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• Execu tive Summa ry

•

• The objective of the study was to investigate the effect of a number of
diff erent types of hydrological uncertainty on the est imation of fl ood

• magnitudes and the • evaluation of the benefi ts of fl ood al leviatiOn.

• The conventional approach to design fl ood estimation is to use a method
which gives an unbiased estimate of the magni tude of the T-year fl ood. This
estimate at a site, however, wil l, on average, be exceeded in the future more
frequent ly than once in T years because of the non-linear relationship between

• fl ood magnitude and fl ood probabili ty: a method which is unbiased in one
direction is not therefore unbiased in the other. A method is presented

• which gives the increment which needs to be added to an estimate of the
T-year fl ood in order to give a fl ood with an expected probability of being

• exceeded in the future of 111'. An estimate of the 50-year fl ood made with
the GEV-PWM procedure from a sample of just 10 years would need to be

• increased by over 18% to produce the magnitude with expected probabil ity of
1/50 (assuming average fl ood characteristics). The adjustment, which var ies

• with return period, record length and fl ood characteristics, can be seen as a
safety factor to apply to an estimate of the T-year fl ood.

Uncertainties in the estimated fl ood frequency relationship feed through to bias
• and uncertaint ies in the estimation of average annual damage. A series of

simulation experiments showed that average annual damage tended to be
• overestimated, with bias increasing as the return period at which damage

commenced increased. Th e results emphasise the importance of estimating the
• return period of this damage threshold as accurately as possible.

• Confi dence intervals for estimates of both flood magni tudes and return periods
were also studied using computer simulation experiments. The sampling

• distribution of magsritudes with a given return period is highly skewed, and
methods to estimate confi dence intervals based on the assumption that the

• distribution is Normal underestimate upper confi dence limits. Until exact
methods are developed, it is recommended that confidence intervals for fl ood

• magnitudes and return periods in practice are based on computer simulation
experiments.

•
Th e conventional approach to scheme benefi t assessment compares the present

• value of scheme costs with the present value of average annual benefi ts. In
practice, the present value of the benefits that are actually realised over the

• project life wi ll depend on the timing of fl ood events, and a method was
developed which calculates, by computer simulation, the probability distr ibution

• of possible present values of future fl ood alleviation benefi ts. From the
probabil ity distr ibut ion it is possible to determine the probability that the

• present val ue of benefi ts wil l exceed particular target values, which may assist
with scheme evaluation. 1

•

•

•

•

•

•

•
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•

•

•
• 1. Intr oduction

•

• 1.1 PROJEC T OBJE C I1VES

•
Flood frequency analysis provides the basis for many design and investment

• decisions in and al ong a river course, but the relationship between fl ood
magnitude and fl ood frequency at a site can never be known with complete

• certainty. The basic obj ecti ve of this report is . to investigate the impact of
hydrological uncertainties on the estimation of design fl ood magnitudes and the

• assessment of scheme worthwhileness, and to develop procedures which al low
for the effects of these uncertainties.

•
The project ran in paral lel with a more general review of the statistical

• procedures used for fl ood frequency analysis in the United Kingdom as
presented in the 1975 Fl ood Studies Report (NERC, 1975). Because this

• general review has not yet recommended a new technique, the procedures
outl ined in the current report should not be tegarded as defi nitive methods

• for representing and coping with uncertaint ies. However, the studies do indicate
the eff ects of hydrological uncertaint ies, and the general form of the suggested

• procedures is unlikely to change significantly as new estimation techniques are
developed.

•
The investigations into risk and uncertainty and their impacts on scheme

• design and assessment provided the basis for a number of additional
commissioned research projects into particular issues (including Beran, 1987).

• Some other avenues of research - in particul ar studies into confi dence intervals
- were followed af ter discussions with groups researching and applying methods

• for the assessment of the benefi ts of flood al leviation.

• 1.2 ST RUC TURE OF REPO RT

•
There are four main themes to the study, and each is summarised in a

• chapter. The themes are:

• (i) estimating fl ood risk in the presence of uncertainty;

• ( ii) bias and uncertainty in the estimation of average annual fl ood damage;

• ( iii) confi dence interv als for fl ood and return period estimates;

• ( iv) the eff ect of fl ood timing on the present value of the fl ood damages
that are actually experienced.

•
Chapters 2 and 3 are based upon studies that have been reported in the

• international refereed literature: the papers are included as A ppendices A and
B, and contain much of the detail of the experimental design and
conclusions.

•

•

•

•



2. Estima ting flood r isk

2. 1 INT RO DUC TION

The objective of this chapter is to outl ine several ways of expressing the risk
of fl ood occurrence, and to introduce procedures which employ alternative
definit ions of risk. In particular, methods for estimating the magnitude of fl ood
exceeded in the fu ture with the desired degree of risk which is not the
same as the, more conventional approach of providing an unbiased estimate of
the magnitude of that fl ood - are outlined.

It is appropriate to begin with some defi nit ions:

p is the probabili ty of experiencing an event greater than or equal to X in
any one year;

T is the average return period between events greater than or equal to X .
I t is equal to 14p. In annual maximum frequency analyses, the return period
represents the average interval between years containing an event greater than
or equal to X : the average interval between events may be rather shorter
because some years wil l contain more than one event.

2.2 THE PRO BA BI LIT Y OF M EVE NTS IN N YE ARS

It is well known that if an event has a probability p of occurr ing in any one
year, then the probability of experiencing m events in N years can be derived
using the binomial distr ibution, and is:

P(m events in N years) = r ign i pm (1-p)" 2.1

The probabil ity of experiencing at least one event in N years is

P(at least one event) = 1 (1-p)N 2.2

Table 2.1 shows the probabil ity of experiencing at least one event during a
range of diff erent time horizons (N) for diff erent event return periods (T) or
probabili ties (p) . There is, for example, a 22% chance of experiencing the
100-year fl ood at least once in a 25 year per iod.

Equations 2.1 and 2.2 and Table 2.1 assume that each year is independent,
and that the probabil ity of experiencing an event is the same in each year.
The probabil ity of experiencing m events in  N  years when there is year-to-year
dependence can be determined from the conditional probabil ity of an event
occurring given that the previous year did (or did not) contain an event. The
probabil ity of experiencing at least one event, for example, is



•

•

• Table 2 1 The pro bability of experiencing at least one event over the
next N years

•

•

•
P(1 or more in N years) = 1 (P(no event in fi rst year)

• • P(no event in year ino event in previous year)(14-» )
2.3

•
and the probability of experiencing exactly one event in N years is

•
P(m=1) = P(event in fi rst year) *P(no event ione before)

• • P(no event inone before)"
+ P(no event in fi rst year) •P(event inone before)

• • P(no event one before) 2.4

• P(no event none before)" • (N -1)
•

• Similar - but longer - expressions can be derived for higher values of m.
Table 22 shows the probability of experiencing none, one, two, three or four

• of more events over the next 20 years with different degrees  of year-to-year
correlat ion, assuming (i) that the last year before the 20 year period contained

• an event, and (ii) tha t it did not contain an event . The degree of clustering
is represented by the ratio of the conditional to unconditional probability of

• experiencing an event: a ratio of three implies that the long-term 10-year flood
has a 30% chance of occurring in a year following a 10-year fl ood, and

• represents a very high degree of clustering. In general , the probability of
experiencing large numbers of events increases as the degree of clustering

• increases, as does the probability of .no events occurr ing.

• Th e probability of experiencing M events in N years can also be determined
when peaks over a threshold (POT) fl ood data are used. If the mean number

• of peaks over the threshold q. is X and the probability of a fl ood exceeding
X, given that it is greater than go, is p ' (x) = (1-F ' (x)), then the mean

• number of peaks per year greater than X is

•
Xx = X (1 - F ' (x)) 2.5

•

• If it is assumed that the number of fl oods in a year follows a Poisson
distribution (which is not unreasonable: NERC, 1975), then the probability of

• ev er iencing M fl oods above X in N years is:

•

•

•

•



Table 2 2 The p robability of exp eriencing in events in 20 years, with
diffr rent degrees of year-to-year correlation

Ratio of
conditional to
unconditional
probability

0

Recor d length is 20

Long-term probability is 0.10

Year ro w did not contain an event

1 2 3 4 or more

Reco rd length is 20

Loog-term probability is 0.05

Year zero did not contain an event

e X(1-F @DM ( k( 1-F , (x ) )m

M I

2.6

F (x) represents a condit ional probabil ity (i e. the probabil ity that X is



•

• exceeded, given that the fl ood exceeds the threshold %). The uncondit ional
probabil ity of a fl ood exceeding X is equal to

•
p (x ) = K (1-F ' (x)) 2.7

•
and T=1/p(x) can be substi tuted into (16) to give

•
e4hf r(NrI) )4  

• p(M events in N years) -
M !

2.8

•
The probabil ity of experiencing at least one event in M years is

p(at least one) = 1 - e14n. 2.9

•
As return period T increages and the period of interest N lengthens, equations

• 2.2 and 2.9 converge.

•

• 23 THE CONCEPT OF EXPEC TED PROBABILIT Y

•
Th e conventional approach to flood frequency analysis is to provide the best

• estimate of the magnitude of the fl ood with exceedance probabil ity p: a
"good" fl ood frequency estimation procedure is one which gives unbiased

• estimates of the magnitude of the p-probabil ity (or T-year) fl ood. However, the
true probabili ty of exceedance of this "best" estimate will be larger than the

• initial ly-specifi ed probabil ity p. This is illustrated in Fi gure 2.1.

• Figure 2.1a shows the (hypothetical) sampling distr ibution of estimates of the
magnitude of the fl ood with exceedance probabil ity p=0.1 (and hence return

• period 10 years). The mean of the sampling distributi on of estimated 10-year
fl ood magnitudes is equal to the underlying true value, and the estimation

• procedure therefore gives an unbiased estimate of the magnitude of the
10-year flood. The sampling distribution of magnitudes is also approximately

• normal ly-distributed. Figure 2.1b shows the distribution of the true exceedance
probabil it ies of each estimate of the 10-year magnitude, and it is clear that

• this distr ibution is highly skewed and with a mcan different to - and greater
than - a probabil ity of 0.1. The mean of the tme exceedance probabil ities is

• not the same as the true exceedance -probability of the mean of the
magnitudes. Beard (1960) called the mean of the true probabilities of the

• estimates xp the "expected probabil ity", but Hardison and Jennings (1972)
proposed the term "average exceedance probability" . Appendix A contains a

• paper (A rne ll, 1988) which provides more details of the concept of expected
probabil ity, including a number of alternative interpretations.

•
The practical implication of expected probability is that design floods, as

• estimated conventional ly, wil l be exceeded in the future more frequent ly than
desired. Stedinger (1983a) argued that fl ood managers did not need the

• "conventional" estimate of the magnitude of the T-year fl ood, but required
instead the fl ood which would be exceeded in the future with the specifi ed

• r isk of occurrence. In other words, they needed the magnitude of fl ood which
had an expected probabili ty (or average exceedancc probabil ity) equal to p.

•

•

•

•
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TRUE FORM

2.4.1 Introd uction

f

al b l
MEAN

0 .4 0 .3 0 .2 0 . 1 0 .0 0 .4 0.3 0 .2 0.1 0 .0

EXCEEDANCE PROBABILITY p

Figure 2 1 Sampling distribution of estimates of the 10-year f lood
(Arnell, 1988; Append& A)

Th is magnitude will be higher than the conventional best unbiased estimate of
the p-probability fl ood, with the diff erence depending on the form of
probability distribution used, the parameter estimation procedure employed, the
sample size available and the desired degree of risk. The difference between
the two magnitude estimates can be seen as a "safety factor" representing
parameter uncertainty (but not model uncertainty): as sample sizes increase, the
two estimates converge.

2.4 ESTIMATIN G THE MAGNITUDE OF A FLOOD WITH
THE DESI RE D RISK

The objective of the investigation was to produce a method for estimating the
magnitude of a fl ood which would be exceeded in the future with a desired
expected probability p. The method is based on the General Extreme Value
(GEV) distnb ut ion (Jenkinson, 1955), with parameters estimated by the method
of probability-weigh ted moments (PWM: Hosking et al, 1985). In general terms,
the method determines the increment which needs to be added to a
convent ional GEV-PWM estimate of the magnitude of the p-probability fl ood,
in order to produce a fl ood with an expected probability equal to p. Diff erent
increments (or "adjustment factors") would be necessary with different
probability distributions or i parameter estimation procedures.

Analytical expressions for estimating the magnitude of a fl ood with expected
probability equal to p can unfortunately be derived for only a very few
probability distributi ons. Stedinger (1983a) derived a method assuming fl oods
(or the ir logarithms) were normally distributed, which is outlined in more
detail in Appendix A, and Rasmussen and Rosbjerg (1989) presented a



•

• procedure for use with POT data. For other probabil ity distributions it is
necessary to derive empirically the average true exceedance probabil ity of

• conventional estimates of the magnitude xn. Hardison and Jennings (1972) used
computer simulation experiments to de<relop corrections to be applied to

• "conventional" probabilities when using the log-Pearson type 3 distr ibution, and
a similar approach was used in the current study with the General Extreme

• Value distr ibution.

•
/ 4.2  Single-site analysis

•

• A ppendix A gives details of the derivati on of the adjustment factors to be
applied during the course of a single-site fl ood frequency analysis using the

• GEV-PWM procedure. To summarise, the construction of the adjustment
factors involved the following stages:

•
( i) generate a sample of synthetic annual fl oods of size N from a specifi ed

• GEV parent distribution;

• ( ii ) estimate GEV parameters u, a and k using PWM :

• (ii i) compute the true probabil ities of the estimated magnitude xp and
x A F.x where AF ranges from 0.01 to 0.5;

•
( iv) repeat the process many times and compute the mean true probabil ity

• (the "expected probabili ty") for xp and each increment xp AF.xp:

• (v) interpolate to determine the value of AF which gives expected
probabili ty equal to p.

•
Table 2.3 (reproduced from Appendix A ) gives the fi nal adj ustment factors AF

• for a range of sample sizes, parent distnb ution characteristics and return
periods. The adjustment factor for the 100-year fl ood estimated from a 10

• year sample from a GEV distribution with coeffi cient of var iation 0.4 and k
parameter -0.1, for example, is 0.2717. In other words, the GEV-PWM

• estimate of the 100-year fl ood magnitude must be increased by 27% to
produce the magnitude exceeded with expet ted probabil ity 0.01.

Table 1 3 indicates the magnitudes of the adjustment factors under a range of

• conditions, but is not easy to use in practice where interpolation is necessary.
An interpolation model was therefore developed, as detailed in Appendix A .

• The model, by analogy wi th an analytical expression which can be der ived for
the lognormal distribution, has the form:

•

•  
A F = [ exp[ (141/ 0 A " KGEVH e

(log  ( 1+CV2))1/2
-1 2.10

•

•

•

•

•

•

•



Table 2 3 Adj ustment f actors to conva t a GEV-PWM estimate of X T

t O a magnitude with opected probability V T (Arnett
I 988; Append& A)

GEV k is O 10 •
C V is 0.40 C V. ts  0 .40

Return period Return period
N 10 25 50  75 100 N 10 25 50 75 100
10 04 15 06 15 0 947 A 224 1 456 10 .0477 0873 A 369 1 744 1 046
20 0283 0366 .0534 .0690 0 827 20 .0281 0484 0 772 .1004 1 198
30 0220 0275 .0384 .0488 0 582 30 .0182 0316 .05 17 0 683 .0826
40 0203 024 1 0 317 D389 .0456 40 M147 0239 .0384 D 507 06 13
50 0 193 0227 .0293 .0355 0 4 12 50 M125 0 199 0 325 0 429 .0523

100 0 173 0207 .0251 .0287 .0317 100 X083 0 123. = .0250 0302
.  m 0.

