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Executive Summary

The objective of the study was to investigate the effect of a number of
different types of hydrological uncertainty on the estimation of flood
magnitudes and the evaluation of the benefits of flood alleviation.

The conventional approach to design flood estimation is to use a method
which gives an unbiased estimate of the magnitude of the T-year flood. This
estimate at a site, however, will, on average, be. exceeded in the future more
frequently than once in T years because of the non-linear relationship between
flood magnitude and flood probability: a method which is unbiased in one
direction is not therefore unbiased in the other. A method is presented
which gives the increment which needs to be added to an estimate of the
T-year flood in order to give a flood with an expected probability of being
exceeded in the future of I/T. An estimate of the S0-yvear flood made with
the GEV-PWM procedure from a sample of just 10 years would need to be
increased by over 18% to produce the magnitude with expected probability of
1/50 (assuming average flood charactenistics). The adjustment, which varies
with return period, record length and flood characteristics, can be seen as a
safety factor to apply to an estimate of the T-year flood.

Uncertainties in the estimated flood frequency relationship feed through to bias
and uncertainties in the estimation of average annual damage. A series of
simulation experiments showed that average annual damage tended to be
overestimated, with bias increasing as the return period at which damage
commenced increased. The results emphasise the importance of estimating the
return period of this damage threshold as accurately as possible.

Confidence intervals for estimates of both flood magnitudes and return periods
were also studied using computer simulation experiments. The sampling
distribution of magnitudes with a given return period is highly skewed, and
methods to estimate confidence intervals based on the assumption that the
distribution is Normal underestimate upper confidence limits. Until exact
methods are developed, it is recommended that confidence intervals for flood
magnitudes and return periods in practice are based on computer simulation
experiments.

The conventional approach to scheme benefit assessment compares the present
value of scheme costs with the present value of average annual benefits. In
practice, the present value of the benefits that are actually realised over the
praject life will depend on the timing of flood events, and a method was
developed which calculates, by computer simulation, the probability distribution
of possible present values of future flood alleviation benefits From the
probability distribution it is possible to determine the probability that the
present value of benefits will exceed particular target values, which may assist
with scheme evaluation. !
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1. Introduction

1.1  PROJECT OBJECIIVES

Flood frequency analysis provides the basis for many design and investment
decisions in and along a rnver course, but the relationship between flood
magnitude and flood frequency at a site can never be known with complete
certainty. The basic objective of this report is .to investigate the impact of
hydrological uncertaintics on the estimation of design flood magnitudes and the
assessment of scheme worthwhileness, and to develop procedures which allow
for the effects of these uncertainties.

The project ran in parallel with a more general review of the statistical
procedures used for flood frequency .analysis in the United Kingdom as
presented in the 1975 Flood Studies Report (NERC, 1975). Because this
general review has not yet recommended a new technique, the procedures
outlined in the current report should not be Ttegarded as definitive methods
for representing and coping with uncertainties. However, the studies do indicate
the effects of hydrological uncertainties, and the general form of the suggested
procedures is unlikely to change significantly as new estimation techniques are
developed.

The investigations into risk and uncertainty and their impacts on scheme
design and assessment provided the basis for a number of additional
commissioned research projects into particular issues (including Beran, 1987).
Some other avenues of research - in particular studies into confidence intervals
- were followed after discussions with groups researching and applying methods
for the assessment of the benefits of flood alleviation.

1.2 STRUCTURE OF REPORT

There are four main themes to the study, and each is summarised in a
chapter. The themes are;

(i) estimating flood ﬁsk in the presence of uncertainty;

{ii) bias and uncertainty in the estimation of average annual flood damage;
(iif) confidence intervals for flood and return period estimates;

{(iv) the effect of flood timing on the present value of the flood damages
that are actually expérienced.

Chapters 2 and 3 are based upon studies that have been reported in the
international refereed literature: the papers are included as Appendices A and
B, and contain much of the detail of the expenimental design and
conclusions.




2. Estimating flood risk

2.1 INTRODUCTION

The objective of this chapter is to outline several ways of expressing the risk
of flood occurrence, and to introduce procedures which ‘employ alternative
definitions of risk. In particular, methods for estimating the magnitude of flood
exceeded in the future with the desired degree of risk  which is not the
same as the more conventional approach of providing an unbiased estimate of
the magnitude of that flood - are outlined.

It is appropriate to begin with some definitions:

p is the probability of experiencing an event greater than or equal to X iIn
any one year,

T is the average return period between events greater than or equal to X
It is equal to lp. In annual maximum frequency analyses, the return period
represents the average interval between years containing an event greater than
or equal to X: the average interval between events may be rather shorter
because some years will contain more than one event.

22 THE PROBABILITY OF M EVENTS IN N YEARS

It is well known that if an event has a probability p of occurring in any one
year, then the probability of experiencing m events in N years can be derived
using the binomial distribution, and 1s:

P(m events in N ycars) = [g ]pm (l-p)N-m 21

The probability of experiencing at lcast one event in N years is
P{at least one event) = 1 - (l-p)N 22

Table 2.1 shows the probability of experiencing at least one event during a
range of different time honzons (N) for different event return periods (T) or
probabilities (p). There is, for example, a 22% chance of experiencing the
100-year flood at least once in a 25 year period.

Equations 2.1 and 22 and Table 2.1 assume that cach year is independent,
and that the probability of experiencing an event is the same in each year.
The probability of experiencing m eveats in N years when there is year-to-year
dependence can be determined from the conditional probability of an event
occurring given that the previous year did (or did not) contain an event. The
probability of experiencing at least one event, for example, is



Table 2.1 The probability of experiencing at least one event over the

next N years
Period of years  Rewrn period T: 5 10 25 50 100 " 250
N Probability P: 02 0.1 0.04 0.02 001 0.004
10 0.893 0.651 0.335 018 0096 0.03%
15 0.965 0.7%4 0.458 0261 0140 0.053
20 0.988 0.878 0.558 0332 0182 0.077
25 0.996 0.928 0.640 0397 0222 0.095
30 0.9988 0.958 0.706 0455 0260 0.113
50 0.99999 0.995 0.870 0636 0395 0.182

P(1 or more in N years) = 1 - {P(no event in first year)

23
* P(no event in year|no event in previous year)®™1%)
and the probability of experiencing exactly one event in N years is
P(m=1) = P(event in first year)*P(no eventione before)
* P(no cvent|none bt:fore)”'2
+ P(no event in first ycar)‘P(cvcnt]nonc before) 24

* P(no event|one before)
* P(no event|none before)N3 ¢ (N-1)

Similar - but longer - expressions can be derived for higher values of m.
Table 2.2 shows the probability of experiencing none, one, two, three or four
of more events over the next 20 years with different degrees of year-to-year
correlation, assuming (i) that the last year before the 20 year period contained
an event, and (i) that it did not contain an event. The degree of clustering
is represented by the ratio of the conditional to unconditional probability of
experiencing an event: a ratio of three implies that the long-term 10-year flood
has a 30% chance of occurring in a year following a 10-year flood, and
represents a very high degree of clustering. In general, the probability of
experiencing large numbers of events increases as the degree of clustering
increases, as does the probability of no events occurring.

The probability of experiencing M events in N years can also be determined
when peaks over a threshold (POT) flood data are used. If the mean number
of peaks over the threshold is % and the probability of a flood exceeding
X, given that it is greater qt%an q, I8 p'(xX) = (1-F'(x})), then the mean
number of peaks per year greater than X is

A, =2 (- F@): 25

X

If it is assumed that the number of floods in a year follows a Poisson
distribution (which is not unreasonable: NERC, 1975), then the probability of
experiencing M floods above X in N years is:



Table 22 The probability of experiencing m events in 20 years, with
different degrees of year-to-year correlation

Ratio of 0 1 2 3 4 or more
conditional to

unconditional

probability

Record length is 20
Long-tcrm probability is 0.10

Yecar zero did not contain an event

3.00 0.198 0.254 0.216 0.147 0.185
2.50 0.175 0.261 0233 0.157 0.173
2.00 0.155 0.266 0.249 0.168 0.161
1.50 0.137 0.269 0.266 0.179 0.148
1.00 0.122 0.270 0.284 0.1%0 0.134

Year zero did contain an event

3.00 0.150 0.232 0.z2 0.166 0230
2.50 0.144 0242 0.236 0172 0.206
2.00 0.136 0252 0251 0.178 0182
1.50 0.129 0.261 0267 0.134 0.158
1.00 0.122 0.270 0.284 0.190 0.134
Record length is 20

Long-tcrm probability is 0.05

Year zero did not contain an event

3.00 0.400 0334 0.168 0.064 0.034
2.50 0.389 0345 0.173 0.064 0.029
200 0.379 0.356 0.178 0.062 0.025
1.50 0.369 0367 0.183 0.061 0.021
1.00 0.358 037! 0.188 0.060 0.017

Year zero did contain an evem

3.00 0.356 0338 0.187 0.077 0.042

250 0.357 0347 0.187 0.073 0.035

200 0.358 0357 0.188 0.069 0.029

1.50 0.358 0357 0.188 0.064 0.022

1.00 0.358 0377 0.188 0.060 0017
¢ ONM

, 1
p(M events in N years) = v

e MUF @ (3 (1-F* ()M a

M!

F'(x) represents a conditional probability (ie. the probability that X is




exceeded, given that the flood exceeds the threshold q,)- The unconditional
probabitity of a flood exceeding X is equal to

p(x) = % (1-F'(x)) 27

and T=1/p(x) can be substituted into (26) to give

-NIT N M
p(M events in N years) = E——};—'-ID— 28

The probability of experiencing at least one event in M years is
p(at least one) = 1 - ¢NT 29

As retumm period T increases and the period of interest N lengthens, equations
22 and 29 converge.

23 THE CONCEPT OF EXPECTED PROBABILITY

The conventional approach to flood frequency analysis is to provide the best
estimate of the magnitude of the flood with exceedance probability p: a
"good” flood frequency estimation procedure is one which gives unbiased
estimates of the magnitude of the p-probability (or T-year) flood. However, the
true probability of -exceedance of this “best” estimate will be larger than the
initially-specified probability p. This is illustrated in Figure 2.1.

Figure 2.1a shows the (hypothetical) sampling distribution of estimates of the
magnitude of the flood with exceedance probability p=0.1 (and hence return
period 10 years). The mean of the sampling distribution of estimated 10-year
flood magnitudes is equal to the underlying true value, and the estimation
procedure therefore gives an unbiased estimate of the magnitude of the
10-year flood. The sampling distribution of magnitudes is also approximately
normally-distnibuted. Figure 2.1b shows the distribution of the true exceedance
probabilities of each estimate of the 10-year magnitude, and it is clear that
this distribution is highly skewed and with a mean different to - and greater
than - a probability of 0.1. The mean of the true exceedance probabilities is
not the same as the true exceedance 'probability - of the mean of the
magnitudes. Beard (1960) called the mean of the true probabilities of the
estimates X, the “expected probability”, but Hardison and Jennings (1972)
proposed the term “average exceedance probability”. Appendix A contains a
paper (Arnell, 1988) which provides more details of the concept of expected
probability, including a number of alternative interpretations.

The practical implicationt of expected probability is that design floods, as
estimated conventionally, will be exceeded in the future more frequently than
desired. Stedinger (1983a) argued that flood managers did not need the
“"conventional” estimate of the magnitude of the T-year flood, but required
instead the flood which would be exceeded in the future with the specified
nsk of occurrence. In other words, they needed the magnitude of flood which
had an expected probability (or average exceedance probability) equal to p.
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Figure 2.1 Sampling distribution of estimaies of the 10-year flood
(Amell, 1988; Appendix A)

This magnitude will be higher than the conventional best unbiased estimate of
the p-probability flood, with the difference depending on the form of
probability distribution used, the parameter estimation procedure employed, the
sample size available and the desired degree of risk The difference between
the two magnitude estimates can be seen as a “safety factor" representing
parameter uncertainty (but not model uncertainty): as sample sizes increase, the
two estimates converge.

24 ESTIMATING THE MAGNITUDE OF A FLOOD WITH
THE DESIRED RISK

24.1 Introduction

The objective of the investigation was to produce a method for estimating the
magnitude of a flood which would be exceeded in the future with a desired
expected probability p. The method is based on the General Extreme Value
(GEV) distribution (Jenkinson, 1955), with parameters estimated by the method
of probability-weighted moments (PWM: Hosking et al, 1985). In general terms,
the method determines the increment which needs to be added to a
conventional GEV-PWM estimate of the magnitude of the p-probability flood,
in order to produce a flood with an expected probability equal to p. Different
increments  (or “adjustment factors”) would be necessary with different
probability distributions or: parameter estimation procedures.

Analytical expressions for estimating the magnitude of a flood with expected
probability equal to p can unfortunately be derived for only a very few
probability distributions. Stedinger (1983a) derived a method assuming ficods
{or their logarithms) were normally distributed, which is outlined in more
detail in Appendix A, and Rasmussen and Rosbjerg (1989) presented a



procedure for use with POT data. For other probability distributions it is
nccessary to derive empirically the average true exceedance probability of
conventional estimates of the magnitude x . Hardison and Jennings (1972) used
computer simulation experiments to develop corrections to be applied to
“conventional” probabilities when using the log-Pearson type 3 distribution, and
a similar approach was used in the current study with the General Extreme
Value distribution. ' '

24.2 Single-site analysis

Appendix A gives details of the derivation of the adjustment factors to be
applied during the course of a single-site flood frequency amalysis using the
GEV-PWM procedure. To summarise, the construction of the adjustment
factors involved the following stages:

(i) generate a sample of synthetic annual floods of size N from a specified
GEV parent distribution,

(ii) estimate GEV parameters u, a and k using PWM;

(iii) compute the true probabilities of the estimated magnitude X, and
Xp * AF.XP, where AF ranges from 0.01 to 0.5;

(iv) repeat the process many times and compute the mean true probability
(the "expected probability’) for X, and each increment X, * AF.xp;

(v) interpolate to determine the value of AF which gives expected
probability equal to p.

