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ABSTRACT: Sewage contamination in shallow lake sediments is of concern because the 18 
pathogens, organic matter and nutrients contribute to the deterioration of the water-bodies 19 
health and ecology. Sediment cores from three shallow lakes (Coneries, Church and Clifton 20 
Ponds) within Attenborough nature reserve located downstream of sewage treatment works 21 
were analysed for TOC, C/N, δ13C, δ15N, bacterial coliforms and faecal sterols. 210Pb and 22 
137Cs activities were used to date the sediments. Elemental analysis suggest that the  source of 23 
organic matter was algal and down profile changes in δ13C indicate a possible decrease in 24 
productivity with time which could be due to improvements in sewage treatment. δ15N for 25 
Coneries Pond are slightly higher than those observed in Church or Clifton and are consistent 26 
with a sewage-derived nitrate source which has been diluted by non-sewage sources of N.  27 
The similarity in δ15N values (+12‰ to +10‰) indicate that the three ponds were not entirely 28 
hydrologically isolated. Analysis by Gas-Chromatography Mass-Spectrometry (GC/MS) 29 
reveal that Coneries Pond had sterol concentrations in the range 20 to 30 µg/g (dry wt.), 30 
whereas, those from Clifton and Church Ponds were lower. The highest concentrations of the 31 
human-sourced sewage marker 5β−coprostanol were observed in the top 40 cm of Coneries 32 
Pond with values of up to 2.2 µg/g. In contrast, Church and Clifton Pond sediments contain 33 
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only trace amounts throughout. Down-profile comparison of 5β−coprostanol/cholesterol, 1 
5β−coprostanol/(5β−coprostanol+5α−cholestanol) and 5β-epicoprostanol/coprostanol as well 2 
as 5α−cholestanol/cholesterol suggest that Coneries Pond has received appreciable amounts 3 
of faecal contamination. Examination of 5β-stigmastanol, (marker for herbivorous / ruminant 4 
animals), down core concentrations suggest a recent decrease in manure slurry input to 5 
Coneries Pond. The greater concentration of β-sitosterol in sediments from Church and 6 
Clifton Ponds as compared to Coneries is attributed in part to their greater diversity and 7 
extent of aquatic plants and avian faeces.   8 
 9 

1. Introduction 10 

 11 

Sewage pollution is a major cause of decreasing water quality in rivers and lakes within the 12 

UK and throughout the world. The presence of human and animal faecal matter at elevated 13 

concentrations in waters and surface sediments in shallow lakes is of widespread concern for 14 

two reasons. Firstly, the complex chemical mixture causes nutrient enrichment, 15 

eutrophication, toxic algal blooms and water column anoxia which in turn can lead to a 16 

reduction in species diversity and ecosystem instability. Secondly, untreated sewage can, 17 

under specific conditions, provide a growth medium for bacterial and viral pathogens that if 18 

ingested by humans leads to diseases such as Salmonella, Cholera, Diarrhoea, Typhoid, 19 

Gastroenteritis and Hepatitis A (Mudge and Ball, 2006).  20 

 21 

Estimation of sewage pollution is normally elicited from the quantification of total coliforms, 22 

faecal coliforms and faecal Streptococci, which, although not pathogenic, serve as proxies for 23 

pathogenic bacteria and total sewage input. However, the use of these indicator organisms 24 

provides little information concerning the source or age of the faecal material and requires 25 

that waters and sediments be analysed soon after collection. A complementary approach to 26 

evaluate sewage discharge and accumulation in rivers, lakes, estuaries and marine 27 

environments is to characterise specific groups of molecules contained within the sewage 28 
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such as faecal sterols (Bull et al., 2002; Leeming et al., 1996; Mudge et al., 1999; Mudge and 1 