. m 

Retur n period Return pefi od
N  10 25 50 75 100 N 10 25 50 75 100
10 0728 0995 1 433 1 802 .2112 10 0879 1379 1 999 1 472 .2856
20 04 12 0524 0 746 .0949 .1128 20 X1473 0726 .1078 A 363 1 60 1
30 0288 036 1 .0504 0 639 0 762 30 .0300 0467 .0710 .09 11 A082
40 0244 0293 .0390 .0482 .0567 40 0 235 0350 .0523 .0668 0 794
50 0220 0264 0 347 t 4 26 .0499 50 0 195 0289 t 4 36 0 562 X* 72

100 0 173 0209 .0261 .0304 0 342 100 .0119 0 170 .025 1 .0319 0 378

Return per iod Return period
N  10 25 50 75 100  N  10 25 50 75 100
10 100 1 1303 .1814 1 250 / 6 17 10 1 216 .1776 1 48 1 3 025 .3469
20 0523 0650 x907 1143 1 351 20 .0625 .0906 1 299 16 19 .1888
30 0348 0430 0 594 .0748 .0888 30 0392 .0577 .0846 1 069 1259
40 0285 0339 04 48 0554 0 650  40  0 303 0 429 .06 19 0779 0 9 17
50 0250 0297 0392 t 4 82 .0566 50 0249 .0352 .0515 .0653 0773

100 0 181 0219 0 275 0323 .0365 100 M146 .0204 .029 1 0 365 0429

G LV  k is Ö.I 0 • ts  .20
C .V. is 0.40  . ts  0 .40

Return period Return period
N 10 25 50 75 100 N 10 25 50 75 100
10 0 527 .1149 .1840 2331 1 717 10 0522 .1382 1 282 2900 3376
20 0 296 0652 . 1088 14 13 1 677 20 0296 0 829 1 432 1864 2207
30 .0 171 .04 19 .0737 0982 .1183 30 0159 0 547 1 00 5 1341 16 11
40 0 124 .0306 .0546 0 734 .0890 40 0106 .0405 .0765 1033 1249
50 .0092 .0240 .0445 .0609 .0746 50 0067 .0316 0 6 26 086 1 1052

100 .0032 .0 114 0 231 0 326 .0406 100 000 1 M145 0 332 0475 0594
C .Vi r C.V. m 0.60

Return period Rcturn perkd
N  10 25 50 75 100 N 10 25 50 75 100
10 .1005 1 776 .2611 3209 .3681 10 1 06 1 .2117 3 186 3920 4487
20 0 543 .09 75 1 487 1870 .2181 20 0 592 1 230 .1927 2424 2817
30 .0333 0 630 1000 1283 1 515 30 0 361 0 820 A 341 1721 2025
40 .0249 .0467 .0743 0956 A 133 40 0 267 .0617 . 1022 1319 1559
50 .0 195 .0373 0 608 0794 0949 50 0203 .0493 0 840 1100 1311

100 .0095 .0192 .0325 0430 .0519 100 0 084 .0254 .0460 06 15 0743
. . 15  . 0

Return pc fi od Return period
N  10 25 50 75 100 N 10 25 50 75 100
10 1402 1 266 .3201 3875 .4409 10 1 511 .2699 .3887 4705 5338
20 .0734 A 209 .1771 2193 J 535 20 .0821 .1524 .2281 2820 3247
30 .0453 .0780 .1182 1488 1 740 30 .0512 .1013 .1573 1980 2305
40 .0 342 0 578 0 875 1104 .1294 40 0 385 .0764 1 194 1509 1764
50 .0271 14 64 0 717 09 16 .1082 50 .0300 .0613 .0982 1257 1480

100 .0 138 0 244 .0385 0496 .0590 100 .0143 .0325 0 541 0703 0835

8



•
where

• ( logeF)k - ( l +k)

•
K GEV

((1+2k) - (1+k0
< 0

• ( logeF)k - (I +k)

k > 0 2.11
• ((1+2k) ( l +k))1/2

• = 0.45 + 0.779 (-loge(-logeF)) k = 0

• P = 1 - p

• and

e
logeA = const + alogeN + blogeCV + clogeKGEv 2.12

II

• Table 2.4 (from Appendix A) gives the coeffi cients for Equation 2.11.

• Table 2 4 Coeff icients of model to estimate ar4ustment factors from
• n, cv and k (Arnett, 1988; Append& A)

•

O Design return peri years const  a c R '
1 0 .1  2 . 2 41 0. 21 7 . 5 9.6

0. 1 . 2 9 0 . 142 O. 143 8.5e 0.2 . I 7 -O. 131 0.9449 96.3
0.1 .031 1 . 1 I . 3 6.

• 1 .1 . 31 7 0 . 22 11 I . 391 'M

• log, 4 —const 1- a log, N + bIog, CV -I-cKGEv: A F •• lexpR I -I- I / n )112A —KGEv111;3" ..c.4)) —I .

2.43 Regional fl oo d frequency analysis

•
A ppendix A describes the calculation of adj ustment factors when the fl ood

• frequency relationship is estimated from one sample. A simi lar approach could
be adopted to estimate the adjustment factors required for a regional

• frequency analysis.

• Table 2.5 shows, for illustrative purposes, the adjustment factors necessary for
the 50 and 100 year flood estimates for several combinations of sample and

• region size, and for one homogeneous GEV parent distr ibution. The simulation
experiments assumed that al l sites in the region were f rom the same parent,



and that there was no inter-site correlation. Different regional compositions
would give diff erent adjustment factors, which makes it very dif fi cult to
develop a general ised estimation method. However, it is clear from Table 25
that the adjustment factors for regional frequency analysis are small (indicating
incidentally the benefi ts of regional fl ood frequency analysis over single site
analysis).

Table 2.5 A dj ustm en t f actors f or regional dim ensionless fl ood X 71i ,
as estim ate by regional GE V-PWM estim ation p rocedure

GEV parent k = -02 , CV • 0.4

T 50

7' • 100

10 0.051 0.035 0E28

Number of years 20 0.025 0.018 0.015

at cach sue 40 0.012 0.010 0.009

10 0.078 0 052 0.039

Number of years 20 0.038 0 026 0.021

at each site 40 0.019 0.014 0.012

23 CHAPT E R SU MMA RY

Number  of  sites

10 20

This chapter has presented some equations for estimating the probabil ity of
experiencing N1 events in N years, and has also outl ined a procedure for
determining the magnitude of event which will be exceeded in the future with
the desired degree of risk. Conventional procedures, which aim to produce an
unbiased estimate of the magnitude of the T-year event, tend to yield
estimates that will, on average, be exceeded more frequently than once in T
years in the future. This is due to sampling uncertaint ies in fl ood frequency
analysis, and the diff erence between the two magnitude estimates can be seen
as some form of "safety factor". Table 23 shows the increase in conventional
estimate necessary to produce magnitudes exceeded in the future with the
specifi ed degree of risk, assuming the conventional estimates are made using a
GEV distr ibution with parameters estimated by probabil ity-weightcd moments.
The adjustment necessary increases as samples become shorter, as return
periods increase, and as sample coeffi cient of variation and skewness increase-
with a 10 year sample of fl ood data with average characteristics (CV of 0.4,
GEV k par ameter of -0.1), the conventional estimate of the 50-year fl ood
magnitude would need to be increased by over 18% to produce an event with
an expected probabil ity of one in 50 years.

10

40



3. Estimating average annual damage

3.1 INT RO DUC TION

Flood managers need a measure of the magnitude of a fl ood problem in
ordcr both to compare the extent of risk in diff erent fl oodplains and to
provide a basis for the economic evaluation of a flood management strategy .
Such an index is provided by the average annual damage (or , in A merican
usage, the expected annual damage), which is best understood as the average
of fl ood damages computed over many years. One way to calculate this would
be simply to add up a long time series of annual fl ood damage data and
divide by the number of years, but th is is not feasible in practice: long
records are very rarely avai lable, fl ood damages vary considerably from year to
year making estimates from small samples very imprecise and, most importantly,
exposure to fl ood loss will have changed over t ime.

Average annual damage is therefore estimated synthetically, by combining
information on the damage incurred in a fl ood with the probabil ity of
experiencing that fl ood. A curve defi ning the relationship between fl ood
damage and fl ood probabil ity is usual ly constructed using relationships between
fl ood discharge and frequency, fl ood discharge and depth, and fl ood depth and
associated damages, as indicated in Figure 3.1. The fl ood magnitude-frequency
relationship is of course based on hydrological analysis, the discharge-depth
relationship is derived through hydraulic studies, and the fl oodplain
depth-damage relationship is produced by combining depth-damage curves for
each property (or property-type) on the fl oodplain. Such depth-damage curves
were published for British fl oodplains by Penning-Rowsell and Chatterton
(1977), wit h a major update in 1988 (Suleman et al , 1988). A lthough it is
assumed that flood depth controls the bulk of damage incurred, procedures
have been developed for cstimating the diff erential eff ect of diff erent fl ood
durations, and the amount of indirect damages incurred (such as lost business:
see Parker et al, 1987).

The average annual damage incurred in a fl oodplain  can  be derived from  the
probabili ty distribution function of annual damages, but there is never enough
information to defi ne the form, let alone the parameters, of such a
mathematical function: it is a combination of, for example, a General Extreme
Value distr ibution characterising the fl ood discharge-frequency relationship,
perhaps a logari thmic relationship defi ning the stage-discharge relationship, and
an empirical , possibly stepped, function relating depth to fl ood damage.
Average annual damage is therefore estimated by calculating the area under
the graph of damage-probabil ity function. The mean of a variable x distr ibuted
with probabili ty density function f(x) is

E(x) = f x f(x) dx t 3.1

and since the cumulative distribution function F(x), defi ning the probabil ity of
experiencing an event less than or equal to X, is related to f(x) by

dF(x)

dx
- f(x) 3.2
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(or the area under the curve of x against F(x)).
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Exceedance
p vbability

Exceedance
probability

E(x) = I x dF(x) 3.3

A technique such as Simpson's ni le could be used to determine this area, but
in practice the relationship between fl ood probabil ity and fl ood damage is
based on only a very few points (such as the 25, 50 and 100 year fl ood
profi les). A verage annuall damage is therefore estimated using the "mid-range
probabil ity" rule, as outl ined in Figure 32.

3.4



•
where M is the number of pairs of data points, pi is exceedance probabil ity
for point i and Di is the associated damage. The precision of an estimate of

•
average annual damage is infl uenced by the number of pairs of points
considered, but the number of pairs required for a given degree of precision
will depend on the smoothness of the damage-probability function: the greater

• the number of steps and abrupt changes, the larger the number of points
required.

•

This chapter summarises some studies into the effect of hydrological
• uncertainties on bias and uncertainties in the esti mation of average annual

damage. More details are found in the paper reproduced as A ppendix B
• (Arnell , 1989).

•

•

•
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• Figure 3.2 Calculation of average annual dam age using the

•
mid -range probability rule

•

•
3.2 BIAS AN D UNCERTA INT Y IN T H E ESTIMATION O F

AVE RA GE AN NUAL DAMAGE

•

•
The average annual damage at a site is based on estimates of the various
components which link together to produce average annual damage. The

•
rcasons for uncertainties in the fl ood frequency relationship at a site are well
known frequency analyses are usual ly based on :very limited samples but

•
there are also uncertainties in the hydraulic analyses convert ing discharge to
fl ood depths across and along a fl oodplain. In principle the depth-damage



relationship (and al l the other relationships predicting damage from fl ood
characteristics) in a fl oodplain can be defi ned exactly, but in practice
uncertaint ies arise because standard depth-damage relati onships are applied in
preference to property-by-property surveys and damages in a future event may
be infl uenced by characteristics of the event assumed irrelevant (such as the
time of day the fl ood peaks). The relative importance of each of these sources
of uncertainty wil l vary between sites, but it is likely that hydrological
uncertaint ies will frequently be the most important. This chapter therefore
describes some investigations into the eff ects of hydrological uncertainties, as
represented by the estimation of frequency distr ibuti on parameters from small
samples, on bias and uncertainty in average annual damage. More detai ls are
provided in Appendix B.

The basic method adopted was to construct a series of simulation experiments
to explore the eff ect of parameter uncertainty on the bias and precision of
estimates of average annual damage. Three diff erent approaches were
compared:

(i) the conventional approach, with the parameters of the fl ood frequency
distr ibution estimated using maximum likelihood;

(ii) an approach using expected probabil ity (see Chapter 2): Beard (1978)
argued that less biased estimates of average annual damage would be
calculated when fl ood risk was expressed in terms of expected
probabil ity;

(i ii) an approach taking explicit account of the sampling distr ibution of fl ood
quantile estimates: the damage value for a given fl ood quantile is taken
to be the mean of the sampling distributi on of estimates for that
quantile (James and Hall, 1986):

E(D) =
1

D h(D) dF
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3.5

where h(D) is the probabil ity density funct ion of the estim ate of damage
D for a given frequency event. I t is a combination of the probabil ity
density function of the fl ood discharge and the (deterrnininstic)
relationship relating discharge to fl ood damage.

A number of simplifying assumptions were made. Firstly, it was assumed that
fl oods fo llowed a log-normal distr ibution, and that the only uncertainties lay in
the estimation of the parameters of such a distribution from a smal l sample.
A log-normal distr ibution was used because all three estimation procedures
could be readily applied (as outl ined in A ppendix B). Secondly, the damage
functions were assumed to follow four simple mathematical functions (Figure 3
in A ppendix B): this was Ito al low the investigati on of the eff ects of the shape
of the damage function on bias and uncertainties. Fl ood damage was assumed
to begin at three diff erent return period thresholds, namely the true 5, 25 and
100-year fl oods.

Table 3.1 (reproduced from A ppendbc B) shows the bias in estimates of
average annual damage, for two of the four damage functions. I t is d ear that
al l the methods overestimate average annual damage, but that the conventional



Table 3. 1 Bias in estim ation of average annu al dam age, a p iessed as
p ercentage of the Mx value (A n te 11, 1989; Append ix B)

e

•

•
method produces the least biased estimates. Bias increases as the threshold at

• which damage begins rises: the greater the frequency of fl ooding at a site, the
less the average annual damage is over-estimated. Bias also reduces as sample• size increases.

• The similarit ies between the expected probabil ity method (method ii above) and
the expected damage method (method ii i) refl ect similarities in their derivation:

• in the case of the lognormal distr ibution, both methods use the t-distTibution,
and the expected value of the p-probability fl ood is close to the value of the• fl ood exceeded with expected probabil ity p. With the linear damage function
the two methods give very similar results, but dif ferences increase as the• damage function becomes less linear.

e The magnitude of average annual damage at a site is closely dependent on
the estimated probabili ty at which fl ood damage begins. A l though the expected• probabil ity method produces an estimate of the fl ood magnitude exceeded with
the specifi ed degree of risk, it produces a biased estimate of the probabil ity

• associated with a particular, fi xed, magnitude (because of the non-linear
relationship between fl oOd magnitude and probability: an estimator cannote produce estimates that are unbiased in all dimensions). The conventional
approach, however, gives a much less biased esti mate of the exceedance

O probabili ty of a fl ood of a particular si ze (such as the size at which damage
begins), and therefore produces a less biased estimate of average annual

• damage. Beard (1978) argued that conventional procedures underestimated
average annual damage, and that the use of expected probabil ity compensated:

• the results of this study imply that the use of expected probability leads to

•

• 1 5

•



even greater overestimation of average annual damage.

Beard (1990), commenting on A rnett ( 1989), has reiterated his conclusion that
the use of expected probabil i ties gives better estimates of average annual
damage. However, his experiments and those reported in the current study
start fr om diff erent premises. If it is assumed that there is an underlying
average annual damage that is wai ti ng to be estimated, with the only
uncertainty being in the probabil ity of a given value of damage occurr ing - as
in the current study - then the use of expected probabil it ies does not give the
best estimate of the underlying average annual damage. Beard (1990),
however, assumes that the observed sample could have come from a range of
diff erent populations, and that the most appropriate value of average annual
damage is the average of all the possible parent values.

The eff ect of the shape of the damage function can be seen in Table 3.1. In
each case damage is assumed to begin at the same level, but damage with the
logistic function at fi rst increases only slowly with fl ood magnitude: the point
at which fl ood damages change signifi cantly with magni tude is at a higher level
than with the quadratic curve (where the greatest change in damage with
magnitude is at the lowest levels).

Table 3.2 shows the standard deviation of the sample estimates of average
annual damage, again for j ust two of the damage functions. Variabili ty is high,
and is highest for the expected probabil ity and expected damage methods. With

Table 3.2 Standard deviation of estimation of average annual
dam age, divided by the true value (A rnell, 1989;
Appendix B)

'Sample size.
Note: Simu lat ion results from 500 repeti tions.
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a sample size of 20 years, the standard deviation of the estimates of average
• annual damage when fl oods begin at the (true) 5-year fl ood is over 50% of

the average annual damage, indicating that the precision of an individual
estimate is low.

