A hydrological assessment of the November 2009 floods in Cumbria, UK

Miller, J. D.*, Kjeldsen, T. R., Hannaford, J., Morris, D. G.
Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, UK, OX10 8BB.

*Corresponding author email: millj@ceh.ac.uk
Abstract

In November 2009, record-breaking rainfall resulted in severe, damaging flooding in Cumbria, in the north-west of England. This paper presents an analysis of the river flows and lake levels experienced during the event. Comparison with previous maxima shows the exceptional nature of this event, with new maximum flows being established at 17 river flow gauging stations, particularly on catchments influenced by lakes. The return periods of the flood peaks are estimated using the latest Flood Estimation Handbook statistical procedures. Results demonstrate that the event has considerably reduced estimates of flood frequency and associated uncertainty. Analysis of lake levels suggests that their record high levels reduced their attenuating effect, significantly affecting the timing and magnitude of downstream peaks. The peak flow estimate of 700 m3s$^{-1}$ at Workington, the lowest station on the Derwent, was examined in the context of upstream inputs and was found to be plausible. The results of this study have important implications for the future development of flood frequency estimation methods for the UK. It is recommended that further research is undertaken on the role of abnormally elevated lake levels and that flood frequency estimation procedures in lake-influenced catchments are reviewed.

Keywords

Cumbria, floods, November 2009, lakes, return period, flood frequency

Introduction

On 19th-20th November 2009, as a result of a prolonged period of record-breaking rainfall over the mountains of the central Lake District in north-west England, many of the rivers within the region experienced exceptionally high flows, with the greatest devastation occurring along the River Derwent and its tributaries. In parts of the southern headwaters of the Derwent, the rainfall averaged over 10 mm/hour for over 36 hours, and the raingauge at Seathwaite Farm in the headwaters of the Derwent recorded a new UK 24-hour maximum of
316.4 mm. The human consequences were greatest in the lower catchment, with around 200 people having to be rescued from the town of Cockermouth after nearly 900 properties were inundated, with all road and footbridges over the Derwent in Workington being either destroyed or seriously damaged, in one case causing the death of a police officer.

This paper presents a hydrological analysis of the event, paying particular attention to the part played by the numerous lakes in the region, most of which reached their highest level on record, and to the effect of the event on future assessments of flood rarity. It complements a companion paper (Stewart et al., 2011), which provides a statistical analysis of the event rainfall.

Background
In the UK, a wet country (average annual rainfall of 1126 mm; Met Office, 2011) with a maritime climate, strongly influenced by the passage of moisture-laden westerly airflows, some form of significant fluvial flooding can be expected to occur in most years. In the recent past, however, flooding has been at the forefront of public attention and there is a widely held perception that flood risk is increasing. In part, this is due to a succession of major flood events, including nationally-significant, prolonged events with a wide spatial signature such as the floods of 2000/1 (Marsh & Dale, 2002) and the summer floods of 2007 (Marsh and Hannaford, 2008) and more localised, short-lived, but dramatic and destructive events (e.g. Boscastle floods of 2004; Doe, 2004). These events have had a major impact on government policy, particularly given concern over the anticipated increase in flood severity in a warming world. The Pitt Review (Cabinet Office, 2008), for example, commissioned after the 2007 floods, has had a major impact on flood management strategies in the UK. The vulnerability of society to flooding has also been brought to the fore by recent events: the summer 2007 floods were associated with fifteen fatalities and an estimated cost £3.2billion
(Chatterton et al., 2010). In Europe in the 20 years to 2008, economic losses due to flood disasters exceeded those from any other category of natural disaster (CRED, 2009).

This paper will add to a history of event-based contemporary flood studies in the UK (e.g. Acreman and Horrocks, 1990; Black and Anderson, 1993; Marsh and Dale, 2002) and its findings should be viewed in the context set by studies that have systematically assessed a range of historical floods (e.g. Acreman, 1989; McDonald, 2006). There are many examples of analyses of floods in other countries, for example flooding in Poland in 1997 (Kundzewicz et al., 1999), China (Wang and Plate, 2002) and the recent Elbe floods of 2002 (Ulbrich, 2003). There is also a growing international knowledge base of major flood events, as exemplified by the catalogue of maximum floods compiled by Herschy, (2002) and the archives of the Dartmouth Flood Observatory (http://www.dartmouth.edu/~floods/).

Analyses of extreme flood events are important for a number of reasons including the development of more effective flood-mitigation strategies, engineering design and reservoir safety, and, in particular, the significant influence of these events on return period analysis and consequently on planning and flood management decisions. Such events present an opportunity to test and refine flood estimation methodologies. In the UK, the statistical flood frequency procedures of the Flood Estimation Handbook (FEH) (Institute of Hydrology, 1999) have recently been updated (Kjeldsen & Jones, 2009), as has the FEH depth-duration-frequency (DDF) model for extreme rainfall frequency analysis (Stewart et al. 2010). The analysis of the November 2009 event is one of the first applications for these revised procedures.

Data Description

Rainfall data were supplied by the North West Region of the Environment Agency, and comprised both daily totals and hourly totals for the period 16-25 November 2009 from all of
the functioning raingauges: a total of 45 daily storage raingauges and 56 tipping bucket raingauges respectively. The gauge locations are shown in Figure 1.

Flow data at continuous 15 minute resolution for stations within Cumbria were supplied by the Environment Agency. Peak over threshold (POT) and annual maxima series (AMS) of peak flows for selected catchments (Table 1) were obtained from the Environment Agency’s HiFlows-UK website (http://www.environment-agency.gov.uk/hiflows/search.aspx). Both were supplemented with more recent highest instantaneous flow data from the National River Flow Archive (NRFA).

All available lake level data for water bodies within Cumbria were supplied by the Environment Agency. These comprised mean and daily maximum levels for the full period of digital record for ten lakes (Table 2), and 15-minute levels for November 2009 for a subset of four lakes (Bassenthwaite Lake, Derwent Water, Ennerdale Water and Crummock Water).