Table 2.3 (reproduced from Appendix A) gives the final adjustment factors AF
for a range of sample sizes, parent distribution characteristics and return
periods. The adjustment factor for the 100-year flood estimated from a 10
year sample from a GEV distribution with coefficient of variation 0.4 and k
parameter -0.1, for example, is 02717. In other words, the GEV-PWM
estimate of the 100-year flood magnitude must be increased by 27% to
produce the magnitude exceeded with expected probability 0.01.

Table 2.3 indicates the magnitudes of the adjustment factors under a range of
conditions, but is not easy to use in practice where interpolation is necessary.
An interpolation model was therefore developed, as detailed in Appendx A.
The model, by analogy with an analytical expression which can be derived for
the lognomal distribution, has the form:

(ogg(1-cviy

AF = [ exp{ (LN A - Kgpyll 1 2.10




Table 23 Adjustment factors to convert a GEV-PWM estimate of X
o a ma with expected probability 1/T. (Ameﬂ[
1988; Appendix A)
GEVE O GEVE 15.0.00 )
CV. 5040 CV 5040
Return period Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 0415 0615 0947 1224 1456 10 0477 0873 1369 1744 2046
20 0283 0366 0534 0690 0827 20 0281 0484 0772 1004 1198
30 0220 0275 0384 0488 0582 30 0182 0316 0517 0683 0826
40 .0203 0241 0317 DIB9 0456 40 0147 0239 0384 0507 0613
S0 0193 0227 0293 0355 0412 SO 0125 0199 0325 0429 0513
100 0173 0207 025]) 0287 0317 100 0083 0123 0191 0250 0302
CV is 0.60 CV. 15060
Return period Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 0728 .0995 1433 1802 2112 10 0879 1379 1999 2472 2856
20 0412 0524 0746 0949 1128 20 0473 0726 1078 1363 1601
0 0288 0361 0504 0639 0762 30 0300 0467 0710 091] 1082
40 0244 0293 0390 D482 0567 40 0235 .0350 0523 0668 0794
50 0220 0264 .DIT D426 0499 50 0195 0289 0436 0562 0672
100 017} 0209 0261 0304 0342 | 100 0119 0170 0251 0319 0378
CV 150380 CV. is0.50
Return period ) Return period
N 10 25 50 15 100 N 10 25 50 75 100
10 1000 1303 1814 2250 2617 10 1216 1776 2481 3025 3469
20 0523 0650 0907 1143 1351 20 0625 0906 .1299 1619 1888
30 0348 0430 0594 0748  .0838 30 0392 0577  .0B46 1069 1259
40 028§ 033% 0448 0554 0650 40 0103 0429 0619 0779 0917
50 .0250 0297 0392 .0482 0566 SO 0249 0352 0515 0653 077}
100 0181 0219 0275 0323 0365 | 100 0146 0204 0291 0365 0429
GEVEs 010 GEVELis D20 -
CV 15 0.40 CV. 040
Return period Return period
N 10 25 50 15 100 N 10 25 50 75 100
10 0527 1149 1840 2331 27 10 0522 1382 2282 2900 3376
20 0296 0652 1088 1413 1677 20 0296 0829 .1432 1864 2207
3o 0171 0419 0737 0982 1183 3O 0159 0547 1005 1)41 1611
40 0124 0106 0546 0734 {0890 a0 0106 0405 0765 1033 1249
50 0092 0240 0445 0609 0746 50 0067 0316 0626 .0861 1052
100 0032 0114 .023) 0326 0406 | 100 0001 0145 0332 0475 0594
CV 15060 - CV 15060 .
Return period Return period
N 10 25 50 15 100 N 10 25 50 75 109
10 1005 A776 2611 3209 3681 10 1061 2117 386 3920 4487
20 0543 0975 1487 (1870 L2181 20 0592 A230 0 1927 2424 2817
30 0333 0630 1000 1283 A58 30 0360 .0820 1341 A2 2025
40 .0249 0467 0743 0956 133 40 0267 0617 1022 1319 1559
50 0195 0373 0608 0794 .0949 50 0203 0493 0840 1100 1311
100 0095 0192 0325 0430 0519 ] 100 0084 0254 0460 0615 0743
CV s 6380 CV. 5030 T
Retum period Return period
N 0 25 50 75 100 N 10 25 50 75 100
10 1402 2266 320! 1875 L4409 10 1511 2699 3887 4705 5338
20 0734 1209 1717} 2193 2535 20 087 1524 2281 L2820 3247
30 0453 0780 (1182 1488 1740 30 0512 1013 1573 1980 2305
40 0342 0578 0875 1104 1294 40 0385 0764 1194 1509 1764
50 0271 0464 017 0916 .1082 50 0300 .06 0982 .i257 1480
100 0138 0244 0385 0496 0590 { 100 014} 0325 0541 0703 0835
8




W..................................

where
(Hog F)¥ - (1+k)
EV ~ % k <0
((1+2k) - (1+k))
(log,F)¥ - (1+k)
% k> 0 2.11
((1+2Kk) - (1+k))
= 045 + 0779 (-log (-log.F)) k=20
| = = 1 - P
and
log,A = const + alog N + blog CV + clog Kqp, 212

Table 2.4 (from Appendix A) gives the cocfficients for Equation 2.11.

Table 2.4 Coefficients model to estimate justment
n, cv and kOf(AmeII, 1988?Appmd?xdj A) factors.from

Design return period (years) const a b < CH
10 0.1525 502841 002177 09358 99.6

23 0.2013 002339 0.00142 09143 98.5

k3] 0.2007 0.01557 0.01318 0.5449 96.3

75 0.1436 0.03101 0.01866 1.0035 96.3

100 — 0.1046 003167 £.02211 - 1.0391 574

. Cvt (F} )
log, 4 =const+alog, N '+ blog, CV - cK gy AF-chp{(l+l/n)'”A—Kcevilm'”+ ey

243 Regional flood frequency analysis

Appendix A describes the calculation of adjustment factors when the flood
frequency relationship is estimated from one sample. A similar approach could
be adopted to estimate the adjustment factors required for a regional

frequency analysis,

Table 2.5 shows, for illustrative purposes, the adjustment factors necessary for
the 50 and 100 year flood estimates for several combinations of sample and
region size, and for one homogeneous GEV parent distribution. The simulation
experiments assumed that all sites in the region were from the same parent,




and that there was no inter-site correlation. Different regional compositions
would give different adjustment factors, which makes it very difficult to
develop a generalised estimation method. However, it is clear from Table 25
that the adjustment factors for regional frequency analysis are small (indicating
incidentally the benefits of regional flood frequency analysis over single site
analysis).

Table 2.5 Adjustment factors for regional dimensionless flood X/x,
as estimate by regional GEV-PWM estimation procedure

GEV parent: k = 02, CV = 04
Number of sites

10 p.|] 40

T =35

10 0.051 0.035 0.028
Number of yecars 20 0.025 0.018 0015
at cach site 40 0.012 0.010 0.009
T = 100

10 0.078 0.052 0.039
Number of years 20 0.038 0.026 0.021
at cach site 40 0.019 0.014 0.012

25 CHAPTER SUMMARY

This chapter has presented some equations for estimating the probability of
experiencing M events in N years, and has also outlined a procedure for
determining the magnitude of event which will be exceeded in the future with
the desired degree of risk. Conventional procedures, which aim to produce an
unbiased estimate of the magnitude of the T-year event, tend to yield
estimates that will, on average, be exceeded more frequently than once in T
years in the future. This is due to sampling uncertainties in flood frequency
analysis, and the difference between the two magnitude estimates can be seen
as some form of “safety factor”. Table 23 shows the increase in conventional
estimate necessary to produce magnitudes exceeded in the future with the
specified degree of risk, assuming the conventional estimates are made using a
GEV distribution with parameters estimated by probability-weighted moments.
The adjustment necessary increases as samples become shorter, as return
periods increase, and as sample coefficient of variation and skewness increase:
with a 10 year sample of flood data with average characteristics (CV of 04,
GEV k parameter of -0.1), the conventional estimate of the 50-year flood
magnitude would need to be increased by over 18% to produce an event with
an expected probability of one in 50 years.

10




3. Estimating average annual damage

3.1  INTRODUCTION

Flood managers need a measure of the magnitude of a flood problem in
order both to compare the extent of risk in different floodplains and to
provide a basis for the economic evaluation of a flood management strategy.
Such an index is provided by the average annual damage (or, in American
usage, the expected annual damage), which is best understood as the average
of flood damages computed over many years. One way to calculate this wouid
be simply to add up a long time series of annual flood damage data and
divide by the number of years, but this is not feasible in practice: long
records are very rarely available, flood damages vary considerably from year to
year making estimates from small samples very imprecise and, most importantly,
exposure to flood loss will have changed over time.

Average annual damage is therefore estimated synthetically, by combining
information on the damage incurred in a flood with the probability of
experiencing that flood. A curve defining the relationship between flood
damage and flood probability is usually constructed using relationships between
flood discharge and frequency, flood discharge and depth, and flood depth and
associated damages, as indicated in Figure 3.1. The fiood magnitude-frequency
relationship is of course based on hydrological analysis, the discharge-depth
relationship is derived through hydraulic studies, and the floodplain
depth-damage relationship is produced by combining depth-damage curves for
each property (or property-type) on the floodplain. Such depth-damage curves
were published for British floodplains by Penning-Rowsell and Chatterton
(1977). with a major update in 1988 (Suleman et al, 1988). Although it is
assumed that flood depth controls the bulk of damage incurred, procedures
have been developed for estimating the differential effect of different flood
durations, and the amount of indirect damages incurred (such as lost business:
see Parker ¢t al, 1987).

The average annual damage incurred in a floodplain can be derived from the
probability distribution function of annual damages, but there is never enough
information to define the form, let alone the parameters, of such a
mathematical function: it i5 a combination of, for example, a General Extreme
Value distribution characterising the flood discharge-frequency relationship,
perhaps a logarithmic relationship defining the stage-discharge relationship, and
an empirical, possibly stepped, function relating depth to flood damage.
Average annual damage is therefore estimated by calculating the area under
the graph of damage-probability function. The mean of a varable x distributed
with probability density function f(x) is

E(x) = j' x f(x) dx* 3.1

and since the cumulative distribution function F(x), defining the probability of
experiencing an event less than or equal to X, is related to f(x) by

dF(x)
dx

= f(x) 32
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Figure 3.1 Estimation of damage probability curve

then

E(X) = J‘ X dF(x) 33

(or the arca under the curve of x against F(x)).

A technique such as Simpson’s rule could be used to determine this area, but
in practice the relationship between flood probability and flood damage is
based on only a very few points (such as the 25, 50 and 100 year flood
profiles). Average annual' damage is therefore estimated using the “mid-range
probability” rule, as outlined in Figure 3.2.

Av. Ann. Dam. = ¥ (P, - p,)) — 34

M-I (D,, + D)
2

i=1

12




where M is the number of pairs of data points, P is exceedance probability
for point 1 and D, is the associated damage. The precision of an estimate of
average annual damage is influenced by the number of pairs of - points
considered, but the number of pairs required for a given degree of precision
will depend on the smoothness of the damage-probability function: the greater
the number of steps and abrupt changes, the larger the number of points
required.

This chapter summarises some studies into the effect of hydrological
uncertaintics on bias and uncertainties in the estimation of average annual
damage. More details are found in the paper reproduced as Appendix B
(Arnell, 1989).
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Figure 3.2 Calculation of average annual damage using the
mid-range probability rule

32 BIAS AND UNCERTAINTY IN THE ESTIMATION OF
AVERAGE ANNUAL DAMAGE

The average annual damage at a site is based on estimates of the various
components which link together to produce average annual damage. The
recasons for uncertainties in the flood frequency relationship at a site are well
known frequency analyses are usvally based on very limited samples  but
there are also uncertainties in the hydraulic analyses converting discharge to
flood depths across and along a floodplain. In principle the depth-damage




relationship (and all the other relationships predicting damage from flood
characteristics) in a floodplain can be defined exactly, but in practice
uncertainties arise because standard depth-damage relationships are applied in
preference to property-by-property surveys and damages in a future event may
be influenced by characteristics of the event assumed irrelevant (such as the
time of day the flood peaks). The relative importance of each of these sources
of uncertainty will vary between sites, but it is likely that hydrological
uncertainties will frequently be the most important. This chapter therefore
describes some investigations into the effects of hydrological uncertainties, as
represented by the estimation of frequency distribution parameters from small
samples, on bias and uncertainty in average annuai damage. More details are
provided in Appendix B.

The basic method adopted was to construct a series of simulation experiments
to explore the effect of parameter uncertainty on the bias and precision of
estimates of average annual damage. Three different approaches were
compared:

(i) the conventional approach, with the parameters of the flood frequency
distribution estimated using maximum likelihood;

(i) an approach using expected probability (see Chapter 2). Beard (1978)
argued that less biased estimates of average annual damage would be
calculated when flood risk was expressed in terms of expected
probability;

(iii) an approach taking explicit account of the sampling distribution of flood
quantile estimates: the damage value for a given flood quantile is taken
to be the mean of the sampling distribution of estimates for that
quantile (James and Hall, 1986):

E(D) = J'; D h(D) dF 3.5

where h(D) is the probability density function of the estimate of damage
D for a given frequency event. It is a combination of the probability
density function of the flood discharge and the (determininstic)
relationship relating discharge to flood damage.

