

•

•
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strong artificial perturbations have occurred such as at Llyn

Brianne where liming has taken place (Whitehead et al, 1988).

Finally, estimation of the extremes could be substantially

improved if the process model were to yield accurate predictions

not just of the mean but also the variance or a range of

percentiles about the mean, however narrow that range. This type

of additional information would aid calibration of the shape

parameter value for the pdf that is assumed or statistically

identified from historic data sets.

17
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Time series plot of Calcium (1987)41
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Plgure 5.
Sensitivity of upper percentile


to the shape parameter value — 1986
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Figure 6.

Plot showing effect of shape on errors in the

percentiles for 1986, assuming that the


observed percentiles are correct
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ABSTRACT

Short term stream chemistry response in a small stream in upland

Wales is characterised by applying a mixing approach whereby the

flow is assumed to be a mix of water from two distinct sources.

Acidic water from the upper soil horizons and well buffered water

from deeper 'groundwater' sources are used to represent the two

endmembers and a chemical hydrograph separation technique is

used to estimate the mean proportions of mix. A long term

simulation model, the Model of Acidification of Groundwater In

Catchments (MAGIC) is calibrated in its two layer mode to these

two endmember chemistries. The model produces a good fit to

observed present day stream, soil and baseflow chemistry. Future

predictions of changes in endmember chemistry are made so as to

enable future episodic response to be modelled. Under a 60

percent sulphate deposition scenario the model predicts a

lowering of hydrogen ion concentrations associated with high

flows and even a marginal recovery in baseflow pH.



•
INTRODUCTION

•

An assessment of the impact of surface water acidification on

ecosystems requires an understanding of changes in stream

chemistry over two timescales. That is, the long term build up

of chronic acidity over periods of years and the short term acute

changes associated with storm events. These short term acidic

pulses are superimposed on long term trends and reconciliation

of the two timescales is difficult. Hydrochemical models have

been developed to simulate either long term changes in mean

concentrations of water quality variables (MAGIC;Cosby et al.

411 1985a: RAINS;Kamari et al. 1984), or have focused on short term

hydrologically driven responses (ILWAS;Chen et al. 1984:air TRICKLEDOWN;Schnoor et al. 1984: BIRKENES;Christophersen et al.

1982). None of these models have proved sufficiently robust to

work across the two timescales.

The link between long term build up of acidity and the extinction

of fish populations in many surface water ecosystems is now well

documented (Haines, 1986). It is also established that the

survival of fish in upland streams is dependant not just on mean

stream pH but the duration and severity of acid episodes

(Turnpenny et al. 1987). Little is known, on the other hand,

about the link between mean acidity and extreme values during

episodes. A long term decrease in mean pH could theoretically be

accompanied by two alternative episodic responses; both baseflow

•• 	 and peakflow waters show a corresponding drop in pH or, baseflow


waters remain well buffered but the severity of the acid pulses

at peak flow increases. To distinguish between these

•



possibilities it is necessary to identify the mechanisms of flow

generation and the source areas of the flow components comprising

t h e flows at all discharge levels.

In this paper the link between long term and episodic response

is examined through the development of a technique for modelling

the changes important to short term stream water quality

variations under continued acid deposition. This involves, (1)

a mixing model approach to identify simple flow pathways and

components of stream flow (endmembers), (2) a two layer version

of MAGIC calibrated to present day endmember chemistry and used

to predict the changes which will occur in the endmembers under

acid deposition, and, (3) an assessment of future short term

water quality variations using the predicted endmembers. The

technique is applied to the Afon Gwy a small, moorland catchment

at Plynlimon in mid-Wales.

THE STUDY SITE

The Afon Gwy catchment forms part of the headwaters of the river

Wye. The geology consists of lower Palaeozoic mudstones, shales

and grits with locally derived glacial and postglacial drift.

Soil types include peats, brown earths, stagnogleys and

stagnopodzols. The vegetation is acid grassland dominated by

Nardus, Festuca and Agrostis species. Mean annual rainfall and

runoff for 1983 - 1984, 1984 -1985 was 2385 and 2111 mm/year,

respectively. Average rainfall, stream water and soil water
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chemistry is shown in Table I together with the stream water

composition at baseflow, that is, from samples taken during very

low flow periods when the water is assumed to originate from

deeper, 'groundwater' sources and so is characterised by low

acidity and high alkalinity.•
THE MIXING APPROACH

•
The essence of the mixing approach is the concept that stream

'waters are generated by the mixing of chemically distinct water

types (Christophersen et al., 1990; Hooper et al., 1990; Neal et

al., 1990). The mean composition of each of these components

(endmembers) is assumed to change only slowly and at most from

year to year. The rapid chemical changes seen in the stream, in

response to rainfall, are assumed to be the result of mixing

varying proportions of the endmembers. The quantity or proportion

of each endmember contributing to the stream is determined by

changing catchment flowpaths as the storm intensifies and

recedes.•
The choice of characterisicendmembers for the catchment is based

on the ion-flow relationships in the stream. Chemical response

of the Gwy is typical of many British upland streams in that

during high flow the pH falls, aluminium levels rise and base

cation concentrations decrease (UKAWRG, 1988). At times of low

flow the stream waters are well-buffered, of high pH and

relatively rich in base cations. A simple interpretation of this

can be made. During peak flows, when the water table is high,•
•



waters move through the acidic upper soil layers to the stream.

During low flow, waters originate from deeper sources where

weathering reactions with the bedrock occur (Neal et al., 1985).

Only two components of flow are identified at this stage but this

helps to limit the complexity of the modelling work and fits with

observed variations (Neal et al., 1990; Robson and Neal, 1990;

Kleissen et al., 1990). The natural choice is to take soil water

as one endmember and a well buffered deep water (ground water)

as the other. The rationale for the choice of these two

components is discussed further in Neal et al. (1990). The soil

water endmember chemistry is derived from L, 0, E and B horizon

soil water chemistry . The deep water component, however, has not

yet been sampled directly and the composition of these waters is

inferred from the chemistry of the baseflow waters seen in the

stream.

To calibrate the MAGIC model, a mean annual proportion of mix

between the two endmembers is required to fix the flow pathways

in the model. This proportion of mix can be calculated by using

a conservative chemical characteristic as a tracer such as the

acid neutralising capacity (ANC). ANC is defined by:-

ANC = Sum "strong" base cations - Sum "strong acid anions"

and is determined from the chemical composition of the water, all

terms being expressed in 4Eq/1. The ANC distinguishes well betwen

the two chosen endmember water types and it is unaffected by CO2

degassing. Extensive details of the use of ANC in hydrograph

separation are given in Neal et al., (1990) and Robson and Neal,



(1990). Calculated ANC for stream water, soil water and baseflow
water is given in Table 2.

Since ANC is conserved during mixing the average proportion of
soil water can be derived;

Average proportion soil.water = ANC dee water-ANC stream

ANC deep water-ANC soil water

Using this relationship, the. calculated mean flow-weighted
proportion of soil water for the Gwy was approximately 0.48.

Clearly, a number of limitations exist in the use of this mixing
approach and it is necessary to assume that, (1) streamflow is
generated by water from two sources, (2) the direct contribution
of rain to the stream is negligible, (3) a single soil endmember
is representative of the upper soils even though the soils show
heterogeneity both spatially and with depth, (4) the deep water
component has uniform composition, and, (5) the chemistry of the
endmembers remains constant during a storm.

Given the limitations of these assumptions and analytical error
in the chemical measurements, a perfect match between the
modelled and the observed chemical species in the stream is
unlikely. The ANC gives a good indication of the overall
composition of a water sample and whereas some deviations in
individual determinands are acceptable, it is important that the
modelled ANC is accurate.



rHE MAGIC MODEL AND APPLICATION TO THE GWY

The MAGIC model uses equilibrium equations to describe soil
processes and mass balance equations to describe catchment input-

output relationships. Detailed descriptions of the conceptual

basis of tha model and the equations on which it is based are
documented elsewhere (Cosby et al.,1985 a,b). In this application
a two layer version of MAGIC is used (Jenkins and Cosby, 1989)

enabling the simulation of two chemically distinct waters. Here,
the waters are chosen to correspond with the flow components
identified from the mixing considerations outlined earlier. That
is, the top layer represents the lumped L, 0, E and B soil
horizons while the bottom layer represents the C- horizon and
deeper till layers. Similarly, the flow proportions included in
the model are those suggested by the mixing approach. That is,
all rain passes through the upper soils (top layer) and 42% of
that percolate contributes directly into the stream whilst the
remainder is routed via the deeper zones (bottom layer) to the
stream (Figure 1.).

Concentrations of chloride and sulphate in the rainfall and
stream were adjusted for occult and dry deposition of sea-salts
and anthropogenic sulphur compounds. Between 1844 and 1984 the
modelled rainfall inputs were varied according to the deposition
sequence outlined by the Warren Springs laboratory (1983).

The two layers in the model were conceptualised such that

different reaction mechanisms dominate each layer since they
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generate waters with distinct chemistries. The water from the

upper soils is acidic and aluminium rich suggesting that ionic

exchange mechanisms are the most important influence on soil

water chemistry. Water from the deeper sources is rich in base

cations indicating that it comes from a high weathering zone. In

this application, therefore, it is assumed that ion-exchange

occurs in only the top layer and that the ion exchange capacity

of the lower soils and till layers is small enough to be

neglected. On the other hand, weathering is assumed to take place

predominantly in the deeper layers. A source of base cations was

found to be essential in the upper soils, however, in order to

fit the observed ANC. This may be attributed to biological

activity or cycling. Only weathering inputs for calcium and

magnesium were necessary in the top layer. Observations of

throughfall chemistry support this: concentrations of calcium and

magnesium are 15 and 18 gmo1/1, respectively in throughfall

compared with 4 and 10 gmo1/1, respectively, in rainfall,

allowing for evaporation: for sodium the throughfall

concentration (94 gmo1/1) is little different from rainfall (85

gmo1/1) and so no extra input to the top layer is necessary.

•

The soil characteristics used in the model are given in Table 3.

The depth of the upper soil (0.4m) corresponds to the average

combined depth of the L, 0, E and B horizons. An average depth

of lm is assumed for the remainder. The bottom layer is denser

and of lower porosity. The partial pressure of carbon dioxide is

assumed to be 30 times atmospheric for both layers (Neal and

Whitehead, 1988). For the stream the pCO2 was set to 3 times

atmospheric pressure (Neal, 1988 a,b). The organic acid

•

•



concentration in the two layers was calculated from the average

observed DOC concentration assuming 9 carbon atoms per molecule.

Dissociation constants were specified according to previously

used values for similar sites in Scotland and are the same for

each layer.

MODEL CALIBRATION

The model was calibrated to the chemistry of the stream water,

the soil water and the deeper groundwater by adjusting weathering

rates, uptake rates and the initial soil base saturation. The

optimised values for the adjustable parameters are given in Table

4. Sulphate adsorption in the model is described by a Langmuir

isotherm which has two parameters (Hornberger, 1986). These are

calibrated on the assumption of a present day steady state

condition with respect to sulphate input and output. Unique

isotherms were calibrated for each layer under the assumption

that the bottom layer has a greater capacity to adsorb sulphate

than the top layer.

Nitrate and ammonia were modelled by calibrating catchment uptake

to match the difference between inputs and outputs. Nitrate

input was further increased to account for the high nitrate

levels in the top layer resulting from a combination of dry

deposition and biologically activated nitrogen mineralization.



0

0
RESULTS

•

The results from the calibrated model, shown in table 5,

demonstrate a.good agreement with stream chemistry although soil

and groundwater chemistry are less well simulated. Given the

variability of soil water chemistry with depth and aerially

across the catchment, however, it is encouraging that each of the

determinands falls within the measured range of soil water

chemistry. The chloride concentration in the bottom layer is

lower than observed in stream baseflow and is a consequence of

the assumption of chloride conservativity in the model: this

41/
forces the chloride concentration in all of the model


compartments to be constant. As a result of the low chloride

level, simulated base cation concentrations are also lower than

observed in the bottom soil layer.

Simulated stream ANC lies within 1 ueq/1 of the value calculated

from observed stream chemistry and the simulated ANC in the top

soil layer is well within the observed range for soil waters. The

simulated ANC for the lower box, however, is slightly higher than

for stream baseflow water, probably because at baseflow the

stream water includes a small soil water component. In this case

the "true" groundwater endmember may be characterised by a higher

ANC than that of stream baseflow.

The time trends of reconstructed soil, ground and stream water

chemistry from 140 years ago, that is pre-acidification, up to

the present day, are shown in figure 2. The pH (Figure 2a) of the

stream falls rapidly as deposition increases in the 1950's and

•



levels out in the 1980's in response to decreases in atmospheric
deposition in recent years. The pH of the two endmembers changes
similarly, but to a lesser degree, through the same period as a
result of the higher partial pressure of carbon dioxide in the
two layers. As a consequence of CO2 degassing, the pH of the
stream is not always bounded by the two endmember pH values,
espescially at higher pH levels.

Sulphate concentrations in all three model compartments increase
through time (Figure 2b) in line with the assumed increase in
sulphate deposition. The variation in response between the
endmembers reflects the sulphate adsorption constants chosen in
the calibration whilst the stream concentration represents a
direct mix of the two components. Calcium, magnesium (Figure 2c,
d) and aluminium concentrations also increase in response to
sulphate input whilst soil exchangeable bases (top layer)
decrease (Figure 3). Exchangeable magnesium decreases most
quickly, relative to the other exchangeable cations. This is a
direct consequence of the Gaines - Thomas expression used to
model ion exchange, whereby the most abundant ion is
preferentially leached.

The model has also been used to estimate changes in stream, soil
and deep water components into the future under two sulphate
deposition reduction scenarios (Figure 2a-d); a reduction to 30%
and 60% of present day levels by the year 2000 and held at a
constant level thereafter.

Stream water pH improves in response to increasing pH in both



•

•
soil layers and the greatest recovery occurs in response to the

larger deposition reductions. Sulphate concentration in both

endmembers decreases and the model predicts a reversal in

sulphate concentration gradient between the upper and lower

soils. Prior to the 1970's, modelled groundwater sulphate

concentrations are lower than in the upper soils. In future

years, as a consequence of the chosen sulphate adsorption

constants sulphate concentration in groundwater takes longer to

decline than the upper soil water. By the year 2100 the sulphate

concentrations have equilibriated with the lowered input and

there is no longer a variation between the layers.

Simulated aluminium concentrations fall, in line with sulphate


reduction. The results give only a broad indication of likely

trends since the cubic equilibrium conditions assumed in MAGIC

may well not hold during episodes (Neal et al, 1989); this does

not affect hydrogen ions or other base cations to any significant

degree. The response of the base cation concentrations is more'

complex (Figure 2c, d). As sulphate input is reduced, fewer

cations are exchanged from the soils and so cation

concentrations decrease in both endmembers. The decrease is-rapid

for the first 10-20 years and then slows, directly reflecting the

mobile anion input to the system. Under a 60% deposition

reduction, some long term recovery is predicted but a 30%

reduction is insufficient for any recovery in the model. In terms

110 of the catchment soils (upper box), a 60% reduction in sulphate

input produces a significant improvement in cation exchange

capacity (Figure 3).



To assess the performance of the two layer model, a basic one-

layer version of MAGIC was also calibrated to the Gwy catchment.

Where possible identical values of the fixed parameters were

chosen. The parameters for the aggregated soil layer were lumped

according to standard practice (Jenkins and Cosby, 1989). As

expected, the results show a broadly similar pattern of

behaviour. The one-layer stream water chemistry falls well within

the range spanned by the predicted endmembers from the two-layer

model (Figure 4). However, the optimised one layer model

estimates a significantly lower weathering rate than was found

for the two layer version. As a consequence, the simulated

background and predicted future stream chemistries from the one

layer model are more acidic and the one layer model is less

responsive to the variations in atmospheric deposition. The major

differences between the approaches result from the inclusion of

an additional body of well buffered water in the two-layer model.

DISCUSSION

During the next 140 years the predicted changes in endmember

chemistry will produce a significant improvement, relative to

present conditions, in the chemistry of the streamwater,

especially at high flows. For example, the model predicts that

whereas the difference in cation concentrations at high and low

flows will remain the same, relative to each other, the predicted

recovery in the upper soil water chemistry and the assumed

dominant contribution from that source at high flows will lead

to a decrease in the peak concentrations of hydrogen and



aluminium. Concentration of both hydrogen and aluminium at

baseflow is currently low and this situation will continue.