Antecedent conditions

Following the two very wet summers of 2007 (Marsh and Hannaford, 2008) and 2008 (Sanderson and Marsh, 2009), the summer of 2009 was rather unexceptional and comparatively dry. Throughout almost the entire country, sustained early autumn river flow recessions developed and continued well into October, leaving river flows well below the seasonal average. In stark contrast, November saw a continuous sequence of low pressure systems crossing the British Isles. The persistently cyclonic conditions resulted in rainfall on all but two or three days within the month in most regions of the UK. As a result, catchments in much of the north and west of Britain were saturated and most rivers in high spate early in the month (CEH, 2009).

Event rainfall
Between the 18th and 20th November 2009, a warm, moist south-westerly airstream affected the UK and was associated with a very deep Atlantic depression between Scotland and Iceland, tracking slowly north-eastwards (Met Office, 2009). A weather front within this airstream, together with substantial orographic enhancement, produced many point rainfall totals in excess of 50 mm and culminated in rainfall depths of over 350 mm in 36 hours across high ground in the central Lake District. A new UK record was established at the Seathwaite Farm raingauge, Borrowdale, with 316.4 mm over the 24-hour period ending at 00:00 on the 20th November. Stewart et al. (2011), using the revised DDF model, estimated that this has a return period of 1862 years, in contrast to the value given by the original FEH DDF model of 158 years. It should be noted that the Seathwaite Farm 24-hour total also exceeds the previous UK maximum for any two consecutive rainfall days (315 mm, also at Seathwaite Farm, on 4-5 December 1864) (Eden and Burt, 2010). The previous 24 hour record was 279 mm, recorded at a daily (0900 – 0900) raingauge during the Martinstown, Dorset, storm of July 1955; this remains the rainfall-day maximum.

Analysis of the hourly Seathwaite Farm record (Stewart et al., 2011) showed the accumulation with the highest return period (estimated at 4202 years) was the 401.6 mm falling in the 37 hour period ending at 10:00 on the 20th November. The spatial distribution of the rainfall over this period is shown in Figure 1; this was derived by Stewart et al. (2011) by interpolating raingauge observations on a 1 km square grid at an hourly time-step.

The distribution in time of the catchment average hourly rainfall (CAHR) over the Derwent catchment and two sub-catchments is included in a figure later in the paper (Fig 11).

River flows

Table 1 lists the 22 UK river flow gauging stations at which a new maximum was recorded in the November 2009 event; the majority, 17, of these are in Cumbria (highlighted in grey).
Figure 2 maps gauges with reliable high-flow data in Cumbria and parts of south-west Scotland and north Lancashire. Two points are immediately apparent: the region where new records were established reflects the area of most intense rainfall shown in Figure 1, and the margin by which previous maxima were exceeded tends to be greatest for catchments containing lakes. The second of these observations will be explored in more detail in a later section.

The degree to which the former records have been surpassed is remarkable when it is considered that most of these stations have long records; with an average of 41 years and a maximum of 66 years at Newby Bridge (73010) (downstream of Windermere, where the November 2009 peak was 177% of the previous). The period of record includes a number of major floods, in particular January 1982 and December 1954 in the south of the region, and January 2005 and October 2008 in the west.

It is important to be aware that many of the November 2009 flows in Table 1 are the best available estimates based on extrapolation of station ratings from hydraulic models, as most of the rivers were out of bank and above the maximum gauged stage (Peter Spencer, pers comms, 2010). The gauging station on the Derwent at Camerton (75002) was badly damaged during the event (Everard, 2010) and was subsequently demolished.

Anecdotal evidence of extreme flood events within the region dating back several centuries is available (Black & Law, 2004), though usually this is not associated with a quantitative assessment of the flood magnitude. While such information can potentially be brought into a site specific flood frequency analysis (e.g. Bayliss and Reed, 2000), there is currently no formal procedure for incorporating information from historical flood events into the statistical modelling framework underpinning the Flood Estimation Handbook (FEH) procedures.
The return period of the November 2009 flood was assessed by conducting a flood frequency analysis using both single-site and pooling group methods as described in the recent update to the FEH methodology (Kjeldsen and Jones, 2009). The single-site analysis consists of fitting a suitable statistical distribution to the observed AMS of peak flow available at each site. Given the large degree of uncertainty generally associated with extrapolation of flood frequency curves fitted using at-site data only, it is common practice to use regional frequency analysis, which combines (into a pooling group) the at-site data with flood data from other gauged catchments considered hydrologically similar to the site of interest. The statistical distribution is then fitted as a weighted average to all the flood data in the pooling group. This procedure is typically referred to as a ‘pooled analysis’ but in the case where flood data are available at the site of interest, the weight within the pooling group of the at-site data is increased and a more appropriate name is ‘enhanced single site analysis’ (Kjeldsen and Jones, 2009). The advantage of introducing data from other sites into the analysis is generally considered to be a reduction in the prediction uncertainty when extrapolating the flood frequency curve to higher return periods. This reduction in uncertainty is, however, balanced against the risk of introducing data that does not fulfil the underlying assumptions of the data transfer, thereby introducing an element of model error.