Duce, 2005; Peng et al., 2005; Readman et al., 2005; Seguel et al., 2001). 2 

 3 

Previous investigations of faecal sterol contents in waters and sediments have tracked 4 

concentrations of between five to seventeen sterols including coprostanone, coprostanol, 5 

epicoprostanol, cholesterol, cholestanol, campestrol, stigmasterol, β-sitosterol, fucosterol and 6 

stigmastanol (Isobe et al., 2002; Leeming et al., 1996; Shah et al., 2006). The abundance and 7 

distribution of faecal sterols in excreta is controlled in part by an animal’s diet as well as 8 

bacterially-mediated reductive modifications in the gut and also endogenous production of 9 

sterols such as cholesterol (Leeming et al., 1996). For example, in the intestinal tracts of 10 

many higher mammals, the biological precursor compound cholesterol is converted to 5β-11 

stanols via biohydrogenation of the ∆5 double bond to give 5β(H) stereoisomers. Similarly, 12 

cholesterol is converted in the gut of higher mammals to coprostanol via various 13 

intermediates by oxidation of the OH group at the C-3 position (Bull et al., 2002). Once in the 14 

aquatic or terrestrial environment compounds such as coprostanol can undergo further 15 

microbial reduction to yield the product epicoprostanol (Bull et al., 2002).  16 

 17 

The Attenborough Ponds Nature Reserve (52º 53’58’’N, 1º 14’09’’W) is located within the 18 

conurbation of Nottingham, UK, and is designated a site of special scientific interest (SSSI) 19 

primarily because of the wide diversity of birds.  The ponds are a series of ex-gravel pits 20 

covering an area of about 1.67 km2 located on the floodplain of the River Trent. Excavation 21 

of Church Pond occurred from 1962-1965, Coneries Pond 1966-1968 and Clifton Pond 1964-22 

68.  Their location, similar size (0.49 to 0.1 km2), depth (~3m) and mode of formation make 23 

them ideally suited to ecosystem-scale comparisons.  The ponds (including Church, Clifton 24 
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and Coneries Ponds) have varying histories of connectivity to the polluted Erewash, which 1 

drains a heavily urbanised catchment and receives effluent from seven sewage treatment 2 

plants. The first discharge information for the sewage treatment works were issued between 3 

1981 and 1990 (Severn Trent Water, unpublished.). Methods of sewage treatment for works 4 

discharging into the river prior to this time are unavailable. In 1972, the course of the 5 

Erewash was diverted directly into Coneries Pond, which was at that time hydrologically 6 

connected to Church and Clifton Pond during periods of high water level. In 1981, 7 

engineering works isolated Clifton from Coneries Pond, resulting in the system that exists 8 

today where Church and Clifton Pond are isolated from the Erewash and Coneries Pond 9 

system in all but the most extreme flood events.  Consequently Coneries waters are enriched 10 

in total P (TP; 540 µg/L) and total dissolved inorganic nitrogen (TDIN; 6 mg/L) and are 11 

turbid whereas Clifton (TP 73 µg/L, TDIN 0.2 mg/L), and Church (TP 184 µg/L, TDIN 0.2 12 

mg/L) have much lower nutrient concentrations and clear water (mean concentrations 13 

between 2005-2008) (Cross, 2009). 14 

 15 

The objectives of this work were three fold: (i) Identify the main sources of organic matter 16 

entering the Ponds; (ii) Establish whether Coneries, Church and Clifton Ponds had received 17 

the same amounts of faecal organic matter through time; and (iii) ascertain using sterol 18 

biomarker whether the source(s) of faecal organic matter had changed. 19 

 20 

2. Sampling and methods  21 

 22 

2.1 Sample Collection 23 

 24 
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Sediment cores were collected on 22 and 23rd May 2007 from Church Pond (SK 51600, 1 

34150), Clifton Pond (SK 52300, 33697) and Coneries Pond (SK  51234, 33856) (Fig. 1).  2 

The deepest part of the lake was located for coring using a handheld echo sounder and 3 

position marked using a Garmin 12 GPS system. Cores were sampled using a wide-diameter 4 