A number of simplifying assumptions were made. Firstly, it was assumed that
floods followed a log-normal distribution, and that the only uncertainties lay in
the estimation of the parameters of such a distribution from a small sample.
A log-normal distribution was used because all three estimation procedures
could be readily applied {(as outlined in Appendix B). Secondly, the damage
functions were assumed to follow four simple mathematical functions (Figure 3
in Appendix B): this was 'to allow the investigation of the effects of the shape
of the damage function on bias and uncertainties. Flood damage was assumed
to begin at three different return period thresholds, namely the true 5, 25 and
100-year floods. T

Table 3.1 (reproduced from Appendix B) shows the bias in estimates of

average annual damage, for two of the four damage functions It is clear that
all the methods overestimate average annual damage, but that the conventional
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Table 3.1 Bias in estimation of average annual damage, expressed as
percentage of the true value (Amell, 1989; Appendix B)

DAMAGE FUNCTION
Guadratic Logistic
Probabilities 10* 20° 40° 10° 20° 40*
(1) () {3) (4 {5) 6 |. M
Threshold probability = 0.2
conventional method 7.6 0.4 1.7 338 12.0 8.7
expected probability method 38.5( 16.0 9.6 120.9 526 285
expected damage method 41.4 17.5 135 143.5 6441 355
Theeshold probability = 0.04 '
conventional method 533 | 209 14.1 169.3 68641 41.8
expected probability method 86.5| 800 | 426 622.9 2320 ) 1085
expected damage method 2009 | B46| 445 846.4 340.0 | 168.0
Threshold probability = 0.01
conventional method 1793 | 727 433 568.4 194.7 | 105.3
expected probability method | 644.0 1 2467 { 118.0 | 2,647.3 742.1 | 2789
expecied damage method 7147 | 273,31 1293 | 4.163.6 | 1,400.0 | 589.5

*Sample size.
Note: Simulation results from 500 repetitions.

method produces the least biased estimates. Bias increases as the threshold at
which damage begins rises: the greater the frequency of flooding at a site, the
less the average annual damage is over-estimated. Bias also reduces as sample
size increases.

The similarities between the expected probability method {method ii above) and
the expected damage method (method iii) reflect similarities in their derivation:
in the case of the lognormal distribution, both methods use the t-distribution,
and the expected value of the p-probability flood is close to the value of the
flood exceeded with expected probability p. With the linear damage function
the two methods give very similar results, but differences increase as the
damage function becomes less linear.

The magnitude of average annual damage at a site is closely dependent on
the estimated probability at which flood damage begins. Although the expected
probability method produces an estimate of the flood magnitude exceeded with
the specified degree of risk, it produces a biased estimate of the probability
associated with a particular, fixed, magnitude (because of the non-linear
relationship between flood magnitude and probability: an estimator cannot
produce estimates that are unbiased in all dimensions). The conventional
approach, however, gives a much less biased estimate of the exceedance
probability of a flood of a particular size (such as the size at which damage
begins), and thereforc produces a less biased estimate of average annual
damage. Beard (1978) argued that conventional procedures underestimated
average annual damage, and that the use of expected probability compensated:
the results of this study imply that the use of expected probability leads to
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even grecater overestimation of average annual damage.

Beard (1990), commenting on Amell {1989), has reiterated his conclusion that
the use of expected probabilities gives better estimates of average annual
damage. However, his experiments and those reported in the cumrent study
start from different premises. If it is assumed that there is an underlying
average annual damage that is waiting to be estimated, with the only
uncertainty being in the probability of a given value of damage occurring - as
in the current study - then the use of expected probabilities does not give the
best estimate of the underlying average annual damage. Beard (1990),
however, assumes that the observed sample could have come from a range of
different populations, and that the most appropriate value of average annual
damage is the average of all the possible parent values.

The effect of the shape of the damage function can be seen in Table 3.1. In
each case damage is assumed to begin at the same level, but damage with the
logistic function at first increases only slowly with flood magnitude: the point
at which flood damages change significantly with magnitude is at a higher level
than with the quadratic curve (where the greatest change in damage with
magnitude is at the lowest levels).

Table 3.2 shows the standard deviation of the sample estimates of average
annual damage, again for just two of the damage functions. Variability is high,
and is highest for the expected probability and expected damage methods. With

Table 3.2 Standard deviation of estimation of average annual
damage, divided by the true value (Amell, 1989;

Appendo: B)
DAMAGE FUNCTION
Quadratic Logistic
Probabilities 0t 20° 40 10 20° 40"
(1) @ 1 & 4 [ () (6} (7)
Threshold probability = 0.2
conventional method 080 [ 053 | 040 1.48 0.89 | 0.66
expected probability method 086 | 056 | 0.4 1.86 1.05 j 0.72
cxpected damage method 086 | 0.56 | 0.42 1.84 1.05 | 0.72
Threshold probability = 0.04
conventional imethod 203} 117 | 0.86 5.07 235 ) 1.57
capected probability method 269 | 1.44 | 096 8.58 360 | 2.04
expected damage method 2N 1.44 | 096 8.7 369 | 2110
Threshold probability = 0.01
conventional method 535 1 2.54 1.75 18.11 6.26 | 3.58
expected probability mclhod 44011 | 3.79 | 2.22 | 40.11 12.68 | 5.63
cxpected damage melhod 892 | 380 | 220 | 43.11 14.21 | 6.47
‘Sample size.

Note: Simulation results from 500 repetitions.
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a sample size of 20 years, the standard deviation of the estimates of average
annual damage when floods begin at the (true) 5-year flood is over 50% of
the average annual damage, indicating that the precision of an individual
estimate is low.

The standard error of the sampling distribution of average annual damage at a
site, and hence some indication of the precision of the estimate, can be
calculated from the the standard deviation of annual damages. The standard
error is simply

s.d. (D)
N¥%

se. (D) = 36

and the standard deviation of annual damages can be estimated by calcxﬁating
E(I)z). the area under the ‘damage-squared’ curve:

sd. (D) = [E(DY - ED)Y% 3.7

The simulation experiments indicated that estimates of the standard error of
average annual damage calculated using equations 3.6 and 3.7 were quite
precise, but unfortunately the sampling distributions of average annual damage
are highly (positively) skewed. It is not possible to estimate confidence intervals
for average annual damage from the estimated standard error alone.

33 SUMMARY AND IMPLICATIONS

This chapter has described some studies into the effects of hydrological
uncertainties on bias and uncertainty in the estimation of average annual
damage. It has been found that conventional flood frequency estimation
procedures tend to overestimate true underlying average annual damage, with
the bias increasing as the threshold at which damage begins to occur rises.
This bias is due to uncertainties in the estimation of the probability at which
damage begins, and the non-linear relationship between damage and probability.
Uncertainties in the estimation of flood frequency distribution parameters from
small samples mean that estimates of average annual damage are very
uncertain, with the standard error of their sampling distribution being
considerably (arger than the mean for high damage thresholds.

The expected probability procedure was found to produce more highly biased
estimates of average annual damage than the conventional procedure. This is
because the estimated average annual damage at a site is controlled by the
estimated probability at 'which flood damage begins: whilst the expected
probability procedure produces an estimate of the magnitude which will be
exceeded with a given degree of risk, it produces a biased estimate of the
probability of a fixed magnitude event

The implications of these studies for the calculation of average annual damage

are that estimates will be very uncertain and, on average, too high (by an
unknown degree). The precision and bias of an estimate is largely determined
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by the accuracy with which the probability at which damage begins can be
determined, and it is clear that the emphasis in a flood frequency analysis
needs to be placed on the estimation of such floods.
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4. Confidence intervals

4.1 INTRODUCTION

Flood frequency estimates are not precise, and one way of describing their
uncertainty is to calculate confidence intervals around an estimate. This chapter
summarises briefly the calculation of confidence intervals for an estimate of the
T-year flood, and considers the derivation of confidence intervals for the
return period associated with a particilar magnitude flood. Finally, the chapter
outlines the difficulties with estimating confidence intervals for average annual
damage, and suggests a possible approach to use in practice.

42 CONFIDENCE INTERVALS FOR Xy
4.2.1 Introduction

A confidence interval for an estimate of )(.P the T-year flood, indicates the
degree of precision of that estimate: the wider the interval, the less precise
the estimate. There are two possible interpretations of a confidence interval,
one deriving from classical statistics and the other following a Bayesian
approach.

The classical approach assumes that there is a single true, but unknown, value
of the T-year flood. The confidence intervals placed around an estimate from
a sample define the probability that the true population value is within some
defined limits: there is a 95% chance, for example, that the true T-year flood
lies between 27 mfsec and 52 m%sec. The confidence interval is of course
estimated from the sample, and different samples would give different
confidence intervals. The classical interpretation is that, in the long run, 95%
of all such estimated limits would contain the true parent value.

The Bayesian approach is rather different, and assumes that there is no single,
fixed, truec population value of the T-year flood. Instead, the approach
asssumes that it is possible to estimate the probability of any particular value
being the ‘true’ population value, given both sample and ‘prior’ information:
what is the probability of the ‘true’ T-year flood being greater than 58 m¥/sec,
for example, given the characteristics of the recorded sample? Under some
limiting circumstances, the classical and Bayesian approaches yield numerically
similar results.

Three main approaches have been used to estimate confidence limits for the
T-year flood. The first two - using estimates of the variance of the T-year
flood and attempting to derive the exact form of the sampling distribution of
the T-year flood - are based on the classical approach, whilst the third follows
a Bayesian interpretation. The “classical® methods consider only parameter
uncertainty, and assume the form of the underlying model is known: different
modei assumption will therefore produce different confidence intervals. The
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Bayesian approach can allow for the effect of model uncertainty by producing
a composite frequency distribution from a range of candidates.

4.2.2 Mcthods bascd on the variance of the T-year flood

In the most general terms, these methods derive confidence intervals by
estimating the variance of the T-year flood and assuming that the sampling
distribution is normal (sce Kite, 1975): confidence intervals are then
determined as:

Xp - Z, se(Xp) < Xp < Xp + z, se(X) 4.1
where se(XT) is the standard error of estimate of X and z, is the standard
normal dewviate with exceedance probability p.

Methods have been developed to estimate the variance of the T-year flood for
practically all of the probability distributions and parameter estimation
procedures used in practice. The quantile estimate X.T is a function of the
estimated parameters 8:

= X{(8) 42
which can be expanded as a Taylor series around the true parameters 6:

Xp = X8 + 8-9)
X7(8) + (8-8) Xp'(8) +

(6-6)

X;''(8) + 43

where X" and "' represent the first and second derivatives of X with
respect to 8. Ignoring squared terms and above, the variance of X is {from
the general form for the variance of aY+bZ)

n n dXT dXr
var(Xy) = El 5§1 Ea— dT cov(8_.,8,) 44

There are three approximations invelved in the calculation of var(XT): first,
the Taylor series expansion omits squared and higher terms; second, the
derivatives are evaluated not at the true parameter values, but at their sample
estimates; and third, the variance-covariance matrix of the parameter estimates
must usually be approximated in practice. This third approximation is probably
the most important. Approximations to the variance-covaniance matrix for a
particular probability distribution and parameter estimation procedure tend to
be denived asymptotically.

Much less effort has been directed towards the derivation of the vanance of
an cstimate Xp based on a regional flood frequency analysis, although an
approximate procedure is given in the Flood Studies Report (NERC, 1975). If
an estimate of is derived by combining a regional estimate of the
dimensionless quantile X /X with a local estimate of X, the mean annual
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flood, the variance of the quantile estimate is

Var((X1/%).%)
E(X,T.D—\{)z var()_b + E(;{)2 var(X,IJJT() 4.5

(assuming that the mean annual flood X and the dimensionless T-year flood

are independent). The variance of the mean annual flood X depends on
how it is estimated, and Wiltshire (1987) presents a procedure for estimating
the variance of an estimate derived from regression relationships of the form
frequently used in regional analyses. In the Flood Studies Report (NERC,
1975) the variance of the dimensionless quantile X /X was based on an
empirical assessment of the variability in estimated quantiles within a case
study region, but Wiltshire (1987) calculated the variance for an estimate
derived from a regional GEV-PWM fit using cquation 4.4 and assuming that
the region was homogeneous. In practice, the variance of a regional estimate
of XX is a function both of the within-region variability and the sampling
error of an estimate based on m' independent catchments (which may be
rather less than the actual number of catchments).

Var(X,r)

It

The most important assumption with regard to the estimation of confidence
intervals, however, is the assumption that estimates of from different
samples are normally distributed. The derivation of exact confidence intervals -
see ‘below - and computer simulation experiments (eg Stedinger, 1983b) show
this assumption to be false, particularly at high return periods, and sampling
distributions are highly skewed. The assumption that they are normal means in
practice that the upper confidence limit may be considerably underestimated.
Figure 4.1 shows confidence intervals, based on computer simulation, for a
sample of length 20 drawn from a GEV distribution with ‘typical’ UK
parameters, together with thosc cstimated from the varance of the T-year
flood and the assumption that the sampling distributions were normal. The
shorter the record length, the higher the return period and the higher the
coefficients of variation and skewness, the further the sampling distribution of
Xr departs from the normal distribution.

4.23 Exact confidence intervals for XT

The exact form of the sampling distribution for estimates of the magnitude of
the rth rank observation from a sample of size N is defined by

gX) - [f;'] (N - 1) [FOOI (10N 1) 46

but this of course is only applicable to a subset of possible retum periods.
Stedinger (1983b), however, derived exact confidence intervals for any refurn

period for the normal and lognormal distributions. He showed that the
variable
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Figure 4.1 Confidence intervals for Xp with GEV parameters

estimated by PWM: intervals based on var(Xq) and on
simulation experiments. Simulation experiments with 1000
repetitions. GEV parent parameters u=10, a=4, k=-0.1, and
samnple size 20.

22




J..‘...............................

y Xr X

47

5Ty = N

where X is the mean annual flood and s, is the standard deviation of annual
floods, was distributed following a non-central t-distribution with centrality
parameter

¢ =3z N% 4.8

and N-1 degrees of freedom. Again, is the normal reduced variate with
exceedence probability p=1/T. Tables were produced showing the value of S(T)
for a given sample size, return period and confidence level: the resulting
confidence intervals are not normally distributed about the estimate X A
procedure was proposed for deriving ‘approximate’ exact confidence intervals for
the Pearson type HI distribution from those for the normal distribution.
Ashkar et al (1987) followed a similar approach to derive exact confidence
intervals for the Weibull and Gumbel {or EV1) distributions, and Ashkar and
Bobee (1988) refined Stedinger’s (1983b) procedure for deriving Pearson type
Il confidence intervals. No papers, however, have attempted to derive exact
confidence intervals for the GEV distribution.