The incorporation of short term stream chemistry dynamics into

models of long term response to changing acid deposition has

obvious benefits in determining critical loads to ecosystems. At

present, critical load estimation is based only on predictions

of mean chemistry (Nilsson and Grennfelt, 1988) and yet stream

biota can be seriously affected by short term acid pulses. This

is not neccesarily a result of the peak levels of toxic species

reached during an event, but may also be a function of the

duration of the toxic conditions. If the critical load is to

accurately represent the point at which biological life becomes

seriously at risk then it must account for these dynamics.

Through the technique developed here short term water quality

responses can be quantified.

The two layer MAGIC model predicts enhanced recovery relative to

the one layer model. Further work is required to see if this

result holds in general as present day regional assessments may

be too pessemistic.

CONCLUSIONS

1. A simple 2-layer model structure gives a good fit to observed

endmember and stream water chemistry.



The model predicts that the chemistry of the endmembers has
changed historically. Both soil waters and deep waters have
acidified and the cation exchange capacity of the soils shows a
large decrease.

Under reduced deposition the model predicts that the most
significant changes in stream chemistry will occur at peak flow
with greatly reduced levels of acidity and aluminium. Baseflow
chemistry will also improve slightly. Recovery is greatly
enhanced by a 60% reduction as opposed to a 30% reduction.

The approach may be expanded to model dynamic storm response
using mixing principles and can provide valuable information for
establishing an episodic basis for critical load estimation.

Greater recovery from reduced emission strategies are
suggested with the two layer model in comparison with the one
layer MAGIC model.
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Table 1.

Rainfall, stream water, soil water and baseflow water chemistry.

Units are gEg/1 except Al and Si (gmo1/1) and pH.




Rainfall Stream Baseflow

Oh

Soils


Eag Bs

Ca 8. 36 58 14 20 14

Mg 10 54 70 40 44 40

Na 85 143 166 100 187 173

K 2 3 2 8 4 4

NH, 17 <5 <5 <5 <5 <5

Si <2 35 54 18 42 36

SO, 42 72 74 68 87 71

Cl 106 155 170 124 209 184

NO, 12 15 4 29 39 28

H 21 13 1 77 55 44

pH 4.7 4.9 6.3 4.1 . 4.3 4.4

HCO, <1 35 27





Al <2 3 2 10 18 15



Table 2.

Stream water, soil water and baseflow Acid Neutralisation

Capacity. Units are gEg/l.




Stream

Oh

Soil

Eag




Baseflow

Sum cations 236 162 255 231 295

Sum anions 242 221 335 283 248

ANC -6 -59 -80 -52 47



Table 3.

Soil characteristics used in the two-layer MAGIC model

Units Top Layer Bottom Layer

depth m 0.4 1

porosity frac 0.55 0.35

bulk density kg/m3 1060 1460

CEC meg/kg 70 0.1

Organics umo1/1 56 10

Temperature °C 7.6 7.6

PCO2 atm 0.009 0.009

log20(Ka202,.."2) 7.8 8.6



Table 4.

Calibrated parameters for the two-layer MAGIC model

Top Layer Bottom Layer

SO4 Halfsat uEg/1 80 5

SO4 MAXcap uEg/l 2 9

pkl (organics) 4 4

Weathering/Uptakes Top Layer Bottom Layer

NH4 -92 0

NO, 0 -88

Ca 2 43

Mg 14 28

Na 0 36

K 0 0

Selectivity coefficients




Ca 2.7

Mg 3.27

Na -0.65




-4.7

Initial base saturation: 35.0



Table 5.

Modelled stream and endmember chemistry. Bracketed values are

the field measurements. A range is given for the 0-B horizons in

the soil.Units are uEg/1 except pH.




Stream Top Layer Bottom Layer

Ca 36 (36) 16 (14-20) 55 (58)

Mg 54 (54) 41 (40-44) 66 (72)

Na 143 (143) 126 (100-183) 159 (166)

K 3.2 (3) 3.2 (4-8) 3.3 (2)

NH. 1.5 (<5) 1.5 (<5) 1.5 (<5)

SO. 72 (72) 71.0 (68-87) 73 (74)

Cl 155 (155) 155 (124-209) 155 (170)

NO, 16 (15) 29 (28-39) 3.5 


H' 18 (13) 60 (44-77) 3.6 (1)

pH 4.8 (4.8) 4.2 (4.1-4.4) 5.4 (6.3)

Al" 7 (9) 46 (28-55) 1.0 


ANC -5 (-6) -69 (-52 - -80) 54 (47)



Figure Legends

Figure 1. Flow routing for the two-layer MAGIC model.

Figure 2. Modelled stream and endmember chemistry; (a) pH, (b)

sulphate, (c) magnesium, (d) calcium. For a, c and d solid lines

show the predictions for 60% and the dotted lines for 30%

reduction.

Figure 3. Simulated cation exchange capacity in the top soil

layer.

Figure 4. Comparison of Acid Neutralisation Capacity for the one

layer (line with markers) and two layer (no markers). Solid lines

show the predictions for 60% reduction and dotted lines for 30%

reduction.
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ABSTRACT

Jenkins, A., Whitehead, P.G., Musgrove, T.J. and Cosby, B.J. 1990. A regional model of acidifi-
cation in Wales. J. Hydrol., 116:403-416.

A regional assessment of streamwater quality in Wales is presented which reconstructs the
historical trend for acidification and predicts the effect of several pollutant deposition reduction
policies, using the model of acidification of ground water in catchments (MAGIC). The regional
methodology used is a two-stage coupling of Monte Carlo simulations with a calibration procedure
designed to produce a coarse fit to the joint distribution of the key streamwater quality variables.
The regional model is based on data from the Welsh Water Authority Survey of 1983-1984 during
which streams and lakes were sampled weekly for one year. The modelling results reveal a
significant decline of water quality across the region since industrialization. The model indicates
that 40% of the streams and lakes within the region have suffered a decline of mean annual pH of
> 0.5 pH units. Predictions indicate that a 30% reduction of deposition would maintain present-day

stream quality levels. Reductions of the order of 60% are required to ensure a significant recovery
at most sites across the region.

•

INTRODUCTION

There is now considerable weight of evidence linking emissions of sulphur
and nitrogen compounds with acidification of surface water and soil. A need to
identify the acid sensitive areas still exists, however in order to assess the
potential environmental damage and to investigate methods to halt or reverse
the trend in affected areas. Two methods have been highlighted as being
capable of relieving the impact of acidification: (1) a reduction in the emission
of pollutants; and (2) addition of a neutralizing agent to sensitive sites. The
prescription of the most effective remedy requires assessment of the different
management strategies proposed in terms of financial and environmental costs.

An important link between emissions and ecological impact is the trans-
mission of acidity from deposition to stream and lake waters. This focuses upon
the chemical status of soil matrix and soil water which greatly affect stream-
water quality. The soil accumulates changes induced by the addition of
pollutant through time emphasizing the importance of historical trends for
emission and deposition. These trends must be incorporated into any

0022-1694/90/03.50 1990 Elsevier Science Publishers ay.•
•
•
•
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estimation of the rate and magnitude of acidification, and the likely recovery.
The complexity of the problem necessitates the use of mathematical models for
accurate evaluation of management strategies. These models must represent
the key processes influencing the long-term acidification of the soil and must
be applicable for long-term regional analyses. We use the model of acidification
of ground water in catchments (MAGIC) for long-term prediction of soil and
water acidification across a region. MAGIC is a soil-based model which
represents the processes of major importance to soil acidification and is driven
by acid deposition trends (Cosby et al., 1985a,b). The results of the MAGIC
model have been used to drive biological models of trout density and survival,
and intervertebrate species (Ormerod et al., 1988). The model has been widely
applied to individual sites in Scotland, North America and Europe and accords
well with historical pH reconstructions derived from diatom assemblages
(Jenkins et aL, 1990). This study uses MAGIC to make a regional simulation of
the acid sensitive areas within Wales and to make a preliminary assessment of
the ability of the region to recover.

DESCRIPTION OF SURVEY REGION

The study area is underlain by rocks of Cambrian, Ordovician and Silurian
age. In the upland areas the soils are thin and base-poor; the combination of
rocks resistant to weathering and thin, poor soils gives the region its vulner-
ability to acid deposition. Evidence of acidification in Wales has been derived
from studies of fisheries, forest and moorland soils, geology and hydro-
chemistry (Stoner et al., 1984; Hornung et al., 1986). In 1984 the Welsh Water
Authority investigated the extent of surface-water acidification throughout
Wales by conducting a survey of streams and rivers. The area sampled was
selected as being the region of greatest acid susceptibility (Fig. 1). During the
same period, rainfall quality was monitored at 44 sites throughout Wales. The
mean annual rainfall concentrations are summarized in Table 1. A breakdown
of the results by region shows the most acidic rainfall in the uplands of Mid-
Wales and North Wales (Donald and Stoner, 1989). The east of Wales receives
the highest concentrations of SO, and NO3; it also receives high levels of NH,
and Ca, which partially buffer the rainfall. Mean pH across the region varied
from 4.4 to 5.0.

Mean annual stream chemistry is presented in Table 2. The pH of streams
varies across the region from 4.2 to 7.3 with a mean of 5.6. The very high
maximum Ca level of 862 peq I-I and the maximum Mg concentration of 393
peg I were both measured at the site on the Isle of Anglesey where there is a
large Al smelter, At this site, the alkalinity is also a maximum for the region
at 1104 peq '.

The mean annual Na and CI levels are strongly correlated (le = 0.93) and
sea-salt concentrations are high. The area is mountainous and rainfall is high
with a large orographic input. The predominant weather pattern sweeps
westerly air from the Atlantic Ocean and the Irish Sea over Wales. The high
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Fig. 1. The study region and sampling locations

mean SO, concentration in the streams includes a large component in excess
of SO, of marine origin. The presence of th&SO, in the streams is balanced by
base cations in the well-buffered catchments and by hydrogen and Al at the
more acidic sites.

TABLE 1

Rainfall chemistry (peq except pH) at 44 sites in Wales 1983-1984




Mean Median Standard

deviation

Minimum Maximum

pH 44 4.7 4.7 036 4.4 5.0
Ca 44 47.7 41.0 356 9.9 102.2
Mg 44 42.6 33.4 43.8 17.4 177.8
Na 44 137.0 124.5 17L2 62.5 510.9
K 44 8.6 7.3 5.4 43 21.8
SO, 44 118.7 110.8 34.3 52.0 217.1
CI 44 176.1 162.1 1923 96.8 525.0
FIC03 44 51.3 38.7 49.9 22.9 114.9
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TABLE 2

Mean annual stream chemistry for the 130 sampling sites in the Welsh regional survey




Mean Standard

deviation

Minimum Maximum

pH 5.6 0.7 4.2 7.3
Ca 130.9 91.7 40.4 862.3
Mg 111.5 113.4 44.4 393.2
Na 220.1 62.0 149.1 640.0
K 13.4 9.8 5.4 89.0
80, 153.7 64.4 49.1 507.4
CI 267.4 86.2 167.0 918.0
1-1CO3 75.5 87.3 0.7 604.1
H 1.9 3.4 0.05 24.0
Alk 30.6 125.4 -206.9. 1103.9
pCCI, 7.25 7.6 1.0 51.2
AIT 6.3 4.3 0.7 24.3

Units are pee I-I, except Al (pmo11-1). pH and pCO2 (atmospheres x

REGIONAL APPLICATION OF THE MAGIC MODEL

The MAGIC model may be adapted for modelling on a regional basis by the
introduction of Monte Carlo techniques which assimilate regional variability.
Weathering rates for base cations, soil depths and porosities, rainfall, cation
exchange capacities, exchangeable base fractions on cation exchange sites,
and chemical inputs from precipitation will vary across the region. In the
model these factors are each represented by a model parameter and the Monte
Carlo technique allows the parameters to vary across a wide range. The
essence of the technique is to run the model repeatedly until sufficient infor-
mation is obtained. For each of a large number of model runs, random values
of the parameters are drawn from previously defined population distributions.
When a sufficient number of successful runs are completed the calibrated set of
model runs has a distribution of parameters that matches the distributions of
the observed equivalents. Any knowledge of the likely covariation of
parameters may be built into the model by specifying joint distributions for the
varying parameters. For example, if there existed correlations between rainfall
and elevation and between depth of soil and elevation, then a relation between
rainfall and soil depth may be deduced; usually little is known of the parameter
covariation and they are assumed to be independent. The Monte Carlo runs
provide many simulations which, if the parameter ranges are sufficiently wide,
span the range of observed chemistry across the region. These simulations are
employed in a calibration procedure to discard simulations with predictions
that are not observed within the region and to tighten the model fit.

To achieve the regional calibration, a large pool of simulations are accu-
mulated and a relative frequency count is made on the observed discrete joint
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distributions. Weights are assigned to each simulation to provide a weighted
relative frequency count that is identical with the observed. Bomberger et al.

(1989) presented a detailed description of this technique.

APPLICATION TO WALES

MAGIC has been applied to several individual sites within the study region
(Whitehead et al., 1988a,b), and the calibrated set of parameters for those
studies formed the basis of the regional application. A one-soil layer version of
MAGIC was used as the added complexity of a two-layer version has not been
found to produce significantly different simulations of surface water chemistry
(Jenkins and Cosby, 1989). Twelve parameters were subject to Monte Carlo
uncertainty (Table 3). The mean precipitation volume per year (Qp ) is assumed
to fall uniformly across the region and is held constant throughout the
simulation. Variability of %, therefore, incorporates variability of soil depth
and porosity to some extent. 15% of the rainfall is assumed to evaporate. The
1984 rainfall concentrations of Cl and excess NO, and SO, were set for each
model run by randomly sampling pre-set distributions. Within the model, CI is
assumed to be conservative and so the rainfall CI concentration distribution
can be calculated from knowledge of the stream CI distribution and the runoff.
Background (1844) precipitation was set equal to the present-day sea-salt
concentrations.

The trend of excess SO, and NO, deposition through time is scaled to
present-day deposition levels. The shape of the trend is taken to be equal to the
overall mean emission curve for the U.K. reported by Warren Springs
Laboratory (1983). The time trend in the remaining chemical concentrations in

TABLE 3

11110 Ranges for the parameters used in the Monte Carlo simulations. The parameters are defined in the
text

Parameter

Q,
1 Cl

SO,
NO3
CEC
WEe„
WE,,,,

WE,

Er.

EN.

EK

Est,

Units

cm

Peg 1-1
pal 1-1
Peg l-1
meg m-2
meq m' year- t

meq m'yearl

men m-2year- I

Monte Carlo
ranges

Accepted
simulations

S.D. Minimum Maximum

	

29.5122.4229.8

	

34.0175.8379.2

	

34.920.3211.0

	

22.04.1125.7 

87.010.0299.4

	

38.01.1149.9

	

1190.949.9

	

2.70.5
	

9.9

	

5.30.619.9

	

1.30.50.5

	

1.20.50.5

	

5.90.519.9

Minimum

120.0
167.0
20.0
2.4

10.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5

Maximum Weighted mean

	

230.0177.3

	

400.0243.4

	

225.079.7

	

140.046.5

	

300.0148.7

	

150.083.5

	

50.021.3

	

10.05.3

	

20.011.1

	

5.02.8

	

5.02.7

	

20.09.2

•
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precipitation was determined by using the present-day excess concentrations
over sea-salt to scale the trend line. The present-day rainfall concentrations
used are shown in Table 1. These concentrations are the same for each model
run. Nitrate in the soil was assumed to be taken up by plants at a constant rate
of 45% of NO, input. A wide variation of the cation exchange capacity (CEC)
was used in the Monte Carlo simulations reflecting the high variability of
measured data. Each soil horizon within the catchment may have a different
CEC value and the lumped model parameter must allow for uncertainty by
specifying a wide range in value (Table 3); WEc„, WEMI and WEK are the
weathering rates of Ca, Mg and K, respectively. The Na weathering rate was
set to zero and the soil and stream Na set directly from the Na vs CI regression
line.

EN., Er„,g, Ecaand EK are the fractions of the cation exchange sites occupied
by Na, Mg, Ca and K in 1844. These are required to initialize the model and the
ranges specified are deduced from knowledge of present-day fractions and that
base cation fractions have decreased owing to acidification. The total CEC
within the soil is held constant during each run.