• The standard error of the sampling distribution of average annual damage at a
site, and hence some indicat ion of the precision of the estimate, can be

• calculated from the the standard deviation of annual damages. The standard
error is simply

•
s.d. (D)

s.e. (D) 3.6
N

•
and the standard deviation of annual damages can be estimated by calculating

• E(D2), the area under the 'damage-squared' curve:

• s.d. (D) = [E(D2) • E(D)211/2 3.7

The simulation experiments indicated that estimates of the standard error of
• average annual damage calculated using equations 3.6 and 3.7 were quite

precise but unfortunately the sampling distnbutions of average annual damage
• are highly (positively) skewed. It is not possible to estimate confi dence intervals

for average annual damage from the estimated standard error alone.
•

3.3 SUMMARY AND IMPLICATIONS
•

• Th is chapter has described some studies into the eff ects of hydrological
uncertaint ies on bias and uncertainty in the estimation of average annual

• damage. It has been found that conventional fl ood frequency estimation
procedures tend to overestimate true underlying average annual damage, with

• the bias increasing as the threshold at which damage begins to occur rises.
This bias is due to uncertainties in the estimati on of the probabil ity at which

• damage begins, and the non-linear relationship between damage and probabil ity.
U ncertainties in the estimation of flood frequency distribution parameters from

• smal l samples mean that estimates of average annual damage are very
uncertain, with the standard error of their sampling distnbution being

• considerably larger than the mean for high damage thresholds.

• T he expected probability procedure was found to produce more highly biased
estimates of average annual damage than the conventional procedure. This is

• because the estimated average annual damage at a site is controlled by the
estimated probability at which flood damage begins: whilst the expected

• probabil ity procedure produces an estimate of the magnitude which wil l be
exceeded with a given degree of risk, it produces a biased estimate of the

• probabil ity of a fixed magnitude event.

• The impl ications of these studies for the calculation of average annual damage
are that estimates will be very uncertain and, on average, too high (by an

• unknown degree). The precision and bias of an estimate is largely determined

•
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needs to be placed on the estimation of such fl oods.
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4. Confidence intervals

4. 1 INT RODUC TI ON

Fl ood frequency estimates are not precise, and one way of describing their
unce rtain ty is to calculate confi dence intervals around an estimate. This chapter
summarises briefl y the calculation of confi dence intervals for an estima te of the
T-year fl ood, and considers the derivation of confi dence in tervals for the
re turn period associated with a particular magnitude fl ood. Fin ally, the chapter
outlines the diffi culties with es timating confi dence inte rvals for average annual
damage, and suggests a possible approach to use in p ractice .

4.2 CO NFIDENCE INTERVALS FO R XT

4.2.1  Introduction

A confi dence interval for an estimate
degree of precision of that estimate:
the estimate . There are two possib le
one deriving from classical statist ics
approach.

of XT, the T-year fl ood, indicates the
the wider the interval, the less precise
interpreta tions of a confi dence in terval,
and the othe r following a Bayesian

The classical approach assumes tha t there is a single true, bu t unknown, value
of the T-year flood. The confi dence intervals place d around an estimate from
a sample define the probability that the true population value is within some
defi ned limits : there is a 95% chance, for example, that the true T-year fl ood
lies between 27 m3/sec and 52 m3/sec. The confi dence in te rval is o f course
estimated from the sample, and diff erent samples would grv e diff eren t
confidence in tervals. The classical interpreta tion is tha t, in the long run , 95%
of all such estimated limits would contain the true parent value.

The Bayesian approach is rather different, and assumes that there is no single,
fi xed, true population value of the T-year fl ood. Instead, the approach
at sumes th at it is possible to estimate the probability of any particular value
being the 'tr ue ' population value, given bo th sample and 'pr ior' information:
what is the probability of the ' tru e' T-year fl ood being grea ter than 58 m3/sec,
for example, given the characteristics of the recorde d sample? Under some
limiting circumstances, the classical and Bayesian approaches yield nu merically
similar results.

Three main approaches have been used to estimate confi dence limits for the
T -year fl ood. Th e fi rst two - using estimates of the variance of the T-year
fl ood and attempt ing to derive the exact form of the sampling distribution of
the T-year flood - are based on the classical approach, whilst the third follows
a Bayesian interp reta tion. The "classical" methods consider only parameter
unce rtainty, and assume the form of the underlying model is known: diff erent
mod el assumption will therefore produce diff erent confi dence intervals. Th e

19



•

•
Bayesian approach can al low for the eff ect of model uncertainty by producing
a composite frequency distr ibution from a range of candidates. •

•
4.2.2 Methods based on  the var iance of the  T-year flood

•

In the most general terms, these methods derive confi dence intervals by •
estimating the variance of the T-year fl ood and assuming that the sampling
distr ibution is normal (see Ki te, 1975): confi dence intervals are then
determined as:

•
k r

P se(k r) < XT < 5Cr + zp se(k r) 4.1
0

where se(5Cr ) is the standard error of estimate of X i. and z is the standard 0P
normal deviate with exceedance probabil ity p.

Methods have been developed to estimate the variance of the T -year fl ood for
practically al l of the probabil ity distributions and parameter estimation •
procedures used in practice. The quantile estimate k i . is a function of the
estimated parameters 8: •

kT = x1.(Ô) 42 411

which can be expanded as a Taylor series around the true parameters 0: •

XT = X,T(0 4- 6-0)
(6. 8)2

= X,T( 0) (6-0) XT ' (0)  X 1. " (0) 4.3  •

where X.1. and X r " represent the fi rst and second derivatives of X r wi th
respect to 8. Ignoring squared terms and above, the var iance of XT is (from •
the general form for the var iance of aY+bZ)

•
n n dX r (IXT

var(X r) = I I — cov(8 ,8 ) 4.4
dOsr=1 s ,=.

•
There are three approximations involved in the calculati on of var(X i.) : fi rst,
the Taylor series expansion omits squared and higher terms; second, the •
derivatives are evaluated not at the true parameter values, but at their sample
estimates; and th ird, the variance-covariance matrix of the parameter estimates
must usual ly be approximated in practice. i b is third approximation is probably
the most important. A pproximati ons to the variance-covariance matr ix for a
particular probabil ity distribution and parameter estimation procedure tend to
be derived asymptot ically.

Much less effort has been directed towards the derivation of the var iance of
an estimate X r based on a regional fl ood frequency analysis, although an
approximate procedure is given in the Flood Studies Report (NE RC, 1975). I f •
an estimate of K r is derived by combining a regional estimate of the
dimensionless quant ile X.T/ X with a local estimate of X, the mean annual •

20



fl ood, the variance of the quantile estimate is

•
Var(XT) = Vara X t/R).k )

• = E (X.1./ 2 var(T,) E(k)2 var(X,r/R) 4.5

• (assu ming that the mean annual fl ood X and the dimensionless T-year fl ood
X r/X are independent). Th e variance of the mean annual fl ood X depends on

• how it is estimated, and Wiltshire (1987) presents a procedure for estimating
the variance of an estimate derived from regression relationships of the form

• frequently used in region al analyses. In the Flood Stud ies Repo rt (NERC,
1975) the variance of the dimensionless quan tile Xr/X was based on an

• empirical assessment of the variability in estimated quantiles with in a case
stu dy region , bu t Wiltshire (1987) calculated the variance for an estimate

• derived from a regional G EV-PWM fi t using equation 44 and assuming that
the regio n was homogeneous. In practice, the variance of a regional estimate

• of X r/X is a function bo th  of  the within-region variability and the sampling
error of an estimate based on m ' independent ca tchment s (which may be

• rather less than the actual numbe r of ca tchments).

• Th e most importan t assumption with regard to the estimation  of  confi dence
intervals, however, is the assumption that estimates  of X T from diff erent

• samples are normally d istribu ted. The derivation  of  exact confi dence in tervals -
see 'below - and computer simulation experiments (eg Stedinger, 1983b) show

• this assumpt ion to be false, par ticularly at high return periods, and sampling
distributions are highly skewed. The assumption tha t they are normal means in

• practice that the upper confi dence limit may be considerab ly underestimated.
Figure 4.1 shows confi dence intervals, based on computer simulation , for a

• sam ple of length 20 drawn from a GEV distribu tion with 'typica l' UK
parameters, toge ther with those est imated from the variance of the T-year

• fl ood and the assumption that the sampling distributions were normal. The
sho rter the record length, the higher the return period an d the higher the

• coefficients of var iation and skewness, the further the sampling distribut ion of
K r depar ts from the normal distr ibution.

•

• 4.2.3 Exact confi dence intervals  for XT

•
Th e exact form of the sampling distribution for estimates  of  the magnitude  of

• the r th ran k observation from a sample of size N is defi ned by

•

• g(XT.) = (N - r) [F(X)Jr [1-F(XAN' l f(x) 4.6

•

bu t this of course is only applicable to a subset of possible retu rn period s.
•

Stedinger ( 1983b), however, derived exact confi dence in tervals for any retur n
• period for the normal and lognormal distr ibutions. He showed that the

variable
•

•
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•

Figure 4. 1 Confidence intervals for X p with GEV parameten •
estima ted by P WM: intervals based on var(X p) and on
simulation experiments. Sinudation erp eriments with 1000 •
rep etitions. GE V p arent p arameters u=10, a =4, k=-0.1, and
samp le size 20. •

22
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•

•

•

•

•
5(  S(T) - 4.7

• s x

•
_

where X is the mean annual fl ood and sz is the standard deviation of annual

•
fl oods, was distributed following a non-central t-distribution with centrality
parameter

• c = z rs0 4.8P

and N-1 degrees of freedom. Again, zp is the normal reduced var iate with
exceedence probability p=1/ T. Tables were produced showing the value of S(T)
for a given sample size, return period and confi dence level: the resulting
confidence intervals are not normally distributed about the estimate X . A
procedure was proposed for deriving 'approximate' exact confi dence intervals for

•
the Pearson type I II distribution from those for the normal distribution.
Ashkar et al (1987) followed a similar approach to derive exact confi dence
intervals for the Weibull and Gumbel (or EV 1) distributions, and Ashkar and
Bobee (1988) refi ned Stedinger's (1983b) procedure for deriving Pearson type

•
II I confidence intervals. No papers, however, have attempted to derive exact
confidence intervals for the GEV distribution.

•

•
4.1 4 Confi dence intervals from a Bayes ian perspective

As indicated above, the Bayesian approach av;umes that an assessment of the

•
probability of a particular set of parent parameters being 'correct ' can be
based on a combination of sample informati on with prior expectations (see
Wood and Rodriguez-l turbe, 1975, for example). Each possible combination of
parameters yields an estimate of X T, and the probability of the 'true' quantile
exceeding Xr can be derived by integrating across the j oint probability
distribution of parameter values (this probability distribution is the 'marginal
posterior distr ibution' of X. it is a 'posterior' distribution because it combines
sample information wi th prior knowledge). In practice, however, this can be

•
extremely diff icult, and some simplif ying assumptions need to be made about
the form of the underlying probability distributions of the parameters.

• Cunnane and Nash (1971) used simulation experiments to derive the marginal

•
posterior distribution of X i., assuming that annual fl oods followed the Gumbel
(or EV1) distribution and using two different forms for the assumed
distributions of the Gurnbel parameters. Stedinger (1983b) showed analytically
for the normal (and lognormal) distr ibuti on that, under a particular set of

•
assumptions about the form of the probabil ity distribution of parameters, the
variable

XT  
• S(T) = N—

sx
4.9

has a non-central t-distribution. This is the sante as equation 4.7, and the

•
classical and Bayesian approaches to the calculation of confi dence intervals for
the normal (or lognormal) distribution therefore give exactly the same answers

•
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•

•

•

(if sample information only is used in the Bayesian approach). By combining
several candidate probability distr ibutions, a composite Bayesian distribution can •
incorporate the eff ects of model uncertainty as well as parameter uncertainty
(Wood and Rodriguez-Iturbe, 1975): in pr inciple, a marginal posterior •
distr ibution of XT can be derived as in the single distribution case.

'Whilst the Bayesian approach appears useful (both because of the abil ity to
include non-sample information and the relatively simple interpretation of
Bayesian confi dence intervals), it is extremely diffi cult to apply in practice.

•
Analytical derivations are forced to make some restrictive assumptions about
the probabil ity distributions of model parameters, and numerical integration can •
be very diffi cult . There have been no published attempts to apply Bayesian
analyses to the three-parameter GEV distrib ut ion.

4.26 Im plica tions

The init ial implication of this section is that it is easy to estimate incorrect
confidence intervals, but considerably more diff icult to estimate correct intervals
(except for the lognormal distribution). More work is needed on the derivation
of exact confidence intervals for the probabil ity distr ibutions and estimation
procedures used in the UK (primarily the GEV distribution with parameters •
estimated by the method of probability-weighted moments), and in particular in
regional frequency analyses.

In practice, it appears that the most appropriate method of estimating •
confidence intervals for the GEV distribution (or indeed many apart from the
normal and lognormal) is through computer simulation experiments. The
approach would be to estimate GEV parameters from the sample, repeatedly
draw samples and build up the sampling distr ibution of XT. The experiments •
reported in Stedinger (1983b) indicate that the confidence intervals derived
from simulation compare very closely with exact confi dence intervals (at least •
for the normal and lognormal distribut ions). I t should be emphasised, however,
that the confi dence intervals assume that the data do follow a GEV •
distribution: diff erent intervals would arise with diff erent assumed distr ibutions.

43 CO NFIDENCE INT E RVA LS FO R Tx

Most eff ort tends to be placed on defi ning confi dence intervals for an estimate
of the magnitude of the T-year fl ood, but confidence limits for the estimated
return period of a particular magnitude fl ood are often required in practice. •

If the return period of an event X is estimated simply from 0

p = r/N 4.10

where r is the number of fl oods greater than or equal to X in a sample of
size N, then confi dence intervals for T=1/p can be defi ned using the binomial
distribution. Th e probabil ity of experiencing r events in N years with annual
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•

•

• probabil ity of occurrence p is

•
I:0 1R O = Pr( i -P)N-r 4.11

•

• but diff erent values of p could produce the same number of Occurrences r in
N years. The probabil it ies of experiencing r or more, or r or fewer, events in

• N years are

• p(r or more) = R• I pl(1-p)N" 4.12a
i=r

•

• p(r or fewer) = I 11 pi(1- )"1 .4.12b
i4)

•
One confi dence limit can be calculated from equation 4.12a by solving to give

• the probabil ity p which yields a probabili ty of experiencing r or more events
of, for example, 0.05, and the other confi dence limit can be defi ned in a

• similar way from equation 4.12b. The equations can be solved by graphing the
relationships between p and p(r or more) and p(r or less), or by using the

• incomplete beta function.

• However, binomial confi dence intervals are not of mucli' use in fl ood frequency
analysis in practice, because fl ood return periods are very rarely estimated from

• r/N: the return period of an event of magnitude X is more usual ly a function
of the estimated parameter set ti:

•
Tx = f(6) 4.13

•
The use of binomial confi dence intervals when Tx is a function of distr ibution

• parameters (as was proposed by Oosterbaan, 198G gives a misleading indication
of the precision of an estimate. Simulation experiments indicate that binomial

• confi dence intervals are too wide: they tend to underestimate the upper limit
for TX at a given level of confi dence, but underestimate the lower limit even

• more.

• The sampling distribution of p for the rth rank observation in a sample of
size N is a beta distr ibution with parameters N and N-r-1 but, as is the case

• wi th equation 4.6, this is only useful for a small subset of cases. However, if
it is assumed that the sampling distr ibutions of p at all magnitudes follow the

• beta distribution, it is possible to determine confi dence intervals by estimating
beta distribution parameters from p and the standard error of p at a

• particular magnitude X : the method is analogous to the procedure for
estimating confi dence intervals on fl ood magnitudes outlined in 4.2.3. The

• standard error of px can in principle be determined using

• n n dpx dpx

var(PX) I
col/ (Or es) 4.14

• rat s deni r des

• which is directly equivalent to equation 4.4. A n alternative approach would be
to estimate the variance of the linear reduced variate (such as the

•
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Gumbel-reduced var iate y=-ln(-ln(1-p))) at magnitude X (using an equation
similar to 4.13) and assume that the sampling distribution of reduced var iates
was normal . Neither of these methods have been evaluated or attempted in
practice.

