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Abstract 

Practical and financial constraints associated with traditional field-based lithological mapping are 

often responsible for the generation of maps with insufficient detail and inaccurately located 

contacts. In arid areas with well exposed rocks and soils, high-resolution multi- and 

hyperspectral imagery is a valuable mapping aid as lithological units can be readily 

discriminated and mapped by automatically matching image pixel spectra to a set of reference 

spectra. However, the use of spectral imagery in all but the most barren terrain is problematic 

because just small amounts of vegetation cover can obscure or mask the spectra of underlying 

geological substrates. The use of ancillary information may help to improve lithological 

discrimination, especially where geobotanical relationships are absent or where distinct 

lithologies exhibit inherent spectral similarity. This study assesses the efficacy of airborne 

multispectral imagery for detailed lithological mapping in a vegetated section of the Troodos 

ophiolite (Cyprus), and investigates whether the mapping performance can be enhanced through 

the integration of LiDAR-derived topographic data. In each case, a number of algorithms 

involving different combinations of input variables and classification routine were employed to 

maximise the mapping performance. Despite the potential problems posed by vegetation cover, 

geobotanical associations aided the generation of a lithological map — with a satisfactory overall 

accuracy of 65.5% and Kappa of 0.54 — using only spectral information. Moreover, owing to 

the correlation between topography and lithology in the study area, the integration of LiDAR-

derived topographic variables led to significant improvements of up to 22.5% in the overall 

mapping accuracy compared to spectral-only approaches. The improvements were found to be 

considerably greater for algorithms involving classification with an artificial neural network (the 

Kohonen Self-Organizing Map) than the parametric Maximum Likelihood Classifier. The results 

of this study demonstrate the enhanced capability of data integration for detailed lithological 



mapping in areas where spectral discrimination is complicated by the presence of vegetation or 

inherent spectral similarities. 

  



1. Introduction 

Over large areas and where the terrain is geologically complex or poorly accessible, field-

based lithological mapping can be time-consuming, costly and challenging (Gad & Kusky, 2007; 

Grunsky et al., 2009; Rogge et al., 2009). For these reasons lithological maps are typically 

generated using limited numbers of field and outcrop observations which may, as a consequence, 

result in some concern regarding the accuracy of the lithological contacts (Philip et al., 2003). 

Remote sensing data, such as aerial photographs and multi- and hyperspectral imagery, offers 

solutions to many of the restrictions associated with field-based surveys. For instance, remotely 

sensed data can provide more continuous and detailed information for large areas, thus enabling 

even the most inaccessible terrain to be mapped for only a fraction of the time and cost required 

for an equivalent field survey. 

The application of multi- and hyperspectral imagery to lithological mapping is well 

established for arid and semi-arid areas which are essentially devoid of vegetation. Due to the 

good exposure of rocks and soils, lithology can be mapped directly by matching image pixel 

spectra with the reference reflectance spectra of individual rock units using automated 

classification routines (e.g., Rowan & Mars, 2003; Harris et al., 2005; Roy et al., 2009). 

However, spectral discrimination and mapping in all but the most barren terrain can be 

problematic, because just small amounts (≥ 10%) of vegetation cover (e.g., trees, shrubs and 

lichen) can obscure or completely mask the spectra of underlying lithologies (Siegal & Goetz, 

1977; Ager & Milton, 1987; Murphy & Wadge, 1994).  

Where the effects of vegetation prevail, image processing techniques such as principal 

component analysis (Fraser & Green, 1987; Loughlin, 1991) and spectral unmixing (Bierwirth, 

1990; Chabrillat et al., 2000; Zhang et al., 2005) have been employed to try and separate the 



spectral responses of vegetation and substrate, and to detect rock exposures at sub-pixel 

resolutions. Alternatively, indirect lithological discrimination is possible if geobotanical 

relationships with the underlying substrates are realised (Paradella et al., 1997; Leverington, 

2010). For example, Rowan et al. (2004) utilised subtle spectral features relating to variations in 

vegetation cover to map specific lithological units in the Mordor Complex, Australia, while 

Harris et al. (2005) used a vegetation spectral end-member as a proxy for mapping metagabbroic 

rocks in southern Baffin Island, Canada. However, if lithology and vegetation are unrelated, or if 

distinct lithologies exhibit an inherent spectral similarity regardless of vegetation cover, spectral 

data alone are often insufficient for successful discrimination (Schetselaar et al., 2000; Dong & 

Leblon, 2004). In such circumstances it may be beneficial to consider ancillary information for 

the differentiation and mapping of lithological units. 

Numerous studies have assessed the ability to augment the lithological mapping results of 

spectral-only classifications by incorporating ancillary data such as topographic information 

(Hutchinson, 1982; Ricchetti, 2000), spectral-derived texture (Chica-Olmo & Abarca-Hernández, 

2000; Li et al., 2001) and radar-derived texture (Mather et al., 1998; Dong & Leblon, 2004). 

These data are potentially useful because they provide information about the surface 

morphology, which is often found to be correlated with lithology through differences in the 

weathering and erosion characteristics of individual units (Mather et al., 1998; Kühni & Pfiffner, 

2001; Belt & Paxton, 2005). Although previous studies have demonstrated the capability to 

improve lithological classification accuracies through data integration, they have been confined 

to using data with only moderate-to-coarse spatial resolutions (i.e., 12.5–30 m). The potential to 

delineate lithological contacts in finer detail and with better accuracy is further enhanced by the 

availability of high-resolution remote sensing data (Philip et al., 2003).  



Aircraft-mounted sensors provide remotely sensed data with a spatial resolution of up to 

an order of magnitude greater than the classic spaceborne sensors such as Landsat TM and 

ASTER. Furthermore, airborne surveys are commonly exploited for the concomitant acquisition 

of multisource data; in particular both multi- or hyperspectral imagery and Light Detection And 

Ranging (LiDAR) data. In contrast to passive spectral sensors, airborne LiDAR is an active 

remote sensing technique that has the capability of acquiring accurate and high-resolution (ca. 1–

4 m) topographic data, even through forest cover (Kraus & Pfeifer, 1998). It offers a solution for 

overcoming the obscuring effects that dense vegetation has on lithological discrimination 

because laser reflections (or returns) from the ground can be separated from vegetation returns to 

virtually deforest the terrain, enabling the generation of digital terrain models (DTMs; Haugerud 

& Harding, 2001). The resulting high-resolution DTMs can then be used both qualitatively 

(Webster et al., 2006a,b) and quantitatively (Wallace, 2005; Wallace et al., 2006; Grebby et al., 

2010) to reveal subtle topographic differences that reflect changes in lithology. Topographic data 

from sources other than airborne LiDAR can lack the spatial resolution required for delineating 

subtle contacts between lithological units (Webster et al., 2006a). Accordingly, the integration of 

airborne LiDAR topographic data with airborne multi- or hyperspectral imagery may provide a 

significant improvement of the classification results, especially in cases where there are no 

geobotanical relationships. However, the true efficacy of this approach has not yet been 

demonstrated.   