The CO, partial pressure (pCO2) in the soil and stream was set to 40 and 4
times the atmospheric partial pressure, respectively. The stream pCO2
represents the median value calculated from the observations of bicarbonate
and hydrogen and these were held constant for each run. The value of the
aluminium equilibrium constant in the soil was set at 8.55. Stream Al con-
centrations are usually represented in MAGIC by an equilibrium with Al(OH)3.
For the Welsh regional data, Neal et al. (1989) showed that the Al levels are
better predicted by disallowing Al precipitation in the stream and this modifi-
cation was used here. Soil SO, adsorption within the model was set from the
single site analysis of Welsh catchments by Whitehead et al. (1988a) with a half
saturation constant of 150 meq m'. -

The model was run 2000 times drawing the parameters from uniform distri-
butions whose maxima and minima are given in Table 3. The results from these
runs were used in the calibration phase of the analysis. Six streamwater
variables were used to calibrate the model: Ca, Mg, SO, , CI, NO, and alkalinity.
The remainder acted as free variables whose closeness of fit was used as a

TABLE 4

Bin sizes used for the final calibration procedure

Variable Minimum Maximum Number of




(pe41-1) (oeq 1-') axis divisions

Ca 40 230 5
Mg 40 160 2
SO, 50 300 5
Alkalinity — 250 160 5
CI 160 400 5
NO, 0 60 3
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criterion for eval uating the model performance. The six variables were selected

for their importance both in terms of their magnitude and variability in the

observed data, and in terms of their influence on the biological species in the

stream. The `binning' procedure for forming the relative frequency structure

for observed and simulated data entailed setting a maximum and a minimum

limit for accepting simulations. The range formed on each axis was divided

linearly to form the bins. The number of divisions on each axis was allowed to

vary to form alternative calibration strategies. By taking many divisions the

number of observations matched decreases as the bin size diminishes. By

taking few divisions the model fit becomes coarse. The strategy that was

accepted finally is shown in Table 4.

Calcium, SO,, alkalinity and Cl were each apportioned five divisions, Mg

had two and NO, three. Increasing the number of divisions for Mg or NO,

greatly reduced the number of observations that were able to be simulated and

so a coarser fit to these variables was accepted. An alternative would have been

to run the model further to see whether the gaps in the mismatch could be filled.

The total number of individual bins that had one or more observations in them

was 74. Of these, 19 had no matching simulation. The observations lying in

these 19 bins were thus unable to be represented in the regional simulation

along with the observations at the extreme unacidic end of the distributions,

which were precluded by the maximum cutoffs used in forming the bins. In total

35 of the observations could not be matched. These were mostly unacidified

catchments apart from the three with the lowest pH values. These three obser-

vations had relatively high alkalinities for their corresponding pH, and the

model could not predict this behaviour. Mean chemistry for the observed data

set was then recalculated for the remaining 95 sites (Table 5). This 'tailored'

data set was then used for matching simulated and observed. In total 252 of the

original 2000 simulations were accepted by the calibrated filter.

•

•

•

•

•

•

TABLE 5

Comparison of simulated and observed stream chemistry. Observed data (in parentheses) are the
'tailored' data set used for model calibration

VariableMeanMinimumMaximum

5.6 (5.6)6.5 (66)
105 (106)42 (40)

4.5 (4.2)

Ca
pH

202 (208)

Mg87 (86)40 (44)160 (135)
Na206 (202)152 (149)295 (289)
K14 (11)

52 (49)38 (35)138 (138)4.6 (64)SO,284 (277)
CI246 (244)176 (167)379 (365)
Alkalinity2.8 (2.9)—127 (— 141)89 (90)
Total Al0.96 (0.67)

,0.16 (0.18)25 (20)2.3 (7.1)
0.01 (0.02)

NO60 (60)

•
•
•
•
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RESULTS

The parameters that led to the 252 successful simulations are presented in

Table 3 and these successful parameters span the complete range specified in

the Monte Carlo analysis. A comparison of observed and simulated chemistry

is presented in Table 5 where the observed data represent the 'tailored' data set

used in the calibration procedure. Good fits of mean value are obtained for each

of the four variables that were assigned five axis divisions in the calibration

procedure (Ca, SO„ alkalinity and CI). A good fit is also achieved for Mg

despite only allowing for two divisions in the calibration phase. The closeness

of the fit to the remaining variables is very good considering that they were set

as free variables and did not take part in the calibration procedure (excepting

NO3).
Table 6 presents the observed and simulated correlation structure of the

joint distributions. The table shows a close fit for most correlations, with the

majority of simulated correlations being within 0.1 and most of the remainder

within 0.2. The worst overall fit is for K, which was not used in the calibration

procedure; this is not surprising given the potential biological controls not

incorporated into the MAGIC model. The mean value of K (14 peq I ) is small

TABLE 6

Stream chemistry correlation matrices for simulated data and observed data

Simulated data

CI SO, Na K Mg Ca pH Total
Al

Alk NO3

CI.




0.2 1.0 0.1 0.3 0.3 -0.1 0.1 -0.1 0.3

SO, 0.2




0.3 0.2 0.4 0.5 - 0.2 0.3 -0.2 0.1

Na 1.0 0.3




0.1 0.3 0.3 -0.1 0.1 0.0 0.3

K 0.3 0.2 0.1




0.0 0.0 -0.2 0.0 - 0.1 0.0

Mg 0.3 0.4 0.3 0.0




0.5 0.5 - 0.5 0.5 0.1

Ca 0.3 0.5 0.3 0.0 0.5




0.6 - 0.4 0.6 0.3

pH - 0.1 - 0.2 -0.1 -0.2 0.5 0.6




-0.8 0.1 -0.1

Total Al 0.1 0.3 0.1 0.0 -0.5 -0.4 -0.8




-0.9 0.2

Alkalinity -0.1 -0.2 0.0 -0.1 0.5 0.6 1.0 - 0.9




- 0.2

NO3 0.3 0.1 0.3 0.0 0.1 0.3 - 0.1 0.2 -0.2




Observed data








CI




0.3 0.9 0.1 0.3 0.4 -0.1 0.1 -0.2 0.3

SO, 0.3




0.3 0.2 0.5 0.5 -0.2 0.1 -0.3 0.3

Na 0.9 0.3




0.2 0.5 0.3 0.2 0.0 0.0 0.5

K 0.1 0.2 0.2




0.5 0.5 0.4 -0.2 0.5 0.2

Mg 0.3 0.5 0.5 0.5




0.6 0.5 -0.3 0.5 0.4

Ca 0.4 0.5 0.3 0.5 0.6




0.4 -0.3 0.4 0.5

pH 0.1 -0.2 0.2 0.4 0.5 0.4




-0.7 0.7 0.2

Total Al 0.1 0.1 0.0 -0.2 -0.3 -0.3 -0.7




-0.6 0.1

Alkalinity -0.2 -0.3 0.0 0.5 0.5 0.4 0.7 -0.6




0.0

NO3 0.3 0.3 0.5 0.2 0.4 0.5 0.2 0.1 0.0
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Fig. 2. Observed (- - -) and simulated (—) stream chemistry distributions using the full observed
regional data set; (a) alkalinity, (b) chloride, (c) calcium and (d) sulphate.

compared with the other three base cations and the consequences of a poor fit
to the correlation of K with the remaining variables are negligible. The very
high simulated correlations for alkalinity with Al and pH reflect the strong
model relationship. The fact that the observed correlations are also high
indicate that these relationships are good approximations for this Welsh
region.

Figure 2 shows the simulated marginal distributions for CI, alkalinity, SO,
and Ca compared with the distribution for the original data set containing 130
sites. Having calibrated the model to the 'tailored' data set of 95 sites, which the
model was able to simulate, the match between simulated and observed is good.
Although some fine structure is unable to be reproduced, the method of cali-
brating to a subset of the observed data is vindicated as the simulated distri-
bution captures the general features of the water chemistry of the region.

The extent of acidification of the region since pre-industrial times can be
seen by comparing the present-day stream chemistry with the stream chemistry
reconstructed for 1844. From 1844 to 1984, mean pH dropped from 6A to 5.6;
mean alkalinity has declined by an order of magnitude (from 63 to 3peq1-'),
and the mean sum of acid anions (CI + SO, + NO,) has more than doubled
(from 278 to 584 peql-'). Breaking down the pH changes reveals that 40 of the
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Fig. 3. Simulated background (—), present day (—) and future (---) stream chemistry
assuming a 30% decrease in acid deposition; (a) alkalinity, (b) sulphate, (c) calcium and (d)
hydrogen.

catchments have a simulated pH drop < 0.5, 37 catchments show a pH drop
between 0.5 and 1.5, and 18 catchments show a drop in pH > 1.5 units. The.
number of catchments represented in any particular chemical class is
determined by summing the weights of all the simulations falling within that
class. Figure 3 shows the simulated regional weighted distributions in 1844and
1984 for alkalinity, Ca, SO, and hydrogen. Also shown are model predictions
into the future with a pollutant deposition loading of 70% of its present-day
level. Calcium shows a slight return toward the 1844 conditions whereas the
hydrogen remains more or less the same. The large change in SO, reflects the
high pollutant loading since 1844.

The accepted model parameters were fed back into the model in an attempt
to assess the ability of the region to recover from acidification. Several future
deposition scenarios were used: Fig. 4 shows the effect of reduction in pollutant
deposition on both alkalinity and pH. A 30% reduction of pollutant deposition
is required to halt acidification in Wales and reductions greater than this may
start to reverse the acidification at most sites. All sites show a pH recovery of
at least 0.2 under a 70% reduction scenario. Table 7 shows the results for 30%,
50% and 70% reduction of deposition reflecting scenarios that are currently
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Fig. 4. Forecast stream pH and alkalinity (mean, standard deviation and extremes of the distri-

butions) under a range of deposition reduction strategies.

believed to be achievable. Overall, by decreasing deposition of pollutants it is
seen that the alkalinity and pH will rise whereas the base cation concen-
trations will fall. This decline in base cation concentration in the stream is the
result of the decline of acid anion pollutants.

DISCUSSION AND CONCLUSIONS

A regional model of a part of Wales, believed to be sensitive to acid
deposition, has been presented. The model has been used to predict the extent
of acidification through the region and has enabled a dose-effect type of rela-
tionship, for reducing the deposition of acid pollutants, to be predicted. The
model has been tested successfully against present-day joint distributions or

Preseni
Dry
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TABLE 7

Predicted stream chemistry under 70%, 50% and 30% deposition reduction strategies

Mean

70% deposition reduction

Standard

deviation

Minimum Maximum

pH 6.0 0.3 4.7 6.9
Ca 72.1 17.7 14.3 150.8
Mg 64.6 7.8 39.6 99.8
Na 201.7 16.0 152.6 293.5
SO, 62.6 7.4 33.9 105.1
CI 246.4 23.0 175.8 379.3
Alk 28.8 18.7 -60.2 118.2
Al 0.06 0.03 0.006 0.41

50% deposition reduction





pH 5.7 0.3 4.5 6.5
Ca 77.1 18.0 16.8 151.6
Mg 67.7 8.3 40.2 102.2
Na 202.6 16.0 152.8 293.8
S0, 83.8 11.4 38.8 155.7
CI 246.4 23.0 175.8 379.2
Alk 12.3 20.9 -92.3 92.9
Al 0.09 0.06 0.009 0.63

30% deposition reduction





pH 5.4 0.4 4.5 6.5
Ca 80.7 18.8 17.1 154.3
Mg 69.6 9.1 40.2 117.6
Na 203.2 16.0 152.8 294.2
SO, 104.8 15.5 43.7 203.6
CI 246.4 23.0 175.8 379.2
Alk - 6.8 25.7 -125.7 82.3
Al 0.17 0.10 0.01 0.90

All units in  peq  I', except pH and Al (mg r').

water chemistry. The simulated range of pH decline across the region is
compatible with that reported by Battarbee et al. (1988), who looked at the
evidence for acidification of several lakes, in the same study region, using
diatom analysis:

Assuming the catchments across the region to be broadly similar in response
to acidification, the present-day chemistry may represent the response of any
one site through time, i.e. all of the catchments will be at a different stage of
acidification. Some were poorly buffered from the start and will be highly
acidified whereas others will have been buffered to a greater extent. Collective-
ly they may allow a substitution of space for time in the interpretation of the
sampling variable. If this is the case then predictions using the same relation-
ships may be assumed to be reasonable. Another indirect way of testing the
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model is to use the predictions to feed biological models of fish density, survival

and floral and macroinvertebrate speciation (Ormerod et al., 1988). The results

110 of this two-stage modelling may be compared with biological evidence for
trends in acidification. Of crucial importance to these biological models is the
stream Al concentration and its time trend. The submodel used here allows no
net Al precipitation in the stream on a mean annual basis. Other hypotheses
that could have been used include: (1) allowing precipitation only when
saturation of Al occurs in the stream; (2) having a different phase of AI in each
site; (3)having a depletable finite store of Al encompassing a range of solubili-
ties in the pristine state so that as the catchment acidifies the more soluble
phases are flushed from the soil; (4) ion exchange of Al in the soil, with a finite
store; (5) using a two box version of MAGIC, with a mixing box at soil CO2
partial pressure before release into the stream; (6) fitting an empirical curve to
the data which is assumed constant through time. Each of the alternatives
needs to be examined before concrete Al predictions may be made.

The timing of acidification in the region has not been presented because the
key to the time trend is the deposition sequence of pollutants since 1844. The
model uses emission data for the U.K. to predict the trend in deposition. This
may not accurately represent the actual deposition trend for Wales. Further
evidence is required and this may come from the record of historical deposition

110 of carbonaceous soot particles in lakes. The model has been used to indicate
possible future trends for acidification in Welsh catchments under a number of
deposition reduction strategies. To see how these relate to reductions in
emissions, a model of atmospheric pollutant transport must be applied across
the region.
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CHAPTER 8

Regional Modeling of Acidity
in the Galloway Region
in Southwest Scotland

T.J. Musgrove, P.C. Whitehead, and B.J. Cosby

8.1. Introduction

The southwest region of Scotland  (Figure 8.1)  is believed to be particularly

vulnerable to the effects of acidic deposition (Wright and Henriksen, 1979).

Reports of long-term changes in acidic status of lakes and streams combine with

reports of a decline in fish populations to present a picture of concern to freshwa-

ter fisheries and environmentalists alike (Battarbee and Flower, 1986; Burns et

at, 1984).

Action to reverse the observed trends can be effectively prescribed only

once the processes within the catchment soils that transform acidic precipitation

into stream water pollution are understood. Practical experimentation in the

laboratory and in the field can help to explain part of the story. The picture for

soils, however, is obscured in the field by their heterogeneous nature, and in the

laboratory by the inability to reproduce field conditions exactly. Mathematical

models are very useful as an aid to understanding the intrinsic processes in com-

plex systems, such as the soil-water chemical interaction through time and

space. By using models, hypotheses may be tested by simulating processes and

the results compared with their measured counterparts. Useful information may

often be deduced, irrespective of the outcome of the comparison.

In this chapter we use a well-documented and extensively used model of

groundwater in catchments (the MAGIC model) to perform a regional analysis of

lakes and streams in southwest Scotland. Instead of modeling each lake and

stream separately, we pool them all and model the overall probability density
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Galloway area
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Figure 8.1. Map of the British Isles showing location of the Galloway area.

functions of water chemistry variables. We use the Monte Carlo technique to
run the model 880 times, taking for each run a different set of parameters ran-
domly sampled from specified distributions. The runs that enable us to match
the observed distributions are investigated to determine the sensitivity of the
model results to the individual parameters. The changes that have occurred in
the region as a result of increased deposition during the past 140 years are simu-
lated, and a possible future scenario of deposition is investigated.



•••
T.J. Musgrove, P.C. Whitehead, and B.J. Cosby  133•
8.2. Analysis of Chemical Data for the Galloway Region

• The Galloway Region in southwest Scotland contains many lochs and streams

that drain moorland, forest, and pasture catchments. The bedrock consists
mainly of lower Paleozoic rocks of Ordovician and Silurian systems with a few
intrusions of granite of the Old Red Sandstone era (Harriman et at, 1987).
These catchments have only a thin covering of unconsolidated glacial till, often
closely related to the nature of the underlying rocks (Greig, 1971). Many catch-
ments in the region are covered by a blanket layer of peat of between 50 and 100
cm thickness. The southern part of the region is reported to have a higher cal-
cite availability than the northern part (Welsh et at, 1986; Edmunds and Kinni-
burgh, 1986b). The mean yearly rainfall ranges from 0.8 to 2.4 rn with a mean of
2.0

The concentrations of the major ions indicate three important sources: ter-
restrial input of Ca, Mg, Al, HCO3 as products of weathering; atmospheric pollu-
tion input of H, NH4, NO3, and SO4; and atmospheric input of seawater salts Na,
CI, Mg, and SO4 (Wright et at, 1980a). The distribution of these ions varies
spatially with a regional character. Concentration of all the major ions is higher
nearer the coast to the south. Pollutant concentrations are higher as a result of
the location of the sulfur emission areas to the south and the southeast of Gallo-
way. Weathering is highest in the more calcareous Silurian and Ordovician
rocks to the south rather than in the slowly weathering, harder granitic intru-
sions to the north. Sea salts are more evident nearer the coast. The pH of pre-
cipitation is 4.1 to 4.4 and contains a large excess sulfate proportion (Wright and
Henriksen, 1979). The region as a whole is believe to be highly sensitive to acidic
deposition and is therefore a useful area for scientific study.