Both the single-site and the pooled (or enhanced single-site) analysis have been performed on two datasets: one containing the annual maxima series from the HiFlows-UK version 3.02 database up to the end of water year 2007, and the other using an updated version in which the records for selected Lake District stations have been extended to include annual maximum data for water-year 2008 and the peaks for November 2009, treating it as if it were the annual maximum for water year 2009. This enables the effect of this major event on assessments of flood frequency to be demonstrated.
Procedure

For both the single-site and the pooled analysis, the analysis uses the three-parameter Generalised Logistic (GLO) distribution as recommended for flood frequency analysis in the UK by Kjeldsen *et al.* (2008). For a GLO distribution, the relationship between the return period T, expressed in years, and the corresponding peak flow value Q_T is defined using the inverse of the cumulative distribution function (cdf) as:

$$Q_T = \xi + \frac{\alpha}{\kappa} \left(1 - (T - 1)^{-\beta} \right) = \xi \left[1 + \frac{\beta}{\kappa} \left(1 - (T - 1)^{-\beta} \right) \right] = \xi z_T$$

where ξ, α, $\beta = \alpha/\xi$, and κ are GLO model parameters, and z_T is the value of the growth curve at return period T defined by the term within the square brackets in Eq. (1). The GLO model parameters are estimated using a variant of the method of L-moments (Institute of Hydrology, 1999). The location parameter ξ is defined as the median annual maximum flood, and the two parameters controlling the growth curve (β and κ) are estimated using higher order L-moment ratios (L-CV and L-SKEW). For the single-site analysis, estimates of L-CV and L-SKEW are obtained directly from the AMS. For the pooled analysis, estimates of L-CV and L-SKEW are weighted averages of L-moment ratios from a collection of sites (a pooling group) considered to be hydrologically similar to the site of interest in terms of the catchment characteristics: catchment area, annual average rainfall for the period 1961-1990, an index of attenuation of the median annual flood peak due to upstream reservoirs and lakes (FARL) (Bayliss, 1999) ($1 = $no attenuation; attenuation increases with decreasing FARL), and an indicator of the spatial extent of the 100-year flood plain as derived from the indicative UK flood maps developed by Morris & Flavin (1996). A more detailed description of the pooling group method is provided by Kjeldsen & Jones (2009).
For catchments in Table 1 with a suitable AMS, the return period of the November 2009 flood event was obtained from Eq. (1) with regards to the return period T for the recorded peak flow value Q.

In addition to the return period, the uncertainty of the return period estimate was obtained by a simple graphical assessment based on approximate confidence intervals for the flood frequency curve. For a set of defined return periods ranging from 1.01 to 50000, the approximate standard deviation of the design flood, Q_T, was estimated using the methods described by Kjeldsen and Jones (2004, 2006) for assessing the sampling variance of design flood events when using the GLO distribution with the FEH statistical method. For the pooled analysis, the variance estimator by Kjeldsen and Jones (2006) was updated to be consistent with the improved pooling group method. For both the single-site and the pooled analysis, the estimates of the confidence intervals of the design flood events were originally developed assuming the design flood to be normally distributed. However, given the relatively large return periods under consideration in this study, it was considered to be more appropriate to adopt an assumption that the design floods follow a log-normal distribution, in which case the $100(1 - \alpha)\%$ confidence interval for the design flood, Q_T, is given as

$$\left[\exp\left(\ln(Q_T) - z_{1-\alpha/2} \frac{\text{var}[Q_T]}{Q_T} \right) ; \exp\left(\ln(Q_T) + z_{1-\alpha/2} \frac{\text{var}[Q_T]}{Q_T} \right) \right].$$

The confidence interval for an estimate of return period for a given peak flow value was obtained subsequently by graphically interpolating horizontally the return period associated with the upper and lower confidence limits for a given point on the flood frequency curve (Figure 3). If the upper limit of the confidence of the return period exceeds 50000 years, the upper limit is given as “>50000 years”.
Results from the single-site analysis

Table 3 presents the results of applying the single-site method to the two datasets. The high upper confidence interval emphasises the unsuitability of this method for floods of return period well in excess of the record length. The large reduction in the estimated return period of the event resulting from the inclusion of the event in the fitting of the flood frequency curve is an indication of the influence of this very large event on the fitted curve.

Results from pooled catchment analysis

The results from the pooling group method are given in Table 4. Less uncertainty in the return period assessments compared with the single-site analysis is evident in all catchments. Estimated return periods are reduced, often greatly, when incorporating the 2009 event. This is because the 2009 event will in many cases have affected several of the pooled gauges, in particular the at-site gauge, which, as stated above, is now given enhanced weight. This is illustrated in Figure 4 for station 75002, Derwent at Camerton, showing how the estimated return period has been reduced from 104181 years to 2102 years. Figure 4 also shows the annual maxima for the station, each plotted at its most probable return period based on its rank and the number of maxima, according to the commonly used Gringorten formula (Gringorten, 1963); note there is considerable uncertainty in such return periods for the highest ranked maximum.

Table 5 shows the relationship between change in the estimated return period (value including Nov 2009 divided by value excluding Nov 2009) and FARL for those stations where the return period exceeds 100 years when including the 2009 data. Comparison of the ratios for four stations where the return periods are similar when the 2009 data are included (high-FARL 74001, and low-FARL 73010, 74003 and 76015; highlighted in grey) suggests...
that the inclusion of the event has considerably more effect on return period estimates at low
FARL stations.

Effect of lake hydrology on the November 2009 event

Flood attenuation

The hydrological response of much of the Lake District is dominated by its lake systems. The
effect of these lakes on downstream flows is to attenuate the incoming rapid runoff from the
impermeable rock and frequently saturated thin soils, slowing the flood response downstream
and smoothing out flashy flows.

During the event occurring between the 18th and 20th November 2009, inflows to the
lakes caused a rapid rise in levels, with levels in Derwent Water and Bassenthwaite Lake
rising respectively to nearly 0.6 m and 1.2 m higher than previously recorded. As a result,
significant flow occurred across the floodplain downstream of Derwent Water towards
Bassenthwaite Lake, with the two water bodies appearing to be as one, albeit a water-body
with over a 5 m head difference from the upstream inflow to the downstream outflow.