(14 cm i.d.) Livingstone type corer specially designed for the retrieval of large volumes of 5 

sediment.  The core tube was pushed into the sediment until an impenetrable layer (basal 6 

gravel and sands) assumed to mark the inception of the lakes was reached. After each 7 

successful deployment-retrieval cycle the core was transported back to shore, whereupon the 8 

core was extruded and sampled every 1 cm for coliform counting and every 2 cm for 9 

elemental and isotopic analyses. Sub-samples for faecal sterol and stanol concentrations were 10 

collected  at 4 cm resolution  (~10 g wet/wt) and were stored in polyethylene bags and 11 

transported back to the laboratory at ~4 ºC, then immediately frozen (–70 °C). Aside from the 12 

basal gravel/ sand layer none of the cores showed a clear sediment stratigraphy being 13 

comprised of a homogeneous mixture of dark organic rich silty clay.    14 

 15 

2.2 210Pb and 137Cs Chronology 16 

 17 

Dried sediment samples from cores taken from Church Pond and Clifton Pond were analysed 18 

for 210Pb, 226Ra, 137Cs and 241Am by direct gamma assay in the Bloomsbury Environmental 19 

Isotope Facility (BEIF) at University College London, using ORTEC HPGe GWL series 20 

well-type coaxial low background intrinsic germanium detector (Appleby et al., 1986). Lead-21 

210 was determined via its gamma emissions at 46.5keV, and 226Ra by the 295keV and 22 

352keV gamma rays emitted by its daughter isotope 214Pb following 3 weeks storage in 23 

sealed containers to allow radioactive equilibration. Cesium-137 and 241Am were measured 24 
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by their emissions at 662kev and 59.5kev (Appleby et al., 1986). The absolute efficiencies of 1 

the detector were determined using calibrated sources and sediment samples of known 2 

activity. Corrections were made for the effect of self absorption of low energy gamma rays 3 

within the sample (Appleby et al., 1992).  4 

 5 

2.3 %TOC, C/N, carbon and nitrogen isotope ratios 6 

 7 

Total organic carbon and nitrogen from which we derive weight C/N ratios were analysed 8 

alongside carbon (δ13C) and nitrogen (δ15N) isotope ratios.  %C, %N and δ13C were measured 9 

on homogenized, acid-washed sediment while the δ15N was measured on raw homogenized 10 

sediment. 13C/12C analyses were performed by combustion in a Costech Elemental Analyser 11 

(EA) on-line to a VG TripleTrap and Optima dual-inlet mass spectrometer, with δ13C values 12 

calculated to the VPDB scale using within-run laboratory standards calibrated against NBS-13 

18, NBS-19 and checked using NBS-22. Replicate analysis of well-mixed samples indicated 14 

a precision of + <0.1‰ (1 SD). %TOC and C/N ratios were calibrated against an Acetanilide 15 

standard, with a precision of + <0.1 for C/N. All C and N values in this current work are 16 

expressed on a weight ratio basis. 15N/14N analysis was performed on a ThermoFinnigan 17 

system comprising an elemental analyser linked under continuous flow with a Delta+XL 18 

mass spectrometer. Isotope ratios were calculated as δ15N versus atmospheric N2 by 19 

comparison with standards calibrated against IAEA N-1 and N-2. Analytical precision (1 20 

S.D.) is typically <0.3‰. 21 

 22 

2.4 Coliforms 23 

 24 
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In the laboratory two grams of sub-sample was transferred to a sterile universal container 1 

using aseptic technique. To each sub-sample 20 ml of sterile demineralised water was added 2 

and the contents centrifuged at 750 g for 10 minutes to disassociate bacterial cells from 3 

sediment samples (Furtado and Casper, 2000). The supernatant was then removed and used 4 

for microbial inoculations. The method used for enumeration studies was based on the 5 

standard method of membrane filtration (MF). The supernatant was filtered through a 0.45 6 

µm cellulose nitrate filter (Gelman). Each filter was then placed onto a petri dish containing a 7 

pad saturated with Membrane Lauryl Tryptose Broth (Oxoid). The dishes were incubated for 8 