424 Confidence intervals from a Bayesian perspective

As indicated above, the Bayesian approach assumes that an assessment of the
probability of a particular set of parent parameters being ‘correct’ can be
based on a combination of sample information with prior expectations (see
Wood and Rodrguez-Iturbe, 1975, for example). Each possible combination of
parameters yields an estimate of X,P and the probability of the ‘true’ quantile
exceeding Xy can be derived by integrating across the joint probability
distribution of parameter values (this probability distribution is the ‘marginal
posterior distribution’ of : it 1s a ‘posterior’ distribution because it combines
sample information with prior knowledge). In practice, however, this can be
extremely difficult, and some simplifying assumptions need to be made about
the form of the underlying probability distributions of the parameters.

Cunnane and Nash (1971) used simulation experiments to derive the marginal
posterior distribution of X,I, assuming that annual floods followed the Gumbel
(or EV1) distribution and using two different forms for the assumed
distributions of the Gumbel parameters. Stedinger (1983b) showed analytically
for the normal (and lognormal) distribution that, under a particular set of
assumptions about the form of the probability distribution of parameters, the
variable
- X
49

S(T) = N*

has a non-central t-distribution. This is the same as equation 4.7, and the
classical and Bayesian approaches to the calculation of confidence intervals for
the normal (or lognormal) distribution therefore give exactly the same answers
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(if sample information only is used in the Bayesian approach). By combining
several candidate probability distributions, a composite Bayesian distribution can
incorporate the effects of model uncertainty as well as parameter uncertainty
(Wood and Rodriguez-lturbe, 1975): in principle, a marginal posterior
distribution of X, can be derived as in the single distribution case.

Whilst the Bayesian approach appears usefu!l (both because of the ability to
inchtde non-sample information and the relatively simple interpretation of
Bayesian confidence intervals), it is extremely difficult to apply in practice.

Analytical derivations are forced to make some restrictive assumptions about
the probability distributions of model parameters, and numerical integration can
be very difficult. Therc have been no published attempts to apply Bayesian
analyses to the three-parameter GEV distribution.

425 Implications

The initial implication of this section is that it is easy to estimate incorrect
confidence intervals, but considerably more difficult to estimate correct intervals
{except for the lognormal distribution). More work is needed on the derivation
of exact confidence intervals for the probability distributions and estimation
procedures used in the UK (primarily the GEV distribution with parameters
estimated by the method of probability-weighted moments), and in particular in
regional frequency analyses.

In practice, it appears that the most appropriate method of estimating
confidence intervals for the GEV distribution (or indeed many apart from the
normal and lognormal) is through computer simulation experiments. The
approach would be to estimate GEV parameters from the sample, repeatedly
draw samples and build up the sampling distribution of Xy The experiments
reported in Stedinger (1983b) indicate that the confidence intervals derived
from simulation compare very closely with exact confidence intervals (at least
for the normal and lognormal distributions). It shoutd be emphasised, however,
that the confidence intervals assume that the data do follow a GEV
distribution: different intervals would arise with different assumed distributions.

43 CONFIDENCE INTERVALS FOR Ty

Most effort tends to be placed on defining confidence intervals for an estimate
of the magnitude of the T-year flood, but confidence limits for the estimated
return period of a particular magnitude flood are often required in practice.

If the return penod of an event X i1s estimated simply from
p = /N 4.10
where r is the number of floods greater than or equal to X in a sample of

size N, then confidence intervals for T=1/p can be defined using the binomial
distribution. The probability of experiencing r events in N years with annual
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probability of occurrence p is
p(r|N.p) = [’}’]p‘(l-p)“" 4.11

but different values-of p could produce the same number of occurrences t in
N years. The probabilitics of experiencing r or more, or r or fewer, events in
N vears are

n

p(r or more) = ¥ [}I’I] pl(1-p)N 4.12a
i=r

p(r or fewer) = }, [bll] p'(1-pN* 4.12b
i=0

One confidence limit can be calculated from equation 4.12a by solving to give
the probability p which yields a probability of experiencing r or more events
of, for example, 0.05, and the other confidence limit can be defined in a
similar way from equation 4.12b. The equations can be solved by graphing the
relationships between p and p(r or more) and p(r or less), or by using the
incomplete beta function.

However, binomial confidence intervals are not of much use in flood frequency
analysis in practice, because flood return periods are very rarely estimated from
r/N: the return period of an event of magnitude X is more usuvally a function
of the estimated parameter set 8:

Ty = £(8) 4.13

The use of binomial confidence intervals when T, is a function of distribution
parameters (as was proposed by Oosterbaan, 1988) gives a misleading indication
of the precision of an estimate. Simulation experiments indicate that binomial
confidence intervals are too wide: they tend to underestimate the upper limit
for Ty at a given level of confidence, but underestimate the lower limit even
more.

The sampling distribution of p for the rth rank observation in a sample of
size N is a beta distribution with parameters N and N-r-1 but, as is the case
with equation 4.6, this is only useful for a small subset of cases. However, if
it is assumed that the sampling distributions of p at all magnitudes follow the
beta distribution, it is possible to determine confidence intervals by estimating
beta distribution parameters from p and the standard error of p at a
particular magnitude X: the method is analogous to the procedure for
estimating confidence intervals on flood magnitudes outlined in 4.2.3. The
standard error of py can in principle be determined using

non dpy dpy
var(py) = ):1 ):1 T cov(8,.8,) 414
Te §o r 5

which is directly equivalent to equation 44. An alternative approach would be
to estimate the wvariance of the linear reduced varate (such as the
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Gumbel-reduced variate y=-In(-In(1-p))) at magnitude X (using an equation
simifar to 4.13) and assume that the sampling distribution of reduced variates
was normal. Neither of these methods have been cvaluated or attempted in
practice.

One approach that is occasionally adopted is to derive confidence intervals for

plot lines joining all the, for example, 95% confidence intervals, and
define confidence intervals for a particular magnitude X by drawing horizontal
lines to meet the confidence interval ‘envelope’ (as illustrated in Figure 4.2).
However, there is no immediately apparent reason why this procedure should
necessarily give the correct answer, and confidence intervals constructed in
different directions - with different interpretations - need not coincide.

Flood Magnitude
A\
AN

Reduced variate

Figure 4.2 Estimating confidence intervals on Ty from intervals on
Xr

The most appropriate way to construct confidence intervals on T, (or indeed
p,) at present appears to be based on computer simulation expenments, as is
the case for confidence intervals on X Figure 43 shows confidence intervals
for both XT and T,, assuming that annual maximum floods follow a GEV
distribution with ‘typical’ parameters: the shorter the record, the more variable
the data and the higher the return period the wider the confidence intervals.
It is interesting to note that the confidence intervals on T, derived by the
simulation experiment are quite similar to those which could have been
estimated from the confidence intervals on X
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44 CONFIDENCE INTERVALS ON AVERAGE ANNUAL
DAMAGE

Formal confidence intervals are very rarely calculated for estimates of average
damage. Analytical derivations are made difficult by the ‘unfriendly’
characteristics of depth-damage curves in practice, and although it is possible
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Magnitude

to estimate the standard error of estimate of average annual damage (as
indicated in Chapter 3), the form of the sampling distribution is unknown: it
is however clear that it is most unlikely to be normal.

Grigg (1978) developed a method to estimate confidence intervals on average
annual damage, based on the confidence intervals on flood magnitudes. The
method, illustrated schematically in Figures 4.4a to 4.4c (from Appendix B), is
however based on a misinterpretation of confidence intervals. The locus of the,
for example, 90% confidence intervals does not define the frequency curve
which will be exceeded over all probabilities 90% of the time: one sample
curve may yield an estimate of the 10-year flood outside the 90% confidence
intervals for the 10-year flood, whilst yielding estimates of other magnitude
floods closer to the mean value (as shown in Figure 4.4d). Such an approach
will overestimate confidence intervals on average annual damage, and give an
unduly pessimistic impression of precision.

As with estimates of flood magnitude and return period, it appears that the
most practical method of estimating confidence intervals for average annual
damage is with the aid of computer simulation experiments. No examples have
been reported, but it is probable that confidence intervals in practice will be
very wide.

Damage
Magnitude

Average annual damage
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Figure 4.4 Calculation of sampling dmbgzon of average annual
dama, m confidence interv flood gnitude:
and '%{?tnm incorrect (Amell, 1989;01’;ppaldit I’;l)a
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45 SUMMARY

This chapter has summarised methods for estimating confidence intervals for (i)
the flood magnitude with a particufar return period; (ii) the return period
assaciated with a particular flood magnitude and (iii) average annual damage.
By far the greatest amount of attention has been placed on the derivation of
confidence intervals for estimates of flood magnitudes, but accurate exact
methods still need to be developed for flood frequency distributions and
estimation procedures that are frequently used in practice. Very little attention
has been directed towards the estimation of confidence intervals in regional
flood frequency analysis.

For practical purposes, it appears that the most accurate way of deriving
confidence intervals for flood magnitudes, flood retum periods and average
annual damage is through computer simulation experiments with the parent
characteristics based on observed data.
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5. Estimating flood alleviation benefits from
time series of future flood losses

5.1 INTRODUCTION

The present value of the flood damages at a site (and hence the flood
alleviation benefits) is conventionally determined by calculating the average
annual damage and discounting this average value over the project life N_.
This assumes that the average damage occurs each year, which of course does
not happen. In practice, the present value of the damages actually experienced
during the next NP years will depend on the distribution of events over time:
the greater the number of large floods at the beginning of the period, the
greater the present value of flood damages. The present value of flood
damages over the next N_ years therefore has a probability distribution, with
the probability of each diﬂ'crcnt value equal to the probability of experiencing
a different patiern of flood timing. From this distribution it would be possible
to say, for example, that whilst the conventional estimate of the present value
of floods damages over the next 30 years is £25million, there 15 a 10%
chance that the present value could be less than £12million, or a 10% chance
of it exceeding £50million: it would also be possible to say that a scheme
costing £30million (at present values) would have a 45% chance of being cost
effective over the next 30 years. A decision to implement a scheme could
therefore be based on an assessment of the probability of experiencing
different totzl benefits, rather than simply on the average potential bencfit.
Such a risk-based approach could be used to justify flood protection in areas
where the conventional use of the present value of average annual damages
indicates a scheme would not be economically effective.

This chapter describcs a method for estimating the probability distribution of
the present value of annual flood damage over a project design life. Much of
the implementation of the mcthod was done under contract to a Water
Authority but the initial development work was done under the auspices of
thc MAFF project. The MAFF project had carlier provided the basis for
Beran’s (1987) time-dependent approach to costing the effects of floods His
procedure was based on the evolution of a flood relief fund which is
increased by interest but depleted by withdrawals to pay for flood losses. The
probability of the fund being exhausted depends on the initial sum placed in
the fund, and the procedure allows the starting value with a given probability
of exhaustion to be determined: this value can provide the basis, for example,
for compensation against future flooding

52 THE METHOD

The number of possible future distributions of floods over the next N years is
infinitely large, and remains large even when flood damages are grouped into
discrete classes: there are 2N different, equally likely, possible future time series
if damages fall into just two categories. It is therefore impossible in practice
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to evaluate numerically the present value of future flood damages under all
possible future outcomes, and it is necessary to resort to an approach based
on computer simulation.

The approach developed has the following stages:

(i) define the input characteristics, namely the flood frequency relationship,
the damage-magnitude/duration relationship (perhaps with and without the
alleviation scheme), the discount rate, the project design life (or, more
generally, the time horizon of interest N), the desired ‘target’ present
value of damage (which may be equivalent to scheme costs, for
example), and the number of repetitions in the experiment;

(ii) pencrate N years of floods, converting cach annual value to flood damage
and discounting to present values. Maintain a running sum of the
present values;

(ii)) store both the total present value of damages incurred and the year at
which the accumulated present value exceeded the target value;

(iv) repeat stages (ii) and (iii)

(v) produce histograms and cumulative frequency distributions describing both
the present value after N years and the time taken to achieve the
target value.

The present value of damage incurred in year 1 is calculated from:

Damage,
Present value;, = ———— 5.1
(l+r)l

where r is the discount rate.

It is important to note that the mean of all possible estimates of the present
value of damages after N years is exactly egual to the present value of
average annual damages discounted over N years. In other words, the
conventional estimate of the present value of flood damages at a site is equal
to the expected present value.

Beran's (1987) procedure was also based on the simulation of time series of
floods.

53 AN EXAMPLE APPLICATION

The method outlined in the previous section was implemented on a PC, and
applied to the estimation of the present value of flood damages at a site in
southern England. The following assumptions were made:

(i) the relationshp between flood magnitude and flood frequency remained
constant into the future: this assumption could be relaxed to allow for,
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for example, the effects of climate or land use change;

(ii) the exposure to fiood loss remains constant over time: this too could be
relaxed (o allow for changes in floodplain land use;

(iii} only one flood can cause damage in any one year: this assumption could
be relaxed by using a different flood generation process (such as one
that generates a different number of floods each year);

(iv) the discount rate was fixed at 5%, and the target present value (in this
case estimated scheme costs) was set at £26.68million;

(v) 1000 repetitions were made.

Figure 5.1 shows four different synthetic 50 year time series, each with a
different present value of flood damages: the difference between Run 1 and
Run 2 is particularly striking, and emphasises the greater ‘value’ of floods
which occur towards the beginning of the time period.

The distributions of present values of flood damages after 25, 50 and 75 years
are shown in Figure 52. There is clearly little difference between 50 and 75
years, because the present value of even large floods 50 years into the future
is small (less than 9% of the monetary value, with a discount rate of 5%).
Over the next 50 years, the present value of actual flood losses (and hence
realised scheme benefits) ranges from £4million to nearly £100million. Although
the present value of average annual benefits is less than the present value of
scheme costs, there is a 34% chance that the actual benefit will be greater
than the scheme costs. For comparative purposes, there would be only a 44%
chance that a scheme that was just cost effective (with the present value of
costs ecqual to the present value of benefits) would actually give benefits
greater than costs over the next 50 years.