With lake levels so high and the lakes discharging across a broad length of shoreline,
rather than the normal river outlet, their buffering effect on the passage of flood flows is
likely to have been reduced. Figure 5, which compares the Bassenthwaite Lake inflows and
outflows for this event, and for the next largest on record, January 2005, would appear to
support this theory. Because all of the inflows to the lake have not been gauged (catchment
areas are 363 km2 at the outflow station (75003) Ouse Bridge, and 235 km2 at the upstream
station (75005) Portinscale) the flows have been scaled by catchment area, so that the
resultant Portinscale hydrograph can be considered to be an approximation of all the inputs to
the lake. In 2005, there is considerable reduction and delay to the flood peak, but in 2009 the
lake appears to have much less effect on timing and no effect on magnitude. (The fact that in 2009 the scaled outflow peak exceeds the inflow is likely to be due to uncertainties in the extrapolation of rating curves at Portinscale and the relative size of the flood that entered the lake from Newlands Beck - the tributary shown entering the southern corner of the lake in Figure 2).

Independent analyses of the November 2009 event within the Derwent catchment lake systems, using a 1D hydrodynamic model, arrive at a similar conclusion whereby large floods may pass through the system with less attenuation (Peter Spencer, pers. comms, 2010).

Relationship between lake levels and discharge

Lake levels in all the major lakes within the region reached new recorded maxima during the November 2009 flood event and in many cases exceeded previous records by a large margin (Table 2). Figures 6 and 7 illustrate the relationship between peak outflows and lake levels for, respectively, Bassenthwaite Lake and Ullswater. The flood peaks are from the HiFlows-UK peaks over threshold (POT) dataset for the gauging stations immediately downstream of the lakes (75003 Derwent at Ouse Bridge, and 76015 Eamont at Pooley Bridge, respectively). The lake levels are the daily maximum on the day of the flood peak. The line is a second order polynomial fitted to all points except November 2009. Both plots reveal the relative magnitude of the lake level and outflow compared to previous events. Measurements from Bassenthwaite Lake place the event upon the expected relationship between discharge and lake level, while at Ullswater the outflow was in excess of the expected flow for the level reached. This could indicate that at the record levels reached during the November 2009 event, a different stage discharge relationship applied at the Ullswater outlet.

Comparison of flood hydrographs for lake and non-lake catchments
A comparison of event hydrographs for catchments within the region reveals the differences in hydrological response to extreme events. Figure 8 displays the event hydrographs for the peak over threshold floods experienced during the period 2003-2009 at three lake-influenced catchments (73010 (downstream of Windermere), 75003 (downstream of Bassenthwaite and Derwent Water) and 76015 (downstream of Ullswater)) and three without lake influences (74001, 74007 and 75017). For each station, the individual event hydrographs are plotted with the time of their peaks aligned. Also shown is the mean of the event hydrographs (in black), and the November 2009 event (in red) with its time of peak aligned with the other events. The individual events show the clear difference in flood response between the two sets of catchments, with the lake-influenced catchments being less flashy and having less variation between years. But the 2009 event does not fit this pattern. On the three lake-influenced catchments it is an extreme outlier in magnitude, and its profile is more akin to what would be expected from a non-lake catchment. It appears that the usual damping effect of the lakes is much diminished. To a degree, this comparison is influenced by the position of the catchments relative to the area of most extreme rainfall, but Figures 1 and 2, show that 74001 and 74007 received a similar amount of rainfall to 76015.

Plausibility of the peak flow estimate near Workington

The flow value of greatest interest in the November 2009 event is the peak on the Derwent at Workington. Flows here are measured 5km upstream of Workington at the Camerton gauging station (75002), which, as stated earlier, was destroyed during the event. Bankfull capacity at the station is estimated at 400 m3s$^{-1}$ (Marsh & Hannaford, 2008) and peak flow estimates were derived by the EA from 1D ISIS river modelling and nearby station estimates. The purpose of this section is to assess the plausibility of the 700 m3s$^{-1}$ estimate for the flood peak at Camerton in the light of the points raised in this paper.
The extraordinary flows along the Derwent that caused widespread damage to Cockermouth and Workington were of a magnitude expected to be exceeded, on average, once every 2102 years according to pooled return period assessments including the event (Table 4). As shown by the plot of the POT hydrographs recorded at Camerton in Figure 9, the event hydrograph is altogether different in magnitude and shape to previous events and the mean hydrograph.

The relative difference in hydrological response between the two main catchments feeding into the Derwent at Cockermouth and ultimately Workington is illustrated in Figure 10. Crummock Water (in the Cocker catchment) levels rise less markedly and peak earlier (20:00-22:00, 19/11/09) than those in Bassenthwaite Lake (00:00-02:00, 20/11/09), and the resulting downstream hydrograph from stations on the Cocker show more attenuation. Peak flows within the Cocker catchment at Southwaite Bridge are around 3 hours earlier than those at Ouse Bridge in the Derwent catchment. This reflects the increased travel time of runoff within the Derwent catchment, but differences in the timing of peaks would normally be more pronounced due to the attenuating effects of both Derwent Water and Bassenthwaite Lake. Data from the gauging stations on the Derwent at Ouse Bridge and the Cocker at Southwaite Bridge suggest combined peak flows of over 580 m3s$^{-1}$ would have converged upon Cockermouth between 01:00 and 02:00 on the 19th November.

The temporal and spatial evolution of the flood event that occurred in Cockermouth and Workington was primarily a result of hydrological processes in the upper reaches of the Derwent and Cocker catchments, where the highest rainfall was experienced; this is demonstrated in a series of hourly hydrographs, lake level and catchment average hourly rainfall (CAHR) plots for each catchment (Figure 11). These point to differing hydrological responses within the catchments and CAHR analysis indicates more prolonged intense rainfall across the Cocker catchment over the storm duration. The resulting event hydrograph
at Camerton resembles a composite of the two upstream hydrographs, with additional runoff from the intermediate catchment area, especially from the un-gauged Marron tributary. This would seem to have received rainfall in excess of 100 mm over the 37 hour period ending at 00:00 on the 20th November (Figure 1) and provides an additional 27.7 km2 of runoff-generating catchment area. This, with the additional catchment area of the Derwent downstream of the gauged locations discussed, would suggest that the peak flow estimate of 700 m3s-1 at Camerton is plausible. Catchment rainfall-runoff modelling of the additional areas should, however, be undertaken to validate the additional 120 m3s-1 estimated to have been generated downstream of gauged locations.