24 hours at 35 ºC. Yellow colonies of between 1 mm and 3 mm were counted as presumptive 9 

coliform bacteria (total coliforms). 10 

 11 

2.5 Faecal Steroid Preparation 12 

 13 

Sediments were freeze-dried, sieved through a mesh aperture of 2 mm and ground to a fine 14 

powder in a ball mill (Retsch PM400).  A 4-5 g aliquot of each powdered sediment was 15 

placed on a watch-glass and spiked with deuterated cholesterol (cholesterol-2,2,3,4,4,6-d6) 16 

standard in toluene (5 ng/µl) (Sigma Chemical Co.). Thereafter, sediments were extracted 17 

with methanol/dichloromethane (MeOH/DCM) (1:1 v/v) using an accelerated solvent 18 

extraction system ASE 200 (Dionex) operated at a temperature of 100 °C and a pressure of 19 

1500 psi. Activated copper powder (2 g) was added to remove elemental sulphur. The solvent 20 

was removed by evaporation using a turbovap system. The residue was reconstituted in 1 ml 21 

acetone, then transferred onto the surface of a silica gel column containing 5% H2O 22 

deactivated silica (100-200 mesh) using a glass pipette. The silica column (1 × 9 cm) was 23 

first eluted with 20 ml hexane/DCM (3:1 v/v) then 40 ml DCM and finally with 30 ml 24 
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acetone/DCM (3:7 v/v). The latter two fractions were combined, the solvent evaporated under 1 

a gentle stream of N2 and the residue dissolved in 0.5 ml acetone prior to quantitative transfer 2 

to a glass vial (1.75 ml). Acetone was removed by evaporation with N2 and the sample 3 

reconstituted in 0.9 ml of pyridine to which perylene-d12 extraction efficiency standard in 4 

toluene was added. Prior to analysis, mixtures were silylated by heating in an oven at 50°C 5 

for 30 min with 50 µl of N, O bis (trimethylsilyl)trifluoroacetamide (BSTFA) with 1% TMCS  6 

(Sigma Chemical Co.) . 7 

 8 

2.6 Gas Chromatography-Mass Spectrometry 9 

 10 

Faecal sterols were analysed using a Varian CP3800 series gas chromatograph (GC) directly 11 

coupled with a Varian 1200L triple Quadropole MS/MS system (GC/MS). Sample injection 12 

(1.0 µl) was in splitless mode. Compounds were separated using a Varian Factor 4 VF-5MS 13 

column (30 m length × 0.25 mm i.d. × 0.25 µl film thickness). The oven temperature was 14 

programmed from 60 °C (1 min isothermal) to 250 °C at 20 °C min-1 then to 310 °C at 4 °C 15 

min-1 and held isothermally at 310 °C for 10 min. The mass spectrometer was operated at 70 16 

eV with a mass range of m/z 30-550 (beam current 150 µA, source temperature 150 °C) with 17 

helium as carrier gas at a flow rate of 1 ml/min. Data acquisition was carried out using a 18 

Varian MS workstation v6.5. Peak assignments were made by comparison with published 19 

mass spectra and mass spectra and retention times of authentic standard compounds 20 

(Appendix 1). The limit of quantification for individual compounds ranged from 0.01-0.04 21 

µg/g (dry wt), procedural blanks as well as reagent blanks contained no significant amounts 22 

of sterols.     23 

 24 
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2.7 Faecal Biomarker Nomenclature 1 

 2 

Common compound names were used throughout this work to enable comparison with 3 

previous studies. The eleven faecal sterols measured were cholestane (5α-cholestane), 4 

coprostanol (5β-cholestan-3β-ol), 5β-epicoprostanol (5β-cholestan-3α-ol), cholesterol 5 

(cholest-5-en-3β-ol), 5α-cholestanol (5α-cholestan-3β-ol), coprostan-3-one (5β-cholestan-3-6 

one), campesterol (24α-methyl-5-cholesten-3β-ol), stigmasterol (3β-hydroxy-24-ethyl-5,22-7 

cholestadiene), fucosterol ((3β,24E)-stigmasta-5,24(28)-dien-3-ol),  β-sitosterol (24-8 

ethylcholest-5-en-3β-ol) and 5β-stigmastanol (24α-ethyl-5α-cholestan-3β-ol); chemical 9 

structures are presented in Appendix 1. 10 

 11 

2.8 Statistical Analyses 12 

 13 

Multi-variate ordination techniques were carried out using the vegan package in R (Oksanen 14 

et al., 2010; R Development Core Team, 2010) to explore the dominant patterns and inter-15 

relationships in the sterol data. Following Detrended Correspondence Analysis (DCA), which 16 

indicated a linear response, Principal Component Analysis (PCA) was carried out to assess 17 

the main gradients of variation at each of the three sites. All data were down-weighted to 18 

reduce the influence of abundance sterols on the ordination outputs with samples containing 19 

no measureable sterol concentrations removed from the dataset. Sample depth 62 cm at 20 