Data sets from four separate investigations in Galloway were used in the
study. First, Edmunds and Kinniburgh (1986b) sampled sites during the wet
summer of 1985 as part of a larger survey of groundwater throughout the United
Kingdom. They took spot samples from springs, shallow wells, boreholes, and
river baseflow from a 20 by 25 km area extending from Wigtown in the south to
Loch Macaterick in the north and from the River Luce in the east to the Waters
of Ken in the west. The study encountered the full range of Galloway bedrock,
but sampled few coastal sites. Second, Wright and Henriksen (1979) took spot
samples from 72 lochs and 39 streams during the wet period of 19-26 April 1979.
The data were compared with an area of similar acidic susceptibility in Norway.
The area of study was 70 km by 50 km and covered the entire Galloway region.
These samples thus enveloped the complete spectrum of Galloway chemistry.
Third, Flower et at (1985) looked at the water quality and diatom content of 34
Galloway lochs in November 1984 and again in July 1985. The study area once
again encompassed the whole of Galloway. Finally, Harriman et at  (1987) sam-
pled  22 lochs and 27 streams, looking at their chemistry and their fish popula-
tions. The region of study was limited mainly to the granitic area between Loch
Dee and Loch Dorm in a 20-km by 15-km area.

A summary of each data set is presented in Table 8.1. The highest mean
pH levels were recorded by Flower et al. (1985) in their July sample and by
Edmunds and Kinniburgh (1986b), for whom the shallow well and borehole

•••



134 Impact Modele to Anna Regional Acidification

samples show the more alkaline groundwater chemistry. The latter study also
shows the highest base cation concentrations. The data from Harriman et at
(1987) show low base concentrations indicative of the slowly weathering, acidic
granite region away from the coast and the emission sources. Of the major
anions, SO4 levels are more or less similar at approximately 158 meq m-3; but
Cl is more variable, ranging from 148 to 385 meq

Table 8.1. A  summary  of data from each study (minimum, mean, standard deviation,
maximum).a

Data set




pH Al Na K Ca Mg CI SO4 NO3
Edmunds & Min 4.20 .01 96 0.0 19.0 16.5 28.2 37.5 0.0

Kinniburgh Mean 5.80 .21 277 26.7 329.0 158.0 253.0 159.0 49.5
(1986) Std .85 .21 153 65.3 38.7 171.0 192.0 112.0 125.5




Max 7.30 .80 1,095 644.0 2,136.0 1,242.0 1,291.0 1.041.0 728.0
Wright lc Min 4.30 .01 101 1.0 6.0 21.0 37.0 47.0 0.0

Henriksen Mean 5.40 .19 210 19.8 174.5 107.0 233.0 163.8 35.5
(1980) Std .92 .18 113 16.1 300.0 95.0 143.0 77.0 65.0




Max 7.60 1.10 761 176.0 1,811.0 403.0 930.0 478.0 460.0
Harriman Min 4.20 .01 100 3.0 1.0 34.0 100.0 88.0 1.0

et al. Mean 5.20 .17 143 9.0 139.0 78.0 148.6 150.5 11.3
(1986) Std .60 .10 29 2.3 92.0 31.0 32.0 36.0 6.6




Max 8.00 .62 257 13.0 1,325.0 429.0 232.0 279.0 45.0Flower Min 4.40 .10 1,748 4.6 14.0 38.0 90.0 54.0 .7
et at Mean 5.50 .21 286 13.4 134.0 121.0 385.0 161.5 17.0
(1985) Std .90 .11 138 12.0 114.0 83.0 179.0 85.0 31.0




Max 7.00 .43 765 56.3 400.0 340.0 935.0 358.0 171.0
Flower Min 4.50 .07 135 3.1 23.0 37.0 87.0 70.8 .7

ct a/. Mean 6.00 .27 276 14.7 166.3 116.0 298.0 139.0 7.5
(1985) Std 1.30 .40 164 14.6 142.0 88.0 163.0 67.0 7.2




Max 7.20 .59 717 64.0 518.0 356.0 899.0 320.6 31.4
Overall Mean 5.65 .21 248 21.5 248.6 132.0 250.4 158.0 37.0

a All values are shown in meq 111-3 except for those for Al, which are mg I-I.

The probability density distributions of corresponding chemicals within
data sets are roughly triangular with a tail of varying length. The tail-values
affect the mean results in Table  8.1 by shifting them from their respective
median values. This effect is greatest for the three data sets with a low number
of samples. The distribution of pH has three peaks - at 4.5, 6.1, and 7.1 - for
each of the studies except for that of Harriman et at, who sampled the most
acidic area and hence only show the lower two.

The data were pooled together to yield a large data set whose samples
covered a variety of conditions produced by both spatial and temporal variation
within the region. The samples were all taken within a five-year period, and it
was assumed that the pooled set could represent the mean state of the region
during those five years. The time scale of the model is longer, but the errors
introduced by such an approach were considered to be outweighed by the benefit
of utilizing all of the data to get a more accurate representation of region as a
whole during that time. The overall mean results are presented in Table 8.1.
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Probability density functions showing the three-peaked pH distribution and the
long-tailed "triangular" distribution for calcium, but otherwise typical of each of
the major ions, are shown in Figures 8.2 and 8.3.
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Figure 8.2.  pH distributions in (a) Calloway region and (6) clusters I and 2.
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Figure 8.3.  Calcium distributions in (a) Galloway region and (6) clusters 1 and 2.

A  cluster analysis was performed in an attempt to categorize groups of data
linked by a common chemical makeup. The minimum variance method of Ward
(1963) was used to cluster the data, and the algorithms used were those available
in the Statistical Analysis Systems computer package (SAS). The clearest divi-
sion of the data was obtained by forming six clusters. Two main clusters con-
tained 322 and 74 of the total sample of 453 sets of measurements, and four
minor chiiters effectively accounted for the long tails of the distributions for the
appropriate chemicals.

Table 8.2 summarizes the two major clusters. Cluster 1 has a mean  pH  of
5.3 and includes all the low-pH sites. Concentration of all major ions is low, e.g.,
mean Ca is 83 meq m-3 and mean SO4 is 120 meg in-3. This contrasts with
cluster 2, which has high values for ions (Ca is 412 meq 111-3 and 504 is 216 meq

Cluster I

Cluster 2
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Table 8.2.  Summary of the two major clusters.

Standard
MaximumVariableNumber Mean deviationMinimum

Cluster 1
Al . 322 .312 .16 .01 1.05

Ca 322 82.90 52.90 6.00 339.30

CI 322 189.80 80.10 28.20 541.50

SO4 322 120.30 42.70 37.40 341.50

PH 322 5.34 .79 4.18 7.38

NO3 322 8.75 13.30 3.57 89.00

Mg

Na

322

322

69.00
184.70

31.70

60.20

16.50
1.00

310.20

404.30

K 322 8.60 11.40 2.60 130.50

Cluster 2






Al 74 .172 .11 .01 .42

Ca 74 412.10 120.00 196.10 748.50

CI 74 332.20 135.50 87.40 631.70

SO4 74 216.50 80.90 99.90 449.70




pH 74 6.40 .56 5.38 7.44

NO3 74 54.80 57.80 3.57 298.40

Mg 74 204.90 73.10 90.50 477.20

Na 74 361.30 110.20 169.60 776.10

K 74 31.60 30.40 2.50 181.60

m-3; see  Figure 8.2), with a mean pH of 6.4. The differences may be interpreted

by assuming that cluster 1 contains the more acidic sites on and around the

granitic regions to the north of the Galloway region, and that cluster 2

represents the area with Silurian and Ordovician bedrock near the coast. Clus-

ter 2 chemistry thus reveals the prevalence of higher deposition rate of sea salt

and of atmospheric pollution and also the higher source of weathered minerals.

The main interest focuses upon cluster 1, representing the most acid-sensitive

subdivision. Therefore, only the simulation for cluster 1 is presented here.

8.3. Description of Modeling Techniques

The region was modeled using the Model of Acidification In Catchments
(MAGIC), developed by Cosby et al. (1985a; 1985b). This is a lumped param-

eter, long-term simulation model of soil and surface-water quality. In the

MAGIC model, five soil processes are identified as holding the key to under-

standing the acidification processes in soils:

Formation of alkalinity in the soil from dissolution of carbon dioxide held

at high partial pressure (Reuss and Johnson, 1985).

Mineral weathering of base cations as a source within the catchment.

Anion retention by the soil, e.g., sulfate adsorption.
Aluminum mobilization and dissolution of aluminum minerals.

Cation exchange by the soils.
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Dynamic variation in the catchment soil condition is included in the model by

forming a mass balance for each of the major anions and cations (presented by
Cosby  et al.,  1985b). Equilibrium is assumed for each time step, with changes
between time steps monitored by the ion flux budgets. The sulfate subsection of
the model is investigated in detail by Cosby et  at  (1986a).

Initial conditions for the model are calculated by assuming an equilibrium

with background chemistry prior to industrialization in 1844. This background
chemistry is calculated using the present sea salt rainfall contribution as the
1844 precipitation concentration, and by taking the weathering rates to be con-
stant throughout the time period considered by the model. Deposition of SO4,
CI, and NO3 are specified as an input to the model. The trend of sulfate deposi-
tion during the past 130 years is taken from findings of the Warren Springs
Laboratory (1983). The effect of catchment flora is modeled as sink terms for
the appropriate ions. Neal  et al.  (1986) and Whitehead  et al.  (1987) use this
facility to simulate the effect of forest growth on stream acidity. The model has
a simple component for the additional effect of organic chemistry, which has
been applied by Lepisto  et at  (1988) to simulate an organically rich catchment in
eastern Finland.

An analysis of the uncertainties inherent in the model is proffered by Horn-
berger et al. (1986a). Verification of the model has been attempted by comparing
model simulations to paleoecological reconstructions of pH for sites in Norway,
Scotland, Sweden, and America (Wright  et  at, 1986; Musgrove and Whitehead,
1988). The use of the model for regional analysis is illustrated by the study of
Hornberger et al. (1987), who simulate the regional characteristics of the chemis-
try of 208 lakes in Norway.

For this study the model was set up for Monte Carlo analysis. In this tech-

11111 nique, several arbitrary parameters are randomly selected from a prescribed
parent distribution prior to running the model. This is repeated many times to
build up a set of runs, each with a different set of parameter values. The statist-
ical properties of the collection of runs are then analyzed. Examples of this tech-
nique applied to water quality problems are presented in Whitehead and Young
(1979) and Spear and Hornberger (1980; 1983). The 12 independent model
parameters that were varied are the mean annual precipitation,  Qp;  the sulfate
deposition rate for 1982, SO4; the cation exchange capacity,  CEC;  the weather-
ing rates of the base cations  WE C WEN; WE Mgland WEK; the log10 selec-a,
tivity coefficients SAle., SADAgi SAINwand 5A1K;and the thermodynamic
equilibrium constant for aluminum hydroxide dissolution, KAI.

The results of the present analysis were investigated using the generalized
sensitivity approach of Spear and Hornberger (1980). This method compares the
simulations that accurately reproduced observed features of chemistry (the
'behavior criterion") with those that did not. It then investigates the merits of
the hypothesis in which the set of parameters giving rise to a successful simula-
tion and the set of parameters failing to do so have the same parent distribution.
This hypothesis is tested for each parameter individually, assuming them to be
independent. The force with which the hypothesis is rejected is strongest for
those parameters to which the achievement of a successful result is most sensi-
tive. A pattern recognition technique based on the Fukunaga-Koontz

•


•

•
•
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transformation (1970) is employed to determine any linear combinations of
parameters to which the model response is sensitive. This technique has been
previously applied to MAGIC by Hornberger et at (1986) and Cosby et al.

(1987).

8.4. Monte Carlo Results

Cosby et at (19866) set up the MAGIC model to simulate one of the Loch Dee
catchments. This catchment is located in the middle of the region described by
cluster 1. For the present analysis, we initially set up the model in the same way
to simulate cluster 1. Table 8.2 indicates that for cluster 1 the effect of NO3 is
small. This is possibly due to a near equilibrium between the input sources to
the catchments and the plant uptake sinks within the catchment. The uptake
rate was set more or less to balance the source for this simulation.

The ranges from which the parameters were drawn in the Monte Carlo
analysis are shown in Table 8.3. The mode indicates the peak for the triangular
distributions (a negative mode indicates that the distribution was rectangular).
The specified ranges are wide to encompass the entire spread of parameter com-
binations that are able to reproduce cluster 1 chemistry. The extent of the range
is limited, however, to those values that may be experienced in the field. A
behavior constraint was chosen such that a run was considered successful if its
simulated chemistry for 1982 fell within the range of values between the
appropriate 5 and 95 percentiles of the cluster 1 chemistry.

Table 8.3. Parameter variation  for the Monte Carlo simulation.'

Range for
Monte Carlo variation Successful simulations

Parameter Min Max Mode Mean Std Min Max

Qp 1.2 3.0 2.0 1.7 .50 1.2 3.0
SO4 50.0 220.0 150.0 121.50 32.40 52.2 184.1
CEC 40.0 250.0 120.0 178.50 119.90 40.0 229.0
WEca 10.0 250.0 85.0 69.40 45.10 10.1 162.2
WEmg 0.0 50.0 25.0 13.40 8.90 6.5 39.4

WENg 0.0 50.0 25.0 10.30 6.93 .1 29.0

WEK 0.0 30.0 10.0 3.70 2.53 .1 10.5

SA1Ca -1.0 5.0 3.0 2.08 1.28




4.8
SAimg -1.0 5.0 3.0 1.87 1.24




4.7
SA114a -3.0 3.0 0.0 .08 1.22 -2.9 2.9

SAIK -3.0 3.0 0.0 .03 1.28 -2.8 2.9

Km 8.0 11.0 9.5 9.65 .6 8.1 10.9

a WEc, WEMI. WEN, WEK,  and 504 have units of  men  m-2  year-1; (4, is in meters depth
over the  catchment; CEC  in meq/kg.
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Of 880 runs, 530 were successful in reproducing the features of cluster 1
regional chemistry, and these are summarized in  Table 8.3. Table 8.4  shows the
behavior constraint "windows" and a summary of the simulated chemistry.

Figure  8.4  shows the observed and simulated probability density functions
of the cluster for Cl, SO4, and Ca. Good fits about the mean value are seen for

Table 8.4.  Summary of behavior criterion windows and the simulated chemistry (con-
centrations in meg m-3) that satisfied the behavior criterion for cluster 1.

Variable

Behavior criterion windows

MinMax

Successful runs

MeanMin Maz

PH 4.4 7.6 5.4 4.3 6.5
Ca 20.0 245.0 91.5 21.5 224.0
Mg 18.0 190.0 27.0 19.0 85.0
Na 10.0 330.0 196.0 11.0 372.0
K 3.0 35.0 12.0 3.0 34.0
SO4 40.0 245.0 115.0 39.0 242.0
NO3 9.0 25.0 16.0 9.0 22.0
Cl 79.0 360.0 203.0 125.0 401.0

0.010

0.008

0.006

0.004

0.002

0.000

0.010

0.008

0.006

0.004

0.002

0.000

a

T2 0.010

>. 0.008

0.006
.0

E.: 0.004

0.002

100 200 300 400 500 600


Chloride (peo I-1)

50 100 150 200 250 300 350 400

Sulfate (peq 1-1)

0.8

1.01

0.6

0.4

0.2

0.000 0.0
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Figure 8.4. Cluster 1 distributions: simulated (--) and observed (-).
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Ca, CI, and SO4; and the shapes of the simulated distributions for these three

•variables are also good. The fits are worst at the tail ends, resulting either from
specifying a too narrow range of parameters for the Monte Carlo analysis or from
failure to pick up the extremes in sampling the triangular distributions.

The simulated distribution for pH is compared with the observed distribu-
tion in Figure 8.4. The simulation enabled the complete range of pH value,
present in the region defined by cluster 1, to be reproduced. The bias toward
reproducing the lower pH chemistry possibly lies with the model being set up to
reproduce a poorly buffered, highly acidic catchment response. While this is ade-
quate for the majority of cluster 1 sites, it may be less good for the remainder.
Alternatively, a better match might also have been achieved by selecting the •

parameters from more sophisticated distributions than the rather crude triangu-
lar ones that were used. By matching more closely the uppermost part of the pH
distribution, the upper tail end of the other distributions would also have been •

better matched.