The magnitude of the peak flow of 700 m3s-1 recorded at Camerton (75002) can be put in the context of other major floods in the UK by a comparison of discharge relative to catchment area. Figure 12 shows the maximum recorded flow plotted against catchment area for over 1300 gauging stations in the UK, as published in the UK hydrometric register (Marsh and Hannaford, 2008), as well as for 68 historical floods listed by Acreman (1989). The plot also features peak flows for two major recent floods, the autumn 2000 and summer 2007 floods, using maxima reported by Marsh and Dale (2002) and Marsh and Hannaford (2008), and the UK flood envelope curve of Herschy (2002).

Discussion

The analysis presented in this paper shows that in November 2009, the usual flood-attenuating effect of the Lake District’s lakes seems to have been much reduced as a result of their very high water levels. The results of three different methods of analysis support this observation: firstly a comparison of the effect of Bassenthwaite Lake on the River Derwent flood hydrograph in November 2009 compared with that for the next highest recorded flood, in 2005; secondly an analysis of the relationship between lake level and downstream flood
peak; and thirdly a comparison of the November 2009 flood hydrograph with previous flood
hydrographs for lake-influenced and non-lake-influenced catchments. To further investigate
this apparent effect it is recommended that: a comprehensive literature search be conducted
on the flood-attenuating properties of lakes; UK and international flood event databases
should be searched for other examples of very large floods in lake-influenced catchments;
and the November 2009 event should be modelled using numerical hydraulic models of the
Lake District lakes.

If it is the case that some lakes behave radically differently at high water levels, this
could present difficulties for the FEH statistical method for flood frequency estimation,
which for extreme floods usually relies on extrapolating trends from observed, smaller floods.
This appears to have been the case on the Derwent at Camerton, where the inclusion of the
November 2009 flood caused the estimated return period of a 700 m3s$^{-1}$ flood to reduce from
104181 years to 2102 years. Given the paucity of observations of very high floods on lake-
influenced catchments, it might be worth trying an alternative approach in a future version of
FEH, whereby the lake effect is applied as an adjustment to a flood estimate, in a similar way
to which urban adjustments are currently applied.

The November 2009 flood will have resulted in increases to the estimated 100-year
and 1000-year floods at many places in the Lake District, principally locations downstream of
lakes, and at other un-gauged lake-influenced catchments elsewhere in the UK whose pooling
groups include any of the affected Lake Districted gauging stations. (For example, at
Camerton the estimate of the 100-year flood has increased from 356 m3s$^{-1}$ to 432 m3s$^{-1}$, and
for the 1000-year flood from 453 m3s$^{-1}$ to 625 m3s$^{-1}$.) This will feed through into revisions to
the national flood maps produced by the Environment Agency, SEPA and the Rivers Agency
of Northern Ireland, with possible effects on planning decisions and insurance terms.
Even with the new, reduced estimates of the return period for the November 2009 event, it is still clear that flows were of a magnitude that would not be contained by flood defences of the usual 1 in 100-year standard. Estimates from the improved FEH statistical method at the gauging stations upstream of Cockermouth suggest a return period of 1386 years on the Derwent and 769 years on the Cocker. Their combined flow, as indicated by the result for Camerton, was even rarer.

This paper has shown that the Camerton flood peak estimate is plausible. However, given the scientific and historical importance of this event, it would be worth trying to refine this estimate and that at any of the other gauges in the region at which the flow exceeded the measuring capability. The peak flow at Camerton plots broadly along the Herschy UK flood envelope curve (Figure 12), but the UK 2000 and 2007 floods do not appear as extreme using this approach. It is also clear that there are many historical events listed by Acreman (1989) which had a much greater specific discharge than the November 2009 event, or the UK envelope in general. Thus, whilst the peak flow is exceptional for the Derwent catchment and is clearly at the upper expected limit of peak flow for a catchment of this size, in a wider context it is eclipsed by many historical floods. However, the Acreman (1989) approach features flood peaks reconstructed from hydraulic analysis at un-gauged locations, whereas the other featured events are all recorded at gauging stations. Many of the events featured in the analysis of Acreman (1989) are from intense storms on small catchments (with many coming from sub-catchments affected by the 1952 Lynmouth flood), whereas the 2009 flood is notable as much for the duration of flooding as the magnitude.

Inevitably, such exceptional flood events prompt speculation that climate change is a causal factor. Clearly, it is inappropriate to attribute a single event to climate change, but there is a need for further observational evidence to assess whether flood magnitude or
frequency is changing. Whilst the evidence for any compelling long-term increase in fluvial
flooding in the UK is equivocal (Robson, 2002; Hannaford and Marsh, 2008), intense rainfall
has increased in the recent past, particularly in some upland areas, including Cumbria (Rodda
et al., 2010; Burt and Ferranti, 2011), and there is some evidence for an increase in high
flows and flood frequency in maritime, upland areas of the northwest of the UK (Hannaford
and Marsh, 2008). An assessment of whether the November 2009 floods are part of an
increasing trend is beyond the scope of this paper, but the assessment of rarity presented
herein is an important precursor of any future attempt to establish the likelihood of events of
a given return period occurring under future scenarios of climate change. Future work may
consider the extent to which the event can be attributed to anthropogenic warming, as carried
out for the autumn 2000 floods (Pall et al., 2011).

Conclusions
As a result of prolonged record-breaking rainfall over the 19th – 20th November 2009, river
flows exceeded previous recorded maxima at 17 gauging stations within Cumbria, many of
which were downstream of catchments influenced by lakes. The most extreme rainfall and
resultant runoff was experienced within the Derwent and Cocker catchments, causing
significant damage to the towns of Cockermouth and Workington and resulting in the
destruction of the River Derwent gauging station at Camerton.