Figure 53 shows the distribution of times needed to accumulate the target
present value. There is a 10% chance that the target will be reached within
approximately 12 years, but a 45% probability that the benefits will never
reach the target. o

The sensitivity of the conclusions to changes in the target benefit value and
flood frequency relationship were also explored in the original study.

54 CONCLUSIONS

This brief chapter has summarised a simple method for determining the
probability that the present value of flood losses (and hence fiood alleviation
benefits) actually incurred over the next N years, which depends on the timing
of flood cvents, exceeds particular specified target values. The method allows
the adoption of a risk-based approach to scheme evaluation The conventional
approach is based on the expected value of future benefits, but an alternative
would be to implement a scheme if there was, for example, at least a 30%
chance of scheme costs being covered over the ensuing time period (note that
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in the example used in the chapter, the probability that a scheme which was
just economically effective in conventional terms - would actually show
benefits greater than costs was less than 50%).

Although the example makes - some restrictive assumptions about changes in
risk over time, it is possible to use the method to evaluate the frequency
distribution of present values under changing climate, catchment and floodplain
land use conditions.
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6. Conclusions

6.1 A SUMMARY OF THE CONCLUSIONS

This report has examined the effect of a number of different types of
uncertainty on the estimation of flood magnitudes and the evaluation of the
benefits of flood alleviation.

Chapter 2 concentrated on the estimation of the rate of occurrence of floods
during a N-year period and, in more detail, the estimation of the magnitude
of the T-year flood exceeded with a given degree of risk The conventional
approach is to use a method which gives an unbiased estimate of the
magnitude of the T-year flood, but it was shown that this estimate will
probably be exceeded in the future more frequently than once in T years. A
method was proposed, based on the concept of expected probability, to
produce an estimate of flood magnitude that would be exceeded in the future,
on average, once in T years. The method took the form of an increment to
add to a conventional estimate of the T-year flood (produced by applying a
GEV distribution with parameters estimated by probability-weighted moments):
the size of the increment reflects sampling uncertainties, and increases as
records become shorter, as the annual flood data become more variable, and
as return period increases. A conventional estimate of the 50-year flood made
from a sample of just 10 years would have to be increased by over 18% to
produce a magnitude with an expected probability of 1/50 (assuming ‘average’
flood characteristics).

Chapter 3 examined the effect of uncertainties in the estimation of a flood
frequency relationship at a site on the bias and precision of estimates of
average annual damage. It was found that average annual damage tended to
be overestimated, with bias increasing as the return period at which damage
commenced increased: it is clearly important that this critical return period is
estimated in practice as accurately as possible. Hydrological uncertainties lead
to very large sampling uncertainties in the estimate of average annual damage.
The use of expected probabilities in the calculation of average annual damage
was found to results in even greater overestimation: although the expected
probability approach gives an estimate of the magnitude exceeded with a given
risk, it does not produce an unbiased estimate of the risk associated with a
given magnitude, and it 1s the estimated probability at which damage
commences which largely determines the magnitude of average annual damage.

Confidence intervals on estimates of both the estimated flood magnitude X,
and the return period of a given magnitude T, were considered in Chapter 4.
Computer simulation experiments showed that lic assumption that the sampling
distribution of estimates' X was Normal, and therefore that confidence
intervals could be estimated from the variance of X[, was inappropriate: the
true upper 95% confidence limit is larger than that based on a Normal
distribution, particularty for high return periods, short sample sizes and highly
variable flood data. Confidence intervals for estimates of the T-year flood are
currently best approximated by computer simulation experiments, and the
experiments can also give confidence intervals for the estimated return period
for a given magnitude flood. Such confidence intervals are frequently required
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in practice.

The conventional approach to benefit assessment compares the present value of
scheme costs with the present value of the average annual benefits of the
scheme (ie. flood damages averted). In practice, however, the actual benefts
that will be realised will depend on the timing of flood events over the
project life: the greater the number of floods ecarly on, the larger the present
value of the benefits realised. Chapter 5 outlined a method to simulate the
probability distribution of the present value of flood benefits, from which the
probability that the benefits will in practice exceed, for example, scheme costs
can be determined. The method allows for uncertainty in the future state of
the world (as represented by the actual pattern of future floeding), rather
than uncertainty in the parameters of a particular model of the world, unlike
chapters 2, 3 and 4.

62 SUMMARY OF RECOMMENDATIONS

The report makes the following recommendations:

Assessments of the precision of estimates of flood magnitudes, flood
return pericds and average annual damage be made using computer
simulation experiments.

Expected probability should not be used in the calculation of average
annual flood damages.

The possibility of basing scheme assessments on the likelihood of the
present value of scheme benefits exceeding scheme costs be considered.

The safety factor to be added to an individual estimate of the design
flood X[ should be such that the adjusted flood magnitude has an
expected probability of occurrence in the future of L/T. This would mean
that the flood is exceeded, on average, with the desired risk.

63 FURTHER STUDIES

The report has shown how hydrological uncertainties may have very significant
effects on design flood estimation and scheme assessment, and recommends
that computer simulation experiments are used to indicate the precision of
estimates of flood magnjtudes, flood return periods and average annual
damages. Further studies, however, could be undertaken to develop more
analytical and hence faster methods, once the details of a new UK flood
frequency estimation procedure are finalised.

In parucular, studies will be needed in the following areas:

{iy exact confidence intervals around estimated flood magnitudes for the
recommended single-site frequency analysis procedure;
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(i) methods for estimating the confidence intervals around regional
dimenstonless flood frequency curves. Such confidence intervals will neced
to reflect both the sampling uncertainties involved in estimating a
regional curve from a number of possibly correlated catchments and the
uncertainties due to within-region heterogeneity;

(iii} exact methods for determining the confidence interval arcund an estimate
of the return period of a particular magnitude flood;

(iv) calculation of expected probability corrections to be applied when flood
magnitudes are estimated from a regional analysis.
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Abstract: Conventional Nood frequency analysis is concerned with providing an unbiased estimate of
the magnitude of the design flow exceeded with the probability p. butl sampling uncertainties imply
that such estimates will, on average, be exceeded more frequently. An alicrnative approach is there-
fore, to derive an estimator which gives an unbiased estimate of flow risk: the difference beiween
the two magnitudes reflects uncertainties in.parameter estimation. An empirical procedure has been
developed 1o estimate the mean truc exceedance probabilities of conventional estimates made using

"2 GEV-distribution filted by prababrlity weighted moments. and adjusiment faciors have been deter;

mined to'cnable the estimation of Nood magnitudés exdeeded with, on average, the desired frobabil-

e
Key words: Flood risk, flood lMequency analysis, generaliscd extreme vatue distributtons.

1 lontroduction

If the hydrologist had perfect knowledge of the Mooed {requency relationship at a
site there would be no controversy over the estumation of flood magnitudes
corresponding 1o spéaified frequencies. However, in practice the hydrologist knows
neither the form of the most appropriate statistical model of Nood frequencies nor
the values of the parameters of this model and must therefore make assumptions
and esumates. The conventional approach 15 10 select a model and estimate its
parameters in such a way that, because of sampling uncertaintics, the best estimale
of the magnitude of the flood with probability of exceedance p is obtained. Many
probability distributions and parameter estimation procedures have been proposcd
and applicd, but it has been noted that, because of samphing uncertainties, the best
estimatc of the magnitude 1, of the flood with probability p and return period
T = 1/p will probably be exceeded in the future moce frequently than once in T
years. In other words, if risk 15 defined as the probability that the design flood will
bc exceeded in any one year, the “expected” risk of having an event greater than
the estimated magnitude X, in the future is greater than p. Stedinger (1983)

argued that flood managers did not need the best esimate of the magnitude of the
£ probability flood, but needed instead the flood with a specified risk of
occurrence. It is therefore necessary to estimate the flood with an expected risk
equal to p (Beard, 1960; Hardison and Jennings, 1972).

This magnitude will be higher 1han the conventional best unbiased estimate of
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the magnitude of the p probability flood, and the difference will depend on uncer-
taintics in paramcier estimation. The difference between the two magnitudes can
be scen as an “adjustinent factor’, which can be applied to a conventional estimate
to determine the flood magnitude which, given available data, can be expected 1o
be exceeded with the desired probability or risk p. It is the objective of this paper
to develop a procedure for estimating this adjustment factor for the generalised
extreme value (GEV) distribution. Tt is first nccessary to examine more closcly the
reasons why the conventional best estimate of the flood with a probability of
excecdance 7 gives a biased estimate of flood risk.

2 The risk of a flood greater than the estimated design Mood

Figurc 1a shows a hypothetical sampling distribution of estimates of the flood mag-
nitude X, cxceeded with probability p. It can be seen that this particular method

(the actual method is not important for this illustration) gives an unbiased estimate
of the magnitude x, (the mean of the sampling distribution is equal o the true

value) and that estimates are approximately normally distributed. Figure 1b shows
the distribution of true exceedance probabilities of cach estimate X, and it s
immediately clear that this distribution is highly skewed with a mean different (0 -
and greater than - p. In other words, the mean true probability of the estimates of
design magnitude X, is greater than p even though the mean magnitude is equal to
the true magnitude, and this is due to sampling uncertaintics (Beard 1960;
Hardison and Jennings, 1972).

If there were many independent rivers in an area with the same underlying
parent form, there would thercfore be events grealer than .\’p on average more than
once every T. = 1/p years. A similar efféct would be obscrved, if. many indépen-
dent samypiles could he taken at one sité of interest, Beard (1960) called the mean
true probability of estimates- v, the cxpected probabilitv, but Hardison and Jen-
mags’ (1972) term “average exceedance probability™ is clearer and cmphasises the
idea of averaging across samples. The average exceedance probabiity of x, is
preater than the desired probability because of the shape of the relationship
between magnitude and probability, although the precise difference varies between
probability distributions.

Scveral approaches have been developed to praduce an unbiased esumate of the
probability of a Nood of magnitude x. Moran (1957), for cxample, assumed that
Noods (or their logarithms) were normally distributed, and noted that a luture
value x and sample mean ¥ are therefore both independent normal random variales
with common mean p and variances o and o2/N, where A is sample size, I the
sample standard deviation s is substituted for G, the statistic:

x — X
fm XX ()
ts! + 52/N|'”
thercfore follows Student’s ¢ distribution with ¥ — 1 degrees of freedom. The
probability p of magnitude x can be obtained from:

[ X — X

s(1 + 1NP
and the magnitude X, exceeded with probability p is therefore simply obtained by
rearranging Eq. (2) (Stedinger 1983):

p = prob L3 | (2)
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Figure 1. Sampling distribution of estimates of xo, and distribution of true probabilities of esti-
mates

XO

S =X+ s(L+ YNV (3)

Here, £, , is the quantite with exceedance probability p {rom a Swdent’s 1 distribu-

tion with v = N — 1 degrees of freedom. Beard (1960) derived the same expres-
sion differently, following Proschan’s (1953) proof that the expected probability
{i.c. average true excecdance probability) of a statistic based on the mean and stan-
dard deviation of a sample from a normal distribution was a simple function of
Swudent’s 1 distribulion.  Although the two expressions are the same, there is a
difference in interpretation; Moran’s (1957) derivation makes no reference to the
idea of averaging across many samples. Similar expressions have been derived for
some other distributions (Lall 1987},

An alternative approach uses the idea that the cxpected value of a random van-
able ¥ 1s cqual to

E@) = [y fU) dy )

where f{y) is the probability density function of . The expected probability of
flood magnitude greater than X can therefore be computed from

f(x) = [f(x|0)/(8) 4O (5)
and
pXY =1 F(X) =1 — jo"f(x) dx (6)

Here, f{x |0} gives the estimated prabability of x given parameter set the, and
J{0) is the probability of parameter scl € being correct. [ f(0).is in fact a poste-
rior distribution combining prior knowledge about the distribution of the parame-
ters with sample information using Bayes theorem, Eq. (5} 15 the Bayesian distribu-
tion (also known as the marginal density function or the predictive density). Such
Bayesian distributions have been derived from frequency distributions used in flood
frequency analysis by, among others, Cunnane and Nash (1971), Wood and
Rodriguez-Tturbe {1975} and Stedinger (1983). and are reviewed by Kuczera
(1987). The form of the distribution depends to an extend on the assumed form of
the prior distribution, and Stedinger (1983) showed how, under certain conditions,
the Bayesian distribution derived from a lognormal distribution is numerically
identical to Eq. (3).

The Bayesian approach, however, has the advantage that information from a
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Table I. Mean Lrue exceedance prabability of cvents greater than esumated design magnitudes.
GEV parameters estimatcd by probability-weighted moments

design return period (years)

i 10 23 30 75 100
Design probability 0.1 0.04 0.02 0.01} 0010
Truc magnitude 20,707 26.419 31.214 34,247 36.500
mean estimate 20.660 26,417 31.431 34751 27296
s.d, estimate 3150 5722 8.889 11.410 13574
mean true cxccedance probability 01154 0.053) 0.0340 0.0264 00224

GEV parent: u = 100, a2 = 4.0, k = -0.15; Sample size n = 20; Number of repetitions = 1000.

number of sources - siic data, rcgional information and ‘engineering judgement’ -
can be incorporated into the assessment of the probabilities of different parameler
combinations.

The cstimated magnitude with an average true exceedance probability p is
larger than an unbiased estimate of flood magnitude, and there is a greater risk of
overdesign than underdesign: although on average, sample estimates are exceeded
with the desired risk, a higher proportion are exceeded less frequently. It is possi-
ble to derive an estimator which, instead of focusing on the mean true excecdance
probability, aims at the median. Such an estimator would give cstimaies that are
actually exceeded more or less frequently than desired with equal probability, but
there is no reason why cqual probabilities of under or overdesign should be sought
(Stedinger 1983). Indeed, caution suggests that overdesign - as 15 more likely using
the unbiased risk estimator - should be preferred.