•
8.5. Regional Chemistry Changes over Time

Historical changes in the distributions of values of the simulated chemicals were •
ascertained by saving the output for 1844 and 1982. Future deposition was
modeled as a linear decrease to 30% of the 1982 level by the year 2001. This is
merely one of many possible scenarios and is used only to illustrate the potential •

use of the model for regional prediction. The regional levels of chemical concen-
trations in 2062, under this deposition sequence, were also looked at. The results
are shown in Figure 8.5.

•
For cluster 1, the MAGIC model shows a large drop in both pH and alka-

linity over the past 140 years. The pH level falls by 0.8 pH unit and alkalinity
falls by approximately 70 meq m-3.This is in accord with the findings of Bat-

•
tarbee and Flower (1986), who report changes in pH level of up to 1.0 pH unit
during the same period, for those lochs in the granitic region of Galloway. A
small recovery is seen during the future scenario. The small size of this recovery

•
reflects the depletion in the soil of base cations (to between 2% and 5% in 1982).
The low rate of soil weathering in the region enables only a slow recovery rate.

The sulfate distributions clearly show the shift in regional concentrations
•simulated as the result of industrialization. The preindustrialized levels are

between 0 and 38 meq m-3,whereas the 1982 levels are much higher with values
between 42 and 190 meq m-3.The 2062 levels are reduced by about 30%,

•closely matching the decline in sulfate deposition. This confirms the status of
the soil as having low sulfate adsorption capability. Aluminum is seen to
increase in extent over the years, up to 36 meq m-3for the most acidic lakes.

•The majority of sites, however, shows only a small increase. Of the base cations,
calcium levels are seen to rise only slightly, whereas magnesium levels show a
much more substantial rise. The future scenario shows small decreases in these
cations, as a result of the partial recovery of the soil. ••••
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8.6. Sensitivity Analysis

The results of the generalized sensitivity analysis are presented in  Table 8.5,

which describes the difference between the distributions of parameters that give
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rise to a "behavior' and those that do not. The Mann-Whitney statistic (M-W)
indicates whether the distributions are significantly separated along the param-
eter axis, and the Kolmogorov-Smirnov statistic (K-S) gives the greatest separa-
tion of the two corresponding cumulative distribution functions. In both cases, a
large number indicates a high significance and sensitivity of simulation to that
parameter.

Table 8.5.

Parameter

Results of the generalized sensitivity analysis.

Comparison of behaviors with non-behaviors

Mann-Whitney z statisticKolmoyorov-Smirnov d statistic

Qp 3.19 .139
804 2.19 .204
CEC 1.59 .105

WEca .76 .219
WEmg .51 .045

WEN1 .26 .052
WEK .52 .065

SA1C3 .26 .079
SAJMit 1.21 .096

SA1Na .24 .042

SA1K 1.08 .092
Km .01 .054

The greatest sensitivity, as indicated by these two statistics, is seen for Qp

(M-W of 3.19) and for WEc, (K-S of 0.219), respectively. Parameter SO4, the
1982 deposition level, is high in both cases. WE01 has a high value for the K-S
statistic and a low value for M-W statistic. This indicates that one of the two
distributions (behaviors or non-behaviors) is centrally placed within the domain
of the other. The central distribution for WEca is the one for behaviors, show-
ing a peaked, triangular distribution with a well-defined band of acceptance.
Thus, while the WEca parameter was outside the range 10 to 162 meq m-2yr-1,
there was no chance of a successful simulation.

A method based on the Fukunaga-Koontz pattern recognition technique
was used to look at the sensitivity with regard to linear combinations of the
parameters. This analysis reveals two eigenvectors of high sensitivity. The first
was more sensitive than any individual parameter, with M-W of 3.63 and K-W
of 0.214. The weight of each component of the normalized eigenvector indicates
the relative importance of that component in explaining the variance associated
with it. In this way the most important components were SO4, explaining 63%
of the variance, and WE03, explaining 22%. The results indicate that the suc-
cess of the model in reproducing the regional characteristics for areas of high
acid susceptibility is strongly dependent on the selection of values for the WE03,
SO4, and Qp parameters (the weathering rate of calcium, the sulfate deposition
rate in 1982, and the mean annual rainfall during the duration of the simula-
tion).
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8.7. Discussion

This analysis tends to confirm both the view that the Galloway region is suscep-

tible to acidic deposition and the view that a significant change in soil conditions
has occurred during the past 140 years. Falls in pH level of as much as 1.0 pH
unit have been discovered for the Galloway by Battarbee and Flower (1986),
using the method of reconstruction from study of diatom assemblage in the sedi-
rnent of lochs. The simulation results show a drop in mean level of 0.8 pH unit.
This is increased by the inability to match the highest portion of the 1982 pH
distribution at the same time as matching its low end.

This inability also spills into the simulated distribution for alkalinity, by
cutting off the highest levels in the simulation. A fair view of the changes caused
by the acidification process can still be gleaned, however, by noting that the
lakes with higher alkalinity in 1982 are also those with the higher alkalinity in
1844. Hence, the simulated results axe valid for those lower alkalinity lakes that
it represents well. The recovery under the scenario of a 30% deposition reduc-
tion is seen to be slight, owing to the depletion of base cation resources at the
available cation exchange sites on the soil. In particular, alkalinity levels are
seen to recover very little in the most highly acidified lakes.

Monte Carlo simulations are an excellent means of encountering the com-

plete range of model response to uncertainty in parameters. Overall, the simula-
tion was successful using triangular distributions for the parameters in the
Monte Carlo analysis. Better reproduction of the present-day distributions could
have been achieved using more complicated distributions to describe the param-
eters, noting that certain results in the behavior criterion are more in tune to
particular parameters. For example, calcium levels are strongly affected by its
weathering rate and selectivity coefficient.

The lack of available data for verification of the model calibration, how-
ever, limits the usefulness of such a study. Without verification, fine points
raised by such a simulation might be mere quirks of the model. The simulations
obtained work only under the assumption that the model structure is valid and
that its lumped representation of parameters is valid on a regional basis. This is
a difficult assumption to prove; one can only look at the simulations and see
whether the model appears to represent the region well.

Given the validity assumptions, many uncertainties within the model itself
need to be borne in mind when interpreting the results or when using the model

to project assumed deposition scenarios into the future. -Uncertainties arise in
measurement of both precipitation and stream chemistry as a result of intrinsic
imprecision both in the measuring technique and in the representative nature of
the sampling plan used. In this study the results of five suiveys are used, four of

which are single-sample surveii. The findings of each survey have been pooled
to produce an observed chemistry that may average out, to a degree, any
unrepresentative feature of any one survey.

Each submodel within MAGIC also has an uncertainty associated with it.
The true shape of the sulfate deposition trend curve, used to define the timing of
precipitation pollutants, has only been estimated, and errors may seriously affect
the timing of the onset of acidification. This aspect of the model has been

••••
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investigated by Hornberger et al. (1986a) who looked at the effect of uncertainty
on a single-site prediction using MAGIC. The aluminum submodel contains a
cubic equilibrium between aluminum and hydrogen activities. Assuming an
equilibrium model to be valid, there is uncertainty in the order of the relation-
ship. A fit to observations at one point in time may be found for many different
orders, and the future predictions and past reconstructions may be very different
for each one.

8.8. Conclusions

The MAGIC lumped-parameter model of groundwater in catchments can be cou-
pled with Monte Carlo techniques to provide a useful method of simulating
long-term regional response to acidic deposition. The sensitivity of simulation to
parameters in the model is seen to be dependent on the weathering rate of cal-
cium, the level of deposition of sulfate, and the mean annual rainfall for a region
with low weathering rates and low sulfate adsorption.

The response of the region to a future deposition scenario is also gleaned
from the model. After a prolonged period of deposition, the ability of the region
to recover is seen to decrease throughout the lifetime of the deposition sequence.
Major future reductions in deposition are required to produce a significant
recovery in the Galloway region of southwest Scotland.
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OPINION

Preliminary empirical models of the historical and future impact
of acidification on the ecology of Welsh streams
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P. G. WHITEHEADt Department of Applied Biology, Univcrsity of Wales
Institute of Science and Technology, Cardiff, Welsh Water, Penyfai. House, Furnace,
Llanelli, Dyfed, and 1-Institute of Hydrology, Crowmarsh Gifford, Wallingford
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SUMMARY. 1. We describe_a preliminary approach to modelling thc
impact of acidification on the ecology of two Welsh streams. Output
from the hydrochemical Model of Acidification of Groundwaters in
Catchments (MAGIC) was used to drive empirical models which
predicted brown trout Salrno trulta (L.) survival, trout density and
invertebrate assemblage type. The models were used for hindcasts
between 1844 and 1984 under conifer forest and moorland conditions.
Forecasts involved each- of these land uses with sulphate deposition
either continued at 1984 levels or reduced by 50%.

110 2. Trout survival times and trout densities in the models declined
markedly between 1844 and 1984. The most severe decline occurred
under simulated forest, where high aluminium concentration led to the
virtual elimination of trout in both streams.

3. In forecasts, only in simulated moorland with sulphate deposition
reduced by 50% of 1984 levels, was further decline in trout population .

4 .:*;41 retarded. There was no marked recovery in trout density under any of
the conditions examined.

4. Invertebrate assemblages in streams during the nineteenth century
may have differed from those now existing in nearby moorland streams
which are presently circurnneutral. Past chemical conditions. were
unusual (<3 mg I-1 total hardness, but pH >5.7 and low aluminium) by
present-day standards, and were-outside the range of the invertebrate
model until —1940.

5. Between the 1940s and 1984 there was no change in invertebrate
fauna under the moorland scenario despite some acidification. How-
ever, simulated forest advanced the appearance of the most impover-

. 	 ished assemblage type, which did not recover in spite of . reduced

deposition.

6. We discuss several uncertainties with the models in their present
form, but suggest some methods for their testing and validation.

Correspondence: Dr S. J. Orrnerod, UWIST, do Welsh Water. Penyfai House, Furnace, Llanelli. Dyfed
SA15 4EL.
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Introduction

calls for a reduction in acidifying emissions are
many and widespread. However, the costs and
benefits of such a policy must be carefully
appraised in both economic and environmental
terms. As a result, freshwater ecologists arc
currently  being asked to reconstruct past con-
ditions, which might have occurred in waters
which arc now acidic (e.g. Hower & Battar-
bee, 1983; Battarbee & Charles, 1986), and to
predict changes likely in the future. This
element of forecasting is clearly desirable:
many of thc catchment processes which affect
stream chemistry proceed slowly, over years or
decades, hence management decisions on
potential acidifying influences are required
well in advance of perceptible change.

However, many uncertainties surround the
causes and consequences of acidification. The
chemical processes are intricate, involving in-
teractions between atmospheric deposition,
and catchment characteristics such as hydro-
logy, geology, soil type, and vegetation (Over-
rein, Seip & ToIlan, 1980; Altshuller & Lin-
thurst, 1984). Biological responses to changing
acidity are also complex, sometimes resulting
from direct physiological effects by Fr, Ca',
Al" or other ions (Altshuller & Linthurst,
1984), but sometimes involving indirect effects,
such as trophic Pathways (e.g. Hildrew, Town-
send •& -Francis., 1984; Winterbourn, Hildrew
& Box, 1985). Further complicating changes
are imposed at the catchment level by man. In
upland Britain, much climax vegetation has.
been removed over millennia (Pennington,
1984), in many places to be replaced recently
by plantations of non-native conifer trees
which exacerbate or add to the effects of add
depdsition (Harriman & Morrison, 1982;
Stoner, Gee & Wade, 1984; Ortnerod, Mawle
& Edwards, 1987). As with the regulation of
acidifying emissions, this land-use component
requires policy formulation and management
decisions. -

A possible solution to the problems of
rdonstracting or forecasting long-term trends
is the development of models. The hydro-
chemical Model of Acidification of Ground-
water in Catchments (MAGIC) has now been
used to simulate changes in surface-watcr acid-
ity under various scenarios of sulphur deposi-
tion and catchment afforestation (Cosby  et al.,

L985; Cosby, Whitehead & Neal, 1986; Neal  et
al..  1986;



Whitehead  et at.  1988). However,

because biological resources are amongst those
most at risk from acidification, there is a need
for a significant biological input into the fore-
casting procedure. So far, such biological
modelling has not been widely attempted. The
few studies undertaken have involved simulat-
ing changes in fish and invertebrate popula-
tions expected under given chemical condi-
tions, often extrapolating from toxic responses
in the laboratory (Howells. Brown & Sadler,
1983; Van Winkle, Christensen & Breck, 1986;
France & LaZerte, 1987). Only Minns, Kelso
& Johnson (1986) have attempted to forecast
temporal patterns by modelling alkalinity, total
dissolved solids and potential fish yield in lakes
of the Canadian Shield.

In this paper we suggest an approach to
modelling empirically the ecological impact of
acidification in Welsh streams, illustrated with
reference to two catchments. We also point
out some weaknesses which must be overcome
before this approach becomes widely accepted,
but also suggest methods for testing the mod-
el's output over relatively short time periods.

Methods

General amiroach

Our approach has been to use the hydro-
chemical model MAGIC to formulate stream
chemistry in the past, and in the future under
various rates of atmospheric deposition and
types of land use. The chemical output from
MAGIC was then used to predict' stream
biology; based on empirically derived rela-
tionships with water chemistry in the present
day. All the biological models were simple and
linear, and gave: (I) The survival of brown
trout  SaImo trutta  (L.), using a linear regres-
sion of survival time on aluminium concentra-
tion. (2) Brown trout density, using:a multiple

--regression from aluminium concentration, total
hardness and stream' size. (3) In‘yertebrate
fauna, using a multiple discriminant analysis of
the environmental variables which differenti-
ated most strongly between invertebrate
assemblages, identified using a cluster analysis
(TWINSPAN).
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TABLE I. A comparison between the actual chemistry of MS and ES. and values given by thc
MAGIC model in 1984-85 under moorland and forest scenarios. lbe values. in mg I except for
pH, arc annual means.




Model MS




Model ES




Determinand MS Moorland Forest FS Moorland Forest

pli 5.2 4.8 4.7 4.9 5.0 4.6
Aluminium 0.162 0.173 0.483 0.378 0.068 0.637
SO, 4.8 4.7 7.0 7.3 5.2 7.3
Ca 0.8 0.9 1.1 1.2 1.1 1.3
Mg 0.7 0.7 0.8 0.7 0.7 0.7

The study area

The modelling exercise was undertaken us-
ing chemical data from two catchments around
Llyn Brianne (52°7' N, 3°43.W; Fig. 1), a large
reservoir on the River Tywi in mid-Wales, and
the site of several previous studies of the 


chemistry and biology of surface water acidi-
fication (e.g. Stoner  et at,  1984; Ormcrod  et
at ,  1987; Weathcrley & Ormerod, 1987;
Whitehead  et at ,  1988). Both catchments have
soft-water streams (<2 mg Ca pH•4.8-5.2,

0.15-0.36 mg Al I-I annual means) and are
covered, respectively, by planted sitka spruce

MS

FS

0 2 4 6

krn

llyn
Brianne

Coihi -
Tywi

FIG. I. The location of the study arca (•). Data for the fish density model were drawn from thc shaded arca.
On the large - scale mai), FS and MS arc the forested and moorland catchments. respectively, which were
involved in thc MAGIC simulations. Other sites marked were used to produce data for the invertebrate (0)
and fish survival (*) models.
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l'icea sitchensis  Carr. (FS=forestry stream),
and by moorland (MS=moorland stream) with
Molinia caerulea (L.). Festuca  spp.  and Nardus
stricta  (L.). Both catdiments are underlain
predominantly by shales and mudstones of
lower Silurian age. Their soils arc also similar,
both being covered mostly by brown podzolics
(34% in FS, 21% in MS), ferric stagnopodzols
(19% in FS, 23% in MS), and humic or
stagnohumic gleys (31% in FS, 25% in MS).
The forestry stream is currently fishless, whilst
MS had 10 fish 100f11-2 in 1984 and 1985.

Depending on the model (see below), bio-
logical data were drawn either from streams
around Llyn Brianne or from a wider geo-
graphical range of soft-water sites throughout
4000 km2 of upland Wales (see Ormerod,
Wade & Gee, 1987; Wade, Ormerod & Gee,
1988).