This study concerns the detailed lithological mapping of a vegetated section of the 

Troodos ophiolite, Cyprus. In a previous study for the same area, Grebby et al. (2010) 

demonstrated the ability to discriminate and map the main lithological units to a respectable 

accuracy solely using LiDAR-derived topographic information. Despite this, natural and 



anthropogenically induced deviations from the typical topographic characteristics were the cause 

of some classification confusion between specific units. In an effort to identify a more optimal 

approach, the aims of the current study are to: (i) assess the efficacy of airborne multispectral 

imagery for detailed lithological mapping and (ii) utilise the results of the previous study to 

investigate whether the integration of airborne LiDAR-derived topographic data can further 

enhance the mapping capabilities. For both aims, a number of different algorithms were 

investigated in an attempt to maximise the mapping accuracy. The mapping results of the 

algorithms were first assessed individually using conventional classification accuracy statistics, 

before pair-wise comparisons were made in order to establish the algorithm capable of 

generating the most accurate lithological map. 

 

2. Study area 

The study area is located in the foothills on the northern flank of the Troodos ophiolite, 

Cyprus (Fig. 1). The Troodos ophiolite is an uplifted slice of oceanic crust and lithospheric 

mantle that was created through sea-floor spreading (Gass, 1968; Moores & Vine, 1971). 

Exhibiting a dome-like structure centred on Mt. Olympus (1,952 m), the ophiolite stratigraphy 

includes a mantle sequence comprising harzburgites, dunites and a serpentinite diapir exposed at 

the highest elevations. This mantle sequence is stratigraphically overlain by a largely gabbroic 

plutonic complex, a sheeted dyke complex, extrusive lavas and oceanic sediments at decreasing 

elevations along the northern slope of the range (Varga & Moores, 1985).   

The study area covers approximately 16 km
2 

of the upper section of the ophiolite, and 

comprises four main lithological units — the Basal Group lavas and dykes, pillow lavas (Upper 

and Lower), Lefkara Formation chalky marls and alluvium–colluvium. Two published geological 



maps of the island cover this area at both regional and local mapping scales (see Fig. 1). The 

1:31,680-scale map is the product of a mapping campaign undertaken in the late 1950’s and early 

1960’s, whereas the 1:250,000-scale map is the more recent version, revised in 1995. Regardless 

of scale, the two maps exhibit some obvious geological differences. This can be ultimately 

attributed to the limited area covered during fieldwork, the subjectivity of the employed mapping 

techniques and some degree of ambiguity in defining a number of the lithological units.  

Stratigraphically, the Basal Group is the lowest unit in the study area. Consisting of both 

dykes and screens of pillow lavas, this unit represents a transition from the underlying sheeted 

dyke complex (100% dykes) to the overlying pillow lavas. An exact definition of the Basal 

Group is somewhat lacking, although it generally contains at least 50% dykes but with a more 

common dyke abundance of 80–90% (Bear, 1960). The pillow lavas have traditionally been 

divided into the Upper Pillow Lavas and the Lower Pillow Lavas according to mineralogy, 

colour and dyke abundance (Wilson 1959; Gass, 1960). However, this division is difficult to 

apply in the field (Govett & Pantazis, 1971) and an unconformable or transitional boundary 

between the two lava units has led to some uncertainty about this division (Boyle & Robertson, 

1984). For this reason, the pillow lavas are treated as a single unit in the current study. The 

pillow lavas are stratigraphically overlain by the chalks, marls and cherts of the Lefkara 

Formation. This unit represents late Cretaceous to early Miocene marine sedimentation (Kähler 

& Stow, 1998). The alluvium–colluvium unit refers to Quaternary sediments, such as sand, silts, 

soils and gravels, that were deposited fluvially or through hill-slope processes. The alluvium–

colluvium is commonly found filling depressions within the hummocky pillow lava terrain. 

The study area contains a complex landscape due to the variable geology, both natural 

and anthropogenic influences on the topography, and vegetation cover. Prominent anthropogenic 



features include the disused Mathiati mine with spoil tips, Agia Varvara Lefkosias village (see 

Fig. 1) and a significant proportion of agricultural land which is confined to areas underlain by 

alluvial–colluvial materials. Vegetation is widespread throughout, covering between 30–90% of 

the surface area, therefore resulting in a heterogeneous surface mixture of vegetation and 

rock/soil (Fig. 2a). Correlation between some species of vegetation and particular lithological 

units is also apparent within this area. For example, green grasses plus a variety of crops 

(including olive groves) are predominantly associated with alluvium–colluvium (Fig. 2b), 

whereas in addition to some low scrubby vegetation, moderate-to-dense lichen cover is almost 

exclusively found growing on pillow lava outcrops (Fig. 2c). Conversely, some similarities in the 

types of low and medium-growth vegetation commonly found growing on the Lefkara Formation 

and Basal Group terrain are also apparent. Other types of mostly sporadic vegetation cover 

occurring throughout the study area include trees — ranging from isolated trees (e.g., pines and 

oaks) to dense thickets and copses — and areas covered by tall, dry grasses and other scrubland.  

 

3. Data and pre-processing 

3.1 Airborne multispectral imagery 

Airborne Thematic Mapper (ATM) multispectral imagery was acquired by the Natural 

Environment Research Council (NERC) Airborne Research and Survey Facility (ARSF) in May, 

2005. The ATM imagery comprises 11 spectral bands in the visible/near-infrared (VNIR; Bands 

1–8), short-wave infrared (SWIR; Bands 9–10) and thermal infrared (TIR; Band 11). Since this 

study is concerned with only reflectance data, the TIR band (Band 11) was discarded. Band 1 

was also omitted as the data are significantly affected by atmospheric scattering (Copley & 

Moore, 1993). Five northwest-southeast trending flight-lines of imagery were acquired over the 



study area and delivered as Level 1b Hierarchical Data Format (HDF) files, with radiometric 

calibration algorithms applied and aircraft navigation information appended. Radiometric 

calibration involved conversion of the raw ATM data to at-sensor radiance units and then 

subsequent scaling to 16-bit digital numbers (DNs). All image strips were individually 

geocorrected and re-sampled to a spatial resolution of 4 m using the AZGCORR software 

(Azimuth Systems) in conjunction with a 4 m LiDAR digital elevation model.  

Across-track (i.e., perpendicular to the flight direction) brightness differences observed in 

all geocorrected images were minimised through a multiplicative second-order polynomial 

correction, which was applied using the Cross-track Illumination Correction tool in ENVI 4.3 

(ITT Visual Information Solutions, 2006.). Following this correction, image strips were co-

registered with the aid of tie-points identified in pairs of overlapping images, and then mosaicked 

to create a single seamless image; both tasks were performed within ENVI 4.3. Colour Balancing 

was applied during mosaicking to minimise the spectral differences between overlapping images. 

This procedure calculates gains and offsets from a fixed image and then uses these to adjust the 

spectral values of an overlapping image, thus matching the spectral statistics between the images. 

Due to an absence of ground reflectance spectra and atmospheric measurements at the time of 

the airborne survey, rigorous model or empirical-based atmospheric corrections could not be 

reliably applied. Moreover, an inspection of the spectral values in the pre-processed imagery 

suggested that first-order atmospheric correction for effects such as haze was not necessary and, 

as a consequence, no atmospheric correction was applied to the ATM imagery. 

 

 

 



3.2 Airborne LiDAR data 

At the same time as the ATM data acquisition an airborne LiDAR survey was also 

undertaken using an Optech ALTM-3033 system. It was undertaken at an average flying altitude 

of 2550 m above sea level, resulting in an aircraft–ground distance ranging between 2100–2300 

m due to topographic relief on the order of 200 m. The ALTM-3033 system was operated with a 

laser pulse repetition rate of 33 kHz and half-scan angle of ±19.4° either side of the nadir, 

resulting in the collection of approximately 7,600,000 points for the study area with an average 

density of 0.48 points per m
2
. The dataset contains point data from five overlapping flight-lines, 

each with a swath width of 1400–1500 m and an overlap of 20%–50% between adjacent swaths. 