3 Application to the GEV distribution

The gencralised extreme value (GEVY) distribution was recommended for use in
flood frequency analysis in the UK. Flood Studies Report (NERC 1975), and has
been widely applicd. 1t has the following form (Jenkinson 1955).

{cxp[—}l —k(x —w)al’t] k#0
Flxy = cxpl—exp{—(x — w)/al] k=40 (7)

When & = 0 the distribution rcduces to the extreme value type 1 (EVI1), Parame-
ter estimation procedures include the method of sextiles (NERC 1975) and max-
imum likelihood (Prescont and Walden 1980), but Hosking ¢t al. (1983) showed
that paramecicrs estimated using probability-weighted moments were less biased and
more efficient for the short sample sizes encountered 1n hydrology.

Table | illustrates that estimates of Mood quantiles, whilst nearly unbsed, are
exceceded more frequently than desired: the table was constructed by repeatedly
generating a synthetic sample from a GEV distnibution, estumating the parameters
by probability-weighted moments and determining the true probabilities of
excecdance of estimated quantiles from parent parameters.

The form of the GEV distribution means it is very difficult 10 find analyucally
an exacl expression o give unbiased estimates of the probability of flood magni-
tude similar to that derived by Moran (1957) for the lognormal distribution. {t is
therefore necessary to develop an empirical analogue to Beard’s (1960) approach,
and derive empirically the average true exceedance probability of conventional esti-
mates of the magnitude x,. Hardison and Jennings (1972) employed such a pro-
cedure with the log-Pearson type [1I distribution to convert "conventienal” probabii-

ities (as implied by parameters fitted by the method of moments) to average
excecedance probabilities. and derived the relationship by computer simulation.
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The approach adopted in this paper is 1o devclop empirically a relationship
between the probability of a magnitude x calculated using parameters estimaled by
thc method of probability-weighted moments (GEV-PWM), and the average true
cxceedance probability of that magnitude, in a sumilar vein to Hardison and Jen-
nings (1972). Howcver, wherecas with their method it s necessary to replot the
flood frequency curve after correcting estimated probabilities and w0 find graphi-
cally the magnitude with average exceedance probability p, the method presented
here allows the direct estimation of the magnitude of an event with a specified
average cxceedance probability. The method produces an increment to be added 10
the probability-weighted moments estimate of a flood quaniile, and this increment
can be seen as a risk-based ‘adjustment factor’ enabling the conversion from
unbiased estimates of flood magnitudes 1o unbiased estimates of Mood risk. As
sample sizes increase, uncerlainty and, thus, the difference between the two estima-
tors, decrease; and the adjusiment factor also diminishes. The Bayesian approach
was not explored partly duc to the difficulty of choosing appropriate forms for the
prior distributions of parameters but mainly for practical reasons: the GEV-PWM
estimation procedure is widely used and it is logical to conceive of a way that
allows design magnitudes exceeded with a specified risk to be determined using an
adjustment factor added to an estimate. [t is appropriate at this juncture to note
that different results would be obtained if an attempt was made to produce an
unbiased estimate of the return period of a particular magnitude {because 1/5 is n
ol cqual to (1/p)). This approach was not followed as the distribution of true
return periods of estimated flood magnitude is more highly skewed than the distri-
bution of true exceedance probabilities {and is virtually unbounded). [t is more
difficuit to obtain siable estimates of the average true return period by simulation.

4 Computation of adjustment lactors

Adjustment factors can be determined using computer simulation according 10 the
following slages:

1Y generate a sample of synthetic annual floads of size N from a speciflied GEV
parent distribution,

2)  ecstimale parameters 4, ¢ and &k using probabitity-weighted moments;
3) compute the true probabilities of the ecstimated magnitude X, and
.x’,, + Af-".fp, where AF ranges from 0.01 10 0.5 in increments of 0.01;

4) repeat the process many times and compute the mean truc probability (the
‘expected probability’) for X, and each increment ¥, + AF .

A graph can be coastructed from’the results of stage 4, and an example s

shown in Fig. 2. Values of &, + AF X, with average exceedance probability p are

then obtained by interpolation aided by log-lincar regression of x, + AF x, on p.

Experiments were run with sample sizes of 10 (10) 50, 70, 100, parent coefflicient
of variation CV 0.4 (0.2) 1.0 and parent & parameter -0.3 (0.1} 0.1, and adjusiment
factors AF were computed for T = 1/p of 10, 25, 50, 75 and 100 ycars. The
experiments consisied of 10000 repetitions for all except the runs with sample sizes
of 70 and 100, which used 1000 repetitions. Adjustment factors for other return
periods can be approximated by drawing a curve through the points defined by the
computed adjustment factors and interpolating. The shape of the relationship
between probability and magnitude varies with parent distribution parameters.
Some of the results are tabulated in Table 2 by return period T, CV,k and sam-
ple size N, and the variations are illustrated in Fig. 3 which shows results for
k = —0.1. It is clear that the adjustment factor AF reduces as record length
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Figure 2. Variation of average exceedance probability with magnitude X, + AF-%, for various
return periods T = t/p

increases and as parent CV reduces, and from Table 2 it can be seen that for short
records at lcast the adjustment faclor reduces as & becomes targer (i.e., the skew of
the parent reduces). The highest adjustment factor calculated for the 100 year
flood, s 0.685'with N = 10, CV = 1.0 and k = —0.3: 0.685 154, must be added

1o the GEV-PWM estimate of the 0.01 probability flood to yield the magnitude
with an expecied probability or risk of 0.01. For larger samples, however, the pic-
ture is less clear. In general, if 718 less than sample size N the lowest adjustment
factor occurs with parents with & close to O, reflecting the relative decline n
GEV-PWM performance as k departs from zero: for shorter record lengths perfor-
mance is influenced by the interaction between record length and parent k. It is
interesting to compare adjustment factors for the GEV distribution with similar
adjustment factors for the two-parameter lognormal distribution. These can be cal-
culated directly from

P explx - s(1 + I/n}”zrplﬂ_,] — explx + z,5]

exp(x + zps]

[cxp[(l 4 llﬂ)uzl _ ZP}IUU&.(['I—CWHIH — (8)

pn—I

where z, is the standard normat deviale with exceedance probability p. In general,

the adjustment factors for the lognormal distribution are smaller for long record
lengths, but for smaller samples arc similar to thosc for the GEV with k between O
and -0.2. Figure 4 shows the variations in adjustment factor with sample size for a
parent C¥V of 0.6.

5 Application of the technique

Whilst Table 2 shows clearly the variation in adjustment factor across sample size,
CV and k, it is not very easy to use in practice where interpolation is necessary. A
simple model was therefore developed to predict adjustment factor AF from
N, CV and k, and has the general form:
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Table 2 Adjustment factors 10 convert a GEV-PWM estimaic of X; 10
4 magnitude with cxpected probability 1/T.
) CEV k15010 CEVEGO0
CV. is040 CV 5040
Return period Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 0415 0615 0947 1224 14536 10 0477 OBT3 1369 1744 2046
20 0283 0366 0534 0650 0827 20 0281 0484 0772 1004 .1198
30 .0220 0275 0384 0488 0582 30 0182 0316 0517 0683 .0B26
40 0203 0241 0317 0189 0456 40 0147 0239 0384 0507 .0613
50 .0193 0227 0193 0355 0412 50 0125 0199 0325 0429 0523
100 0173 0207 .0251 0287 0317 | 100 .00B3 .0I2) 0191 0250 .0302
CV. 35050 TV 50460
Retumn period Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 0728 0995 .1433 1802 2112 10 0879 1379 1999 2472 2856
20 0412 0524 0746 0949 1128 20 0473 0726 1078 .1363 .1601
30 0288 0361 .0504 0639 0762 0 0300 0467 0700 0911 1082
40 0244 0293 0390 0482 0567 40 0235 0350 0523 0668 .0794
S0 0220 0264 .0347 0426 .0499 S0 .0195 0289 0436 0562 .0672
100 0173 0209 .0261 0304 0342 | 100 0119 0170 0251 0319 .0}I8
CV. 090 CV. 10380
Return period . Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 .10001 1303 .1814 2250 2617 10 1216 1776 .248) 3025 .)469
20 0523 0650 .0%07 1143 1351 20 0625 0906 .129% .1619  .18838
30 0348 0430 0594 0748 0888 10 0392 0577 0846 1069 1259
40 02B5 0339 0448 0554 0650 40 0303 0429 0619 0779 .09V7
50 .0250 .0297 .0392 0482 0566 50 0249 0352 0515 0653  .0773
100 0481 0219 0275 0323 0365 | 100 .0l46 0204 0291 0365 .0429
CEV L s 010 GEVEk 020
CV is 040 CV <040
Return penod Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 0527  .1149 1840 2301 2717 10 0522 1382 2282 Q%00 3376
20 0296 0652 1088  .1413 1677 20 0296 .0OB29 1432 1864 207
310 0171 0419 0737 0982 1183 30 0159 0547 005 1341 L1611
40° 0124 0306 0546 0734 0890 40 0106 0405 0765 1033 1249
S0 0092 0240 0445 0609 0746 S¢ .0067 0316 0626 0861 1052
100 0032 0114 0231 0326 0406 1 100 0001 .0145 0332 0475 0594
CV. 5060 T CV s 060 )
Return penod Return pericd
N 10 25 50 75 1040 N 10 25 50 75 100
10 1005 1776 261t 3209 3681 ¢ 1061 2017 386 3920 4487
20 0543 0975 1487 1830 2181 200 0592 1230 927 2424 2817
30 0333 0630 1000 1283 1515 30 0361 0820 .34l T2 2025
40 0249 0467 0743 0956 . 41M] 40 0267 0617 1022 A319 1559
S0 0195 0373 0608 0794 0949 $0 0203 0493 0840 .1100 1311
100 0095 0192 0325 0430 0519 | 100 0084 0254 0460 0615 .074)
CV. s 080 CV. 080
Return period Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 1402 2266 3200 (3875 4409 10 1511 2699 3887 4705 .3318
20 0734 1209 1771 2193 (2535 20 0821 1524 2281 2820 3247
30 0453 0780 1182 1483 1740 30 0512 1013 1873 L1930 2305
40 0342 0578 0875 1104 .1294 40 0385 0764 1194 1509 1764
S0 0271 0464 O0N17 0916  .1082 50 0300 0613 0982 1257 1480
100 0138 0244 0385 0496 0590 | 100 0143 0325 0541 0703 .083S
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Figure 3. Variation of adjustment factor with N and CV &k = - Q1

log, AF = const + alog, N + blog,CV + ck. (9}

Diffcrent equations werc developed for each of the five return periods using mult-
ple regression, and the coefficients are shown in Table 3a together with the cocfli-
cient of determination R2. It is clear that all except the model for p = 0.1 pro-
vide a good fit 10 the data. The relatively poor fit with p = 0.1 is due 10 the
highty non-linecar relationship between adjusiment factor and CV and k, particu-
larly for long record lengths (as illustrated in Fig, 3). Another model was therefore
developed from the equation to calculale adjustment factors for the lognormal dis-
tribution. The standard normal deviate z,, is equal to the frequency factor K in
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Figure 4. Variation of adjustment (actor. Lognormal and GEV distributions, C¥ = 0.6
X, =x+ K,s (10)

and Eq. {(8) can be modified by substituting the frequency factor for the GEV dis-
tribution for z, and replacing ¢, ,, with @ parameter A:

Iyy 372
AF = [exp{(1 + 1/n)'/24 — Kggp})rUTCVNT _ an

The frequency factor for the GEV distribution is, with F = 1 — p,
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Tabie da. Cocificients of model 10 estimate adjustment lactors lrom a, CV and &

Design return period (years) const a b c RT
10 1.166 -LTTEE 1.713 0.965 712
23 0.44%§ 03026 “0.R093 10910 371
30 0.6058 -0.8623 0.619) -1.7255 983
73 0.7390 0.8439 0.5525% -2.8459% 98.3
100 08367 0.8291 05172 28670 989
log, AF = const + alog, ¥ + blog,CV + ¢k
Table 3b. Coefficients of model to ¢stimaic adjustment faciors from a, CV and &k
Design return penod (years) const a b ¢ RT
10 01325 002841 002117 0.9558 6
23 0.3013 0.02839 0.00142 09143 983
30 02007 D.01557 001316 '0.9449 963
T5 0.1458 003101 0.01866 1,0035 %6.3
100 0.1046 003167 0.02211 1.0391 974
log, A = const + alog, N +blog, CV + cKggy: AF=[cxp{(1+1/m}" A = Kgpy |0 TEW g
Kgrv as given in Eq (12).
(—log,FY* — [(1+k)
KGEV - - g( 0 72 k < 0
(I'(1+2k) — T+ k)Y
(—log, FY¥ — [(1+k) 0
(F(r2ky ¥ +kn'2
= 0.45 -+ 0.779( —log,( —tog, F)) k=0 (1

The parameter A in Eq. (1}) varics with return period, sample size, CV and &, and
a simple regression model of the form

log,A = const + alog, NV - blog, CV -+ clog, Kgev, (13)

was constructed. The parameters are shown in Table 3b, and it can be scen thal
the fit of this model al lower return periods 15 much betier than that of the more
naive model in Table 3a. Whilst the exact form of this model derives of course
from the lognormal distaibution, it may be possible to develop a similar analytical
cxpression for the GEV.
Application of the methed therefore involves the following stages.
) estimate GEV paramecters from the sample using probability-weighted
Maments;

2) estimate the quantile X, from paramcters;

J) usc the cquations in Table 3a or 3b 1o predict AF {rom sample size &, sample
CV and estimated parameter k.

4) compute new quantile estimate as X, + AF-X,.

A further set of computer experiments was run to illusirate the cffect of apply-
ing the risk-based factor to estimated quantiles. Adjusted quantiles were computed
as previously described, and the mean true probability of events greater than the
new adjusted X, was calculated. The results are shown in Table 4a and 4b, and are

direclly comparable with those of Table 1: it can be seen that the use of the
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Table 4a. Mcan truc cxccedance [requency of events greater than estimated design magnitudes.