One approach that is occasional ly adopted is to derive confi dence intervals for
X,r, plot lines j oining all the, for example, 95% confi dence ' intervals, and
defi ne confi dence intervals for a particular magnitude X by drawing hor izontal
lines to meet the confi dence interval 'envelope' (as illustrated in Figure 4.2).
However, there is no immediately apparent reason why this procedure should
necessari ly give the correct answer, and confi dence in tervals constructed in
diff erent directions - with diff erent interpretations - need not coincide.

Reduced variate

26

Figure 4.2 Estimating confi dence  intervals on  Tx f rom  intervals on
X T

The most appropr iate way to construct confi dence intervals on T4 (or indeed
py) at present appears to be based on computer simulation expenments, as is
die case for confi dence interv als on X.r. Figure 43 shows confi dence intervals
for both XT and TX' assuming that annual maximum floods follow a GEV
distr ibution with 'typical ' parameters: the shorter the record, the more var iable
the data and the higher the retu rn period the wider the confi dence intervals.
I t is interesting to note that the confi dence intervals on Tx derived by the
simulation experiment are quite similar to those which could have been
estimated from the confi dence intervals on Kr
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Formal confidence intervals are very rarely calculated for estimates of average

• damage. Analytical derivations are made diffi cult by the 'unfriendly'
characteristics of depth-damage curves in practice, and although it is possible
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to estimate the standard error of estimate of average annual damage (as
indicated in Chapter 3), the form of the sampling distr ibution is unknown: it
is however clear that it is most unlikely to be normal.

Grigg (1978) developed a method to estimate confi dence intervals on average
annual damage, based on the confi dence intervals on flood magnitudes. The
method, illustrated schematically in Figures 4.4a to 4.4c (from A ppendix B), is
however based on a misinterpretation of confi dence intervals. The locus of the,
for example, 90% confi dence intervals does not defi ne the frequency curve
which will be exceeded over al l probabil ities 90% of the time: one sample
curve may yield an estimate of the 10-year fl ood outside the 90% confi dence
intervals for the 10-year fl ood, whilst yielding estimates of other magnitude
fl oods closer to the mean value (as shown in Figure 4.4c1). Such an approach
wil l overestimate confi dence intervals on average annual damage, and give an
unduly pessimistic impression of precision.

As with estimates of fl ood magnitude and return period, it appears that the
most practical method of estimating confi dence intervals for average annual
damage is with the aid of computer simulation experiments. No examples have
been reported, but it is probable that confi dence intervals in practice wil l be
very wide.
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0
This chapter has summarised methods for estimating confi dence inte rvals for (i)

• the fl ood magn itude with a particu lar return period; (ii) the retu rn period
associated with a par ticular fl ood magnitude and (iii) average annual dam age.

• By far the greatest amou nt of attention has been placed on the derivatio n of
co nfidence in tervals for estimates of fl ood magnitu des, but accu rate exact

• method s still need to be developed for flood frequency distribu tions and
estimat ion procedures that are frequently use d in practice. Very little attention

• has been directed towards the est imation of confi dence int ervals in regional
fl ood frequency analysis.

•
For practical purposes, it appears that the most acc urate way of deriving

• confidence in tervals for fl ood magn itudes, fl ood re turn periods and average
annual damage is th rough computer simulation experimen ts with the parent

• characterist ics based on observed data

•

•

•

•

•

•
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5. Estimating fl ood alleviat ion benefi ts fr om
time ser ies of future fl ood losses

5.1 IN T RODUCTION

The present val ue of the fl ood damages at a site (and hence the fl ood
alleviation benefi ts) is conventionally determined by calculating the average
annual damage and discounting this average value over the project life Nn.
This assumes that the average damage occurs each year, which of course does
not happen. In practice, the present value of the damages actual ly experienced
during the next N years will depend on the distribution of events over t ime:
the greater the nri mber of large fl oods at the beginning of the period, the
greater the present value of fl ood damages. The present value of fl ood
damages over the next N years therefore has a probabil ity distribution, with
the probabil ity of each dift erent val ue equal to the probability of experiencing
a different pattern of fl ood timing. From this distribution it would be possible
to say, for example, that whi lst the conventional estimate of the present value
of fl oods damages over the next 30 years is 125mill ion, there is a 10%
chance that the present value could be less than £12mil lion, or a 10% chance
of it exceeding £50million: it would also be possible to say that a scheme
costing I:30mil lion (at present values) would have a 45% chance of being cost
eff ective over the next 30 years. A decision to implement a scheme could
therefore be based on an assessment of thc probability of experiencing
diff erent total benefi ts, rather than simply on the average potential benefi t.
Such a risk-based approach could be used to j ustify fl ood protection in areas
where the conventional use of the present value of average annual damages
indicates a scheme would not be economically eff ective.

Th is chapter describes a method for estimating the probabili ty distribution of
the present value of annual fl ood damage over a project design life. Much of
the implementation of the method was done under contract to a Water
A uthor ity but the initial development work was done under the auspices of
thc MA FF project. The MA FF proj ect had earlier provided the basis for
Beran's ( 1987) t ime-dependent approach to costing the effects of fl oods. His
procedure was based on the evolution of a fl ood relief fund which is
increased by interest but depleted by withdrawals to pay for fl ood losses. The
probabil ity of the fund being exhausted depends on the initial sum placed in
the fund, and the procedure al lows the starting value with a given probabil ity
of exhaustion to be determined: this value can provide the basis, for example,
for compensation against future fl ooding

52 T H E ME THOD

The number of possible future distributions of fl oods over the next N years is
infi nitely large, and remains large even when flood damages are grouped into
discrete d asses: there are 2N diff erent, equally likely, possible future time series
if damages fal l into just two categories. It is therefore imposa le in practi ce
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•

•

•

• to evaluate numerical ly the present value of fu ture fl ood damages under al l
possible fu ture outcomes, and it is necessary to resort to an approach based

• on computer simulation.

• The approach developed has the following stages:

• (i) defi ne the input characteristi cs, namely the fl ood frequency relationship,
the damage-magnitude/duration relationship (perhaps with and without the

• al leviation scheme), the discount rate, the proj ect design life (or, more
generally, the time horizon of interest N), the desired 'target' present

• value of damage (which may be equivalent to scheme costs, for
example), and the number of repetitions in the experiment;

( ii) generate  N  years of fl oods, converting each annual value to fl ood damage
• and discounting to present values. Maintain a running sum of the

present values;
•

(ii i) store both the total present value of damages incurred and the year at
• which the accumulated present value exceeded the target value;

• (iv) repeat stages (i i) and (i ii)

• (v) produce histograms and cumulative frequency distributions describing both
the present value aft er N years and the time taken to achieve the

• target value.

• Th e present value of damage incurred in year 1 is calculated from:

• Damagei
Present value1 5.1

• ( l +r) i

• where r is the discount rate.

• It is important to note that the mean of all possible estimates of the present
value of damages after N years is exactly equal to the present val ue of

• average annual damages discounted over N years. In other words, the
conventional estimate of the present value of fl ood damages at a site is equal

• to the expected present value.

• Beran's ( 1987) procedure was also based on the simulation of time series of
fl oods.

•

•
53 AN EXAMP LE APPLICAT ION

.•

• The method outl ined in the previous section was implemented on a PC, and
applied to the estimation of the present value of fl ood damages at a site in

• southern England. The following assumptions were made:

' • (i) the relationshp between fl ood magnitude and fl ood frequency remained
constant into the (inure: this assumption could be relaxed to al low for,

•

•
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for example, the eff ects of cl imate or land use change;

(i i) the exposure to fl ood loss remains constant over time: this too could be
relaxed to allow for changes in fl oodplain land use;

(i ii ) only one fl ood can cause damage in any one year : this assumption could
be relaxed by using a dif fercnt fl ood generation process (such as one
that generates a diff erent number of floods each year);

(iv) the discount rate was fi xed at 5%, and the target present value (in this
case estimated scheme costs) was set at 126.68milli on;

(v) 1000 repeti tions were made.

Figure 5.1 shows four diff erent synthetic 50 year time series, each with a
diff erent present value of fl ood damages: the diff erence between Run 1 and
Run 2 is particularly str iking, and emphasises the greater 'value' of fl oods
which occur towards the beginning of the time period.

The distr ibutions of present values of fl ood damages af ter 25, 50 and 75 years
are shown in Figure 52 . Th ere is clearly li tt le diff erence between 50 and 75
years, because the present value of even large fl oods 50 years into the future
is small (less than 9% of the monetary value, with a discount rate of 5%).
Over the next 50 years, the present value of actual fl ood losses (and hence
realised scheme benefi ts) ranges from a mil lion to near ly / 1130milli on. A lthough
the present val ue of average annual benefi ts is less than the present value of
scheme costs, there is a 34% chance that the actual benefit wi ll be greater
than the scheme costs. For comparative purposes, there would be only a 44%
chance that a scheme that was j ust cost effective (wi th the present val ue of
costs equal to the present value of benefi ts) would actual ly give benefi ts
greater than costs over the next 50 years.

Figure 5.3 shows the distribut ion of times needed to accumulate the targct
present value. There is a 10% chance that the target will be reached wi thin
approximately 12 years, but a 45% probabil ity that the benefi ts wil l never
reach the target.

The sensitivi ty of the conclusions to changes in the target benefi t value and
fl ood frequency relationship were also explored in the original study.

5.4 CONCLUSIONS

This brief chapter has summar ised a simple method for determining the
probability that the present value of fl ood losses (and hence fl ood alleviation
benefi ts) actual ly incurred over the  next N years, which depends on the timing
of fl ood events, exceeds particular speci fi ed target values. The method allows
the adoption of a risk-based approach to scheme evaluati on. The conventi onal
approach is based on the expected value of future benefi ts, but an al ternative
would be to implement a scheme if there was, for example, at least a 30%
chance of scheme costs being covered over the ensuing time period (note that
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•
in the example used in the chapter, the probabil ity that a scheme which was
just economically effective in conventional terms - would actual ly show

•
benefi ts greater than costs was less than 50%).

•
A lthough the example makes • some restrictive assumptions about changes in
r isk over time, it is possible to use the method to evaluate the frequency

•
distr ibution of present values under changing climate, catchment and fl oodplain
land use conditions.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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•
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6. Conclusions
•
•

6.1 A SU MMA RY OF T HE CO NCLUSIONS
•

This report has examined the effect of a number of diff erent types of
uncertainty on the estimation of fl ood magni tudes and the evaluation of the
benefi ts of fl ood alleviation.

Chapter 2 concentrated on the estimati on of the rate of occurrence of fl oods •
during a N-year period and, in more detail , the estimation of the magnitude
of the T-year fl ood exceeded with a given degree of risk. The conventional •
approach is to use a method which gives an unbiased estimate of the
magnitude of the T-year fl ood, but it was shown that this estimate wil l
probably be  exceeded  in the future more frequently than once in T yean . A
method was proposed, based on the concept of expected probabil ity, to •
produce an estimate of fl ood magnitude that woUld be exceeded in the future,
on average, once in T years. The method took the fo rm of an increment to
add to a conventional estimate of the T-year fl ood (produced by applying a
GEV distr ibution with parameters estimated by probabil ity-weighted moments):
the size of the increment refl ects sampling uncertain ties, and increases as
records become shorter, as the annual fl ood data become more var iable, and
as return period increases. A conventional estimate of the 50-year fl ood made
from a sample of j ust 10 years would have to be increased by over 18% to
produce a magnitude with an expected probabil ity of 1150 (assuming 'average'
fl ood characteristics). •

Chapter 3 examined the eff ect of uncertainties in the estimation of a fl ood
frequency relationship at a site on the bias and precision of estimates of
average annual damage. I t was found that average annual damage tended to
be overestimated, with bias increasing as the return period at which damage
commenced increased: it is clearly important that this critical return period is •
estimated in practice as accurately as possible. Hydrological uncertaint ies lead
to very large sampling uncertainties in the estimate of average annual damage.
Th e use of expected probabil ities in the calculation of average annual damage
was found to results in even greater overestimati on: al though the expected
probabil ity approach gives an estimate of the magnitude exceeded with a given
risk, it does not produce an unbiased estimate of the risk associated with a
given magnitude, and it is the estimated probabil ity at which damage
commences which largely determines the magnitude of average annual damage.

Confi dence intervals on estimates of both the estimated fl ood magnitude X./. •
and the return period of a given magnitude Tx were considered in Chapter 4.
Computer simulation experiments showed that the assumption that the sampling
distr ibution of estimates X.r was Normal, and therefore that confi dence
intervals could be estimated from the var iance of Xi , was inappropriate: the •
true upper 95% confi dence limit is larger than that based on a Normal
distr ibution, particular ly for high return periods, short sample sizes and highly
variable fl ood data Confi dence intervals for estimates of the T-year fl ood are
currently best approximated by computer simulati on experiments, and the •
experiments can also give confi dence intervals for the estimated return period
for a given magnitude fl ood. Such confi dence intervals are frequently required
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•

•
in practice .

•

The conventional approach to benefi t assessment compares the present value of
III scheme costs with the present value of the average annual benefi ts of the

scheme (i.e. fl ood damages averted). In pract ice, however , the actual benefi ts
• that will be realised will depend on the timing of fl ood events over the

project life: t he grea ter the number of fl oods early on, the larger the present
• value of the benefi ts realised. Chapte r 5 ou tlined a method to simula te the

probability distribut ion of the present value of fl ood benefi ts, from which the
• probability that the benefi ts will in practice exceed, for example, scheme costs

ca n be determined. Th e method allows for un certa inty in the fu ture sta te of
• the wor ld (as represented by the actual pattern of future fl ooding), rather

than uncertainty in the par ame ters of a particular mo del of the world , unlike
• chapte rs 2, 3 and 4.

• 6.2 SUMMA RY OF RE COM MENDAT IONS

•
Th e rep or t makes the following recommendations:

•

Assessments of the precision of estimates of flood magnitude s, flood
• re tu rn periods and average annual dam age be made using compu ter

simula tion expe riments.
•

Expecte d probability should no t be used in the calculation of average
• annual fl ood damages.

• Th e possibility of basing scheme assessments on the likelihood of the
present value of scheme benefi ts exceeding scheme costs be considered.

•

Th e safety facto r to be added to an individual estimate of the design
• fl ood X,r shou ld be such that the adjusted fl ood magnitude has an

expected probability of occurrence in the fut ure of v r. This would mean
• that the fl ood is exceeded, on average, with the desired r isk.

6.3 F URT HE R ST UD IES

The report has shown how hydrological uncertainties may have very significan t
eff ects on design fl ood estimation and scheme assessment, and recommends

•
that compu ter simu lation experiments are used to indicate the precision of
estimates of fl ood magnitudes, fl ood ret urn periods and average annual

•
damages. Fu rthe r stu dies, ' however, could be under taken to develop more
analytical and hence faste r methods, once the details of a new UK fl ood
frequency estimation procedure are fi nalised.

• In particular, stu dies will be needed in the following areas:

•
(i) exact co nfi dence intervals around estimated fl ood magnitudes fo r the

recommended single-site frequency analysis procedure ;

•
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(ii ) methods for estimating the confi dence intervals around regional
dimensionless fl ood frequency curves. Such confidence intervals will need
to refl ect both the sampling uncertainties involved in estimating a
regional curve from a number of possibly correlated catchments and the
uncer tainties due to within-region heterogeneity;

(iii) exact methods for determining the confi dence interval around an estimate
of the return period of a particular magni tude fl ood;

(iv) calculation of expected probabil ity corrections to be applied when fl ood
magnitudes are estimated from a regional analysis.
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Abstract : Conventional fl ood f requency analysis is concerned wi th provid ing an unbiased estimate of
the magni tude of the desi gn flow exceeded wit h the probabi l it y  p .  but sampling uncertainties imply
that such est imates wi ll , on average. be exceeded more f requentl y. An alternative approach is there-
fore, to deri ve an esti mator which gi ves an unbiased  estimate of flow r isk: the dif ference  between
the two magni tudes reflects uncertaint ies in.parameter esti mat ion. An empirical procedu re .has been
developed to est imate the mean•true exceedance probabil it ies of conventional estimates made using
a GEV •dist l ibut ion fi tt od by probabtl it y weighted moments, and adjustment factors •have been 'deter,
mi ned to -enablé the e.sti mation .of flood magnitudes exCeeded wi th , ow average., the desired probabi l-

Ke, words: Flood r isk, fl ood f requency analysis. generalised extreme value distribut ions

Int roduct ion

I f the hydrologist had perfect knowledge of the flood frequency relat ionship at a
site there would be no controversy over the estimation of flood magnitudes
corresponding to speci f ied frequencies. However, in pract ice the hydrologist knows
neit her the form of the most appropr iate stat istical model of flood frequencies nor
the values of thc parameters of this model and must therefore make assumpt ions
and estimates. The conventional approach is to select a model and estimate it s
parameters in such a way that, because of sampl ing uncertai nties, the best estimate
or the magni tude of thc flood with probabi li ty of exceed:lance p is obtained. M any
probabi li ty distribut ions and parameter est imation procedures have been proposed
and appl ied, but it has been noted that , because of sampl ing uncertainties, the best
estimate of the magni tudc i p of the fl ood with probabi li ty p and return period
T ° 1/ p wil l probably be exceeded in thc future more f requently than once in 7'
years.  I n  other words, i f risk is defi ned as the probabil ity that the design fl ood wi l l
bc exceeded in any one year, the "expected" risk of having an event greater than
the esti mated magnitude i p i n the fut ure is greater than p . Stedinger ( 1983)
argued that fl ood managers did not need the best estimate of the magnit ude of the
p probabi li ty fl ood, but needed instead the fl ood with a speci f ied risk of
occur rence. It is therefore necessary to estimate the flood with an expected ri sk
equal to p (Beard, 1960; Hardison and Jennings, 1972).