Following pre-processing by the Unit for Landscape Modelling (ULM) at the University of 

Cambridge, UK, the LiDAR point data were delivered as ASCII files containing the x-y-z 

coordinates of all first and last returns in the WGS84 Universal Transverse Mercator (UTM) 

zone 36-North coordinate system. Following delivery, the point data were classified as either 

ground or non-ground returns using a triangulated irregular network (TIN) densification 

algorithm (Axelsson, 2000). This algorithm, which is implemented in the TerraScan software 

(Terrasolid Ltd.), first establishes a set of low (ground) points and then iteratively classifies the 

remaining points as either ground or non-ground returns according to angle and distance 

thresholds applied to TIN facets. For further information regarding the classification process, 

such as the parameters and thresholds used and verification of the results, the reader is referred to 

Grebby et al. (2010). Following classification, non-ground returns were discarded, while those 

classified as ground were then used to generate a DTM. As the choice of interpolation algorithm 

and spatial resolution can affect the accuracy of DTMs, an experiment was conducted in order to 

determine the most appropriate combination (Grebby et al., 2010). Consequently, a 4 m DTM 



was generated in Surfer 8.0 (Golden Software, Inc.) using a block kriging algorithm, since this 

combination resulted in the smallest interpolation errors. As a final step, the ATM imagery was 

subsequently co-registered to the 4 m DTM in ENVI 4.3, using an RST method with image-

selected tie-points and cubic convolution resampling.    

 

4. Methods 

 The methodology employed here to assess the efficacy of ATM imagery for detailed 

lithological mapping in vegetated terrain, and to evaluate whether improvements can be made 

through the integration of LiDAR-derived topographic data, is outlined in Fig. 3. In summary, 

the mapping methodology consists of four main steps: 1) the selection of training and validation 

pixels, 2) derivation of the input variables, 3) classification, and 4) an accuracy assessment.  

 

4.1 Training and validation pixels 

 Two independent samples of pixels with known class identities were identified for 

training and validating the algorithms. The set of training pixels was used to assist all 

classifications of the full scene by helping to spectrally and topographically characterise the four 

lithological units. This set comprised pixels located within four representative areas (i.e., regions 

of interest; ROIs) with unambiguous class identities, which were carefully defined in the imagery 

using information gathered from detailed field surveys and 0.7 m QuickBird satellite imagery. 

Due to the inconsistencies between the existing geological maps, their use was limited at this 

stage to providing only a general lithological overview of the study area. The number of training 

pixels representing each unit was deliberately kept to a minimum to investigate how the 

algorithms perform using only minimal a priori information about the spatial distribution of the 



lithologies. In total, the training dataset comprises less than 1% of the total number of pixels 

within the study area (Table 1). 

The accuracy of a thematic map is customarily determined by comparing the true class 

identities of a sample of validation pixels to those assigned through classification. In order to 

obtain a statistically valid accuracy estimate for an entire mapped area from only a sample of 

validation pixels, an appropriate sample size is required (Foody, 2009). The required sample size 

can be determined using statistical sampling theory such as the normal approximation of the 

binomial distribution (Fitzpatrick-Lins, 1981): 

 
2
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where n is the sample size, Z is the critical value of the normal distribution for the two-tailed 

significance level, p is the expected accuracy, q = 100–p, and E is the allowable error (or level of 

precision). If the value of p is unknown, then a ―worst case‖ (large) estimate of n can be found 

by maximising the term pq using p = 0.5. 

Although the sample size determined using the above method is suitable for estimating 

the overall accuracy of a thematic map — where pixels are either correctly or incorrectly 

classified — it does not account for the confusion that may occur between multiple classes 

(Congalton, 1991). To ensure that each class is adequately represented in a confusion matrix, 

Congalton (1991) suggests using a minimum of 50 to 100 validation pixels per class. 

Alternatively, the minimum number of samples for each class can be determined from the 

multinomial distribution (Tortora, 1978; Congalton & Green, 1999). For a specified confidence 

level (α) and absolute precision (bi), the required number of samples, ni,, for class i can be 

calculated as:   
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where i  is the proportion of the scene covered by class i, B is the upper (α/k) × 100
th

 percentile 

of the χ
2
 distribution with one degree of freedom, and k is the number of exhaustive and mutually 

exclusive classes. A total of k calculations are needed to determine the sample sizes for all 

classes, with the largest n typically chosen as the required sample size for all individual classes. 

Again, if i  is unknown, then a large estimate of ni can be found by assuming i  = 0.5.  

 To achieve statistically valid estimates of both the overall accuracy and individual class 

accuracies for the whole map, the validation sample must satisfy both the total and individual 

class size criteria. Therefore, in order to derive estimates of the overall accuracy of a map to say 

a precision (E) of ±1% and the individual class accuracies to a precision (bi) of ±3% at the 95% 

confidence level (α = 0.05; also assuming p = i = 0.5), a validation sample of at least 9,604 

pixels is required, with a minimum of 1,734 pixels in each class. To achieve this, several ROIs 

with unambiguous class identities were defined throughout the imagery to represent each 

lithological class — again with the aid of field knowledge and QuickBird imagery. Validation 

pixels were then sampled from these ROIs using a random stratified sampling protocol to ensure 

classes were represented proportionally, and to help reduce bias caused by spatial autocorrelation 

(Chini et al., 2008; Pacifici et al., 2009). Consequently, a total of 12,946 validation pixels were 

sampled, with a minimum class size of 2,451 pixels. Details regarding the areal extent and the 

number of pixels selected to represent each lithological class during validation can also be found 

in Table 1. 

 

 



4.2 Derivation of variables 

4.2.1 Spectral variables 

 The efficacy of ATM imagery for lithological mapping in the vegetated Troodos study 

area was assessed by deriving three sets of spectral variables for use as inputs for classification. 

The first set of input variables (ATM 9) comprised the nine ATM Bands 2–10. However, an 

examination of the spectral signatures for the lithologies reveals low separability for some units 

(Fig. 4). A combination of inherent or vegetation-induced spectral similarities and the 

considerable intra-class variability due to heterogeneous vegetation cover are ultimately 

responsible for this lack of distinction. 

In order to try and improve lithological discrimination, two image enhancement 

techniques were employed: principal component analysis (PCA) and the Minimum Noise 

Fraction (MNF) transformation. Variables derived from the application of PCA and the MNF 

transformation are frequently used as inputs to classifiers to try to enhance the spectral 

separability of classes present within the original imagery (Li & Moon, 2004; Belluco et al., 

2006; Liberti et al., 2009). A second set of spectral variables was therefore derived through the 

application of PCA to the nine ATM bands. The PCA technique can enhance spectral 

information by decorrelating the data, segregating noise and reducing the data dimensionality 

(Jensen, 2005). The outcome of PCA is a new set of uncorrelated variables called Principal 

Components (PCs), which are linear combinations of the original nine ATM bands. These PCs 

are ordered decreasingly in terms of the proportion of the total data variance they contain, with 

the higher-order PCs containing most of the total variance. The small proportion of the total 

variance contained within the lower-order PCs is mostly regarded as the noise within the original 

ATM bands, and so discarding these PCs effectively segregates this noise. Following the PCA 



transformation, examination of the eigenvalues revealed that the first three PCs accounted for 

97.5% of the total image variance (Table 2), while the remaining six PCs were deemed to contain 

mostly noise. Consequently, in an attempt to enhance lithological discrimination, only the first 

three PCs were selected to form the second set of inputs variables for classification (ATM PC). 