The fish models

The trout survival model was derived in 1982
by Stoner  et at  (1984), who caged 0+ fish
from wild stock in streams around Ltyn
Brianne (Fig. 1). Mean aluminium concentra-
tions (filterable at <0.45pm) during exposure
explained 96% of the variance in survival time
giving a highly significant regression:

LT3,3=22.2-362 [A16111

t (LT50 in days, aluminium in mg r 1).
In all cases where pronounced mortality

occurred, pH was below 5, with most alumi-
nium in the labile form (Welsh Water, unpub-
lished).

TO derive the density model, eighty-eight
streams in the Welsh uplands (Fig. 1) were
electro-fished between June and August 1984,
andtrout densities were estimated using catch-
removal methods (Zippin, 1958; Seber & Le-
Cren, 1967). Densities were related to water
quality (from weekly spot samples) and other
environmental data using stepwise multiple
regression, and the following model explained
50% of thc variance:

L densily= -L24 - LO8 LiAlniti
+133 141-lardnessj
-022 L A.D.F.

(Density in n 100m-2, aluminium in mg I-',

hardness in mg CaCO3 A.D.F.=Average
daily flow in m3 L indicates log10.)

Alternative regressions. including zinc and
pH (but not hardness) as predictors. explained
a similar proportion of the variance, but were
not used in this study; zinc concentrations arc
not raised in the streams being modelled,
whilst pH and aluminium concentrations are
highly correlated. Tota: hardness was incor-
porated because base cations are important in
MAGIC, and also influence fish responses to
acid stress (e.g. Brown, 1982).

The invertebrate model

Recent studies in the U.K. have revealed
consistent and striking relationships between
invertebrate assemblages and acid-base status
in streams (Townsend, Hildrew & Francis,
1983; Wright  et al.,  1984; Ormerod & Ed-
wards, 1987; Weatherley & Ormerod, 1987;
Wade a at,  1988). Such relationships are
clearly suitable for empirical modelling using
techniques proposed by Green & Vascotto
(1978). These methods have permitted impor-
tant developments towards predicting the
macroinvertebrate fauna expected under diffe-
rent environmental conditions (Wright  et at,
1984; Armitage  et at ,  1987; Moss  et at ,  1987).
The procedure involves: (1) Classifying
streams on the basis of their invertebrate
faunas. (2) Assessing which environmental
variables differ most strongly between site
groups in' 'die- invertebrate classification. (3)
Combining the environmental variab:es into a
series of linear functions which then 'discrimin-
ate' between the  a priori  invertebrate group-

.ing.

Prediction involves using new values of the
discriminant functions to indicate which type
of invertebrate fauna would be expected. under
thenevienvironinental conditions.

The derivation of our invertebrate model
has been described more fully by Weatherley
& Ormerod (1987). Eighteen streams around
Llyn Brianne were sampled for macroinverte-
brates in April 1985 (Fig. I). Streams FS (as
site LI I in Weatherley & Ormerod:1987) and

-M5 (as site CI 5) were included in this earlier
survey, but the modelling exercise is- not con-
straincd or circularized because wholly new
sets of chemical data were generated in these
catchments during the forecasts and hindcasts
(scc below). Invertebrate data were pooled
from riffle and marginal habitats because of
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Into three groups:

Group A. Acidic streams (mean pH 5.0,
total hardness 5.9mg CaCO, 1-I, 0.29 mg Al
I-I), often draining afforested areas. Domin-
ated by stonefly nymphs with mayflies absent.

Group B. Moderately acidic streams (mean
pH 5.4, total hardness 4.8 mg 1-1, 0.1 mg Al
1-'), usually draining moorland catchments,
and with a more diverse fauna than A includ-
ing additional predaceous stoneflies (Isoperla
grammatica (Poda), Diura bicaudata (L.)),
some mayfly nymphs (e.g. Leptophlebia nzargi-
nate' (L.) and dragonfly nymphs (Cordulegaster
boltonii (Donovan)).

Group C. Circumneutral streams (mean pH
6.7, hardness 13.0 mg 1-1, 0.05 mg Al 1-1),
draining moorland or deciduous woodland,
and with the most diverse fauna, dominated by
grazing mayfly nymphs (Backs spp.,
Rhithrogena senticolorata (Curtis)).

(Chemical characteristics were bascd on
annual means from a weekly programme of
spot sampling.)

In multiple discriminant analysis, thc use of
aluminium concentration, total hardness and

- catchment -arer(as- an- expreion of-stream
size) permitted 100% precision in placing each
stream into its correct invertebrate group (see
Weatherlcy & Ormerod, 1987). Output from
MAGIC was used to locate each modelled
stream in discriminant function space, hence
indicating the likely invertebrate assemblage
(see Fig. 2), according to the following equa-
tirnia.

F1=6.58 L(A11+4.12 L[hardness1
0.06 L catchment area+2.72

F2=9.93 L[hardnessj + 1.23 L[Ali
1.20 L catchment area-4.35

(concentrations in mg l-1, area in hectares).
In part, the accuracy of the prediction will

depend on whether a new site or new condi-
tions are within the range of the existing
TWINSPAN classification and discriminant
'analysis. This can be assessed from the Eucli-
dean distance, in discriminant space, of the

••••
••••••

the extra information gained and precision
achieved (Ormerod, 1987; Weatherley &
Ormerod, 1987). Streams were then classified
using Two-way Indicator Species Analysis
(TWINSPAN: Hill, 1979), on the basis of
species composition and_selative abundance,—
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new conditions from the mean location of each
TWINSPAN group (sec Moss  et al_  1987).
Euclidean distance is a Chi-squared variable.
with degrees of freedom equal to the number
of discriminant functions. Hence, we have
used a chi-squared value, at P=0.05, to calcu-
late a Euclidean distance outside which the
model involves extrapolation beyond the initial
range of calibration (see Fig. 2).

MAGIC - a brief outline

The conceptual basis of MAGIC is that
atmospheric deposition, mineral weathering
and exchange processes in the soil and intersti-
tial solutions are responsible for the observed
chemistry of surface waters (Cosby  et at ,  1985;
Whitehead  et at,  1988). Output from the
model includes pH, alkalinity, the concentra-
tions of strong acid anions (S042-, cr. NO3-
and r), base cations, and aluminium. The
following prortsses are important: (1) Dissolu-
tion of CO2 in soil water, producing bicarbon-
ate and free hydrogen ions. (2) Reaction
between the free hydrogen ions and an alumi-
nium mineral, producing trivalent aluminium.
(3) Consumption of the trivalent aluminium as
it is exchanged for base cations in the soil
matrix. (4) Depletion of base-cations through
leaching, affected mainly by the presence of
strong acid aniods (5042-, NO32 , Cl , r).
(5) Movement of soil water into stream water(
accompanied by loss of CO2 to the atmosphere
(degassing) and hence rise in pH.

Because anions in add deposition from the
atmosphere are accompanied by Er, base
catibns are initially displaced from the soil.
However, if base cations in the soil are scarce
or become depleted (process 4), less alumi-
nium is removed 'by ioh exchange (step 3), and
increased aluminium concentrations and low
base concentrations occur in runoff. Alumi-
nium and HA- therefore become increasingly
important in the charge balance of stream
water. The precipitation of aluminium hydrox-
ide also acts as a buffer against pH increase
(stek 5). - 

--
Long-term trends in base-poor catchments

include thc exhaustion of base cations in the
soil, a process controlled by the relative rates
of loss through leaching and re-supply by
weathering. Catchments in which losses of
base cations due to leaching exceed weathering 


rates arc subject to acidification and to in-
creased concentrations of aluminium. The ba-
lance between leaching and weathering is
clearly affected by the atmospheric deposition
of strong acids.

As a recent  extension to MAGIC, some of
the acidifying influences of conifer forest have
been simulated by  increasing the  rate of dry
and occult deposition, and evapotranspiration
(Neal  et a)..  1986; Whitehead  et at,  19881
These effects are particularly important in this
study (see below).

MAGIC application to MS and FS

The application of MAGIC to any given
catchment involves obtaining values for key
parameters such as cation weathering rates,
cation/aluminium exchange coefftcients, sul-
phate adsorption capacity, nitrogen uptake
rates and soil PCO2. Once established, these
parameters determine the chemical response of
soil and runoff to deposition rates specified by
the modeller. At FS and MS, MAGIC was
calibrated from an extensive soil and
streamwater data base from 1984 and 1985,
and key parameters were determined by
Whitehead  et at  (1988).

Trends in MS and FS were simulated be-
tween 1844 and 2124. Deposition patterns up
to 1984 involved sulphate loadings increasing
between-1840 and 1970 to-28kgSha. 'and
thereafter falling by 25% up to 1984 (sec
Whitehead  et al.,  1988). From 1984 onwards,
alternative scenarios involved, firstly. con-
tinued sulphate deposition at 1984 levels
(-20 kg S ha-I) and, secondly, a 50% reduc-
tion in sulphate deposition, beginning in 1984
but phased over a 20-year period. In addition,
thest different stenarios were applied tO catch-
ments under two different land uses.

In the 1950s and 1960s, 'many upland catch-
ments in Wales were afforested with conifers
(Ormerod 8: Edwards, 1985), with planting
around the Llyn Brianne study arca beginning
in the late 1950s. In the model, therefore,

.alternative scenarios from 1958 ortwards in-
volved either moorlarid or conifer rforest on
each catchment, with forest simulated bv linear
increases in the dry/occult deposition of
anthropogcnic sulphate and sea salts OVCf a
I5-year period of tree growth and canopy
closure (Whitehead  et at,  1988). Moorland
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and forest treatments represented the actual
sequence of development of MS and IS,
respectively, whilst the converse (i.e. forest
absence from FS and afforestation on MS)
permitted a reversal of current land uses. This
reversal was particularly useful in assessing die
biological models, since simulated forest on
MS enabled a comparison with the actual
conditions in FS, whilst simulated moorland on
FS permitted comparison with the actual con-
ditions in MS.

Stream biology was simulated in the years
1844 (the origin), 1984 (the calibration year,
following forest canopy closure), 2004 (the  end
of thc 50% sulphate reduction period and
approximately thc time when thc first forest
crop would be harvested) and 2124. Catchment
area was assumed to be constant in the inverte-
brate model, but average daily flow in the fish
density model was adjusted by ±10% to mimic
the average effect of conifer forest on water
yield (Calder & Newson, 1979).

Results

Chemical changes

After running the model between 1844 and
1984, with the given deposition sequence, the
chemical output for stream chemistry provided
a reasonable match with the actual conditions
for 1984-85, although some overestimations of
Fit and aluminium concentration were appar-
ent. Comparing between the different catch-
ments, simulated forest presence on MS gave
similar chemical data to the real situation in

Simulated chemical trends indicated slightly
greater bufferi9 capacity in FS than in MS,
but the two were bioadlv similar and have
been illustrated using MS (Fig. 3). pH values
in all cases were below pH 5 by 1960, differing
between only pH 4.6 and pH 4.9 in the
scenarios from 1984 onwards. Of particular
importance to the biological models, simulated
alqminium concentrations increased markedly
from 1940 onwards, most notably in the pie:
sence of forest.

The fish models

MAGIC simulation indicated that, in 1844,
trout would have survived for the duration of
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FIG. 3. Changes in (a) pH and (b) aluminium
concentrations in MS between 1844 and 2124, sim-
ulated by MAGIC (broken line, 50% reduction in
deposition from 1984; solid line, continued deposi-
(ion at 1984 levels; • 0, moorland; • 6, forest from
1958 onwards) (see Whitehead a at, 1988).

the calibration experiments (>22 days) in both
streams (Fig. 4). However, a progressive re-
duction in survival time occurred between 1844
and 1984 with the effect particularly— pro-
nounced in thc 'presence of forest. During
1984, the simulated. LT93 of 5 days in MS
under the forest scenario was close to the
actual value in the real forest stream of 9.2
days in 1982. Similarly, the absence of forest
from FS gave a simulated LT50 of 19.7 days,

.close to the actual value for MS of 16.8 days.
- Forecasts also indicated a marked influence

by forest, LT5os remained below 5-10 flays in
both streams in the forest scenario, irrespec-
tive of a 50% deposition reduction from 1984
'onwards (Fig. 4). Under moorland, simulation
showed that rcduccd deposition preliented sur-
vival times falling below 1984 levels,

Trout density in the model shoWed trends
similar to those for survival timc (Fig. 5). Both
the streams had 80-150 fish 100 m-2 in 1844.
However, densities in MS and FS declined
considerably by 1984: undcr the moorland
scenario both streams had only 8-15 fish
100m-2, a range including the actual case in

•
•
•
•
•
•
•
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FIG. 4. Changes in thc survival time of brown trout in two soft-water streams in the upper Tywi according toMAGIC simulation. The actual values in each stream in 1932 are arrowed. Conventions as in Fig. 3.

MS of 10 fish 100 m-2. The reduction was even
more marked under forest, values in MS and
FS being 2 and 0 fish per 100m-2, respectively,
by 1984. This simulated condition in MS cor-
responded closely with the actual fishless status
of FS.

In forward sithulations, further pronounced
decline in trout density was prevented only 


under the moorland scenario with reduced
deposition.

The invertebrate model

Simulated conditions for each stream up to
—1940, and after —2010 in the forest scenarios,
were outside the 95% probability limits of the
MDA, hence involving extrapolation.

tst:4044$4!4
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FIG. 5. Changes in the density of brown WW1 in two soft-water streams in the upper Tywi according toMAGIC simulation. Conventions as in Fig. 3. The actual values in 1984 are arrowcd
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Interestingly, simulation indicated that MS
and FS did not have invertebrate group C in
1844, reflecting low concentrations of calcium
and magnesium at this time (Fig. 6). Under the
moorland scenarios group B persisted in FS,
even at 1984 levels of deposition, until shortly
after 2124. This simulated return of moorland 


to ES, therefore, accurately recreated the real
situation in MS during the calibration period.
In MS, model conditions were borderline be-
tween groups B and A by 1984, with the
transition occurring shortly after this date.
With moorland and reduced deposition,
change to thc impoverished group A was
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position of each site in discritninant space:Conventions as in Fig. 3.
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prevented in MS and delayed until almost 2124in ES.

By contrast, simulated chemical changes dueto the presence of forest considerably ad-vanced the change to assemblage type A inboth catchntents (Fig. 6). This simulation inMS accurately re-created the actual situation inES. A 50% reduction in deposition, under theforest scenario, was not sufficient to return thefaunal type from A to B during any stage offuture simulation.

Discussion

There are several caveats in a modelling exer-cise such as this, and we emphasize that ourresults represent simulation and not necessarilyaccurate representation of real phenomena.Such caveats apply not only to the ecologicalmodels, but also to MAGIC, whose design andoperation is currently subject to debate(Reuss, Christopherson & Seip, 1986); even ifthe ecological models faithfully representedrelationships with water quality, their predic-tive ability is dependent on the accuracy of thehydrochemical inputs.

Uncertainties over MAGIC

Uncertainties over MAGIC arise from theestimated deposition pattern, the assumptionthat soils are homogeneous within catchments,and from comprehension of the complexchemical processes involved in the response ofcatehments to acid deposition (Reuss et at,1986). For example, in MAGIC, the releasealuminium is cpntrolled largely by reactionswhich assume the solubility of gibbsitc (Al(01-1)3), which is probably a scarce mineral inmany catchments to which MAGIC has beenapplied. However, othcr aluminium sourcesmay share similar solubilities to gibbsite, andthis criticism of-MAGIC may have been over-stat‘ed (Ruess er al., 1986; Whitehead er  at ,1988). Nevertheless, considerations of the -model's aluminium chemistry remain an areaof active development. Such developmentscould be particularly important to the ecolog-ical models in view of the importance ofaluminium in the empirical relationships.
The use of MAGIC in studies that model 


acidification due to forestry carries acfuifrylitntegr •major assumption, that the
key aid

processes under forest are increases in dry/occult deposition and evapotranspiration (Nealet at , 1986). These processes do occur inafforested catchments around Llyn Brianne,leading respectively to enhanced deposition ofsulphate and nitrate, and reduced dilution ofthe resulting acids (Stoner et at, 1984; Hor-nung, unpubl.). However, other acidifying •processes are possible in afforested conditions(Stoner & Gee. 1985). Pre-afforestationploughing creates a drainage network whichpersists through the- forest rotation, and theresulting alterationsin hydrology may be parti-cularly important for MAGIC, reducing thetime available for weathering reactions (Reusset al., 1986). Ploughing would also change themixing pattern of base-rich ground water withacidic surface water (Whitehead, Neal &Neale, 1936). Additionally, MAGIC appearsto be particularly sensitive to changes in soilPCO2, for which few field data are availablefrom forested areas.
Despite the many cautions governingMAGIC, it has recently been able to repro-duce accurately the acidification of Scottishlochs as shown independently by changes inthe diatom flora (Musgrove, Whitehead &Cosby, unpubl.). Similar trends to those givenby MAGIC for Welsh streams were also recon-structed from diatom cores taken from adja-cent lakes, although Welsh data are so far onlyavailable from moorland situations (Battarbeeet at , 1988).