This magnitude will be higher than the convent ional best unbiased estimate of
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the magni tude of thc  p  probabi li ty fl ood , and the di fference wil l depend on uncer-
tainties i n parameter estimation. T he di fference between thc two magnit udes can
be seen as an 'adj ustment factor', which can bc appl ied to a conventional estimate
to determi ne the fl ood magnitude which, given available data, can be expected to
be exceeded with the desired probabi li ty or risk  p .  I t is thc objective of this paper
to develop a procedure for est imating this adj ustment factor for the generalised
ext reme value (G EV ) distribut ion. I t is f i rst necessary to examine more closely thc
reasons why thc conventional best estimate of the fl ood with a probabil i ty of
exceedance  p  gi ves a biased estimate of fl ood risk.

2 T he r isk of a fl ood greater than the estimated design fl ood

Figure l a shows a hypothetical sampl ing distr ibution of estimates of thc fl ood mag-
ni tude exceeded wit h probabil it y  p .  It can be seen that this particular method
(the actual method is not important for this i l lustration) gives an unbiased estimate
of the magnitude i p (the mean of the sampl ing distribut ion is equal to the true
value) and that estimates are approximately normally dist ributed. Figure l b shows
the distr ibut ion of true exceedance probabi l it ies of each est imate lip, and it is
im mediately clear that this distr ibut ion is highly skewed wit h a mean di fferent to -
and greater than -  p .  In other words, the mean true probabil ity of the estimates of
design magnitude  i p  is greater than  p  even though thc mean magnitude is equal to
the t rue magni tudc, and this is due to sampl ing uncertaint ies (Beard 1960;
Hardison and Jcnnings, 1972).

I f there were many independent rivers in an arca wit h thc same underlying
parent formo here would therefore be events greater •than i p o n average more than
o nce  every  T.  U ri  years: •A similar effect WoUld be .observed ,  if  many i ndepen-
dent samples could he taken at one sit e of interest. Beard ( 1960) 'cal led the mean
t rue probabili ty of cstirnates, x'p the expected probabi l it y. but Hardison and Jen-
nings' ( 1972) term "average exceedance probabi lity" is clearer and emphasises the
idea of averaging across samples. T hc average exceedance probabil it y of i p is
greater than the desired probabi l it y because of thc shape of the relat ionship
between magnitude and probabi li ty, al though the precise di fference var ies between
probabi li ty distr ibut ions.

Several approaches have been developed to produce an unbiased est imate of thc
probabi li ty of a f lood of magnitude x . Moran ( 1957), for example, assumed that
floods (or their logari thms) were normal ly distributed , and noted that a future
value x and sample mean i are therefore both independent normal random variates
with common mcan p and variances o 1 and  & I N ,  whcrc  N  is sample size. If the
sample standard deviation .5 is substi tuted for a . thc stat istic :

x —  

+ s2/ I V I / 2 ( I )

therefore fol lows Student's  r  dist ribution wi th  N —  I degrees of f reedom T he
probabi li ty  p  of magnitude x can be obtained from:

p =  prob [
x  <

(2)
.5[ 1 + 1/ N )112 — PA

and the magnitude i p exceeded with probabi l ity  p  is therefore simply obtained by

rearranging Eq. (2) (Stedinger 1983) :
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near< I. Sampling distribution  of  estimates  of x0.1  and distr ibution  of  truc probabi l it ies  of  esti:
mates

+ 4 [ 1 + 1/ N 1 2r (3)

Here, tp., is the quanti le with exceedance probabil i ty p from a Student's i distribu-
t ion wit h v = N —  I degrees of f reedom. Beard ( 1960) derived the same expres-
sion dif ferentl y, followi ng Proschan's ( 1953) proof that the expected probabil ity
( i .c. aVerage tr ue exceedance probabi li ty) of a statistic based on the mean and stan-
dard deviat ion of a sample from a normal distribut ion was a simple funct ion of
Student 's i dist ribut ion. A lt hough the two expressions are thc same, there is a
di fference in interpretat ion: Moran's ( 1957) deri vat ion makes no reference to the
idea of averaging across many samples. Simi lar expressions have been derived for
some other distribut ions (Lall 1987) .

A n al ternat ive approach uses the idea that the expected value of a random vari -
able  y  is equal to

E 0 ' ) = ft J O') dy (4 )

where f (y )  is the probabi li ty densi ty funct ion of y . T he expected probabil i ty of
fl ood magni tude greater than X can therefore bc computed f rom

f (x )  — 1 1(x  10)f (0)  d0 (5)

(6)

• Here.  f (x  10) gives the estimated probabi l it y of x given parameter set the, and
f (0) is t he probabil it y of parameter set 0 being correct . If f (0). is in fact a poste-
riot distri bution combining pr ior knowledge about the distr ibut ion of thc parame-
ters with sample infor mation using Bayes theorem, Eq. (5) is the Bayesian distribu-
l ion (also known as the margi nal density funct ion or the predict ive densit y). Such
Bayesian distr ibut ions have been derived f rom frequency distr ib utions used in flood
frequency analysis by, among others, Cunnane and Nash ( 1971), Wood and
Rodriguez-l turbe ( 1975) and Stedinger ( 1983), and are reviewed by •Kuczera
( 1987). T he form of thc distribut ion depends to an extend on the assumed form of

• the prior distr ibut ion, and Stedinger ( 1983) showed how, under certain condi t ions,
the Bayesian dist ri bution derived f rom a lognormal distri but ion is numerical ly

• identical to Eq. ( 3).
The Bayesian approach, however, has the advantage that informat ion from a



204

T able I . M ean t rue execedance probabili ty of events greater than estimated design magnitudes.
G EV parameters esti mated by probabil i ty-weighted moments

— K i l n rctur n period (years)
1 1  

csign pro a i Iv — 07 0.04 0.0 2 0.0 11  0 010  
rue magni tu  c 2 707 2 .4 19 1.214 34. 42  36.500

mean estimate  2 .41 31.4 1 4,  57 2 .
s. . est imate  .1 8. 11.410 13 4

mean t rue cacce ant e pro i it y  .11 4 0 4 0.0264 224

G EV parent :  u 10.0, o — 4.0, k -0 .15;  Sample size n 20; N umber of repetit ions 1000.

numbcr of sources - site data, regional information and 'engineering j udgement' -
can be incorporated into thc assessment of the probabil i t ies of di fferent parameter
combi nations.

T hc est imated magnit ude with an average true exceedancc probabili ty p is
larger t han an unbiased est imate of fl ood magni tude, and there is a greater risk of
overdesign than underdesign: although on average, sample esti mates are exceeded
wit h the desired r isk, a higher proport ion are exceeded less frequently . I t is possi-
ble to der ive an estimator which, instead of focusing on the mean t rue exceedance
probabi l it y , aims at the median. Such an est imator would give est imates that arc
act ual ly exceeded more or less f requent ly than desired wit h equal probabil it y, but
there is no reason why equal probabil it ies of under or overdesign should bc sought
(Stedinger 1983). Indeed, caution suggests that overdesig n - as is more l ikely using
thc unb iased risk estimator - should be preferred.

3 Applicat ion to the CEV distr ibution

The general ised ext reme value (C CV) distribution was recommended for use in
fl ood f requency analysis in the U.K . Flood Studies Report (N ERC 1975). and has
been widely appl ied. It has the fol lowing ((Um ( lenkinson 1955).

{ expl – – k ( .1: – u )/ a k 0
( 7)F (x ) =

expl – exp l  – (x – u )/ a i l k = 0

When k = 0 the dist ribution reduces to the extreme value type I ( EV I ). Parame-
ter est imat ion procedures include the method of su l k s (N ERC 1975) and max-
imum l ikel ihood ( Prescott and Walden 1980), but 1-loski ng et al. ( 1985) showed
that parameters estimated using probabili ty-weighted moments were less biased and
more ef fic ient for the short sample sizcs encountered in hydrology.

Table I il lustrates that estimates of flood quantiles, whilst nearly unb iased . are
exceeded more f requent ly than desired: the table was constructed by repeatedly
generat ing a synthetic sample f rom a G EV d istr ibution. esti mating the parameters
by probabi l i ty-weighted moments and determining the true probabil it ies of
exceedance of est imated quanti les f rom parent parameters.

T hc fo rm of the GEV distr ibution means i t is very di f f icult to f ind analytical ly
an cxact expression to give unbiased estimates of the probabili ty of fl ood magni-
tude simi lar to that derived by Moran ( 1957) for the lognormal distr ibution. It is
therefore necessary to develop an empi rical analogue to Beard' s ( 1960) approach,
and der ive empir ical ly the average t rue exceedance probabi li ty of conventional esti-
mates of the magni tude i p. Hardison and Jennings ( 1972) employed such a pro-

cedure wi th the log-Pearson type I l l distr ibut ion to convert 'conventional' probabil-
it ies (as impl ied by parameters fi tted by the method of moments) to average
exceedance probabi l it ies, and derived the relat ionship by computer simulation.
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T hc approach adopted in this paper is to develop empi ricall y a relationship
between the probabi l i ty of a magnitude x calculated using parameters est imated by
thc method of probabi li t y-weighted moments (G EV-PWM ), and the average t rue
exceedance probabi l it y of that magnitude, in a sim ilar vein to Hard ison and Jen-
nings ( 1972). However, whereas with their method it is necessary to replot the
f lood frequency curve af ter correct ing est imated probabi li t ies and to f ind graphi-
cally the magnitude with average exceedance probabil it y p , the method presented
here al lows the di rect estimation of thc magnitude of an event with a speci f ied
average exceedance probabi l it y. T hc method produces an increment to be addcd to
t he probabi li ty-weighted moments estimate of a flood quanti le. and this increment
can be seen as a r isk-based 'adj ustment factor' enabling the conversion f rom
unbiased esti mates of fl ood magnitudes to unbiased estimates of flood risk. As
sample sizes increase, uncertainty and, thus, thc d if ference between the two estima-
tors. decrease; and the adj ustment factor also di minishes. T he Bayesian approach
was not explored part ly due to the dif fi cul ty of choosing appropriate forms for the
pr ior distributions of parameters but mainly for pract ical reasons: the G EV-PWM
estimation procedure is widely used and i t is logical to conceive of a way that
al lows design magnitudes  exceeded  wi th a specif ied risk to be determined using an
adj ustment factor added to an  estimate. I t is appropriate at this j uncture to note
that different results would be obtained  i f an attempt was made to produce an
unbiased est imate of the return period of a particular magnitude (because I / fi is n
ot equal to ( 1/ p )) . This approach was not fol lowed as the distribut ion of t rue
rcturn periods of est imated flood magnitude is more highly skewed than the distri-
buti on of tr ue exceedance probabil it ies (and is virtual ly unbounded). It is more
dif fi cult to obtai n stable estimates of the average true rcturn period by simulation.

4 Computat ion of adjustment (actors

Adj ustment factors can bc determined using computer simulation according to the
fol lowing stages:

I ) generate a sample of synthet ic annual f loods of stt.c. N f rom a spect fted G EV
parent distr ibut ion.

2) esti mate parameters u , a and k using probabi li t y-weighted moments

3) compute the true probabi li t ies of thc estimated magnitude A,,  and

A F.i ra• where A F ranges from 0.01 to 0.5 in increments of 0.0 1;

4) repeat the process many times and compute the mean true probabi li ty ( the
'expected probabil it y' ) for Ap anti each increment T,, +  A t - i f,

A graph can be const ructed f rom ' the results of stage 4. and an example ts
shown in Eig. 2. Values of 11, A F i p wi th average exceedance probabi li ty p are
then obtained by interpolat ion aided by log-li near regression of + on p .
Experiments were run with sample sizes of 10 ( 10) 50. 70, 100. parent coefficient
of variation C V 0.4 (0.2) 1.0 and parent k parameter -0.3 (0. 1) 0.1, and adj ustment
factors A V were computed for T = 1/ p of 10, 25, 50, 75 and 100 ycars. T hc
experiments consisted of 10000 repeti t ions for all except the runs with sample sizes
of 70 and 100, which uscd 1000 repeti t ions. Adj ustment factors for other return
periods can be approximated by drawing a curve through the poi nts defi ned by thc
computed adj ustment factors and interpolat ing. T he shape of the relat ionship
between probabili ty and magnitude varies wi th parent distribut ion parameters.

Some of the resul ts are tabulated in T ab le 2 by return period T, C V,k and sam-
ple size N . and the variations are il lustrated in Fig. 3 which shows results for
k —0 . 1.  I t is clear that the adjustment factor A F reduces as reco rd lengt h
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Fi gure 2. Var iation of average ei ccedance probabi li ty with magni tude i , + Ar i , for various
retur n periods T 1/ p

increases and as parent  CV  reduces, and from Table 2 it can be seen that for short
records at least the adj ustmcnt factor reduces as  k  becomes larger (i .e.. the skew of
the parent reduces). The highest adj ustment factor calculated for the 109 year
fl ood , is 0.685 'wi th  IV =  10,  CV =  1.0 and  k  —0.3: 0.685 1001  must bc added
to t he G EV-PW M estimate of the 0.01 probabili ty fl ood to yield the magnitude
with an expected probabili ty or risk of 0.01 For larger samples, however. the pic-
ture is less cleat. In general , i f  T  is less than sample size N . the lowest adj ustment
factor occurs with parents with  k  close to 0, reflect ing the relat ive decline in
G E.V-PWM performance as  k  departs f rom zero: for shorter record lengths perfor-
mance is infl uenced by the interact ion between record length and parent  k .  I t is
interesti ng to comparc adj ustment factors for the GEV dist ribution with simi lar
adj ustment factors for the two-parameter lognormal dist ribution. T hese can be cal-
culated di rect ly from

=
ex p [ t7 s( I + 1/ 0 " 1/ p fi _ i j — expl .)7 + z03 ]

A P  
expIi +  zpsi

= lexp l ( 1 u n)1121pr t zp11(106,0  +Cvi»'" — (8)

where  z  is the standard normal deviate with exceedance probabil it y  p .  In general ,P
the adj ustment factors for the lognormal distribution arc sinaller for long record
lengths, but for smal ler samples arc simi lar to those for thc GEV with  k  between 0
and -0.2. Figure 4 shows the variations in adj ustment factor with sample size for a
parent  CV  of 0.6.