The Environment Agency’s estimate of 700 m3s$^{-1}$ for the flood peak on the Derwent at
Camerton is not inconsistent with recorded river flows at upstream gauging stations.

The estimated return period, from the improved FEH statistical method, of the flood
peak at Camerton is 2102 years; the associated 95% confidence limits are 507 and 17706
years. The flood has resulted in a major reduction in the estimated return periods of large
floods in the Derwent catchment and increases in the estimated size of floods of a specified return period.

It looks likely that this flood was strongly influenced by the record high lake levels, which appear to have reduced the ability of the lakes to attenuate inflowing flood flows. It is recommended that further research is undertaken on this aspect, and that flood frequency estimation procedures in lake-influenced catchments are reviewed.

Acknowledgements

The authors would like to thank Peter Spencer for providing access to Environment Agency research into and knowledge of the November 2009 event and for helpful review and discussion; Dawn Mathews, Andrew Booth and Susan Sandelands of the Environment Agency for their assistance in providing meteorological and hydrological data for the region. The authors benefited from helpful reviews and discussion with Sue Crooks, David Jones, Terry Marsh, Lisa Stewart, David Boorman and Cecilia Svensson. Figure 1 was provided by Harry Gibson.

References

http://www.nwl.ac.uk/feh/historical_floods_report.pdf

10.1002/joc.2287

Stewart, E.J., Morris, D.G., Gibson, H., Jones, D.A. Frequency analysis of the extreme rainfall event in Cumbria 18-21 November 2009 (Submitted to *Hydrology Research*).

Table 1: Catchments recording a new highest annual maximum (AMAX) value during the November 2009 event – Catchments in Cumbria are highlighted in grey

<table>
<thead>
<tr>
<th>NRFA Station</th>
<th>Name</th>
<th>River</th>
<th>Period of record (years)</th>
<th>Area (km²)</th>
<th>FARL</th>
<th>Previous Maximum</th>
<th>November 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>73002</td>
<td>Low Nibthwaite</td>
<td>Crake</td>
<td>46</td>
<td>72.9</td>
<td>0.73</td>
<td>32.6</td>
<td>04/01/1982</td>
</tr>
<tr>
<td>73006</td>
<td>Eel House Bridge</td>
<td>Cunsey</td>
<td>36</td>
<td>18.77</td>
<td>0.727</td>
<td>14.3</td>
<td>04/01/1982</td>
</tr>
<tr>
<td>73010</td>
<td>Newby Bridge</td>
<td>Leven</td>
<td>64</td>
<td>247.81</td>
<td>0.694</td>
<td>135.3</td>
<td>02/12/1954</td>
</tr>
<tr>
<td>73014</td>
<td>Jeffy Knotts</td>
<td>Brathay</td>
<td>38</td>
<td>56.59</td>
<td>0.907</td>
<td>90.5</td>
<td>10/01/2006</td>
</tr>
<tr>
<td>74001</td>
<td>Duddon Hall</td>
<td>Duddon</td>
<td>41</td>
<td>86.01</td>
<td>0.985</td>
<td>200.7</td>
<td>03/08/1998</td>
</tr>
<tr>
<td>74003</td>
<td>Bleach Green</td>
<td>Ehen</td>
<td>36</td>
<td>44.58</td>
<td>0.74</td>
<td>49.98</td>
<td>24/10/1977</td>
</tr>
<tr>
<td>74008</td>
<td>Ulpha</td>
<td>Duddon</td>
<td>36</td>
<td>48.12</td>
<td>0.974</td>
<td>94.8</td>
<td>03/08/1998</td>
</tr>
<tr>
<td>75001</td>
<td>Thirlmere Reservoir</td>
<td>St Johns Beck</td>
<td>35</td>
<td>41.88</td>
<td>0.721</td>
<td>102.7</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>75002</td>
<td>Camerton</td>
<td>Derwent</td>
<td>48</td>
<td>661.92</td>
<td>0.844</td>
<td>294</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>75003</td>
<td>Ouse Bridge</td>
<td>Derwent</td>
<td>41</td>
<td>363.01</td>
<td>0.789</td>
<td>196</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>75004</td>
<td>Southwaite Bridge</td>
<td>Cocker</td>
<td>42</td>
<td>116.17</td>
<td>0.83</td>
<td>86.7</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>75005</td>
<td>Portinscale</td>
<td>Derwent</td>
<td>38</td>
<td>237.26</td>
<td>0.846</td>
<td>163.9</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>75016^2</td>
<td>Scalehill</td>
<td>Cocker</td>
<td>36</td>
<td>26.84</td>
<td>0.964</td>
<td>80</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>76001</td>
<td>Burnbanks</td>
<td>Haweswater Beck</td>
<td>31</td>
<td>32.34</td>
<td>0.645</td>
<td>51.8</td>
<td>14/12/2006</td>
</tr>
<tr>
<td>76003</td>
<td>Udford</td>
<td>Eamont</td>
<td>48</td>
<td>407.17</td>
<td>0.86</td>
<td>399.4</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>76004</td>
<td>Eamont Bridge</td>
<td>Lowther</td>
<td>47</td>
<td>156.2</td>
<td>0.901</td>
<td>198.3</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>76015</td>
<td>Pooley Bridge</td>
<td>Eamont</td>
<td>33</td>
<td>149.24</td>
<td>0.743</td>
<td>108</td>
<td>08/01/2005</td>
</tr>
<tr>
<td>78006</td>
<td>Woodfoot</td>
<td>Annan</td>
<td>25</td>
<td>217.95</td>
<td>0.995</td>
<td>176.7</td>
<td>21/09/1985</td>
</tr>
<tr>
<td>80001</td>
<td>Dalbeattie</td>
<td>Urr</td>
<td>43</td>
<td>197.07</td>
<td>0.963</td>
<td>148.8</td>
<td>21/10/1998</td>
</tr>
<tr>
<td>80002</td>
<td>Glenlochar</td>
<td>Dee</td>
<td>31</td>
<td>810.36</td>
<td>0.813</td>
<td>352.8</td>
<td>21/10/1998</td>
</tr>
</tbody>
</table>