Eigenvector loadings in Table 2 show that the first PC (PC1) receives equal positive 

contributions from all nine ATM bands and therefore represents albedo information. The high 

positive eigenvector loadings for ATM Bands 7 and 8 indicate that PC2 describes the presence of 

vegetation, which is highly reflective in the near-infrared (0.76–1.05 μm). The third PC primarily 

describes the contrast between the VNIR and SWIR regions of the electromagnetic spectrum. 

Spectral enhancement and data compression was also performed using the Minimum 

Noise Fraction (MNF) transformation (Green et al., 1988). The MNF transformation determines 

the inherent dimensionality of the data and segregates noise using two PCA transformations 

(Boardman & Kruse, 1994). The first transformation — based on an estimated noise covariance 

matrix — decorrelates and rescales the data noise, while the second step comprises a PCA 

transformation of the noise-whitened data. As a result, the MNF transformation produces a set of 

coherent eigenimages (MNF bands) with correspondingly large eigenvalues (i.e., signal-to-noise 

ratios), and an accompanying set of noise-dominated images characterised by small eigenvalues. 

Accordingly, image noise can be segregated by selecting only the coherent MNF Bands. The 

MNF transformation implemented in ENVI 4.3 was applied to ATM Bands 2–10. An estimate of 

the noise statistics was generated from a lithologically homogeneous area of alluvium–colluvium 

that was overlain with variable vegetation cover. As the spectral response of the underlying 

lithological substrate was considered to be constant in this area, it was expected that the noise 

would primarily relate to the spectral variability caused by the heterogeneous rock/vegetation 



surface mixture. Although the noise estimate considers only one lithological unit, an MNF 

transformation based on these statistics was still anticipated to produce an overall reduction in 

vegetation-related spectral variability throughout, and a consequential increase in lithological 

discrimination. Of the resulting nine MNF bands, the first four accounted for approximately 99% 

of the cumulative eigenvalues for the data (Table 3). These four MNF bands were subsequently 

selected to comprise the third set of spectral variables (ATM MNF), while the remaining five 

noise-dominated MNF bands were discarded. According to the eigenvector loadings shown in 

Table 3, the four selected MNF bands receive their highest loadings from the ATM bands 

situated in the visible part of the spectrum (i.e., Bands 2–5). In addition, the relatively minor 

contributions of ATM Bands 7 and 8 to all four MNF bands are noteworthy.   

 

4.2.2 Integrated spectral and topographic variables 

 As the occurrence of vegetation is likely to affect the spectral discrimination and 

mapping of lithologies, ancillary topographic information was also considered. Within the 

Troodos study area, a correlation between topography and the four lithological units is clearly 

evident in the field. Grebby et al. (2010) showed it was possible to exploit this relationship to 

discriminate and map these lithologies solely using topographic information derived from a 4 m 

LiDAR DTM. Derived at their appropriate scales, the five morphometric variables of slope, 

absolute profile curvature, absolute plan curvature, residual roughness and the hypsometric 

integral were found to be optimal for separating the topographic characteristics of the four 

lithological units.  

In an attempt to improve the mapping results of the spectral-only classifications, these 

five morphometric variables were integrated with the ATM spectral imagery through two 



different approaches. The simplest approach to integrating ancillary data is to increase the 

number of variables used as inputs to the classification — a technique known as the ―logical 

channel‖ approach (Strahler et al., 1978). Accordingly, the five morphometric variables were 

merged with the nine ATM bands to form a first integrated set of fourteen input variables (ATM-

Li). Multisource data can also be integrated using both PCA and the MNF transformation. A 

comparison of the two approaches by Mutlu et al. (2008) robustly demonstrates the superior 

classification results that are achievable using the MNF approach to multisource integration. 

Therefore, in order to try and enhance the spectral-topographic discrimination of lithologies 

while simultaneously reducing data redundancy, the MNF transformation was applied to the 

merged set of fourteen spectral and morphometric variables. As a result, the first five MNF 

bands accounted for approximately 98% of the cumulative eigenvalues (Table 4) and were 

subsequently selected to form the second set of integrated variables for classification (ATM-Li 

MNF). The first of these five integrated MNF bands (MNF1) receives its highest loading from 

ATM Band 2, with sizeable contributions also from ATM Band 5, and the absolute profile 

curvature and residual roughness variables. Both absolute profile curvature and ATM Band 5 

contribute the most information to the second MNF band, while also contributing significantly, 

along with residual roughness, to MNF3. The fourth MNF band largely describes the contrast 

between absolute plan curvature and the hypsometric integral, whereas MNF5 receives high 

positive loadings from both of these morphometric variables. 

 

4.3 Classification 

 The three sets of spectral variables and two sets of integrated spectral-topographic 

variables derived above were used in conjunction with classification routines to generate 



lithological maps. With the aid of the training pixels, supervised classification was performed 

using two classifiers with contrasting properties; the statistical Maximum Likelihood Classifier 

(MLC) and a non-parametric artificial neural network, called the Kohonen Self-Organizing Map 

(SOM; Kohonen, 1982, 2001).   

 The MLC is a popular image classifier that assumes the class probability density 

functions are multivariate normal (Mather et al., 1998). Individual class probability density 

functions are first computed using the mean vectors and covariance matrices of the classes, 

which are antecedently determined from the training pixels. Using this information, the 

probabilities of an image pixel belonging to each of the classes is estimated and the pixel is 

accordingly assigned to the class for which the probability is highest. Where prior knowledge of 

the study area is available, the MLC classification can also be refined using prior probabilities 

(Mather et al., 1998). However, since it was the intention to restrict the a priori knowledge to 

only a small number of training pixels in this study, the MLC was used with equal prior 

probabilities for each lithological class. 

In many cases, the utility of statistical classifiers, such as the MLC, are often 

compromised by the prevalence of complex lithological class probability density functions, 

which arise due to spatial variability in vegetation cover (Leverington, 2010). Furthermore, the 

simple multivariate normal assumption regarding class probability density functions is also often 

invalid for ancillary data (Hutchinson, 1982). Following this, it is apparent that artificial neural 

networks (NNs) are better suited to lithological classification because they are non-parametric, 

robust in handling noisy data and can learn complex input patterns (Ji, 2000). These advantages 

over conventional classifiers are responsible for the increasing interest in NNs, the most popular 

of which is the Multilayer Perceptron (MLP). Alternative NNs, particularly the SOM, have not 



been investigated as thoroughly as the MLP. Nevertheless, the SOM is becoming increasingly 

popular as a classifier, by demonstrating its ability to achieve promising results for many remote 

sensing applications, including land-use classification (Ji, 2000; Bagan et al., 2005; Jianwen & 

Bagan, 2005), and lithological mapping (Mather et al., 1998; Bedini, 2009). Considering this, all 

input variables were additionally classified using the SOM algorithm implemented in IDRISI 

Andes (Li & Eastman, 2006), which is summarised below. 