5 Application of the technique

W hilst Table 2 shows clearly the var iat ion in adj ustment factor across sample size,
C V and k , i t is not very easy to use in pract ice where interpolation is necessary A
simple model was therefore developed to predict adj ustment factor AF f rom
N , CV and k , and has the general form:



Table 2. Adj ustment factors to convert a GEV -PWM est imate of X T to

a magnitude wi th expected probabil i ty WE
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- G F.V is 0.1
. . 1s  4

Return peri od

C it y k m0.00
. .ts 4

Retur n period
N 10 25 SO 75 100 N 10 25 50 75 100

10 .0415 .0615 .0947 A 224 1456 10 .0477 0 873 1369 .1744 1046

20 0 283 .0366 6 534 .0690 0 827 20 .0281 .0484 0772 1004 .1198

30 .0220 .0275 .0384 .0488 .0582 30 .0182 .0316 0517 .0683 .0826
40 .0203 .0241 .0317 0 389 .0456 40 .0147 .0239 0384 .0507 .0613
50 .0193 0 227 0 293 0 355 .0412 50 6 125 .0199 0325 0429 0 523
100 .0/73 .0207 .0251 .0287 0 317 100 .0083 .0123 M 191 0 250 .0302
-_ C V . m 0.60

Return period Ft eturn period
N 10 25 50 75 100 N 10 25 50 75 100

10 .0728 .0995 1 433 1802 .2112 10 .0879 1 379 .1999 .2472 .2856

20 .0412 .0524 .0746 0949 .1128 20 .0473 .0726 .1078 .1363 .1601

30 .0288 6 361 .0504 0639 .0762 30 0 300 .0467 0710 .0911 1082

40 .0244 0 293 .0390 0482 .0567 40 0 235 .0350 0523 .0668 .0794

50 0 220 .0264 .0347 0426 .0499 50 M 195 .0289 .0436 .0562 .0672
100 M 173 .0209 .0261 0304 .0342 100 .0119 .0170 0251 .0319 .0378

Return period Return period
N 10 25 50 75 W O N 16 25 50 75 100

10 .1001 1 303 1 814 2250 .2617 10 .1216 1776 .2481 .3025 .3469

20 .0523 0650 M907 1143 .1351 20 0 625 .0906 1299 .1619 .1888

30 0 348 X4 30 0594 0748 6 888 30 .0392 0 577 0846 .1069 1 259

40 0 285 0 339 0 448 0554 M 650 40 0 303 0429 0619 0 779 0917

50 .0250 0 297 0 392 0482 0 566 50 .0249 0352 0515 0653 0 773

100 M 181 0 219 .0275 0323 0365 100 M 146 0 204 0291 .0365 0 429

. is .1 C hY  k is-0 20
. . m 4 . m AO

Return period Return period
A' 10 25 50 75 100 A 10 25 50 75 100
10 D 527 .1149 1 840 .2331 2717 10 0 522 1382 1282 .2900 3376

20 0296 .0652 1088 1 413 1677 20 0 296 0829 1432 1 864 2207

30 0171 .04 19 .0737 .0982 1183 30 M 159 0547 1005 1 341 1611
40 0124 0 3136 .0546 .0734 0890 40 M 106 0405 0765 .1033 1249

50 0092 0 240 .0445 0609 0746 50 00 67 0316 0626 0 861 1052

100 0032 .0 114 .0231 0326 0406 100 .0001 0145 .0332 0 475 0594

Return period
C .V.is0.60

Return per iod
N 10 25 50 75 100 A' 10 25 50 75 100

10 1005 .1776 .2611 3209 .3681 10 .1061 1 117 .3186 .3920 4487

20 nstia 13975 .1487 .1870 / 181 20 .0592 .1230 A927 .2824 2817

30 .0333 0630 .1000 1 283 1 515 30 .0361 .0820 1 341 1 721 2025

40 .0249 0467 0 743 0956 .1133 40 0 267 .0617 1022 .1319 1559

50 .0195 0 373 0 608 .0794 .0949 50 .0203 0493 Z840 .1100 1311

100 .0095 M 192 .0325 .0430 M 519 100 M084 .0254 0460 .0615 0743

. 5 . 0
Return period Return perkd

N 10 25 50 75 100 N 10 25 50 75 100

10 1 402 .2266 3 201 A 875 .4409 10 1 511 .2699 3887 4 705 .5338

20 0 734 .1209 1 771 .2193 .2535 20 .0821 .1524 1281 .2820 A 247

30 .0453 .0780 1 182 1 488 .1740 30 0 512 .1013 1573 .1980 .2305

40 .0342 0 578 0875 .1104 .1294 40 0 385 0 764 1 194 .1509 1 764

50 .0271 .0464 0 717 .0916 .1082 SO .0300 .0613 0982 A 257 1 480

100 .0138 .0244 0 385 0496 0 590 100 0 143 0 325 .0541 0 703 0 835
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lOgr A F = const +  a logeN b log, CV + ck. ( 9 )

Di f ferent equations wcrc developed for each of the five retur n periods using mul ti-
ple regression, and the coeff icients are shown in Table 3a together with the coef fi-
cient of determination R 2. It is clear that all except the model for  p =  0. 1 pro-
vide a good fi t to the data. T hc relat ively poor fi t with  p  0. 1 is due to the
highly non-linear relat ionship bet ween adj ustment factor and CV and  k ,  part icu-
larly for long record lengths (as i l lustrated in Fig. 3). Another model was therefore
developed from the equat ion to calculate adj ustment factors for the lognormal dis-
t ribut ion. The standard normal deviate  z  is equal to the f requency factor  K  in
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(10)

and Eq . (8) can be mod if ied by substit uti ng the frequency factor for the GEV dis-
tr ibut ion for z and replaci ng t with a' parameter  A :

A F
lexp l ( l i / n) 112/4 K GE V W bgeo + c iei r ( I I )

Th e f requency factor for the G EV di st ribut ion is, with  F  1 p.
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T able 3a. Coel f icients of model to est i m a t e adj ustment factors f rom  n, CV  and  k

Design return period (ycars)
10

og,A F  const +  a lo& N +  l og, V +

const o b c  le  
1.1 -1. 11 I . 13  0 .965 1.2

44 . 2 . 3 -2.0970 97 .1
• 5 -0 3 0 6193 - . 255 98.

0 . 0 5525 98.
• 3 . 291 172 8.9

T able 3b. Coef fi cients of model to estimate adjustment factors f rom  it . CV  and  k

Design return period (years) const  a l ?  
I  .1 25 0 2 41 111 0 .9558 99 .6
2 . 1 2 142 . 143 98.

2 . I . 131 . 44 9 3
.14 . I I . 1 1. .

I .1 . 31 -0 02211 1.03 I 7.4

•• const + o log, N + blog,C V + cili Gee: A F H eepR I + 1/ n )1I2A  Kar v e sdi +Cv2il in
K Gr y as gi ven in Eq ( 12)

K GE V

( —logeF)A — fi t + k )

( r ( l + 2k ) — r 20 0 )1/ 2

( —logr f )k — r ( l  + k )

k <  0

k >  0
(r o -r 2k ) 1-2( 1+ 0 )112

= 0.45 + 0.779( —loge( —log, F ))  k  0. ( 12)

Thc parameter A in Eq. ( I I ) varies wi th rcturn period, sample size,  CV  and  k ,  and
a simple regression model of thc form

log, A const + a log, N h log, CV + clogeKGEvp ( 11)

was constructed. The parameters arc shown in Table l b. and it can be seen that
the f i t of this model at lower return periods is much better than that of thc morc
naive model in Table 3a. Whilst the exact form of this model derives of course
f rom the lognormal distribution, i t may be possible to develop a simi lar analyt ical
expression for the G EV.

A ppl ication of thc method therefore involves thc fol lowing stages.

I ) estimate G EV parameters from the sample using probabil it y-weighted
moments;

2) est imate the quant ile i t, from parameters;

3) usc the equat ions in Table 3a or 3b to predict  A F  from sample size  N ,  sample
C V  and estimated parameter  k ;

4) compute new quanti lc estimate as i t, +  A F-4 .

A fur ther set of computer experiments was run to i ll ustrate the effect of apply-
ing the risk-based factor to estimated quant iles. Adj usted quanti les were computed
as previously descr ibed, and the mean t rue probabi l ity of events greater than the
new adj usted  i p  was calculated. T he results are shown in Table 4a and 4b, and are
direct ly comparable wit h those of T able I : it can be seen that the use of the
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• Tabk 4a. M ean t rue exceedance frequency of events grea ter than estimated design magnit udes.
G EV parameters est imated by probabili ty-weighted moments and adj ustment factor added to design

• est imates. Model f rom Table 3a

esign return per t years)

• 4 75 I
esign pro a i ny  .1 0.0  . 13 .  10  

•
rue magnit u c 2 .7 2 4 1.21 34. 42 36.500

mean e t i M a t e I . 7 3 . 7 42. 13 47.32
S. . estimate .4 2 I . 1 .084 .344

O mean tr ue exec ance pr a i i ty .10 7 0. 4 .024 .  I 0 0.  145

•
GEV parent : u —• 10.0,  a —  4.0. k — -0 .15: Sample size  n  20; Number of repeti t ions r— I .

T able 4b. M ean tr ue f req uency of events greater t han estimat ed design magnitudes. G EV parame-

•
ters estimated by probabili ty -weighted moments  and  adjustment factor added to design es t imates .
Model f rom T able 35

•
m an return pen years

I I
rgn pro a l ay , 4 0 . .013 . 1

• rue magntt u e 2 . 2 .41 1. 14 ' 34, 4 3 .
mean est imate I . .41 3 . 2 3 . .1

• S. . es t i m a te .33 . 1 . 1 11.698 15.367
mean t rue exec& am< pro a i it y  0.1  37 . 23 0.01730.043 0.0 142

• GEV parent : u    10.0,  a  —  4.0, A — -0 .15; Sample size  n ...  20, Number of repeti t ions — 1000.

•
adj ustment factor produces estimates of f lood quami les which are exceeded with
more near ly the speci fi ed probabil it y or risk. The actual risk is not quite the same
as thc speci fi ed r isk even aftcr adding the adj ustment, due to bias in esti mating

O population C V from sample data and, more part icularly, bias in estimating k
(Flosking ct al . 1985).

0
6 Conclusions

Flood f requency analysts conventionally use a method which gives an unbiased esti -
mate of t he magni tude of the p probabil i ty flood i ,, to estimate design floods.
However, the expected probabi li ty or risk of a future flood larger than the cst imatc
i r is greater than p due to sampl ing uncertaint ies. and Stet-linger ( 1983) has
argued t hat fl ood managers need a technique which provides an estimate of the
-fl ood i p exceeded i n the future wit h specif ied risk /7. Such estimates may be

• obtai ned using Bayesian methods and several examples have been presented in thc
l it erature. Bayesian methods however, may be dif f icult to apply in pract ice, and
resul ts wil l depend on the form of the selected prior distribut ion.

A n empir ical technique has, therefore, been developed to estimate thc magni-
tudes of fl oods exceeded with specifi ed probabi l i t ies based on the generalised
extreme value (GEV ) distri bution. Thc method takes thc form of an adj ustment
factor to be added to an estimate of the magnitude of the p probabil i ty fl ood i p
obtai ned convent ionall y using the method of probabili ty weighted moments, to
yield an estimate exceeded with risk p . T he adj ustment varies wit h the uncert ainty
in parameter estimation, and hence with sample coefficient of variat ion, GEV
shape parameter k and sample size. Adj ustment factors were determined numeri -

• cally using computer simulation experiments to calculate the average t rue
exceedance probabi l it y of an an estimate and a simple model has been constructed

•
to est imate the appropriate adjustment factor for the site of i nterest . Because the
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dif ference between an unbiased estimate of fl ood magnitude and an unbiased esti-
mate of f lood risk depends on parameter uncertainty, thc adjustment factor can bc
seen as an index of this uncertainty.

Acknowledgements

T he work presented in this paper was undertaken as part of a research proj ect
funded by the M inistry of Agricul ture, Fisheries and Food. T he author ack-
nowledges the helpful comments of the anonymous reviewers

References
Beard, L .R. 1960: Probabi li ty est imates based on small normal di stri but ion samples.  J.  Geo physical

Res, 65, 2143-2148

Cunnanc, C.; N ash, L E. 1971: Bayesian estimat ion of f requency of hydrologic events. M athematical
Models in H ydrology. 1A HS Publ . 100. 47-55

Hardi son, C .H .; Jennings, M.E. 1972: Bias in computed flood risk.  I  Hyd. Div., A m, Soc. Civ.
Eng. 98. 415-427

Hoskin& J.R .M .; W all is, J.R.; Wood . E.F. 1985: Es t imat ion of the general ised extreme value distri -
but ion by the method of probabil it y-weighted moments. Technometrics 27. 251-26 1

Jenkinson, A .F. 1955: T he frequency d istri but ion of the annual maxi mum (or minimum) of meteoro-
logical elements. Quan . J. R. Met. Soc. 8 1, 158-17 1

Kuczera, G . 1987: T he Bayesian f ramework for inference in fl ood f requency analysis. In: Singh,
V .P. (ed .) A pplicat ion of f requency and risk in water resources, Proceedings of a symposium
on flood f requency and r isk analysis, Baton Rouge. Louisiana 45-61 Reidel : Dordrecht

Lail, U . 1987: Projcct r isk considcr ing sampling uncertainties and a f inite proj ect operat ion period .
In: Singh, V .P. (cd.) Appl ication of f requency and risk in water resources. Proceedings of a
symposium on flood f requency and risk analysis, Baton Rouge. Louisiana. 305-318. Reidel:
Dordrecht

M oran, P.A .P. 1957: T he statistical t reatment of fl oods. EOS. Trans A T . Geophys. union. 38.
519-523

N aturavl oElsrivi ronment Research Counci l 1975: Ello ,d stud ies report . H MSO: London. 5

Prescot t , P.; Walden, A .T . 1980: Maximum-likel ihood estimation of t he parameters of t he general -
ised ext reme value di str ibut ion. Biometri ka 67, 723-724

Stedi nger, I R. 1983: Design events wi th specif ied fl ood r isk. Water Resnur Res 19. 511-522

Proschan, E. 1953 Conf idence and tolerance intervals for the normal distr ibut ion 3. A m. Stat ist .
Assoc ., 48

Wood, E.F.; Rodriguez-Iturbe, I . 1975: Bayesian inference and decision making for extreme hydrolo-
gic events. Water Rcsour. Res. I I . 839-843

Accepted May 30. 1988.



•

•

•

• Appendix B

•

•

•

• Expected annual damages and uncertainties in
fl ood frequency estimation

•

•

•

•

•

•
Publ ished in: Journal of Water Resources Planning and

Management, 1989.

•
vol. 115, pp. 94-107

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•



•
E X PECT E D A N NUA L D A M A G ES A N » U NC E RT A INT I ES

I N F L O O D F R EQ U EN C Y E ST I M AT I O N

• By Nigel W . Ar nett '

• A B S TR A C T: The expected annual (Lunge is the most frequently used index of the
impact of f looding at a site, h owever . estimates of expected annual dama ges are
very om en:ti n as a result of uncen aintics in both the estimation o f the flood f re-

• queney relation shi p from l imited data and the relationshi ps between magni tude and
damage. Computer simulation experiments using synthet ic floo d peak data and
fi xed magnitude-damage func tions have shown that the sampl ing d isu ibution o f

• ea unates of expected annual damages is highly skewed to a degree depending on
the form of the damage funct ion, and most importantly , that bias i n the estimates
is most closel y related to m aw in the est imated probabil i ty at which damage begins.

• The use of expected probabi l it y leads to a very signi fteant increase in bias in the
est imati on of expected annual damages.

INTRODUCTION

•
W hen designing a schcmc to alleviate fl ooding, planners and engineers

need an est imate of the costs of fl ood damage. T he most commonly used
measure is the expec ted annual damage, which is best understood as the
average of fl ood damages computed over many years. O nc way of calcu-
lati ng this is simp ly to add up a long t ime scrics of annual damages and
divide by the number of years . However , th is is rarely possible in pract ice;
a very long record would be necessary because damage would bc zero in
most years. and in any casc exposure to damage would have changed con-
siderably over ti me.

Expeetnd annual damages are- therefore calcUlated -,by . fi rst fi tt ing a (re-•
• .queriejt distr ihut ion to.fl Ood.Magni tudei . A Iunct ton rnlati ng fl Ood rnagn itudc

l i i d :1111: 6 ., •I S theb used ti der i ve. a I clat io nship t xm.veen -fl ood damajj e and

• the probabi l it y o f uncurl i ng that damage in any one yeal . A l l o l these stages
inc lude unkno wns and uncertaint ies- --the rel at ionship bet ween f lood d is-

•
charge and depth ma y be poo r l y def ined as might thc func t io n relat ing depth
to damage — but it i s the objec tive o f this paper to exam ine the ef fec ts o f

•
the uncert ai nt ies assoc iated w ith the est imatio n o f the fl ood f requency re-
lationship . In par ticu lar . there is uncert ainty abo ut N un the appropriate fo rm
of the stat i stical 1110 d e l I i f f loo d f requenc ies, and the value o f model param -

• eters . T hese uncert ai nties are pr imar i ly due to the problems caused by mak -
i ng i nfe rences f ro m smal l sam ples o f f lood pc ak s . l i i h i s paper . em phasi s

• is placed on par ameter uncert ainty — the forin o f the model is assumed know n—
and (Mee al ternat ive proced ures fo r est imat ing expected annual damages are

•
compared . Pract ical im pl icat ions o f bias and var iab i l i ty are also considered .