Problems in ecological modelling

_A major assumption in operating the eco-logical models is that the empirical rela-tionships (essentially correlations) betweenstream chemistry and biology represent a caus-al influence. Furthermore, cause-effect pat-terns from spatial relationships are implicitlyassumed to equate with trends in time. Suchassumptions are likely to be more robust in the(Mut toxiCity model, where many dalós supportdirect toxicological effects by acid-related fac-tors (see Witters & Vanderborght, 1987).
However, in the case of salmonid density orinvertebrate distribution, other abiotic andbiotic effects clearly could bc important influ-ences on the fauna. This caveat applies parti-

•
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cularly to the trout density model, which
explained only 50% of the overall variance. Of
notable importance in our study. the effect of
forestry on stream biology operates not only
through chemistry, but probably also through
changes in hydrology, sediment yields, energe-
tic pathways and habitat structure (Ormerod et
at, 1987).

In addition, there is some evidence that
salmonid abundance can be limited by habitat
features (Milner, Hemsworth & Jones, 1985)
or density dependent regulation and emigra-
tion (Chapman, 1962; Gee, Milner & Hems-
worth, 1978; Elliott, 1985). These factors could
restrict trout density in the study streams,
keeping values belowthose given by the model
for 1844 and indicating that the fishery decline
in the model could be overstated. However,
densities similar to those simulated in 1844
were found at about 25% of the sites during
the calibration survey, undertaken on streams
physiographically similar to FS and MS (Welsh
Water, unpubl.). Moreover, other studies on
Welsh hill-streams support a correlation be-
tween -pH and -fishery status -(Sadler & Turn-
penny, 1986). Low salmonid abundance in acid
streams in Wales does not appear to reflect
limited food availability (Turnpenny et at,

1987). Nor does it reflect limited habitat be-
cause densities in streams with <25 mg CaCO3
1-1 are often lower than expected from habitat
characteristics (Milner et at, 1985). The sur-
vival and density models (derived from dif-
ferent data-sets), and the trends they showed
in simulation, were mutually supportive in
indicating a chemical influence. However,
further modelling exercises would benefit from
theincorporation of Parameters such as repro-
ductive potential and the survival of eggs, fry,
and alder frth tHowells et at, 1983; Van
Winkle et at, 1986). Comparisons between
.populations modelled in this way with those
modelled empirically could be instructive.

Possible physical influences by forest on
stream invertebrates mere masked in our study
bectuse aluminium concentration represented
the major detectable difference betwear
afforested and moorland catchments (Weath-
erley & Ormerod, 1987). However, many data
support an influence by acid related factors on
invertebrates in Welsh upland streams. For
example, the ordination and classification of
invertebrate assemblages has repeatedly re-




vealed pronounced correlations with pli, or
related factors ((or Welsh streams see Orme-
rod & Edwards, 1987; Weathedey & Ormerod,
1987; Wade  et aL,  1988). While these correla-
tions in themselves do not necessarily reflect
cause—effect relationships, they persist
amongst the fauna from different stream habi-
tats (Ormerod, 1987; Weatherley & Ormerod,
1987), and are more pronounced than correla-
tions between invertebrate ordinations and
land use (Wade et at, 1988); neither of these
features would be likely if-chemistry did not

exert some causal influence. Direct effects on
some species by low pH and high aluminium
concentrations have been demonstrated in a
Welsh stream (Ormerod  et at,  1987), although
it is also possible that indirect chemical influ-
ences on invertebrates occur through 'bottom-
up' (food availability) and 'top-down' (preda-
tory) control (e.g. Hildrew, Townsend & Fran-
cis, 1984; Winterbourn  et at, 1985; Ormerod,
Wade & Gee, 1987; Schofield, Townsend &
Hildrew, unpubl.).

Whilst empirical models such as ours would

-take account of both direct and indirect path-
ways of chemical influence, the model could be
inaccurate because of the relative effects of
chronic versus episodic conditions. Acid

streams are characterized by pronounced fluc-
tuations in pH and aluminium concentrations
during storm events or snow melt (Stoner  el

at, 1984; Brown, McLachlan & Ormerod,
unpubl.) and direct physiological effects on
stream fauna could occur through such brief
episodes of acid stress. However, all our
ecological models were based on annual mean
chemistry, partly because episodic influences
could not be separated in our data-base, but
also because MAGIC does not incorporate
hydrological events or their associated pH
change. The absence of episodes froin the
modelling procedure would, be most problema-
tic in situations where streams of differing
mean pH had similar minima which exceeded
toxic thresholds. Mean and extreme yalues for
pH and aluminium are closely correlated,
'however, .and means .probably indicate the
likelihood of episodic change (Ormerod &
Tyler, unpubl.). Moreover, some of the in-
direct pathways of chemical influences on
biology, such as those acting through trophic

status, seem as likely to involve chronic effects

as episodic. Nevertheless, the incorporation of
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episodes into MAGIC and biological models
clearly require development for realistic
simulation.

Thc invertebrate model uscd in this study
follows the approach adopted by Wright  et al.
(1984), and indicates an extension to previous
predictive studies (Moss  et at,  1987). The
model, as we have used it, however, is con-
strained to predict faunal changes which occur
in steps between TWINSPAN groups, rather
than continuous change in species composi-
tion. In cases where species occurrences reflect
dircct chemical effects, faunal changes might
be expected to occur incrementally as specific
tolerance ranges are sequentially exceeded
(e.g. Engblom & Lingdell, 1984). Moss  et at
(1987) have now provided a method by which
such specific changes can be modelled, and we
are currently expanding our approach to in-
clude this development (Weatherley & Ormer-
od, unpubl.). However, if TWINSPAN groups
reflect true aquatic communities, with func-
tional relationships and interspecific depend-
ence (e.g. Hi!drew  et at ,  1984; Ormerod  et at ,
1987), even such species-specific modelling
could be limited. Changes within sites are
further influenced by the probability of col-
onization by 'new' species, a process of which
little is known in upland streams (cf. Sheldon,
1984). Clearly, intensive monitoring of chem-
ical and biological change in acid waters is
required in order to assess how assemblage
patterns develop.

Validating the model and testing the predictions

A sceptical view of an exercise such as this
might be that only data spanning many dec-
ades would providca test of the model predic-
tions. However, an alternative would be to
accelerate chemical changes at the catchment,
or even lysimeter, level. For example, projects
in Norway (Wright  et at,  1986) and the
U.S.A. (Haines  et at,  unpubl.) already involve
experimentally increased or decreased acid
tteposition. over whole catchments. At Uyn
Brianne, catchment-scale manipulations. -in-
dude afforestation, partial deforestation and
catchment liming (i.e. increased cation avail-
ability). Chemical and biological monitoring in
these experiments is in progress to evaluate
our hydrochemical and biological models.

Validation of historical rcconstructions

clearly presents a more insurmountable prob-
lem. Whereas past pH conditions in lakes, as
indicated by MAGIC and diatom stratigraphy,
are corroborative (Musgrove, Whitehead &
Cosby, unpubl.), no similar method is readily
available for obtaining data on the past biology
of streams. For example, operation of the
invertebrate model for the nineteenth century
involved extrapolation beyond the range of the
multiple discriminant analysis. MAGIC indi-
cated that runoff modelled at this time was
characterized by exceedingly low concentration
of cations (-3 mg I-1 total hardness), but pH
>53, and almost no aluminiun. At least in
Wales, streams with these chemical features no
longer exist, and it is impossible to assess from
field data what their biological character might
be.

General patterns

Notwithstanding the above caveats, several
features of our models are of interest. Firstly,
the results indicate a pronounced acidification
and aluminium mobilization in soh-water
streams in the upper Tywi between the
nineteenth century and the present day. Such
simulated change caused a considerable reduc-
tion in trout survival and density. Since brown
trout are less sensitive to acid stress than
salmon (Ormerod  et al.,  1987), chemical
changes indicated by the model would also
affect the suitability of the upper Tywi as a
nursery for this migratory species. Secondly,
the most pronounced acidification occurred
under the forest scenarios, with fish either
totally eliminated (FS) or present at exceed-
ingly low density (MS). In view of the reduced
LTso. under forest conditions, it is unlikely that
the few fish remaining -in MS in the forest
scenario would survive. Additionally, pro-
nounced changes in the model invertebrate
fauna were advanced under forest conditions.
These simulated effects are supported by the
observed impact of forestry on:streams in
Wales and Scotland (Harriman & Morrison,

'1982; Stoner  et at,  1984). Lastly, and by
contrast, the absence of forest with rcduccd
deposition could at least support some salmo-
nids in all the streams studied. If extrapolated
to other upland areas, this feature could be
important because of the nursery functions
fulfilled by headwaters.
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Chapter 13

•
Temporal Patterns of Ecological Change
During the Acidification and Recovery of
Streams Throughout Wales According to a
Hydrochemical Model

•
Steve J. Ormerodl, Neil S. Weatherley' and Paul C. Whitehead2

•

Summary•
The biological consequences of surface-water acidification are important and

pronounced. There have, however, been few attempts at modelling biology in

waters which are being acidified or restored. We describe a preliminary approach

to modelling temporal patterns in the biology of acidic Welsh streams by operating

linear empirical models in conjunction with the hydrochemical model, MAGIC. We

apply the model to the Welsh region, and to one specific catchment. We simulate

chemistry in the years 1844-1984, and in the future under different scenarios

of reduced sulfate deposition. In each case, we use the chemical output from

MAGIC to predict biological status. Historical reconstruction from 1844 onwards

indicated substantial biological change, with declining fish populations, alterations

in macroinvertebrate community structure, and reduced populations of riverine

birds. Future scenarios, involving deposition reduced across the Welsh region by

0-90 %, showed that a reduction in sulfate of at least 50 % was required in the

model to arrest change due to acidification. At sites covered by planted conifer

forest, even this reduction did not permit the return of fish in the model. Many

caveats apply to the models in their present form, not least, the dominant role

of aluminum in the biological models means that they are sensitive to MAGIC's

treatment of this poorly understood metal.

•
'Acid Waters Unit., School of Pure and Applied Biology, Univ. of Wales College of Cardiff,

Cardiff, Wales UK
31nst. of Hydrology, Wallingford, OX 10 13BB, UK
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Introduction

Surface-water acidification affects important ecosystem processes and many organisms,
from most trophic levels, are influenced either directly or indirectly. There are repercus-
sions for the economic, aesthetic, and conservational status of affected systems (Altshuller
and Linthurst 1984; Warren et aL 1988). Even semi-aquatic animals, such as birds which
depend on freshwaters for food, are involved (Ormerod and Tyler 1987). As a result,
biological criteria have figured prominently in discussions over water quality standards,
and have acted as a focus in determining critical and target loads for the air pollutants
which cause acidification (e.g. Brakke and Henriksen this volume).

Despite the obvious importance of biology, it has seldom been incorporated into model
assessments of the geographic extent and temporal pattern of acidification (e.g. Minns et
al. 1986; Ormerod et al. 1988). This is unfortunate because the development of biolog-
ical models could be central to our understanding of how resources have been affected
in acidified systems, and crucial to forecasting how biological resources will respond to
future management action. However, many problems are often perceived with respect
to modelling the biological effects of acidification. The chemMal, physical and biologi-
cal phenomena which lead to increased surface water acidity require models which are
already highly complex. The addition of the dynamic, intricaie' and often unpredictable
response of biological systems is thought by many as a difficult, if not an impossible,
step. Nevertheless, there is a strong requirement for corporate models, combining emis-
sions, deposition, hydrochemical responses, and biological effects, which could permit the
analysis necessary for managers to reach decisions over future strategies on such issues
as target loads.The approach to biological modelling adopted so far in Wales is a simple
one, depending on relationships between biological phenomena and water chemistry. The
resulting linear models are essentially empirical, adopting a 'black box' approach which
avoids detailed understanding of processes. Historical reconstruction or forecasting re-
quires a source of data on chemical change, derived for example from palaeoecology or
hydrochemical modelling.

In this chapter, we demonstrate the use of biological models on both a catchment and
regional scale in Wales. We have applied the Model of Acidification of Groundwaters in
Catchments, MAGIC (see Cosby et al. this volume), at these two scales, and used the
output to reconstruct biological change in the past, and to predict the future response
under different scenarios of reduced deposition and changing land-use.

Study Area

About 4000 km2 of Wales (19% of the land area) is underlain by shales, grits, and mud-
stones of Silurian and Ordovician age. The accompanying soils are brown podzolics, ferric
stagnopodzols and oligomorphic peats. Many surface waters are generally base-poor and
vulnerable to acidification. Much land is now used for rough grazing, with deciduous
woodland a minor component apart from remnant Oak woods Quercus spp. and stands
of species such as alder Alnus glutinosa along stream banks. Planted forests of exotic
conifers, mostly sitka spruce Picea sitchensis, now cover over 20% of the land area above
250 m above sea level. Whereas studies of fossil diatoms in lake sediments indicate that
some Welsh lakes in remote moorland areas have become more acidic since the industrial
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Figure 13.1. The acid sensitive area of Wales (shaded), in which acid waters occur at
some or all flow levels, and the location of Llyn Brianne.

revolution (Battarbee et al. 1989), the increase in conifer forestry has represented a major
acidifying influence on some water bodies (Stoner et al. 1984). Between October 1983 and
September 1984, the Welsh Water Authority collected detailed chemical and biological
data from 104 sites, all within the acid-sensitive area, and these form the basis of the
regional modelling exercise reported here.

Within the acid-sensitive region, at Llyn Brianne, a major and multi-disciplinary
project on acidification has been underway since 1984. Detailed studies aim to examine
the process of addification and its biological effects. The project involves manipulating
several sub-catchments of the upper River Tywi (Figure 13.1), and comparing their bi-
ological and chemical responses with unmanipulated references. Brianne site CI 5 has
provided  the  catchment application of MAGIC which is reported here (Whitehead et
al. 1988), while some of the data for the biological models were derived from adjacent
streams.
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Methods

An Outline of MAGIC and its Application

Described widely elsewhere, MAGIC uses data on precipitation quality and quantity,
soils and groundwater chemistry to simulate the likely change in stream chemistry which
occurs over time scales of years to decades (Cosby et al. 1985; Cosby et al. this volume).
The model can also be used to forecast the chemistry of streams under alternative future
scenarios of acid deposition (e.g. 10, 20, 30 % reduction etc). Some of the acidifying
influences of conifer forest have also been simulated, though this has been done ordy at
the catchment level (Neal et al. 1986; Whitehead et al. 1988).

In this study, MAGIC was applied regionally to the acid sensitive area of upland Wales
using techniques described by Whitehead et al. (in press). Historical reconstructions were
made over the period 1844 to 1984 (the year used in calibrating the model), while forward
prediction involved assessing the effect of different reductions in sulfate deposition (0%
to 90%), beginning in 1984 and phased in over a 20 year period.

We have illustrated the effects of afforestation on one catchment at Llyn Brianne
using the approach developed by Neal et al. (1986) and Whitehead et al. (1988). As with

.the regional application, historical trends were simulated between 1844 and 1984. From
1968 onwards, however, alternative scenarios involved either Moorland or conifer forest,
simulated by varying terms for sulfate deposition and evapotranspiration. These features
are probably important in the acidifying effects of plantation conifer forest. From 1984
onwards, two alternative scenarios on each type of land use involved sulfate deposition
either continued at 1984 levels or reduced by 50%.

Biological Changes

. Biological models currently available use physico-chemical features to predict the sur-
vival of first-year brown trout Scioto trutta, total trout density, macroinvertebrate commu-
nity type, macro-floral community type, and chemical suitability of streams for a species
of aquatic bird wholly dependent on rivers for food, the Dipper Cthrlus cinclu.s. The
development and use of these models are described in other papers (Ormerod et al. 1986,
1988; Ormerod et al. 1987; Weatherley and Ormerod in press) and only an outline is given
here (Table 13.1). For any given year, chemical output from MAGIC is used as input to
the biological models. In all but one of the biological models, aluminum concentration is
a dominant component, reflecting its pronounced role in the biology of acid waters. The
models for fish survival and density utilize combinations of aluminum concentration, total
hardness, altitude, slope and stream size in regression analysis. The remaining three mod-
els use combinations of aluminum concentration, pH, total hardness and stream size in
discriminant analysis, these variables being used to derive site positions on discriminant
functions from which probable biological characteristics can be assessed. Fbr example,
the invertebrate model (Figure 13.2) indicates the likelihood that a site is occupied by
a fauna typical of acid streams (A), intermediate (B) or circumneutral streams (C). The
latter have the most diverse community.