GLEV parameters estimated by probabilily-weighted moments and adjustmeni factor added 10 design
estimates. Model {rom Table 3a

design return period {years)

19 15 50 15 100
~ Design probability 00 0.04 00 0.013 0.010
“True magnitude 20.707 26419 1.214 34,242 36.500
mean estimate N6 BEST 36.657 42513 47.326
s.d. estimate 341 1957 15337 11.084 “18.344
mean truc exceccdancs probability 0.1057 00445 0.0243 00180 0.0145

GEV parent: 4 = 100, g = 4.0, &k = 0.15. Sample size n = 20, Number of repetitions = |000.

Table 4b. Mecan truc frequency of events greater than estimated design magniwdes. GEV parame-
ters estimaled by probability-weighted moments and adjustment factor added to design estimates.
Model from Table 3b

design return penod (years}

10 25 50 T3 100
~ Design probability 0.1 0.04 0.02 0013 0.010
“True magnitude 20707 26419 31.214 34342 36.500
mean estimate 21378 28417 3i342 w7 41083
s.d. cstimate 3338 T 6311 9 851 12658 157387
mean true excesdance probability 0.1017 0.0432 0.0235 00173 0.0142

GEV parent: w = 100, 0 = 4.0, & = 0.15 Sampic size n = 20; Number of repetitions = 1000.

adjustment factor produces estimates of flood quantiles which are excceded with
more nearly the specified probability or risk. The acwual risk is not quite the same
as the spccified risk even afier adding the adjustment, due to bias in estimating
population CV [rom sample data and, meorc particularly, bias in estimating k
(Hosking ct al. 1985).

6 Conclusions

Flood frequency analysts conventionally use a methad which gives an unbiased csti-
matc of the magnitude of the p probability flood £, to estimaic design floods.
However, the expected probability or risk of a future flood larger than the cstimate
X, is greater than p due to sampling unccriaintics. and Stedinger (1983) has
argucd that flood managers need a technique which provides an estimate of the

flood x, cxceeded in the future with specified risk p. Such cstimates may be

obtained using Bayesian methods and scveral examples have been presented in the
literature.  Bayesian methods however, may be difficult 10 apply in pracuice, and
resulis wall depend on the form of the selected prior distribution,

An empirical technique has, therefore, been developed to estimate the magni-
tudes of foods excecded with specified probabilities based on the generalised
extreme value (GEV) distribution. The method takes the form of an adjustment
{actor 10 be added to an estimate of the magnitude of the p probability Nood £,

oblained conventionally using the method of probability weighted moments, o
yicld an estimatc exceeded with risk p. The adjustment varies with the uncentainty
in parameter estimation, and hence with sample coefficient of variation, GEV
shape parameter & and sample size. Adjustment factors were determined numeri-
cally using computer simulation ¢xperiments (o caiculate the average true
cxcccdance probability of an an estimate and a simple model has been constructed
to estimate the appropriate adjustment factor for the site of interest. Because the
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difference between an unbiased estimate of flood magnitude and an unbiased esti-
mate of flood risk depends on parameter uncertainty, the adjustment factor can be
scen as an index of this uncertainty.
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EXrECTED ANNUAL DAMAGES AND UNCERTAINTIES
IN FLOOD FREQUENCY ESTIMATION

By Nigel W. Acaclt’

ABSTRACT: The expected annual damge 15 the most lrequently used index of the
unpact of flovding at » site. However, estimates of eapecied annual damages are
very uncertain as a result of uncenaintics in both the estimanon of the fluod fre-
quency relationship from limited data and the relationships between magnitude and
damage. Computer simuafation experiments using synthetic Muod peak data and
fixed ynagnitude-damage functions have shown that the sampling distribution of
estumales of expected annual damages is highly skewed to a degree depending on
the form of the damage function, and most importantly. that bias in the estimates
15 most closely related to ervor in the estimated probability a1 which damage begins.
The use of expecied probability leads to a very significant increase in bias in the
estimation of expected annual damages.

INTROOUCTION

When designing a schemce to alleviate flooding, planners and engineers
need an estimate of the costs of flood damage. The most commonly used
measure is the expected annual damage, which is best understood as the
average of flood damages computed over many years, One way of calcu-
lating this is simply to add up a long time scrics of annual damages and
divide by thc number of years. However, this is rarcly possible in pracuce;
a very long record would be necessary because damage would be zero in
most ycars, and in any case ¢xposure 0 damage would have changed con-
siderably over time.

Expected annual damages are- thercfore calculated” by. first ﬁltmg a fre-

‘qucncy distnibution to. flood magnitudes. A function relating flood magnitude

t0 dumage 15 then used 16 derive’ a relationship between  Mood damage and
the probabituy of mearing that dimage in any one yem . Al ol these stages
include unknowns and uncertwmtics—the relstonship between flood dis-
charge and depth may be poorly deiined. as might the function relating depih
to damage -—~but it 15 the objecnve of this paper 1o examine the effects of
the uncertantics associaled with the estimation of the flood frequency re-
lationship. In particular. there s uncertainty about boti the appropriate form
of the statstical mode! of Mood frequencies, and the value of maodel parame
cters. These uncertanniies are primarily dug to the problems cavsed by mak-
g inferences from smadl samples of flood peaks. Ty tns paper, anphasts
15 placed on parameter uncenatnty —ihe Torm of the model is assumed known—
and three altermative procedures for estimating expected annual damages are
compared. Practical wnplications of bias and variability are also considered.

EsTimaTioN OF EXPECTED ANNUAL DAMAGES

At its simplest, the mean of a randomn variable x such as annual flood
damage is

'Res. Hydrologist, 1nst. of Hydrology, Wallingford, Oxon, OX10 8§88, UK.
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FIG. 1. Expected Annual Damages as Area under Damage-Probability Curve

E(x) = faf(x)dx )]

where f(x) = the probability density function of that vanable. Flood fre-
quency analysts are more used to working with exceedance or non-exceed-
ance probabilities, defined by the cumulative distribution

[}
F(xy = J x dF
o

which shows that expected annuat damages are equal ta the arca under the
graph of damage against. non-cxccedance (or exceedance) probability (Fig
1), This s well known to analysts, who routinely calculute expecied annual
damages by computing damage associated with several retem period floods.
drawing up a graph similae to Fig, 1 and mcasunang, the area under the curve

Several authors (Hardison und Jennings 1972; Beard 1978; Tai 1987) have
nuamatned, however, that “conventional™ flood frequency estination pro-
cedures such as the imcthods of moments or maximum likelihood enderes-
tiate the true Irequency of flooding and thus the value of expected annual
damages (Arncl] 1988). Beard (1960) dlustrated the problem by considering
a large number of independent but identical rivers, each with the same reeord
fength. 3 the flood with an exceedance probability of 0.01 wius estimated
from cuch sample and the true excecdance probabilitics were determined for
cuch estimate, it would be found that the average true excecdance probability
would be greater than 0.01 ¢ven if the average magnitude was equal o the
true magniude (because the celationship between flood magnitude und fre-
quency 18 not lincar). Over all sites, events would therefore occur in the
future with an average frequency greater than .01 Beard (1960) called the
mcun truc exceedance probability of estimates of the magoitude of the p
probability event the expected probability of that flood, and urged that the
design flood be taken as the flood with an expected probability equal to p.
H not, he argued, the risk of future flooding and hence expected annual
damages would be underestimated. Hardison and Jennings (1972) and Tai
(1987) showced that use of expected probability resulted in an inceease in
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FIG. 2. Sampling Distribution ot Flood Magnitudes and Damages

expected annual damages (because converting to expected probability in-
creases the probability assigned to a particular magnitude cvent), and in-
ferred that bias in the estimation of expected annnal damages was therefore
reduced. However,'a method which gives an unbiased estimate of Nood risk
docs not necessanly give an unbiased estimate of expected annual damages,
and Gould (1973a, 1973b) argucd that rather than climinating bias, the use
of expected probability increased 1t. He showed that bias in the cstimation
of expected annual damages using “convéntional™ methods was small and
of the upposite direction o that implicd: by Hardison and Jennings (1972).
Doran and Tosiv(1980) subseguently supported Gould's {197 3y conclusions
using computer sSunulavon expenments. The present investigations were dJe
signed to Turther clanflly s issue,

A sccond refinement to the comvennonal procedure for estimmating expected
annual damages has been presented by James and Hall (1986). followed by
Tung (1987 and Bao ot ol (1987). The mcthod is based on the recogniton
that uncertamty i the paramctars of the Nood Treguency distoibution van be
capressed by samplng distnibutions Tor given Hood quantile estenates, as
shownon Fig 20 from which confideace lanits can be deteronoed The sum-
plng duswbuton of the magmtudes of 4 piven hregueney flood can then he
converted 1o a sampling distribution of Hood damage using the nagnitude-
damage function [Fig, 2(0)]. and the expected value of this samphing dus-
tribuion can be taken o the appropnate estimate of damuage Tor that e
quency. This can be expressed as

'
ED) =J {DOIUN )t
o

where A(D) = the probability density function of the estimate of damage O
for a given frequency event. James and Hall (1986), Tung (1987}, and Bao
et al. (1987) all found that the effect of this refinement was 10 increasc the
estimate of expected annual damages, although the magnitude of this effcct
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depends of course on the sampling distnbation al estunates of Hlood quantiles
{which is strongly influcnced by record length) and the shape of the function
relating, flood magnitude to damage. This procedure, toa, was exannned w
the current study.

ExPeRIMENTAL DESIGN

The relative perfonmances at the precedimg convennonal procedure for es-
tmating cxpected annual damages and the two rehnenwents were assessed
using computer simulation experiments. A general analytical approach is not
feasible. Gould (1973b) developed a theorctical expression {or bias in ¢x-
pected annual damages, but was forced 10 assume o nommal distribution of
flood depths and a lincar depth-damage function, and hence a normal dis-
tnbution of damages. In cssence. the simulation experiments involved: (1)
Generating a synthetic sample of Nood depths from a pre-defined parent
distribution; (2) estimating the form of the depth-probability relationship from
the sample; (3) converting depth to damage using a depth-damage function.
and (4) computing the arca under the depth-probability curve. By generating
synthetic flood depths w is assumed that the relationship between flood dis-
charge and depth is known with complete certainty: this will not of course
be true 1n practice, Similatly, step (4) of the procedure neglects uncenaintics
i the relationship between flood depth and Nood damage.

The two-parameter lognommal distnbution was used as the parent distn-
bution, with parameters sclected such that the difference between the true
10- and 100-year flood depths was cqual to 1 “syntheuc™ meter This dis
tribwnion was Sclccrgd bcgduu‘ i os pnss;hlt. fa. uppf) n_hln.cj.s w.slly llu

three ‘alternative” ways of csﬂnlatmp cxpu.ud dnnual damages The Turst,

cormvaniional - 1pranh velves the estunpaion ol the levaorensb pozameters
Teom the sample data Using both the methiod of moments and the mathod
of maximum hkehbwod, the patimcters cun e eaimated from

N
>
a_—
=l

N

N |

where &, = the natural loganthm ol Hood magnitude; and M - sample size
The logged depth corresponding to a specificd frequency can then be cal-
culated from

i, = &+ sz, (0)
where z, = the standard normal deviate with exceedunce probability p. An
estumate of the loganthm of the flood which will be excecded with an ex-

pecied probability equal 1o p can be computed (rom (Beard 1960, Siedinger
1983a):
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i, u = the quantile with cxceedance probability p from a siudent’s ¢ disinie
bution with v degrees of fricedom,

The thied approach, mvolving sampling distribubons of quintie estomates,
is rather more complicated . Stedinger (P9830) showed that if flonds (or therr
logaridums) were nocmally distnbuted, the xaimpling distobunon of a guanulce
cstimate could be denved using the aon-cemrad 1 distttbution The candom
vanable \/I-Vl_,(p)_ where

- X
&) = : (%)

has a non-central £ distiribution with nea-centiality parameter § = :,,\/I_V and

v = N — | degrees of frecdom, and it is therefore passaible to detenmine the
value of &(p) exceeded with probability a. Fy. B can then be rearranged w0
give the estimate of the p-probability Mlood «(a). which would be cxceeded
in samples of sizc N with probability o in other words, of all samples of
size N from a lognonnal distibution with parameters w and o, a proportion
a would yicld cstimates of x, greater than x,(a). The expected damage as-
sociated with cxceedance probability p (Eq. 3) is computed by converting
log depth x,(a) to damage D, using the depth-damage function, and calcu-
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lating the area under the damage-a curve. This was done using Simpson’s
Rulc, and the approximation to the non-central ¢ distnbution presented by
Abramowitz and Stegun (1965) was used to compute x,(x) for a given prob-
ability a. It is clear that this approach is much more consuming of computer
simulation tine than the other two.

Four depth-damage functions were defined as shown in Fig. 3. The qua-
dratic has the form:

1 ~ (3 — depthy’

D= 100[—-—-—( L ] 9
9
the Gompertz has the form (Quellette et al. 1985):
100{c/1= " -y

p = e } . (10)

e - 1}
with ¥y = 2.0 and a = 0.5, and the logistic function is defined as

—(depth — )
D=100[I+cxp(—-(—p—i)]-—!. (1)
a -

where u = 1.5 and a = 0.3 All the damage functions give a damage of zero
at zero depth and 100 at a depth of 3 “synthetic™ meters.

The three procedures yield an array of pairs of damage and associated
cxceedance probabilities, which are used to construct a2 damage-probability
curve. The area under this curve was calculated for all three methods using
the “nmid-range probability™ method

M1 -
R s Dy £.D4 ,

{where M = the number of paus. p = exceedance probability; and £ = dam
age), rather than by the more sccurate Stmpson’s Rule, for two reasons
First, it 1s more often used in practice, since there are rarely enough pairs
of damage and probability available to justify the use of Simpson’s Rule,
and secondiy, use of Simpson’s Rule with the third method—which requires
numerical integration for cach exceedance probablity—would be very costly
in computer resources. Simnulation experiments were undertaken with sam-
ples of size 10, 20 and 40, 500 repentions were used for each expenment.
Expected annual damages were calculated for situations where damage be-
gins at the levels of the truc 5. 10, 25, 50 and 100 year Noods.