E STIMATION OF E XPEC TED A NN UAL D AMAGES

•
A t i ts simplest . the mean o f a randrun vari able .r such as annual fl ood

•
damage is

'Res. Hydro logist. Inst. rif Hydrology , Wall ingford , Oxon, OX IO 88 B, UK .
Note. Discussion open unt il June I , 1989 . To extend the closing datc one month.
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Average annual
damage

Exceedance pro babil it y

FIG. I . Expected Annual Damages as Area under Damage-Probabllity Curve

f :( r )  .f tf (x)dr ( )

w here  f (s) =  thc probabi l it y density funct ion o f that var iable. Flood f re-
quency analysts are more used to work ing w ith exceedance or non-exceed-
ance probabi lit ies, defi ned by the cumu lat ive d istr ibut ion

E(x) X d F
9

• . . . •. .
whieh show s-thn t expeCted "annual damages.are ,equat to t he arca under -the
graph o f dnmage against . non-exeCCdance (or exceedanee) probabi lity (Fig .
I ) . T h is is wel l know n to analysts, who rout inely calculate expected annual
damages by computing damage assoc iated w ith several return per iod f loods,
draw ing up a graph simi lar to Fig . I and measuring the a re a under the c l I f Ve

Several autho rs (Hard ison arid Jennings 1972; Beard 1978; T ai 1987) has e
maintai ned, however , that ' convent ional - fl ood f requency est imation pro -
cedures such as the methods of moments or maxi mum l ikel ihood underes-
t imate the t rue fr equency of fl ooding and thus the value of expected annual
damages (A rnel l I 988). Beard ( 196(1) i l lustrated the problem by consider ing
a large number o f independent but ident ical ri vers, each with the same record
length . I f the f locyd w ith an exceedance probabi l it y of 0 .0 1 was esti mated
from each sample and the true exceedance probabi l iti es were determined fo r
each estimate, it would he fo und that the average trb c exceedanee probabi l ity
would be greater than 0 .0 1 even i f the average magni tude was equal to the
true magni tude (because the relationship between f lood magnitude and f re-
quency is not l inear) . Over all sites, events would therefore occur in the
future w ith an average frequency greater than 0 .0 1 Beard ( 196 )) cal led the
mean true cxceedance probabil ity o f estimates o f the magnitude of thc  p
probabil ity event the  expected p robabi l ity  of that f lood , and urged that thc
design fl ood be taken as thc fl ood w ith an expected probabi lity equal to  p .
I f not , hc argued, the r isk of future fl ooding and hence expected annual
damages would be underest imated . Hard ison and Jennings ( 1972) and T ai
( 1987) showcd that use of expected probabi lity resulted in an ' increase in
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FIG. 2. Sampling Distribut ion of Flood Magni tudes and Damages

expected annual damages (because conven ing to expected probabi lity in-
creases the probabi lit y assigned to a part icular magnitude event) , and in-
fer red that bias in the estimation of expected annual damages was there fore
reduced. l l owever ,' a method which gives an unbiased estimate of fl ood ri sk
does not necessari l y give an unbiased est imate of expected annual damages,
and Gould ( 1973a. 1973b ) argued that rathcr than el imi nat ing bias, the use
Of expected probabi lity increased tt . l ie showed that bias in the estimat ion
o f expected annual damages using - convent ional " methods was smal l and
o f the opposne d irectio n lo -t h a t. imp lied kky 'H ard ison and 'Jennings ( 1972) .
Do l an and l in-11-( 1980) s u i t so p i e n t l y sum m ed (j ou ld 's ( 9 / 3a) conclusion,-
using computer sim ulation ev e( ime nts . T he present i nvest ig at ions were de
signed to f.urther c lat i f y this issue .

A second refi nement to the conv entional p roc edure for est im at ing expec ted
annual dam ages has been presented by James and Hal l ( 1986 ) . fo l lowed ti v
T ung ( 1987 ) and Ban et al . 119871. The mediod is based on the reco en inori
that uncert aint y it the parameters o f the flood f reque ncy d i sn Mut ton can be
ex pressed b y sa m p l i n g' d i s t i l h Un o n s f o r $.t o -c 11 Ho o d e s t i n i a l c s , a s

sh o w n I n Fi g 2 . ri om wh ich conf idence l im its can he deter m ined T he sam -
p l ing cl ear tbu t tim o f Ow magn itudes of a g iven Itequency f l oo d can then he
co nverted to a sampl ing d istri bution of f lood dam age using the magnitude-
dam age functi on I Fig . 200 1, and the expec ted value of this sampl ing d is-
tr ibution can be tak en as the appropr iate est imate of damage ti n that f ie
queney . T his can be expressed as

Erm =
0

Return period Return period

w here h(D ) = the probability densi ty funct ion of the estimate of damage  D
fo r a given frequency event . James and Hal l ( 1986 ), T ung ( 1987), and Il an
et al . ( 1987) al l found that the effect of th is refi nement was to increase the
estimate of expected annual damages, altho ugh thc m agnitude o f this ef fect
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depends o f course On the sampl ing deardnit ion of em ulates of l lood Liu:nodes
(which is strong ly infl uenced by record length) and the shape o f the funct io n
[e lating f lood m ag nit ude to damage. T his m or a ini c . too . W a s exam ined tn
the current study .

E XPE R IM ENTAL D ESIG N

The [d ati ve perfo rmances at the preceding convent ional proc ed ure fo r es-
[m iming expected annual damages and the two refi nements were assessed
using computer simulation ex peri inents. A general analyt ical approach is no t
feasible. Gould ( 1973b) deve loped a theoret ical expression fo r bias in ex-
pected annual damages, but was forced to assume a noimal d istri bution o f
fl ood depths and a linear depth -damagc funct ion, and hence a normal d is-
tr ibution o f damages. In essence. the simu lation experiments invo lved. 0 )
Generating a synthetic sample of fl ood depths fm m a pre-def ined parent
d istribution ; (2) estimating the form of the depth-ptobabi lity relationship froni
the sample; (3) convert ing depth to damage using a depth-damage funct io n:
and (4 ) computi ng the area under the depth-probabil ity curve . By generat ing
synthetic f kx)d depths it is assumed that the relationship between fl ood d is-
charge and depth is know n w ith 'complete certainty ; th is wil l not of course
be true in pract ice. Sim ilarl y , step (4) of the procedure neglects uncertaint ies
in the relationshi p between fl ood depth and flood damage.

T hc two -parameter lognorm al d istribut io n was used as the parent d ist r i -
but ion, w ith parameters selec ted such that .the di f ference -between the tm e
10 - and 100 -yeat f lood depths was equal to I ' syntheti c" meter This (I ts

mt rib ion was 'selected beCanSe it Is possib le .10 . :111p ry J clat QCly :CastlY •411r
' M ee :al ternat ive . w ayS .cif ectwi3trp g .c.xpco xf .ailduall (tan/rotes The .f ir sic...
ii i i ivont ional .• approach ti l vec the in I i f Mc. h
from Mc sample data Using NM I the 'met hod o f mo ments and the mel lu s l
o f maxi mum l ike l ihoo d , the p aram eter s can be eq u i rated f ro m

N I _

where A = the na t ural lo ga t i th m o r f lood m agnitude : and N sample su e
The logged depth correspond ing to a speci fi ed hequency can then be cal -
culated from

4 ' NZ, g l )

where z, = thc standard norm al deviate w ith exceedance probability p .
est imate of the logar ithm o f the fl ood which will be exceeded w ith an ex-
pected probabi l ity equal to p can be computed from (Beard l 960 . Sted inger
I983a):
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u = the quanti lL w ith exceedance probaln l i ty p from a student ' s
but ion w ith u degrees o f f i eedoin .

'Il e th ird app roach , Inv o lv ing samphng d istr i bu t ions o f q uanifi e est imates ,
is rat her more compl icated . Sted inge r ( I 9S31)) sho wed that i f (10.xis (o r their
logari th m s) were non nal l y (l isn ibutcd . the sampl i ng d ist i Min io n o i a q uant i le
est imate co u ld he derived using the no n-ceni nd I i tem Mot ion The tandoin
vai i al de \TA( •where

V P)
( ' P

b as a no n-ce ntral i d istr ibutio n w ith now ecoti al i t y patame ter 8 = :, \ CV and
u = N — I degrees o f f reedom . and i t is there fo re possible to determ ine the
val ue o f  k( p ) exceeded w ith probabi l i ty a . Fit 8 can ti Kn be reair anged to
give thc estimate o f the p -probabi l ity fl ood x, (a ) , which would be exceeded
in samples o f size  N w ith pro babi l i t y a : i n o ther w ord s, o f all samples of
size  N  from a lognonnal distri but ion w ith parameters p. and (r . a proport ion
a would y ield estimates of 4 greater than x, (a ) . The expected dam age as-
soc iated w i th excecdance probabi lity  p  (Eq . 3) is compu ted by conven ing
log depth x„(a ) to damage  13,,  using the depth-damage funct ion, and calcu-
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lat ing the area under the damage-a curve. T his was done using Simpson 's
Rule, and thc approximation to the non-ccntral  t  distr ibut ion presented by
Abramowitz and Stcgun ( 1965) was used to compute x (u ) for a g iven prob-
abi lity a . It is clear that th is approach is much more consuming o f com puter
simulation l ime than the other two.

Four depth -damage functions were defi ned as shown in Fig . 3 . T he qua-
drati c has thc fo rm :

[ 1 – (3 – depth)2]
100  

9
(9)

the Gompertz has the fo rm (O uellette et al . 1985):

-
D –

(et -- –

with y = 2 .0 and a = 0 .5 , and the logistic function is defi ned as

D =  100[ 1 + exp
( – (depth – u)) 1

R ESULTS

a

99

. ( 10)

where u = 1.5 and a = 0 .3 A l l the damage functions give a dam age of zcro
at zero depth and 100 at a depth of 3 ' synthet ic" meters.

Th e three procedures y ield an arr ay of pai rs of damage and associated
exceedance probabi l it ies, which arc used to construct a damage-probabi l ity
curve. The area under th is curve was calcu lated for al l three methods using
thc mid-range probabil ity method

A 7V1 I D I • I D I I

2, (p.•7:p;.,). . • (1.2)

(where Al = the number of pai rs. p = exceedance probabi l ity . and – dam
age), rathcr than by the inure accu rate Simpson's Rule, fo r two reasons
First , it is more of ten used in pract ice , since there are rarely enough pai rs
of damage and probabil ity avai lable to j usti fy the use of Simpson' s Rule ,
and secondly , use of Simpson's Rule w ith the third method— which requires
numeri cal integrati on for each exceedance probabaity— would be very cost ly
in computer resources. Simu lation experiments wcrc undertaken wi th sam-
ples of size 10 , 20 and 40 : 500 repetitions were used fo r each experiment .
Expected annual damages were calcu lated fo r situatio ns where damage be-
gins  at thc  levels  o f the true  5. IQ 25, 50 and 100  year  fli xxi s.

T ables I , 2, and 3 show , fo r thc quadratic and logistic damage funct ions,
the mean, standard dev iatio n, and skew ness of est imates of expected annual
damages. Simi lar results were found w ith the other damage funct ions. In
general , i t is clear that al l the methods overestimate expected annual dam -
ages, part icular ly when damage commences in infrequent events, but that
the conventional method is least biased . T his suppo rts Gould ' s ( 1973a) and
Doran and Ir ish's ( 1980) concl usions and confl icts w ith Hard ison and Jen-
nings' ( 1972) and Beard ' s ( 1978) inferences. A lthough the degree of di f -



TABLE 1 Bias in Es timates o t Expected Annual Damage, Expressed as Per -
cen tag e o f True Value, to r Diff erent Tnie Probabi li t ies  at  winch Dam age Beg in s

' Sample si ze .
Note: Sim ulat ion results from 500 repetitions.

ference varies w ith damage funct ion, thc results clearly show that usc
either expected probabi lities or thc "expected damage' method would pro-
duce very biased estimates o f expected annual damages. These tw o methods
yield very simi lar resul ts (when using a lognorm al d istribut io n) , which re-

TABLE 2. Stand ard Dev iation o f Expected Annual Damage Est im ates. Di v ided
by True Value, for Di ff erent True Probab il it ies at whi ch Damage Beg ins

' Sample size.
Note: Simulat ion resul ts f rom 500 repetiti ons.
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'Sample size.
Note: Simulation result s from 500 repeti ti ons .

fleets simi lari t ies in thei r derivation. Both arc based on the f-distribution
(Stedinger I983a, I983b) , and thc expected value of the estimate of the  p
probabi l ity flood  f rg,f (4 4 , i s very c lo se to the est im ate computed from a l .
7. T he actual di f ference between the two methix ls depends on the shape of
the damage fu nct ion (the expected damage is not equal to the damage as-
sociated w i th the expected magni tude . except with a l inear damage funct ion)
and, to a lesser extent the numerical approximation .

The contrasts in the degree o f bias betw een thc d i f ferent damage funct ions
depends o n the rate of change of damage w ith magnit ude, particularly at low
magni tudes. W ith the log ist ic curve , dain ge is l imited for f loods j ust above
the damage threshold (Fig . 3) but increases signi fi cantly at higher depths.
T he f requency with which fl oods reach th is depth is esti mated w ith greater
bias and uncertainty than the f requency w ith wh ich damage begins. For a
gi ven fl ood frequency relationship and t lueshold at which damage begins.
therefo re, the greater the proport ion of damage wh ich occurs in small floods,
thc less the bias and variabi l ity in estimate of expected annual damage.

A s samp le si zes increase, al l the methods become less biased (b ias fal ls
f rom over 50% to j ust over 15% fo r thc conventional method , w ith damage
occurr ing w ith a true probabi l ity o f 0 .( 4 , for example) . T he expected prob-
abi l i ty and expected damage methods improve the most and with very large
samples all three methods would give the same resul ts. Sample variabi l ity
of estimates also falls as sample sites increase (Table 2) and, for high dam-
age thresholds at least , there is less di fference in variabi l it y than bias be-
tween the three methods. The coef fi cient of skew , given in Table 3, shows
thc high asymmetry in the sampl ing distribution of expected annual dam-
ages, due to the occasional very hu ge estimates.

Th e magnitude of estimated expected annual damages depends partly on
the estimata l slope of the depth-fi r quency curve but much more closely on

10 1
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FIG.  4. Variation  of Es t imated Exp ec ted Ann ual Dam ages wit h Est imated Th res ho ld
Proba bi li ty

the esti mated probabi lity at which damage begins. Fig . 4 shows thc strong
relationship between estimated threshold probabi l i ty and co mputed ex pected
annual damages (for the Gompertz damage funct ion and a sample size o f
20) . T he bi as and variabi l ity in expected annual damages is clearly related
to the bias and variahihty in- the estimated thresho ld probab ility . T he re ason
for t he d i f fe re nce in b ias bet w een the co nven t io nal -and ex pec ted pm bab i l i t y
nled it xl s can be seen in T able 4 , which shows the mean estimared probabi lity
at which damage begins. T he convent ional estimator pro vides a good est i -
mate of the threshold probabi l ity , but the expected probab i lity method pro -
duces a very biased estimate of the r isk of damage. This arises because a

TA BL E 4 Mean Est im ated Threshold Pro bab il it y : Convent io na l and Ex pec ted
Pro babi li ty Estimator s

Estimators 0 .2 0 .1
( I ) (2) (3)

N IU
convent ional method
expected probabil it y
N = 20
convent ional method
expected pro babil ity
N = 40
conventional method
expected probabi li ty

0 199 0 103
0 .2 19 0 . 126

0. 194 0 .098
0 .205 0 .111

0. 199 0 . 10 1
0.205 0 . 107

Note: A ven ged over 500 repeti ti ons.