^1 Flood Attenuation by Reservoirs and Lakes index – the FEH index of how the median annual maximum flood will be attenuated (1 = no attenuation)

^2 Not in HiFlows-UK
Table 2: Lake level details for lakes with daily maximum level records within Cumbria

<table>
<thead>
<tr>
<th>Lake</th>
<th>Record start date</th>
<th>Record end date</th>
<th>Previous maximum level (mAOD)</th>
<th>Date of previous maximum</th>
<th>November 2009 maximum level (mAOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassenthwaite Lake</td>
<td>15-06-1999</td>
<td>16-02-2010</td>
<td>71.29</td>
<td>08-01-2005</td>
<td>72.56</td>
</tr>
<tr>
<td>Coniston Water</td>
<td>03-03-1969</td>
<td>23-02-2010</td>
<td>45.27</td>
<td>26-10-2008</td>
<td>45.99</td>
</tr>
<tr>
<td>Crummock Water</td>
<td>31-10-1973</td>
<td>16-02-2010</td>
<td>99.49</td>
<td>23-10-2008</td>
<td>99.82</td>
</tr>
<tr>
<td>Derwent Water</td>
<td>19-07-1995</td>
<td>16-02-2010</td>
<td>77.30</td>
<td>08-01-2005</td>
<td>77.86</td>
</tr>
<tr>
<td>Ennerdale Water</td>
<td>01-12-1973</td>
<td>23-02-2010</td>
<td>113.51</td>
<td>04-01-1982</td>
<td>113.63</td>
</tr>
<tr>
<td>Haweswater</td>
<td>23-04-1997</td>
<td>23-02-2010</td>
<td>241.46</td>
<td>14-12-2006</td>
<td>241.54</td>
</tr>
<tr>
<td>Thirlmere</td>
<td>29-10-1997</td>
<td>16-02-2010</td>
<td>179.95</td>
<td>07-01-2005</td>
<td>180.11</td>
</tr>
<tr>
<td>Ullswater</td>
<td>01-11-1961</td>
<td>25-02-2010</td>
<td>147.01</td>
<td>08-01-2005</td>
<td>147.70</td>
</tr>
<tr>
<td>Wast Water</td>
<td>01-05-1979</td>
<td>23-02-2010</td>
<td>62.66</td>
<td>26-10-2008</td>
<td>62.96</td>
</tr>
<tr>
<td>Windermere</td>
<td>29-02-1968</td>
<td>23-02-2010</td>
<td>41.19</td>
<td>26-10-2008</td>
<td>41.91</td>
</tr>
</tbody>
</table>
Table 3: Single-site return-period assessment

<table>
<thead>
<tr>
<th>NRFA Ref number</th>
<th>No. ann. max</th>
<th>November 2009 peak flow (m³/s)</th>
<th>Return period (years)</th>
<th>95% confidence interval – lower and upper limit (years)</th>
<th>Return period (years)</th>
<th>95% confidence interval – lower and upper limit (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Returned period</td>
<td></td>
<td>Returned period</td>
</tr>
<tr>
<td>73002</td>
<td>45</td>
<td>50</td>
<td>900</td>
<td>113</td>
<td>>50000</td>
<td>164</td>
</tr>
<tr>
<td>73006</td>
<td>36</td>
<td>16.3</td>
<td>114</td>
<td>27</td>
<td>>50000</td>
<td>57</td>
</tr>
<tr>
<td>73010</td>
<td>65</td>
<td>239</td>
<td>964</td>
<td>143</td>
<td>>50000</td>
<td>232</td>
</tr>
<tr>
<td>74001</td>
<td>42</td>
<td>268</td>
<td>456</td>
<td>69</td>
<td>>50000</td>
<td>118</td>
</tr>
<tr>
<td>74003</td>
<td>37</td>
<td>102</td>
<td>20485</td>
<td>412</td>
<td>>50000</td>
<td>213</td>
</tr>
<tr>
<td>74008</td>
<td>37</td>
<td>104</td>
<td>58</td>
<td>18</td>
<td>>50000</td>
<td>39</td>
</tr>
<tr>
<td>75002</td>
<td>49</td>
<td>700</td>
<td>1.66E+10</td>
<td>33506</td>
<td>>50000</td>
<td>771</td>
</tr>
<tr>
<td>75003</td>
<td>42</td>
<td>378</td>
<td>87430</td>
<td>1134</td>
<td>>50000</td>
<td>311</td>
</tr>
<tr>
<td>75004</td>
<td>43</td>
<td>201</td>
<td>3570</td>
<td>271</td>
<td>>50000</td>
<td>213</td>
</tr>
<tr>
<td>75005</td>
<td>37</td>
<td>226</td>
<td>21509</td>
<td>322</td>
<td>>50000</td>
<td>228</td>
</tr>
<tr>
<td>76003</td>
<td>48</td>
<td>417</td>
<td>109</td>
<td>32</td>
<td>>50000</td>
<td>62</td>
</tr>
<tr>
<td>76004</td>
<td>47</td>
<td>200</td>
<td>30</td>
<td>13</td>
<td>1518</td>
<td>27</td>
</tr>
<tr>
<td>76015</td>
<td>33</td>
<td>214</td>
<td>4.61E+10</td>
<td>12767</td>
<td>>50000</td>
<td>280</td>
</tr>
</tbody>
</table>
Table 4: Pooled (enhanced single-site analysis) return-period assessment