A SOM network consists of two layers; an input layer containing one neuron for each of 

the input variables, and an output layer made up of a two-dimensional array of neurons. Neurons 

in the output layer are connected to those in the input layer via synaptic weights. Random 

synaptic weights, ranging 0–1, are initially assigned and these are then adjusted during learning 

to best describe patterns in the input data (Mather et al., 1998). Network learning is an iterative 

process and involves two stages: unsupervised coarse tuning and supervised fine tuning. During 

coarse tuning, normalised input vectors (i.e., pixels in spectral or combined spectral-

morphometric space) are presented to the network to determine the output neuron with the best-

matching weight vector. The weight vectors of this best-matching neuron and output neurons 

within a given neighbourhood of the winner are subsequently adjusted in the direction of the 

input vector according to the learning rate. Both the radius of the neighbourhood and the learning 

rate decrease with each iteration. Prior to fine tuning, input vectors with known class identities 

(i.e., training pixels) are used to preliminarily label the output neurons through a process known 

as majority voting. Fine tuning with the type-one Learning Vector Quantization (LVQ1) 

algorithm (Kohonen, 1990) was then used to define the class boundaries in the output layer more 

precisely. To do this, training pixels are again presented to the SOM and the weight vector of the 

best-matching neuron is adjusted in the direction of the training vector if its label matches the 



class identity of the pixel, but moved away if not. Once trained, output neurons are re-labelled 

and then all image pixels are presented to the network and assigned the class identity of their 

best-matching output neuron. 

 For classification using the SOM, parameters such as the number of output neurons, 

initial neighbourhood radius and minimum and maximum learning rates must be defined. Using 

the existing literature as a guide (e.g., Ji, 2000; Jianwen & Bagan, 2005; Bedini, 2009), 

numerous tests were conducted to determine appropriate sets of parameters for all SOM 

classifications. In each case, the appropriate parameters were chosen to try and minimise the 

average quantisation error (average of Euclidean distances between input vectors and best-

matching neurons) and maximise the labelling accuracy of training pixels. The chosen 

parameters for each classification are shown in Table 5. In all cases, coarse tuning was 

performed using all available input vectors (i.e., all 1,008,596 pixels), with a maximum learning 

rate of 0.05 and a minimum learning rate of 0.01. Fine tuning was performed with LVQ1 using a 

maximum gain term of 0.005 and a minimum of 0.001. 

 After classification using both the MLC and SOM, a 3 × 3 pixel majority filter was 

applied to every map. The purpose of the majority filter was to remove pixels that are isolated in 

terms of their lithological class because, as lithological units tend to form homogeneous areas, it 

is somewhat unlikely that the relatively small areal extent represented by these isolated pixels 

truly represents a different lithological unit in an otherwise homogeneous area (Ricchetti, 2000). 

 

4.4 Accuracy assessment 

For each set of input variables, the classification accuracy for the entire mapped area was 

assessed using the overall (OA), user’s (UA) and producer’s (PA) accuracies and the Kappa 



coefficient (K) derived from a confusion matrix (Congalton, 1991). The OA is the percentage of 

all validation pixels correctly classified, whereas the UA and PA provide information regarding 

the commission and omission errors associated with the individual classes, respectively. Unlike 

the OA, K takes into account the possibility of agreements occurring by chance in a random 

classification (Brown et al., 1998). 

 In order to compare the two classifiers and to evaluate whether the integration of 

topographic data can improve on the spectral-only mapping results, tests for statistically 

significant differences were computed. Although this commonly involves performing a Z-test 

using the K statistics derived from two classification results (e.g., South et al., 2004; Liberti et 

al., 2009), this method is inappropriate for the current study as the same validation pixels are 

used to assess the accuracies of all classifications involved in pair-wise comparisons (Foody, 

2004). For cases where the validation data are related, the McNemar test is more appropriate for 

testing the significance of any differences in classification accuracies (Foody, 2004; De Leeuw et 

al., 2006). Based upon a Chi-squared (χ
2
) distribution, the McNemar test involves a cross-

tabulation of the number of validation pixels correctly and incorrectly classified through two 

algorithms. The test is computed as:  
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where f12 is the number of validation pixels correctly classified in classification 1 but incorrectly 

classified in classification 2, and f21 is the number of pixels classified correctly in classification 

2, but incorrectly classified in classification 1. The statistical significance of the difference is 

then determined from the resulting χ
2
 value and expressed as a p-value (p). 

  

 



5. Results and discussion 

5.1 Spectral classification 

 A total of six lithological maps were generated using spectral information. Following 

initial classification, use of the majority filter helped to remove isolated pixels in the classified 

images by refining, on average, the classes of 1.5% of the total number of pixels in each image. 

As a consequence, the OA of all maps was increased by an average of 1.3%. All subsequent 

discussion concerns the lithological maps produced following majority filtering. A summary of 

the spectral-only lithological mapping results is shown in Table 6. 

The best spectral-only result was obtained through SOM classification of the MNF-

transformed variables (ATM MNF), which resulted in an OA of 65.5% and a K of 0.54 (Fig. 5a). 

The result of this algorithm is comparable to the OA (65.4%) obtained for the same area using 

only LiDAR-derived topographic information (Grebby et al., 2010). Considering the complexity 

of the landscape and the adverse effects that vegetation cover can have on the spectral 

discrimination of lithologies, this is deemed to be a good result. The worst performing algorithm 

was the SOM classification used in conjunction with the PC variables (ATM PC; OA = 50.2%, 

K = 0.35), resulting in decreases of 15% in the OA and 35% in K when compared to the ATM 

MNF approach. A similar finding was also observed for the MLC; decreases in the OA of 8% 

and 20% in K were obtained when classification was performed on the ATM PC variables in 

contrast to the ATM MNF variables. Such concomitant differences imply that the MNF 

transformation is more effective than PCA in enhancing discrimination through suppression of 

the intra-class spectral variability ascribed to the heterogeneous vegetation/rock surface mixtures 

(i.e., the predominant source noise in this case). The ascendancy of the MNF transformation is 

doubtlessly due to the ability to target the desired noise component in the noise estimation and 

then order the MNF bands in terms of their signal-to-noise ratio, thus enabling this noise to be 



reliably segregated prior to classification. In fact, the poor performance of both ATM PC 

classifications in comparison to the non-transformed ATM 9 results (i.e., decreases of 10% in the 

OA and ~ 26% in K) suggests that PCA actually accentuates, rather than suppresses the 

vegetation-induced intra-class spectral variability. This is due to the inability of PCA to reliably 

identify and separate the contributions of the signal and noise-related variances to the total data 

variance contained within the higher-order PCs (Chen et al., 2003); the first three of which are 

included in the ATM PC variable set. Based on a comparison of the eigenvector loadings for the 

PC and MNF input variables, it appears that PC2 is responsible for accentuating the intra-class 

spectral variability because it maximises the contrast between pixels dominated by vegetation 

and those dominated by the exposed substrate. The exclusion of PC2 should therefore help to 

reduce the intra-class spectral variability and improve the classification results of the PCA 

approach. 