For this study, trout survival, trout density, invertebrate community and chemical
suitability for Dippers were predicted at each of 104 sites across the Welsh region in 1844,
1984, and in 2010 following fixed reductions in sulfate deposition by 0-90% of 1984 values.
For the catchment- specific application at Llyn Brianne, the trout models were run for
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Table 13.1. A summary of the empirical models which relate stream biology to physico-
chemistry in upland Wales. Notes: L indicates loglo, Al is filterable at 0.45 pm in mg1-1;
Hd is total hardness in mg1-1 SLOPE in m km-1, AREA is catchment area in ha, ADF
is average daily flow in m2 CI, ALT is altitude in m.

•


•

•

•

•

Predicted variable:
Trout survival time (d)

Trout density
(n per 100 m2)

Invertebrate
community

Macrofloral community

Suitability for Dippers

Form of model:
Linear regression

Multiple regression

Discriminant (unctions

Discriminant functions

Discriminant function

Equations:
LTso = 22.2 - 36.2 [Al]

LiDensity] = -1.24 - 1.08 LEAll
+ 1.33 L[fld[ - 0.22 LIADF]

Fl = 6.58 L[Al] + 4.42 LIHrli
- 0.06 L[AREAJ + 2.72
F2 = 9.93 1,(14d) + 1.23 L[Al]
- 1.20 AREA - 4.35

Fl = 2.60 pH + 0.001 ALT -
0.36 L(SLOPE) -16.11
F2 = 0.13 pH + 0.01 ALT -
1.46 [SLOPE] - 2.29•

Fl = 4.76 + 3.68 L[All - 0.08
pH

•
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1844, 1984, 2010 and 2124 in each of the alternative scenarios of land use change and
deposition reduction.

110 Results
Regional Application

On a regional scale, MAGIC indicated a pronounced increase between 1844 and 1984 in
the percentage of sites with total aluminum concentrations > 0.1 mg1-' and pH < 5.5,
conditions to which many organisms would be sensitive (Figure 13.3). The median pH
fell from 6.2 to 5.8 over the same period. The consequences of such changes in chemistry
for the biology of Welsh streams would, according to the models, be pronounced (Figure
13.3). Only 25 % of sites had trout densities < 10 fish per 100 rn2 in 1844, whereas
over 45% had densities below this value by 1984. Similarly, the survival time of trout fell
markedly at many sites, and by 1984, over 20 % had values less than 15 days (Figure 13.3).
Streams around Llyn Brianne which have survival times this low are typically fishless.

In 1844, invertebrate community A (typical of acidic sites) did not occur anywhere in
the model region, but occupied 30 % of sites by 1984 (Figure 13.4). The percentage of sites
with type B fell correspondingly. Interestingly, the occurrence of the faunal community
typical of circumneutral streams in the present day (C) increased between 1844 and 1984,
probably due to increased calcium concentrations atsome sites. Dippers, which feed on
both invertebrates and fish, are indirectly sensitive to increasing aluminum and low pH,
because their food supply is affected. According to MAGIC, over 95 % of the 104 sites in
the acid-sensitive region in 1844 were chemically suitable for Dippers, but this value had
been reduced to 44 % by 1984 (Figure 13.5).

In the regional predictions, reductions in sulfate deposition of at least 50 % were re-
quired to arrest further decline in pH and increase in aluminum. Continued deposition at
1984 levels led to a further increase in the percentage of sites which were highly acidic. A
reduction in deposition of 50 % was required to prevent further acidification with concomi-
tant biological change. At greater deposition reductions than this, there was some return
to former conditions, although only at around 10 % of 1984 deposition values did they
begin to approach those of the last century. At this deposition level, the model indicated
some loss of the mayfly-rich community (type C), as calcium concentrations declined at
some sites.

Catchment Application

Patterns of chemical change for individual streams in the Welsh region depend on catch-




ment sensitivity, but the typical response from a sensitive case at Llyn Brianne was a
progressive decrease in pH and increase in aluminum concentration from the early 20th
century onwards (Figure 13.6). These changes were most pronounced under simulated
forest, particularly for aluminum, where they persisted even with a 50 % reduction in sul-
fate deposition from 1984 onwards. Such elevated aluminum concentrations would clearly
have biological consequences, and this was demonstrated by the fish survival and density
models; values given by each declined markedly between 1844 and 1984, most of all under
the forest scenarios. As with the regional models, deposition reduction of 50% permitted
the maintenance of some fish under moorland conditions. Such a reduction did not restore

•
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Figure 13.3. Changes in the chemical status of streams in the acid-sensitive region of
upland Wales according to the MAGIC model, and consequences for trout biology. The
x axis shows changes in time between 1844 and 1984, and simulated future conditions in
2010 under reductions in deposition between 0 and 90% of 1984 values: a) the percentage
of sites with > 0.1 mg1-2 aluminum (•), and the percentage with pH < 5.5 (0); b) the
percentage of sites with < 10 trout per 100 m2; c) The percentage of sites with trout
survival < 15 days.
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Figure 13.4. Changes in the percentage of sites in upland Wales with different inverte-




brate communities according to the MAGIC model. A (= 'acidic' community), B (=

intermediate)  and C (=  circumneutral). Conventions for the x axis are as in Figure 13.3.
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Figure 13.5. Changes in the percentage of sites in the acid sensitive region of upland
Wales which would be chemically suitable for Dippers according to the MAGIC model.
Conventions for the x axis are as in Figure 13.3.
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Figure 13.6. Changes in the pH and aluminum concentration in an acid-sensitive Welsh
stream under different modelling scenarios as indicated by the MAGIC model: • , moor-
land with deposition constant at 1984 levels; o, moorland with deposition reduced by
50% from 1984 onwards; •, forest from 1958 with deposition constant at 1984 levels; A,
forest from 1958 with deposition reduced by 50% from 1984 onwards (after Ormerod et
al. 1988, with permission).



• Figure 13.7. Changes in the survival time (a) and (b) density of brown trout in a soft-
water streams at Llyn Brianne according to MAGIC simulation. Conventions as in Figure
13 6. After Ormerod et al. (1988).
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Figure 13.8. a) A possible relationship between aluminum concentration and pH at 104
sites in upland Wales in the absence of gibbsite equilibrium, and that predicted by MAGIC
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frequencies, which result from the two aluminum distributions in a.
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the fish population in the forested catchment (Figure 13.7), indicating that the presence of
conifer forest could cancel the effects of the reduced sulphate deposition, which prevented
further acidification at the regional level.

Discussion

In previous papers, we have used MAGIC in individual catchments to reconstruct trends
in fish populations, and to simulate changes amongst aquatic invertebrates and plants
at both species and community levels (Ormerod et al. 1988, Weatherley and Ormerod
in press). In one case, we outlined the possibility of simulating biological change in
rivers across acid-sensitive regions (Whitehead and Ormerod in press), but this paper
is our first comprehensive attempt at regional biological modelling. The prediction of
biological impacts by acidification at this regional scale is clearly required to complement
other models of air pollution, transport and deposition (e.g. Metcalfe and Derwent 1989;
de Vries et al., this volume). Because the species composition and ecology of aquatic
ecosystems will vary regionally, however, similar models now require development on a
broader spatial scale.

Both MAGIC and the biological models also require attention to some areas of un-
certainty. All models are imperfect representations of the real world which often require
cautious interpretation. In the case of MAGIC, possible sources of error arise from the
estimated historical pattern of changing deposition, the assumption that soils are homo-
geneous with chemical processes which can be 'lumped' on a catchment basis (see also
Jenkins and Cosby this volume), and the difficulty in obtaining field data for important
terms such as weathering rates (see e.g. Reuss et al. 1986). Such difficulties may be partic-
ularly important as MAGIC is applied increasingly to the regional level, although.initial
attempts at validating the model across regions are encouraging (Hornberger et al. this
volume).

Despite some uncertainty, however, managers and politicians increasingly need infor-
mation on which to reach decisions on emission reduction and land use policy. Although
seen by many as a heuristic tool, MAGIC is being used with increasing confidence for
the purpose of policy formulation. Such confidence has grown particularly because the
shifts in pH which are indicated by MAGIC have been corroborated by diatom data from
lake sediments. In Wales, all seven lakes so far investigated have shown a decline in pH,
beginning after the industrial revolution and ranging from 0.5 to 1.8 units (Battarbee et
al. 1989). These declines in pH seem almost unequivocal and are matched closely by the
MAGIC simulations (e.g. Figure 13.6).

Nevertheless, despite confidence in pH trends indicated by MAGIC, some criticisms
have arisen because the chemistry of aluminum in acidified catchments is not yet fully
understood, and possibly not faithfully reproduced by the model. At present, aluminum
in the soil and runoff of many hydrochemical models is assumed to be controlled by equi-
librium with gibbsite, mediated by pH (Reuss et al. 1986). This assumption may be
erroneous. For example, aluminum concentrations could be altered from those predicted
by a•simple gibbsite equilibrium because of mixing processes between acidic runoff and
base rich groundwater (C. Neal, pers. comm), dissolution or ion exchange from stream
sediments or plants (Norton this volume) and long-term change in the dynamics of alu-
minum dissolution (De Vries and Kros this volume). The result could be a trend in
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aluminum concentrations in the absence of pH change, or pH/AI relationships other than

those predicted by MAGIC. Effects on the biological predictions would be pronounced in
view of the dominant role of aluminum in most of the biological equations. An example
of the kind of misfit which could occur is shown in Figure 13.8 and involves aluminum
being retained in solution at pH from 5 to 5.5 at a greater concentration than expected
from a gibbsite equilibrium at pH. The two patterns give markedly different indications of
trout survival time (Figure 13.8). Complexation with dissolved organic substances is also
liable to render some aluminum fractions biologically unavailable, or at least less toxic
than labile aluminum (McCahon and Pascoe in press), and these processes are yet to be
incorporated fully into models. One possibility would be to base biological prediction
on the chemical features of MAGIC which are thought to be accurate, such as pH and
alkalinity. Such developments would probably ignore a key toxic component of acid wa-
ters, however, and predictions might carry errors for the same reasons as those based on
aluminum. For example, changing relationships between pH, aluminum and organic sub-
stances would mean that a given pH value does not always represent the same biological
conditions. For these reasons, confidence in biological modelling using MAGIC, or other
similar hydrochemical models, will only grow with developments in aluminum chemistry
which permit robust predictions.

In cases such as this, where several models are operated together, the chance of error
is probably compounded. As with MAGIC, the biological models are subject to some un-
certainties and depend on assumptions. The greatest is that the empirical relationships
(essentially correlations) between stream chemistry and biology represent a causal influ-
ence. Through such causality, temporal changes in stream chemistry bring corresponding
changes in biology, either directly or indirectly. There is now considerable justification for
making this assumption in all the models presented here. For example, ordination and
classification of invertebrate assemblages has repeatedly revealed strong correlations with
pH, or related factors (Ormerod et al. 1988). These correlations persist among the fauna
from different stream habitats, which would be unlikely if chemistry did not exert some
causal influence (Ormerod 1987; Weatherley and Ormerod 1987). More importantly, ex-
.perimental episodes of increased acidity and aluminum concentration have confirmed the
sensitivity of some species to such conditions (Ormerod et al. 1987). Even in the Dipper,
an organism likely to be affected only indirectly by acidity and elevated aluminum, pairs at
low pH show reduced clutch and brood size, reduced egg weight, moderate shell-thinning,
reduced chick growth, impaired brood provisioning, and increased time spent foraging
(Ormerod and Tyler 1987; Ormerod et al. 1988). These effects accompany alterations
in the food supply as acidity increases, with reduction in the density of important prey
types, general reduction in the size of prey available, and loss of calcium-rich food. In
this modelling study, consistency between changes in the chemical suitability of streams
for Dippers, and changes in their food supply, at least corroborates the indirect path-
way through which Dipper distribution could be affected. For salmonids, many data
support the direct toxicity of aluminum (Warren et al. 1989), while low fish density in
acid streams in Wales does not appear to reflect either trophic effects (Turnpenny et al.
1987), or limited habitat (Ormerod et al. 1988). Despite such clear evidence of direct
effects, however, the models would probably benefit from the inclusion of dynamic and
biotic processes such as survival in different life stages, and density dependent regulation
(Elliott 1985). Important developments in such modelling have recently been made in
Nova Scotia (LaCroix 1987), though so far are applicable only to the colored organic wa-••••
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Figure 13.9. a) pH Minima and b) coefficient of pH variation in relation to pH mean at
112 sites in upland Wales. All values are based on at least 1 year's data. Open symbols
indicate > 1 point.

ters which occur there. Similar models are being developed in Wales in conjunction with
detailed studies of aluminum speciation (e.g. Goenaga and Williams 1988).

While the assumption of biological effects by acidity and aluminum is supported, there
is a potential source of error in the relative effects of chronic and episodic conditions.
Episodic changes in pH, aluminum and calcium concentrations are usually marked in acid
streams during storm events or snow melt (Stoner et al. 1984). Experimental investiga-
tions, and some field data, indicate that such events can affect fish and some invertebrates
(Henriksen et. al. 1984; Ormerod et al. 1987). However, all the ecological models presented
here were based on mean chemical conditions, partly because of difficulties in assessing
from the data the relative influences of chronic and acute chemistry, but also because
MAGIC is not developed for analyzing episodes. As a consequence, the predictive ability
of the models described here could be limited in situations where episodes control the
fauna. This would  be  especially problematic if episodes occurred in streams of relatively
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high pH (5.5-6.0), and were sufficiently damaging to alter the biological conditions from
those predicted from the mean chemistry. However, because mean and extreme values
for pH and aluminum are closely correlated, the mean probably indicates the likelihood
of episodic change (Figure 13.9). Additionally, there is some evidence that acidity affects
some invertebrates only indirectly, through their food supply (see Ormerod et al. 1987),
and this pathway is just as likely to involve chronic effects as episodic. In streams of about
pH 6.5 at Llyn Brianne, isolated acid episodes during snow-melt or storm events have not
substantially affected the invertebrate fauna or fish density (Weatherley et al. in press).
Even in more acid waters, individual events with experimentally elevated aluminum were
not sufficient to cause death in 'sensitive' invertebrates, though they have been in fish
(Weatherley et al., in press). For these reasons, it is not yet clear whether episodes need
to be built into our ecological models, though further consideration of extremes may be
necessary for organisms like salmonids which can be especially sensitive.

Conclusions

A major conclusion in most modelling studies is that models are often imperfect. Notwith-
standing such limitations and caveats in this study, there are two important indications.
The first is that a large number of streams in the acidified region of Wales have, accord-
ing to hydrochemical models, become more acidic since the last century. Their aquatic
biology changed considerably in the models as a result. The model trends in pH are con-
sistent with reconstructions of pH change based on fossil diatoms in Welsh lake sediments.
Afforestation effects in the model accelerated the acidification, a trend again consistent
with real data on the chemistry of forest treams, and on their biological status.

Second, the number of currently acidified streams might be returned to conditions
similar to those prior to acidification only if sulfate deposition were reduced by over 50%
of 1984 levels. Models of air pollution transport have recently shown that a significant
proportion of the sulfate reaching mid Wales originates from the UK, particularly in the
British midlands (Metcalfe and Derwent 1989). However, the same models show that an
emission reduction of 30% in Britain might lead to a deposition reduction in mid Wales
of only 10 %, and even emission reductions of 90 % could reduce Welsh deposition by
only 30-40 % of full emission values. Pollutant sources in France, Belgium and Germany
become increasingly important in the air pollution model as UK sources are reduced.
Restoration of the chemistry and biology of acidic Welsh streams by the control of air
pollution alone would thus require, according to rnodel predictions, concerted action for
reducing air pollutants across Europe. Moreover, the presence of forest cover on sensitive
Welsh catchments, due to the effect of scavenging airborne pollutants and marine aerosols,
could effectively cancel a 25% reduction in European emissions or 75 % reduction in UK
emissions alone (Warren et al. 1989). On this basis, the return of acidified Welsh rivers
to chemical and biological conditions similar to the last century would, according to
current models, require not only European-wide action on air pollution, but also a land
use strategy which removed or ameliorated the impact of forestry.
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