<table>
<thead>
<tr>
<th>NRFA Ref number</th>
<th>No. ann. max</th>
<th>November 2009 peak flow (m³/s)</th>
<th>Return period (years)</th>
<th>95% confidence interval – lower and upper limit (years)</th>
<th>Return period (years)</th>
<th>95% confidence interval – lower and upper limit (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>73002</td>
<td>45</td>
<td>50</td>
<td>477</td>
<td>143</td>
<td>3888</td>
<td>167</td>
</tr>
<tr>
<td>73006</td>
<td>36</td>
<td>16.3</td>
<td>67</td>
<td>28</td>
<td>256</td>
<td>46</td>
</tr>
<tr>
<td>73010</td>
<td>65</td>
<td>239</td>
<td>1931</td>
<td>409</td>
<td>43823</td>
<td>383</td>
</tr>
<tr>
<td>74001</td>
<td>42</td>
<td>268</td>
<td>539</td>
<td>158</td>
<td>4676</td>
<td>278</td>
</tr>
<tr>
<td>74003</td>
<td>37</td>
<td>102</td>
<td>1799</td>
<td>402</td>
<td>28712</td>
<td>353</td>
</tr>
<tr>
<td>74008</td>
<td>37</td>
<td>104</td>
<td>45</td>
<td>22</td>
<td>105</td>
<td>39</td>
</tr>
<tr>
<td>75002</td>
<td>49</td>
<td>700</td>
<td>104181</td>
<td>9215</td>
<td>>50000</td>
<td>2102</td>
</tr>
<tr>
<td>75003</td>
<td>42</td>
<td>378</td>
<td>40911</td>
<td>4959</td>
<td>>50000</td>
<td>1386</td>
</tr>
<tr>
<td>75004</td>
<td>43</td>
<td>201</td>
<td>3594</td>
<td>766</td>
<td>>50000</td>
<td>769</td>
</tr>
<tr>
<td>75005</td>
<td>37</td>
<td>226</td>
<td>348</td>
<td>111</td>
<td>2586</td>
<td>111</td>
</tr>
<tr>
<td>76003</td>
<td>48</td>
<td>417</td>
<td>192</td>
<td>73</td>
<td>756</td>
<td>88</td>
</tr>
<tr>
<td>76004</td>
<td>47</td>
<td>200</td>
<td>30</td>
<td>15</td>
<td>84</td>
<td>26</td>
</tr>
<tr>
<td>76015</td>
<td>33</td>
<td>214</td>
<td>5877</td>
<td>1066</td>
<td>>50000</td>
<td>460</td>
</tr>
</tbody>
</table>
Table 5: Ratio of return periods (including 2009/excluding 2009) from the pooled catchment analysis (ordered by descending RP ratio).

<table>
<thead>
<tr>
<th>Gauge</th>
<th>FARL</th>
<th>RP excluding 2009</th>
<th>RP including 2009</th>
<th>RP ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>74001</td>
<td>0.99</td>
<td>539</td>
<td>278</td>
<td>0.52</td>
</tr>
<tr>
<td>73002</td>
<td>0.73</td>
<td>477</td>
<td>167</td>
<td>0.35</td>
</tr>
<tr>
<td>75005</td>
<td>0.85</td>
<td>348</td>
<td>111</td>
<td>0.32</td>
</tr>
<tr>
<td>75004</td>
<td>0.83</td>
<td>3594</td>
<td>769</td>
<td>0.21</td>
</tr>
<tr>
<td>73010</td>
<td>0.69</td>
<td>1931</td>
<td>383</td>
<td>0.20</td>
</tr>
<tr>
<td>74003</td>
<td>0.74</td>
<td>1799</td>
<td>353</td>
<td>0.20</td>
</tr>
<tr>
<td>76015</td>
<td>0.74</td>
<td>5877</td>
<td>460</td>
<td>0.08</td>
</tr>
<tr>
<td>75003</td>
<td>0.79</td>
<td>40911</td>
<td>1386</td>
<td>0.03</td>
</tr>
<tr>
<td>75002</td>
<td>0.84</td>
<td>104181</td>
<td>2102</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Figures

Figure 1 Gridded 37 hour rainfall totals for the period ending 10:00 on 20/11/2009
Figure 2: Peak flows during the November 2009 flood event; expressed as a percentage of the previous maxima
Figure 3: Flood frequency curve showing return period estimation and associated uncertainty
Figure 4: Flood frequency curves (enhanced single-site method) for Camerton prior to the November 2009 event (black) and including the event (red)
Figure 5: Upstream (Portinscale) and downstream (Ouse Bridge) scaled hydrographs and mean daily lake level in Bassenthwaite Lake for the November 2009 event and the previous record of January 2005.
Figure 6: Bassenthwaite Lake mean daily lake level plotted against POT event flows at Ouse Bridge gauging station – the November 2009 event is illustrated as a triangle, and is not used in the fitting of the trend line.
Figure 7: Ullswater mean daily lake level plotted against POT event flows at Pooley Bridge gauging station – the November 2009 event is illustrated as a triangle, and is not used in the fitting of the trend line.
Figure 8: POT hydrographs for period 2003-2009 for lake-influenced catchments (above) and non-lake-influenced catchments (below) - with the mean flood hydrograph denoted by the dark black line and the November 2009 event in red. The units on the x-axis represent number of 15 min time steps.
Figure 9: POT hydrograph plot for period 2003-2009 for Camerton station at Workington (75002) - showing mean hydrograph in black and the November 2009 event in red. The units on the x-axis represent number of 15 min time steps.
Figure 10: Station hydrographs and lake levels within the Derwent and Cocker catchments over the period 18:00 18/11/2009 to 02:00 21/11/2009
Figure 11: Catchment hydrograph, lake level and CAHR for Derwent and Cocker catchments over the period 10:00 16/11/2009 to 09:00 24/11/2009.
Figure 12: Maximum recorded flow in relation to catchment area for 1300 UK gauging stations contained within the UK hydrometric register (Marsh & Hannaford, 2008) and 68 historical floods at un-gauged UK locations (Acreman, 1989); plus Herschy (2002) UK flood envelope curve