With regards to classifier performance, the MLC outperforms the SOM in classifying two 

out of the three sets of spectral input variables. Although the observed differences in the OA 

between the MLC and SOM in both cases are only small (~ 1%), these are statistically significant 

nonetheless (p ≤ 0.001). Given the noisy spectral signatures associated with the ATM 9 variables, 

the success of the MLC over the SOM is somewhat surprising as NNs are commonly touted as 

being more robust in handling noisy data than parametric classifiers (e.g., Ji, 2000). This result 

may therefore indicate selection of sub-optimal SOM network parameters for classifications 

based upon these two sets of variables. For the lone case in which the SOM outperforms the 

MLC (i.e., the ATM MNF variables) a more significant difference of ~ 6% is obtained (p < 

0.0001). The considerable superiority of the non-parametric SOM in this case could be 



attributable to a deviation from the multivariate class normality assumption made by the 

parametric MLC.  

 Of the individual lithological classes, the pillow lavas were the most accurately mapped 

unit with a PA and UA frequently exceeding 80% and 60% respectively, regardless of the 

algorithm used (Table 7). The Lefkara Formation is also mapped with relatively good accuracy 

for all sets of input variables, but especially when classification is performed using the SOM (PA 

> 71%). Despite this, the Lefkara Formation is associated with considerable commission errors, 

ranging from 48–68% for all combinations of input variables and classification routine. An 

inspection of the error matrices (not shown) revealed that confusion with the Basal Group is 

largely responsible for the high commission errors associated with the Lefkara Formation unit. 

Since these two units are geologically very distinct, this confusion must be ascribed to their 

associations with similar vegetation types. Both the Basal Group and alluvium–colluvium are 

poorly classified using both the MLC and SOM. The omission error for the Basal Group is 

consistently greater than 54%, while the commission error varies from 40–60% for all 

algorithms. Despite its close geological relationship to the pillow lava unit, a greater proportion 

of Basal Group validation pixels are incorrectly assigned to the Lefkara Formation; again 

reiterating that the spectral similarity between these distinct units must be related to their 

association with similar types of vegetation. Conversely, the occurrence of dissimilar vegetation 

types (i.e., shrubs vs. lichen) is arguably responsible for the lack of spectral confusion between 

the Basal Group and pillow lavas. With the exception of classifications based upon the ATM 

MNF variables, the PA for alluvium–colluvium never exceeds 50%, with the unit most 

frequently confused with the Lefkara Formation and the other units to a lesser extent. Some 

degree of confusion with the other units can be expected because alluvium-colluvium is a generic 



unit which includes all Quaternary sediments regardless of their parental rock type. Contrary to 

its poor PA, the alluvium–colluvium unit exhibits the highest UA for all algorithms, with a 

maximum of 99.8% for the MLC classification of the ATM MNF variables and a minimum of 

83.8% when using the ATM 9 variables in conjunction with the SOM.   

 

5.2 Classification based on integrated spectral and topographic variables 

 The use of ancillary data for enhancing the discrimination and mapping of lithologies was 

evaluated through incorporating LiDAR-derived topographic data using two approaches; 

resulting in the generation of four lithological maps. Again, all analysis concerns lithological 

maps produced following the application of a majority filter. In this case, the majority filter 

helped refine (on average) the classes of 0.9% of the total number of pixels in each image, 

leading to increases in the OA of all maps by an average of 1.4%. A summary of the integrated 

mapping results is shown in Table 8 and Table 9, while the statistical significance of differences 

between spectral and integrated classification accuracies can be found in Table 10.  

 Overall, the results show that the incorporation of topographic information leads to 

general improvements in the overall lithological mapping accuracy when compared to 

classifications based solely on spectral data. However, the level of improvement attainable is 

somewhat classifier dependent. Once again the highest OA was obtained using the SOM 

classifier in conjunction with MNF transformed variables (ATM-Li MNF; OA = 72.7%, K = 

0.63; Fig. 5b). This results in an OA at least 7% higher than — and significantly different (p   < 

0.0001) from — all spectral-only SOM classifications, with a maximum improvement of 22.5% 

over the ATM PC result. Highly significant statistical differences (p < 0.0001) were also observed 

between the SOM ATM-Li and all spectral-only SOM classifications; reflecting increases in the 



OA and K of at least 4.7% and 10%, respectively, when topographic information is incorporated. 

Improvements attainable using the MLC are somewhat varied. Compared to the best spectral-

only MLC result (ATM 9), MLC classification with the ATM-Li variables produced an increase 

in the OA of only 0.3%, which was subsequently found not to be a statistically significant 

difference (61.6% vs. 61.9%; p = 0.1875). However, significant differences (p < 0.0001) were 

obtained in comparison to the ATM PC and ATM MNF MLC-based classifications, reflecting 

improvements of ≥2.6% in the OA. Classification performed using the MLC and ATM-Li MNF 

variables was less successful as this produced the worst classification accuracy of all the 

integrated approaches (OA = 60.8%, K = 0.49). In actual fact, this algorithm performs worse 

than the best MLC spectral approach (ATM 9). Nevertheless, the OA obtained using this 

algorithm is higher and the result is statistically different (p < 0.002) from those achieved through 

the two other spectral-only MLC approaches. Ultimately, the SOM is far superior for 

classification of the multisource data as it outperforms the MLC considerably for both sets of 

integrated variables (ATM-Li: 70.2% vs. 61.9%, p < 0.0001; ATM-Li MNF: 72.7% vs. 60.8%, p < 

0.0001). The dominancy of the NN over the parametric classifier for multisource data 

classification observed here is consistent with other published results (e.g., Arora and Mathur, 

2001). Additionally, the SOM consistently achieves considerable improvements in the overall 

lithological mapping accuracy in comparison to sole use of spectral information. 

 With regards to the individual classes, the pillow lava unit remains the most accurately 

mapped, with a PA in excess of ~ 82% for all algorithms. Good classification accuracies are 

achieved for the Lefkara Formation (PA > 63.4%), especially when classified using the MLC (PA 

> 88%). Despite this, the UA for the Lefkara Formation unit is relatively low, leading to 

commission errors ranging from 41.3–59.4%. The alluvium–colluvium unit is accurately mapped 



with algorithms based on the SOM (PA > 75%), while excellent UA’s (> 86%) are achieved for all 

algorithms. Although the omission errors for the Basal Group are high for all algorithms (43.7–

59.6%), only small commission errors (< 25%) are attached to the unit. 

A summary of the effects of topographic integration on the individual class accuracies for 

the SOM algorithms is provided by Fig. 6. From this, it is evident that improvements in the 

lithological mapping performance that result from the addition of topographic information are 

primarily linked to substantial increases in both the PA associated with alluvium–colluvium and 

the UA of the Basal Group unit; reflecting decreases in the omission and commission errors of 

the units, respectively. Spectral-only classifications typically produce considerable alluvium–

colluvium omission errors because the alluvium–colluvium unit is frequently confused with the 

parental rock types from which the sedimentary unit is derived. The integration of topographic 

information help reduces this confusion and the ensuing omission errors because, unlike its 

spectral signature which is inherently similar to the parental rocks from which the unit is derived, 

the topographic characteristics associated with alluvium–colluvium are distinctive (Grebby et al., 

2010). Likewise, the typical topography associated with the Basal Group is relatively disparate 

from the other lithological units — particularly in terms of slope — and so the inclusion of such 

information provides the additional discriminating power that is required to reduce the confusion 

largely caused by vegetation-related spectral similarity with other units. Examples illustrating the 

functional benefits described above can be seen in Fig. 7. Although the overall mapping 

improvements obtained through incorporating topographic information are indisputable, 

ambiguous classifications occasionally occur in areas where the lithological units exhibit atypical 

topographic characteristics — mostly due to anthropogenic activity such as agriculture. This is 

also illustrated in Fig. 7 by the apparent increase in the number of Basal Group pixels proximal 



to the mapped Lefkara Formation–pillow lava contact. In this particular case the source of the 

atypically steep topography is unclear, but it is likely to be linked to underlying structures (e.g., a 

fault or dykes). 