ResuLYs

Tables 1, 2, and 3 show, for the quadratic and logistic damage functions,
the mean, standard deviation, and skewness of estimates of expected annual
damages. Similar results were found with the other damage functions. In
general, it is clear that all the methods overestimate expected annual dam-
ages, particularly when damage commences in infrequent events, but that
the conventional method is lcast biased. This supports Gould's (1973a) and
Doran and {nish's (1980) conclusions and conflicts with Hardison and Jen-
nings’ (1972) and Beard's (1978) inferences. Although the degree of dif-
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TABLE 1. Bias in Estimates of Expected Annual Damage, Expressed as Per-
centage of True Value, for Ditterent True Probabilities at which Damage Begins

DAMAGE FUNCTION

Quadralic Logistc
Probabilities o 20" 40* 10 20 40*
0) (2) 3) (4) (5) (6) (7)

Threshold probability 0.2

conventional method 16 0.4 1.7 338 12.0 8.7

expeated probabiluy method KL 3 16.0 9.6 1209 52.6 28.5

expected damage methuxl 41 4 17.5% 0.5 143.5 644] 355
Threshold probabihty - 0.04

conventional method 533 209 14,1 169.3 686| 41.8

cupected probability method 86.5 | 80.0| 426 6229 2320 | 108.5

expected damage method 2009 Ba6| 445 846.4 3400 | 168.0
Threshold probability = 0.01

conventional method 17931 727 | 433 368.4 1947 | 1053

expected probability method | 644 0 | 246.7 | 118.0 | 2,647.3 7421 | 2789

cxpected damage method 7147 12733 [ 1293 | 4,163.6 | 1,400.0 | 589.5

*Sample size.

Note: Simulation reselis from 500 repetitions.

ference varics with damage function, the results clearly show that use of
either expecied probabilities or the "expected damage™ method would pro-
duce very hiased estimates of expected annual damages. These two methods
yicld very similar results {(when using a lognormal distribution), which re-

TABLE 2. Siandard Dewviation of Expected Annual Damage Estimates, Divided
by True Value, tor Difterent True Probabilities at which Damage Begins

DAMAGE FUNCTION

Quadratc Logistic
Probabilities 10 20° 40* 10* 20° 40*
(1) (2} (3) (4) {5 (6) {7
Threshald probatlay = 02
conveetionul incthod 0N L 053 ] 1han 1.4% U89 | 060
crpected prabatulity st aRe { 056 | 041 1.80 Los | ol
expected damage owethund 0x6 [ 056 ] 0.42 1 84 105 | 072
Threshold prababiluy = 0.0
cunventional method 203 | 17 | 0.36 5.07 235 | 1.57
capected probabulity method 16971 144 | 096 8.58 360 | 2.4
cupected damage encthod T 144 | 0.96 L 369 210
Threshold probatnhty == 0.01
conventional method 5351 2541 175 | 1811 626 | 3.58
expected probability method 880 ] 379 | 222 | 401 [2.68 | 5.63
capected damage method 8921 380 | 220 | 43.11 1421 | 6.47

‘Samplec size.

Note: Simulation results from 500 repetitions.
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TABLE 3. Skewness of Expected Annual Damage Estimates, for Different True
Probabilittes at which Damage Begins

DAMAGE FUNCTION
Quadratic Logistic
Probabilities 10° 20* 40° 10° 20° 40*
m 2) ) 4 {5 (6) 7
Threshald probability = 0.2
conventional method 108 0.77 ¢.70 2.07 1.50 1.3
capected probability method 0.85 0.67 | 0.66 1.48 1.22 1.18
capected damage method 0.85 0.68 0.68 1.47 1.22 1.20
Threshold probability = 0.04
conveational method 2.37 1.76 1.51 31.61 2.88 253
cxpected probability method 1.66 1.39 1.36 2.25 2.08 216
cxpected damage method .66 1.43 1.36 2.12 1.93 2.02
Threshold probability = 0.01
conventional method 3.48 2.75 2.36 5.15 4.36 384
expected probability method 2.21 1.99 2.01 283 2.91 327
expected damage method 2.12 1.99 2.01 23 2.34 2.58

‘Sample size.
Note: Simulation results from 500 repetitions.,

flects sunilanties in their denvation. Both are based on the ¢-distnbution
(Stedinger 1983a, 1983b), and the expected value of the cstimate of the p
probability Mood [x,f(x)dx, is very close to the estimate computed from Eq.
7. The actual difference between the two methods depends on the shape of
the damage function (the expected damane is not equal to the dumuage as-
sociated with the expected magmitude, except with o hocar damage funcuon)
and, to a lesser extent, the numerical approximation,

The contrasts in the degree of bias between the different damage functions
depends on the rate of change of damage with magnitude, particularly at low
magnitudes. With the logistic curve, damage s limited for floods just above
the damage threshold (Fig. 3) but increases sismificantly at higher depths.
The frequency with which Noods reach this depth s estmated with preater
bizs und uncertainty than the frequency with which damage begins. For a
given flood frequency relationship and thueshold ot wineh damage begins,
therefore, the greater the proportion of damage which occurs in sinall floods,
the less the bias and vanability in estumate of expected annual damage.

As sample sizes increase, all the methods become less biased (bias falls
from over 50% to just over 15% for the conventional mcthod, with damage
occurming with a true probability of 0.04, for example). The expected prob-
abulity and cxpecied damage methods wmprove the most and with very large
samples abl three methods would give the same results. Sample vanability
of estimates also falls as sample siles increase (Table 2) and, for high dam-
age thresholds at least, there is less differcnce in vanability than bias be-
tween the three methods, The coefficient of skew, given in Table 3, shows
the high asymmetry in thec sampling distribution of ¢xpected annual dam-
ages, due to the occasional very large estimates.,

The magnitude of estimated expected annual damages depends partly on
the estimated slope of the depth-frequency curve but much more closely on
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the estimated probability at which damage begins. Fig. 4 shows the strong
relationship between estimated threshold probability and computed expected
annual damages (for the Gompertz damage function and a sample size of
(). The bias and variability in expected annual damages is clearly related
o the bias and variability in the estimaied threshold probability. The reason
for the difference in bras between the conventional and expecied probabihty
methods can be scen i Table 4, which shows the mean estimated probabihey
at which damage begins. The conventional cstrmator provides a good esti-
mate of the threshold probability. but the expected probability method pro-
duces a very biased estimate of the risk of damage. This arises because

TABLE 4. Mcan Estimaled Threshold Probabiilty: Conventional and Expected
Probabllity Estimators

True Threshold Probabulity
— 4
Eslimalors 02 o1 0.04 002 0.01
(1) (2 (3) (4) (5) 6)
N0
conventional method 0199 0103 0.047 0027 0016
expected probability 0219 0.126 (2.068 0.045 0.0M
N =20
conventional method 0.194 0.098 0.042 0.023 0.013
expected probability 0,205 Q.11 0.053 0.0M 0.019
N =40
conventional method 0.199 0.101 0.042 0.022 0.012
eapected probability 0.205 0.107 0.047 0.026 0.015

Note: Averaged over 500 repeutions.
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method that gives an estimate of the flood exceeded on average with the
desired risk p (i.c., unbiascd). it docs not produce an unbiased estimate of
the risk of a specified magnitude (such as a floor level) being exceeded.

IMPLICATIONS OF UNCERTAINTY IN ESTIMATION
oF ExXPECTED ANNUAL DAMAGES

The results of the previous section bave camphasized the petentially very
large sampling vanability in the estimation of expected annual damages due
solely to sampling vanability in the observed flood data. In current practice
only a single “best™ estimate of cxpected annual damages is vsed, denved
from the “best™ estimate of the flood frequency curve, but it may be useful
to have information on the precision of this estimate. Some workers, for
example Grigg (1978), have attempted to derive confidence limits for an
estimate of expected annual damages directly from confidence intervals on
flood magnitude estimates, as shown in Fig. 5(a)~5(c). This, however, is
incorrect duc to a misinterpeetation of the meaning of confidence intervals
for flood quantiles. These confidence limits should be interpreted solely as
intervals for the range of magnitudes for a specified exceedance probability;
the locus of 90% confidence interval values (i.c., 90% of estimates of mag-
nitude for that probability arc greater) does not define the frequency cucve
which will be exceeded over all probabilities 90% of the time. One sample
curve may yicld an estimate of the 10-year flood outside the 90% interval
for that return period. for example, while yielding a 100-vear flood estimate
close 10 the mean value [Fig. 5(4)]. An approach such as this would overesti-
nute confidence ntervals and give an unduly pessimistic impression of pre-
¢ision,

It s well known that the standurd devistion of the sampling distribution
of the mean of a random variadle is cqual 10 the standard error, or the stan-
dard deviation of the variable divided by the square root of the sample size:

s (1)

VN

It is therctore possible 1o estimate the standard crror of the sampling distet-
bution of expected annual dumages by computing the standard deviation of
annuat damages using

standard crror (4) = (13

s.dAP) = [EWDY - £2un'’”? (14)

where £(D) = expected annuyl damages and £(7) = the area under the
“damage-squarcd”-probability curve. Table 3 compares the average standard
crror of expected anaual damages (computed using Eq. 14), with the ob-
served standard deviation of estimates of expected annual damages. It can
be scen that, for cases where damage occurs in frequent cvents at least, the
standard crror provides a good estimate of sample standard deviation. How-
cver, the high skew of the sampling distribution (Table 3) means that con-
fidence himits cannot be based on just expected annual damages and standard
crror, and, although it is possible to estimate the skew of annual damages
using the arca under the “damagc-cubed™ -probability curve, sample skew-
ncss estimales are notoriously unreliable.
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TABLE 5. Mcan Standard Error of Expected Annual Damages and Observed
Standard Devlatlon of Expected Annual Damages Estimates {Logistic Damage
Function)

True Threshold Probability

Expecled annual damages (EAD) 0.2 0.1 0.04 0.02 0.01
(1 (2) 3) (4) (5} (6)
N =10
average standard enor of EAD* 2300 | 1,410 | 0.778 | ©0.510 | 0.343

standard deviation of estimaled EAD" 2.332 1.410 | 0776 | 0.511 0,344
N=2
average standard error of EAD" 1.553 { 0883 | 0423 | 0243 | 0.144
standard deviation of estimated EAD® 1.398 { 0.765 | 0.359 | 0.206 | G119
N =40
average standard crror of £AD" 1.184 | 0612 | 0271 | G143 | 0.077
standard deviation of esiimated £EAD* 1.036 | 0.548 | 0.240 | 0.128 | 0.068

‘The “average standard error” is the average of 500 estimates of the standard error of
EAD.

“The “standard deviation of estimated EAD™ is the standard deviation of the 500 esti-
mates of FAD.

To estimate the sampling distnbution and confidence intervals for ¢x-
pected annual damages in praciice, 1t would therefore be necessary to reson
1o the use of computer simulation. Such an approach would follow the form
of the experiments reported here, with the parent distibution defined by the
parameters as estimated at the site of interest. The computer experiments
would aliow the construction of a sampling distnibution of expected annual
damages and the identiflication of desired conhidence intervals, but the imean
of this distribution (the statistical “best”™ estimate of ¢xpected annual dam
ages) would be different to—aund greater than—the value of expected annual
damages derived from the best estimate of the lrequency curve. The analyst
would have to insure that the paient used for the simulation experiments
yiclded “reabisucally vanable™ estimates of flood frequencies. This can be
done by selecting a sample size which produces syntheiic sampling disto
butions of flood guantiles consistent with previously defined confidence in-
tervals calculated from the oniginal site data. The synthetiec sample size need
not be the same as the observed sample sizes additional (for example re-
gional) information has an equivalent effect 1o providing extra years of data.

CoONCLUSIONS

This paper has presented results of a serics of computer simulation ¢x-
peritients into the cffects of uncertainties in flood frequency estimation on
the bias and variability of estimates of expected annual damages. W has been
shown that the “conventional™ approach (using a method such as momenis
or maximum likelihood to attcmpt to obtain unbiased estimates of flood mag-
nitudes) slightly overestimates expected annual damages where damage be-
gins in frequent events, with greater overestimation where damage begins in
rare ¢vents. These results conflict with the assertion of Hardison and Jen-
nings (1972) and Beard (1978) that conventional estimators underestimate
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expected annual damages, and it has been shown that their proposed ap-
proach—to usc cxpected probabilitics—gives cven greater bias. This 18 be-
causc while the cxpected probability method gives an estimated magnitude
exceeded on average with the specified risk. it does not give an unbiased
estimate of the risk of a specified magnitude (such as the level at which
damage begins) being exceeded. The third method considered, which com-
putes the cxpected damage for cach probability flood by averaging across
the sampling distribution of that flood estumate. also gives higher cstimates
of damage for a given flood probability and hence also Icads to very sig-
nifican overestimation of expected annual damages. For all three methods,
bias reduced rapidly as sample sizes increased.

The cxpeniments have shown that estunates of expected annual damages
are highly vanable, particularly where darnage begins in low-frequency events.
The sampling distribution of cxpected annual damages is alse very highiy
skewed. 11 has been shown that the bias and variability in the estimate of
expected annual damages is closely linked to the bias and variability in the
estimation of the probability at which damage begins, emphasizing again the
importance of using as good an estimate of this threshold probability as pos-
sible.

The exact ferm of the flood magnitude-damage relationship determines the
degree of bias in estimated expected annual damage. Bias is Icast if damages
increase rapidly once the damage threshold is reached; conversely, it is higher
the greater the magnitude that “significant™ damage begins.

A simulation based method has been briefly described for deriving con-
fidence intervals for an estimate of expected annual damages in practice.

Finally, it is important 1o note that the results show only the effect of
uncertaintics in flood magmtude-Ireguency estimation. In practice, the bias
and variability that these produce are compounded by uncertainties in the
relationships linking flood magmitude with damages.,
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