102

True Thresho ld Pro0abil ity

Th r e s h o l d I s 0 , 0 4

0 .04
(4) _

0 02

(6)
0 .0 1
(6)

0 .047 0 027 0 .0 16
0 .0(A 0 .045 0 031

0 .042 0 .023 0 .0 13
0 .0 53 0 .0 31 0 .0 19

0 .042 0 .022 0 .0 12
0 .047 0.026 0 .0 15



method that gives an estimate of the fl ood exceeded on average w ith the
desi red r isk p ( i .e. , unbiased); it does not produce an unbiased est imate o f
thc ri sk of a speci fi ed magni tude (such as a fl oor level) being exceeded.

IM PU CATIONS O F U NC ERT AINTY IN E ST IMATION

O F E XPEC TE D A NNUAL D A MA GES

T he resul ts o f the previous sect ion have emphasized the potential l y very
large sampl ing variabi l ity in the estimat ion of expected annual damages due
solel y to sampl ing variabil ity in the observed fl ood data. In current practice
onl y a single " best " est imate of expected annual damages is used , derived
from thc " best " est imate of the fl ood f requency curve, but it may be usefu l
to have information on the prec ision of this est imate. Some workers, fo r
example Grigg ( 1978), have attempted to derive confi dence l imits for an
estimate of expected annual damages di rectly from confi dence intervals on
fl ood magn itude est imates, as shown in Fig. 5(a )- 5(e). Th is, however, is
incorrect due to a misinterpretatio n o f the meaning of confi dence interv als
fo r fl ood quanti les . These confi dence l imi ts should be interp reted so lely as
inter vals for thc range o f magnitudes fo r a specifi ed exceedanee probabi lity ;
the locus of 90% confi dence inter val values (i .e. , 90% of est imates of mag-
nitude fo r that probabil ity arc greater) does not defi ne thc frequency curve
which w i ll be exceeded over all probabil ities 90% of the ti me. One sample
curve may yield an estimate of the 10 -year fl ood outside the 90% interv al
fo r that retur n period , fo r example , whi le yielding a 100-year fl ood estimate
close to the mean value [Fig . 5(d ) ] . A n approach such as th is would overesti-
mate confi dence intervals and gi ve an unduly ps:ssi rnistic imp ression o f pre-
cision .

i t is wel l known that the standaid deviation of the sampl ing distr ibut ion
of the mean of a random variable is equal to the standard error , or the stan-
dard deviation of the variable div ided by the square root o f the samp le size:

s.d .(.4 )
standard e f f o r ( i ) = ( 13 )

V N

I t is therefo re possible I t ) e s t i m a t e the standard e l T o r of the sampling dtstr i -
buti on of expected annual damages by computing the standard dev iat ion of
annual damages using

s.d .(D ) (1-2(0 1) — E2(D ) l ' " ( 14)

where EW ) = expected annual damages and EW 2) the arca under the
" damage-squared- -p robabil ity curve. T able 5 compares the average standard
eno r of expected annual damages (co mputed using Eq . 14), w ith the ob-
served standard dev iation o f est imates o f expected annual damages. It can
bc seen that , for cases where damage occurs in f requent events at least , the
standard erro r prov ides a good estimate o f sample standard dev iati on . How -
ever , the high skew o f the sampl ing d istri bution (T able 3) means that con-
fi dence l imi ts cannot bc based on j ust expected annual damages and standard
error , and , al though it is possible to estimate the skew o f annual damages
using the area under the "damage-cubecr -probabi lity cu rve , sample skew-
ness estimates are notoriously unrel iable.
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TA BLE 5. Mean Stand ard Error o f Expected Annual Dam ages and Observed
Standard Dev iat ion o f Expected An nual Damag es Es t imat es (Log ist ic Dam age
Funct io n)

True Threshold Probability

Expected annual damages (EAD )

(1)

N r 10
average standard m or of LA D '
standard dev iat ion of estimated L AD '
N = 20
average standard m or of FA D'
standiud dev iat ion of estimated LAD '
N = 40
average standard error of LAD '
standard dev iat ion of cstimated LAD '

T hc aven ge standard error " is the average of 500 estimates of the standard error of
EAD .

'T he ' standard deviation o f esti mated LA D ' is the standard deviation of the 500 esti -
mates of FA D .

To estimate the sampl ing distr ibution and conf idence intervals for ex -
pected annual damages in practice , it would therefore be necessary to resort
to the use of computer simul ation . Such an approach woul d f ol low the form
of the experiments reported here, w i th thc parent d istr ibut ion defi ned by the
parameters as estimated at the site of interest . T he computer exper itnents
would al lo w the construct ion of a sampl ing distr ibut ion of expected annual
damages and the identi f ication of desired conf idence interval s, but the wean
of th is distr ibution (the statistical - best " estimate o f expected annual dam
ages) would be di f ferent to — and greater than— the value of expected annual
damages der ived f rom thc best esti mate of the frequency curve. The analyst
would have to insure that the patent used for thc simulat io n exper iments
y ielded ' real istical ly variable " estimates of fl ood f requenc ies. T ins can be
done by select ing a sample si ze wh ich produces synthet ic sampl ing disti l
but ions of fl ood quanfi les consistent w ith previousl y defi ned confi dence in-
terv als calcu lated f rom the or iginal site data. The synthet ic sample size need
not be the same as the observed sample size, add iti onal ( fo r example  re-
gioual ) info rm ation has an equivalent ef fect to pro vid ing extra years o f data.

C ONCLUSIONS

T his paper has presented results o f a series o f computer simulation ex-
periments into thc ef fects of uncertai nt ies in fl rx id f requency est imation on
thc bias and var iabi lity o f est imates of expected annual damages. It has been
shown that the m onventionar approach (using a method such as moments
or max imum l ikelihood to attempt to obtain unbiased est imates of fl ood mag-
nitudes) sl ight ly overest imates expected annual damages where damage be-
gins in f requent events , w ith grcatcr overestimation where damage begins in
rare events . T hese results con fl ic t w ith the assert ion of Hard ison and Jen-
nings ( 1972) and Beard ( 1978) that conventional estimators underes ti mate
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0.2
(2)

0 .1

(3)

0 .04
(4)

0 .02

(5)

0 .01
(6)

2 30 1 1.410 0.778 0 510 0.343
2.332 1.410 0.776 0 511 0 344

1.553 0.883 0 .423 0.244 0 144
1.398 0.765 0.359 0.206 0 119

1.114 0.6 12 0.27 1 0 143 0.077
1.036 0.548 0 .240 0 128 0.068



•

•

expected annual damages, and it has been show n that thc i r proposed ap-
proach— to use expected probabi lities— gives even greater bias. T his is be-

• cause while the expected probabi l ity method g ives an estimated magn itude
exceeded on average w ith thc speci fi ed ri sk, it does not g ive an unbiased
est imate of thc ri sk of a specif ied magnit ude (such as the level at which

• damage begi ns) being exceeded. The third method considered , which com-
putes the expected damage for each probabi l it y fl ood by averaging across
the samp ling distribut ion of that fl ood estimate, also gi ves higher estimates
of damage fo r a given fl ood probabi l ity and hcncc also leads to very sig -

• ni fi cant overestimat ion of expected annual damages. For al l three methods.
bias reduced rapid ly as samp le sizes increased.

The experiments have show n that estimates o f expected annual damages
• arc highly var iable, part icular ly where damage begins in low-f requency events.

T he sampl ing d istr ibuti on o f expected annual damages is also very highly

• skewed. It has been show n that the bias and variab il ity in the estimate of
expected annual damages is closely l inked to the bias and variabi lity in the

•
cst imat ion o f thc probabil ity at which damage begins, emphasizing again the
importance of using as good an estimate o f th is threshold probabil ity as pos-
sible.

• Th e exact form of the fl ood magnitude-damage relationship determines the
degree of bias in estimated expected annual damage. Bias i s least i f damages
increase rapid ly once the damage thmshold is reached; conversely, it is higher
the greater the magnitude that ' signifi cant" damage begins.

A simulation based method has been briefl y descr ibed fo r deriving con-
f idence intervals fo r an estimate of expected annual damages in pract ice.

•
Final ly , it is important to no te that the resul ts show only the ef fect of

uncertaint ies in f lood magnitude-frequency est imat ion In practice, the bias
and var iabi l i ty that these produce are compounded by uncertaint ies in the
relat ionships l ink ing fl ood maenitude w ith damages.

A C K N O W LE DG M EN TS

T he research presented in this paper was undertaken as part of a research
• proj ect funded by the M inistry o f A gric ultu re. Fi sher ies and Eix xl fo r En-

gland and Wales.

•
A PPEN DIX. R EFER EN C ES

A braniowitz. M . . and Sleg un . I . A . ( 1965) . I l andhevok I I W t h e rn a t i r a l f uncti on, .
Dover Publ icatio ns Inc. , New York . N Y ., 948- 949 .

•
A rnett . N . W . ( 1988) . ' Unbiased estli t ne' of fl ood ri sk w ith the generali / ed extreme

value distr ibut ion. Stacha ak l l ydr al . and l l p h . 2(2). 20 1- 2 12.
Ban, Y .. 'k ing, Y .-K .. and I lasturther, V . IC ( 1987). " Evaluation inf uncertainty i ii

fl ood magnit ude estimator on annual expected damage costs o f hydraulic st rut -
l ures. ' Water Kn ow . R e s . . 23. 2023- 2029.

•
Beard , L . B. ( 19W ). ' Probabi l ity estimates based on smal l normal distribution sam-

ples. ' J . Geophys . Res. . 65. 2143- 2148.
Beard . L . K. ( 1978). " Impact of hydrologic uncert aint ies on fl ood insurance. ' J .

•
M al i . D iv ., A SCE, 104( 11), 1473- 1484.

Doran, D . G. , and Irish, 1. L . ( 1980). ' On the nature and extent of bias in fl ood
damage estimation." Pr oc . Hyd ro logy and Water Resoar . Symp . Institution of En-

• gineers, Adelaide, A ustral ia, Nov. , 13S- 139.
Gould, B. W . (1973a) . D iscussion of ' Bias in computed fl ood ri sk ' by C . 11. Har-

dison, J . H ydr . D i v ., A SCE. 99( 1), 270- 272.
•

106

•

•



•
•
•
•
•

Gould. l i . W . ( 1973b). ' Sampl ing errors in timid damage estimates.- Proc . Urban
Water Economics Symp . C. A islabic , ed. Univ . of Newcastle Research Associates.

•
Newcastle , A ustralia, 82- 98.

Gr igg . T 1. ( 1978). " Risk and uncertainty in proj ect appraisal: The urban fl ooding
example. - Hy dro log y  Symp . Insti tut ion of Engineers. Canberra. A ustralia. 90- 94.

l i ardi son, C. I t .. and Jennings, M . E. ( 1972) . - Bias in computed fl ood risk . J .
H yd r . D iv .. A SCE, 98(3). 4 15- 427 .

l ames, L . D ., and Hall . R. ( 1986). ' Risk information fo r fl oodplain management .-

•
•

J . Water Resour . Planni ng  and  M gmr , ASCE, 112. 485- 499
Ouellette, P. , N ., and Roussel /e, 1. ( 1985). - A ppl ication of extreme value

theory to fl ood damage. " J . Water Resou r . Pl anning and Mgmi .. ASCE, 111(5).
467 - 477 .

•
•

Stedinger, 1. R. ( 1983a). ' Design events w ith specified fl ood ri sk." Water Resour ,
Res. , 19(2), 5 11- 522.

Stedinger, 1. R. ( 1983b). - Confi dence intervals for design events: J . l l ydr . Engrg .. •
ASCE, 109( 1) . 13- 27.

Tai , K . C . ( 1987) . "Fkxid ri sk bias analysed through a multi-state fl ood insurance
model . ' App li cation  of f re q uency and  r isk i n water r esources, V . P. Singh. ed . •
D. Reidel , Dordrecht , Thc Netherlands, 395- 404.

T ung, Y .-K . ( 1987) . - Ef fects of uncertaint ies on optimal risk-based design of hy-
draulic structures.- J . Water Resour .  P la nn in g  and Afgrm ., ASCE. 113(5) , 709-
722 .

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

107

•
•
•
•
•
•



TERRESTRIAL AND FRESHWATE R SCI ENCES
DIR ECTORATE
Natural Environment Res e arch Council
Polaris House
North Star Ave nue
Swindon SN2
Tel 0193 411500 Fax : 4 1150 2
Te lex : 444 293 ENVRE G

Da rn OF FRESHWATER EC OLOGY

Wind erm e re Labo rato ry
Far Sawrey, ArnbleMde
Cumb ria LA22 OLP
Tel 09662 2468 Fax: 6914
Teter 940704 16 WIND G

Ri ver Laboratory
Ea st Stoke . Wareham
Dorset BH20 6BB
Tel 0929 4623 14 Fax : 462180
Telex 94070672 WARE G

Edi nburgh l a bo ra tory
Bu sh Estate , Penicufi c
Midlothian, D -126 00 B
TeL 03 1 445 4343 Fax 3943
Telex 72579 BUSITE G

Ea ste rn Riv ers Lab oratory
Mon ks Wood Exp er ime ntal Station
Ab bo ts Rip ton, Hun tingdon
C am b s PE17 21.5
Tel 048 73 38 1 Fax: 467
Tele x 32416 MONITE G

Te e s da le Laboratory
c/ o Nor thumb rian Wa ter
Lanington Treatment Wo rks
Lartin gton. Barna rd Castle
Co Durham DL12 9DW
Tel 0833 50600 Fax: 50827

D iSTITUTE OF HYDR OLO GY

Maclea n Buil ding
Crowm arsh Gifford
W allingford
Oxon OXIO 88B
TeL 049 1 38800 Fax: 32256
Telex 849365 HYDROL G

Ptyn lin e n Off ic e
Stay little , Uan b rynm air
Powys SY19 7DB
Te L 055 16 652 Fax : 44 1

Bal g uhidd e r Office
Tul loch Lod ge
BaLq uhidd er , Loc heam he ad
Perthshire FI0 9 8P0
Te L 08774 257

IN STI TUTE OF TERRESTRIAL EC OLOGY (NORTH)

Edinb urg h Re se arch Station
Bush Esta te . Penicuik
Midlothian D 126 OQB
Tel 03 1 445 43 43 Fax 3943
Telex: 72579 BUSITE G

Bu tchery Re se arc h Stat ion
Hill of Brathens Glasse l
Banchory, Kinca rd inesh ire , AB3 I 48Y
Tel 0330 2 3434 Fax: 3303

Me rlew oo d Re se arc h Stat ion
Grange -over-Sands , Cu mb ria LAI I 6JU
TeL 053 95 32264 Fax 34705
Telex: 65 102 MERITE G

D ISTITHEE O F TERRESTRIAL EC OLOGY (SOUTH)

Monk s Wood Experim ental Sta tion
Ab bo ts Ripton. Hun tingdon
Ca mbs PE 17 2LS
Tel 04873 381 Fax : 467
Telex : 324 16 MONITE G

Ban gor Rn e arch Unit
University Co lleg e of North Wales
Deino l Road. Bang or 11. 57 2UW
Tel 0248 370045 Fax 355365
Telex : 6 1224 BANITE G

Fun ebroo k Re s e arc h Station
Wa reham, Dorse t BH20 5AS
TeL 0929 55 15 18/9 Fax 55 1087

IN STIT UTE O F VI ROLO GY AND
Erm itorna ra m. MI CROBI OLOGY

Mansfi e ld Roa d. Oxfor d OX1 3SR
Tel 0865 512361 Fax. 599 62

UNIT OF CO M PARATIVE PLAN T ECOLO GY
Departm ent of Anim al and Plant Scie nces
University of Sheffi eld , Sheffi eld 5 10 2TN
Te l 0742 7685 55 Fax: 760 159
Telex : 547216 UGSHEF G

CENTRE FOR POPULATION BI OLOGY
Impe na l College , Srl wood Pa rk
Asco t, Be rks SIS 7PY
TeL 03 44 239 11 Fax 294339

WATER RESOURCE SYSTEMS RES EARCH UNIT
Depa rtment of Civil Engineer ing , Newcastle Universi ty
Ne wcas tle-up on-Tyne NE I 7RU
Tel 09 1 232 85 11 Fax 09 1 26 1 1182
Te lex : 53654 UNINEW G

UNIT O F M IAVIOURAL ECO LO GY
Dep art ment o f Zoology. University of Oxford
South Pa rks Road , Oxford OX1 31'S
Tel 0865 271165 Fax 3 10447

W Natur al
10 14 Envizorunent

tio= Researc h
Coun cil

Ten estr i al and Fres hwater
Sc iences