 It is also clearly evident that — despite the complexity of the landscape — both spectral-

only and integrated SOM approaches possess the capability to define lithological contacts more 

accurately and map the units in more detail than what is shown on existing geological maps (Fig. 

7). Although the best spectral-only approach (ATM MNF SOM) and LiDAR-derived 

topographic approach (Grebby et al., 2010) can be used to generate accurate lithological maps, 

the potential of data integration for detailed lithological mapping in this type of vegetated 

environment is clearly demonstrated through the significant improvements attainable over the 

sole use of either dataset. 

  

6. Conclusions 

The application of spectral remote sensing to lithological mapping can be hindered by the 

presence of just small amounts of vegetation cover, and so its use has been predominantly 

restricted to essentially barren environments. Although lithological mapping using geobotanical 

relationships and the integration of spectral and ancillary data are not new concepts, their use has 

been limited to data with only moderate-to-coarse spatial resolutions and areas with a relative 

lack of ubiquitous vegetation cover. This study takes advantage of increasingly available high-

resolution remote sensing data to evaluate the efficacy of airborne multispectral imagery for 

detailed lithological mapping in a complex and vegetated area of the Troodos ophiolite, Cyprus. 

Furthermore, this study also investigates whether spectral and LiDAR-derived topographic data 



can be integrated to increase lithological discrimination and enhance the overall mapping 

performance. 

Lithological mapping using only spectral imagery was somewhat hindered by a 

combination of the intra-class spectral variability caused by the heterogeneous vegetation cover, 

and by both vegetation-induced and inherent spectral similarities between some of the 

lithological units. Despite these hindrances, a lithological map with a satisfactory OA of 65.5% 

and K of 0.54 was generated through the SOM classification of a set of MNF-transformed 

spectral variables. The MNF transformation was effective in suppressing the intra-class spectral 

variability (or ―noise‖) caused by the variable vegetation cover, and thus generally resulted in 

enhanced lithological discrimination in comparison to PCA and non-transformed spectral 

variables. In fact, PCA accentuated the contrast between pixels dominated by the spectral 

response of vegetation and those dominated by the rock type, resulting in an adverse effect on 

discrimination. Nevertheless, regardless of the algorithm employed, distinct geobotanical 

associations (i.e., lichen vs. shrubs) apparently aided the differentiation of the pillow lavas and 

the closely related Basal Group unit. With regards to the classifier performances, the MLC 

outperformed the SOM in two of the three sets of spectral variables, possibly owing to sub-

optimal SOM network selections. 

Incorporating high-resolution topographic information generally resulted in 

improvements to the overall lithological mapping accuracy when compared to the spectral-only 

approaches. However, the attainable improvements are considerably greater for the SOM than 

for the MLC. This result demonstrates the SOM’s superiority for multisource data classification. 

The most accurate lithological map is obtained using the SOM classifier in conjunction with the 

MNF-transformed spectral and topographic variables (OA = 72.7% and K = 0.63). This 



represents a minimum and maximum increase in the OA of 7% and 22.5%, respectively, when 

compared to the corresponding spectral-only approaches. The improvements generated by the 

addition of topographic information are primarily linked to substantial decreases in both the 

omission error associated with alluvium–colluvium and the commission error of the Basal Group 

unit. Both of these lithological units have particularly distinct topographic characteristics, which 

provide the additional discriminatory power required to separate the lithologies following 

inherent or vegetation-induced spectral similarities. Occasional lithological misclassifications are 

observed in areas where the units display atypical topographic characteristics due to either 

anthropogenic influences or natural deviations. 

The optimum spectral-only and integrated SOM approaches presented here are capable of 

producing lithological maps with more detail and more accurately defined contacts than the 

existing geological maps of the study area. Furthermore, this capability is demonstrated using 

minimal a priori knowledge regarding the spatial distribution of each lithological unit, which 

offers great promise for lithological mapping in relatively unexplored terrain. Nevertheless, the 

efficacy of these algorithms can potentially be extended to any geological setting where direct 

spectral discrimination is difficult due to the presence of vegetation or inherent spectral 

similarities, and where lithology and topography are linked. It is also anticipated that the 

algorithms can be successfully applied to areas with heavier vegetation cover, provided that 

geobotanical and/or litho-topographic relationships can be recognised. In particularly dense 

vegetation cover such as forests, it may be necessary to acquire the LiDAR data at a high point 

density in order to ensure an adequate DTM can be generated, thus maximising the capability to 

identify potential litho-topographic relationships. 



Irrespective of the mapping capabilities of any remote sensing approach, the final 

lithological map product will always require additional refinement. This usually involves a 

laborious combination of manual computer-based image refinement and fieldwork to eradicate 

spurious classifications from the map. Further work is required to investigate whether this 

process can be automated to some extent, possibly using a rule-based procedure which refines 

the class of spurious pixels according to established stratigraphic relationships. This could 

ultimately help to further increase the veracity of the derived map and the efficiency of follow-up 

fieldwork. 
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Figure captions 

Fig. 1. Simplified geology of the Troodos ophiolite and existing geological maps of the study 

area (inset; M – Mathiati mine and A – Agia Varvara Lefkosias). Digital geology provided by 

the Geological Survey Department of Cyprus. 

 

Fig. 2. Field photographs of the study area showing: (a) the heterogeneous vegetation cover and 

typical vegetation types associated with (b) alluvium–colluvium and (c) the pillow lavas.  

 

Fig. 3. Overview of methodological approach used to assess the efficacy of ATM imagery and 

the integration of LiDAR-derived topographic data for detailed lithological mapping. Bracketed 

acronyms (see section 4.2 for explanation) denote names of sets of input variables used in 

conjunction with the Maximum Likelihood Classifier (MLC) and the Kohonen Self-Organizing 

Map (SOM). 

 

Fig. 4. Mean spectral signatures (±1 standard deviation) derived from training pixels for ATM 

Bands 2–10. Radiometrically calibrated radiance values are expressed as 16-bit digital numbers 

(DNs). Spectra are horizontally offset within ATM bands for clarity. 

 

Fig. 5. Lithological maps generated using: (a) the best spectral-only algorithm (ATM MNF 

SOM) and (b) the best integrated spectral–topographic algorithm (ATM-Li MNF SOM). Dashed 

black box indicates the spatial extent of Fig. 7. 

 

Fig. 6. Effect of topographic integration on the Producer's and User's accuracies of individual 

units for all SOM algorithms. Alluvium–colluvium (AC), Basal Group (BG), Lefkara Formation 

(LF) and pillow lavas (PL). 

 

Fig. 7. Detailed illustration of the mapping performance for area shown in Fig. 5. (a) QuickBird 

image, and lithological maps generated using (b) the best spectral-only algorithm (ATM MNF 

SOM) and (c) the best integrated spectral–topographic algorithm (ATM-Li MNF SOM). 

 

 

 

 



Table 1. Number of pixels, the equivalent area and the proportion of the study area (Prop.) 

selected to represent each lithological class during training and validation. 

Lithological class 
Training  Validation 

Pixels Area (m
2
) Prop. (%)  Pixels Area (m

2
) Prop. (%) 

Alluvium–colluvium 1712 27,392 0.17  4087 65,392 0.40 

Basal Group 1780 28,480 0.18  3200 51,200 0.32 

Lefkara Formation 2769 44,304 0.27  2451 39,216 0.24 

Pillow lavas 3095 49,520 0.31  3208 51,328 0.32 

 

  



Table 2. Eigenvalues and eigenvector loadings for the first three PCs derived from the 

application of PCA to ATM Bands 2–10. Eigenvector loadings measure the contribution of the 

original ATM bands to each PC. 

Eigenvectors PC1 PC2 PC3 

ATM 2 0.33 -0.40 -0.19 

ATM 3 0.35 -0.32 -0.20 

ATM 4 0.35 -0.26 -0.16 

ATM 5 0.36 -0.17 -0.14 

ATM 6 0.36 0.19 -0.19 

ATM 7 0.33 0.47 -0.19 

ATM 8 0.30 0.57 -0.05 

ATM 9 0.32 0.17 0.50 

ATM 10 0.29 -0.19 0.74 

    

Eigenvalues 7.25 1.00 0.53 

Variance (%) 80.56 11.10 5.84 

Cumulative variance (%) 80.56 91.66 97.50 

 

  



Table 3. Eigenvalues and eigenvector loadings for the first four MNF bands derived from the 

MNF transformation of ATM Bands 2–10. Eigenvector loadings measure the contribution of the 

original ATM bands to each MNF band. 

Eigenvectors MNF1 MNF2 MNF3 MNF4 

ATM 2 0.94 0.13 0.08 0.27 

ATM 3 0.04 -0.88 0.38 0.09 

ATM 4 0.14 0.13 0.28 -0.84 

ATM 5 -0.18 0.36 0.72 0.21 

ATM 6 0.10 -0.05 -0.13 -0.21 

ATM 7 0.11 -0.04 -0.25 -0.23 

ATM 8 -0.01 0.03 0.15 -0.06 

ATM 9 -0.09 0.20 0.17 0.16 

ATM 10 0.18 -0.08 0.35 -0.22 

     

Eigenvalues 2660.43 218.50 76.66 52.54 

Proportion (%) 87.28 7.17 2.51 1.72 

Cumulative proportion (%) 87.28 94.45 96.96 98.68 

 

  



Table 4. Eigenvalues and eigenvector loadings for the first five MNF bands derived from the 

MNF transformation of the fourteen spectral and morphometric variables. Eigenvector loadings 

measure the contribution of the original bands to each MNF band. 

Eigenvectors MNF1 MNF2 MNF3 MNF4 MNF5 

ATM 2 0.70 0.12 -0.20 -0.21 0.10 

ATM 3 0.02 -0.12 0.00 0.25 -0.01 

ATM 4 0.15 0.40 0.14 0.14 -0.36 

ATM 5 -0.36 -0.51 -0.47 -0.02 -0.15 

ATM 6 -0.07 0.02 -0.08 0.02 -0.05 

ATM 7 -0.01 -0.11 0.05 0.06 0.09 

ATM 8 0.02 0.02 0.03 -0.04 0.03 

ATM 9 -0.03 -0.17 -0.06 -0.05 0.22 

ATM 10 0.09 -0.12 0.10 -0.08 0.01 

Slope -0.06 0.10 -0.06 -0.01 -0.09 

|Profile curvature| 0.36 -0.65 0.56 0.15 -0.04 

|Plan curvature| 0.11 0.08 -0.23 0.64 0.65 

Residual roughness -0.41 0.21 0.52 0.24 0.09 

Hypsometric integral -0.16 0.04 0.21 -0.60 0.58 

      

Eigenvalues 7942.20 2422.13 1300.35 247.91 201.14 

Proportion (%) 64.47 19.66 10.55 2.01 1.63 

Cumulative proportion (%) 64.47 84.13 94.68 96.69 98.32 

 

  



Table 5. SOM network parameters. 

Input variables 

Neurons 

in output 

layer 

Initial 

neighbourhood 

radius 

Fine 

tuning 

iterations 

ATM 9 20 × 20 15.14 300 

ATM PC 15 × 15 8.07 200 

ATM MNF 25 × 25 30.00 100 

ATM-Li 25 × 25 18.00 200 

ATM-Li MNF 35 × 35 40.00 200 

 

  



Table 6. Results for spectral-only classification algorithms and statistical significance of 

differences between corresponding MLC and SOM classifications (p-value). 

Input variables 

MLC  SOM  

p-value OA (%) K  OA (%) K  

ATM 9 61.6 0.50  60.3 0.48  0.0010 

ATM PC 51.4 0.37  50.2 0.35  0.0007 

ATM MNF 59.3 0.46  65.5 0.54  <0.0001 

 

  



Table 7. Individual class accuracies for spectral-only algorithms: Producer’s (PA) and User’s 

(UA) accuracies for alluvium–colluvium (AC), Basal Group (BG), Lefkara Formation (LF) and 

pillow lavas (PL).  

Algorithm 

 PA (%)  UA (%) 

 AC BG LF PL  AC BG LF PL 

MLC           

ATM 9  46.5 46.0 84.3 79.0  99.6 55.4 41.8 73.7 

ATM PC  29.9 41.4 60.2 82.1  97.6 41.9 32.3 66.5 

ATM MNF  51.5 40.0 64.5 84.5  99.8 40.1 47.4 62.9 
           

SOM           

ATM 9  48.4 30.1 87.6 84.7  83.8 58.2 46.8 63.6 

ATM PC  21.5 35.6 75.5 81.8  95.7 43.6 34.7 64.2 

ATM MNF  66.0 39.1 71.1 86.8  93.5 49.6 51.8 66.8 

 

  



Table 8. Results for integrated spectral–topographic classification algorithms and statistical 

significance of differences between corresponding MLC and SOM classifications (p-value). 

Input variables 

MLC  SOM  

p-value OA (%) K  OA (%) K  

ATM-Li 61.9 0.50  70.2 0.60  <0.0001 

ATM-Li MNF 60.8 0.49  72.7 0.63  <0.0001 

 

  



Table 9. Individual class accuracies for integrated spectral–topographic algorithms: Producer’s 

(PA) and User’s (UA) accuracies for alluvium–colluvium (AC), Basal Group (BG), Lefkara 

Formation (LF) and pillow lavas (PL). 

Algorithm 

 PA (%)  UA (%) 
 AC BG LF PL  AC BG LF PL 

MLC           

ATM-Li  41.6 40.4 96.2 83.2  100 87.3 40.6 67.4 

ATM-Li MNF  27.5 56.3 88.8 86.2  100 77.9 52.3 51.7 
           

SOM           

ATM-Li  75.9 44.3 78.2 82.4  93.0 76.5 58.1 59.3 

ATM-Li MNF  92.5 45.2 63.4 81.9  86.5 75.7 53.7 69.8 

 

  



Table 10. Statistical significance of differences (expressed as p-values) between spectral-only 

and integrated spectral–topographic classification algorithms. 

Classifier Spectral variables 

Spectral–topographic variables 

ATM-Li ATM-Li MNF 

MLC ATM 9 0.1875 0.0579 

ATM PC <0.0001 <0.0001 

ATM MNF <0.0001 0.0018 
    

SOM 

 

ATM 9 <0.0001 <0.0001 

ATM PC <0.0001 <0.0001 

ATM MNF <0.0001 <0.0001 
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