Church Pond was also removed as an outlier in the ordination analyses, due to the high 21 

amount of coprostanol within the sample. 22 

 23 
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3. Results and Discussion 1 

 2 

3.1 Lead-210 activity and artificial fallout radionuclides 3 

 4 

Cores from Church and Clifton were first assessed using 137Cs radionuclide and 210Pb activity 5 

in order to develop a sediment chronology (Figs. 2 and 3). Lead-210 (half-life is 22.3 year) is 6 

a naturally-produced radionuclide, derived from atmospheric fallout (termed unsupported 7 

210Pb). Caesium-137 (half-life is 30 years) and 241Am are artificially produced radionuclides, 8 

introduced to the study area by atmospheric fallout from nuclear weapons testing deposition 9 

(maximal ~1963) and nuclear reactor accidents (e.g. Chernobyl, Ukraine 1986). They have 10 

been extensively used in the dating of recent sediment in lakes and estuaries (Appleby, 2001; 11 

Vane et al., 2009).  12 

 13 

The 137Cs activity versus depth profile for Church Pond reveals a broad peak between 20 and 14 

44 cm, suggesting 1963 occurs between these depths (Fig. 2). Unsupported 210Pb activity, 15 

calculated by subtracting 226Ra activity from total 210Pb activity, declines more or less 16 

exponentially with depth in the top 20 cm (Fig. 2). Deeper than 20 cm, unsupported 210Pb 17 

activities show non-monotonic features, with relatively low unsupported 210Pb at 29.5 cm.  18 

The inventory of unsupported 210Pb yields a mean unsupported 210Pb flux to the sediments at 19 

137 Bq m-2 yr-1, which is at a similar level of deposition in the region. Lead-210 chronologies 20 

were calculated using the CRS dating model (Appleby and Oldfield, 1978). The raw CRS 21 

dating model places the 1963 layer at 40 cm, which is in between 20 and 44 cm suggested by 22 

the 137Cs record.  The average sedimentation rate of the core was about 0.28 g cm-2 yr-1. 23 

Sedimentation rates calculated by unsupported 210Pb data were relatively uniform but with a 24 

sharp peak, suggesting rapid accumulation in the late 1970s and may represent disturbance of 25 
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lake bed material associated with blockage of the lake from the Coneries chain ca. 1980.    1 

Prior to isolation, variable river flows would have resulted in high sedimentation rates and a 2 

greater degree of sediment disturbance. Once isolated, the monotonic decline in Pb-210 3 

activity is consistent with a more stable depositional environment. Historical records date the 4 

time of last gravel extraction and presumably the on-set of sedimentation in Church Pond at 5 

1964 and in 1967 at Clifton Pond.   6 

 7 

The Clifton Pond 137Cs profile is poorly defined (Fig. 3) and consequently radionuclide 8 

depositional events such as Chernobyl and maximal emissions from atomic weapons testing 9 

are not identifiable. The relatively constant 137Cs activities below 19 cm may be due to 10 

variable deposition of material transported into the lake while it was connected to the main 11 

lake chain.  There is an irregular decline in unsupported 210Pb in the top 20 cm of the core, 12 

but little net decline in unsupported 210Pb activities below this with low unsupported 210Pb 13 

activities suggesting relatively high and variable sedimentation rates, with sediment 14 

disturbance. Mean unsupported 210Pb flux to the sediments was calculated at 148 Bq m-2 yr-1. 15 

210Pb chronologies were calculated using the CRS dating model. Mean sedimentation rate 16 

was about 0.29 g cm-2 yr-1 and was higher between the 1960s and 1980s. The 210Pb profile is 17 

consistent with greater disturbance below ca. 20cm core depth (1980s), suggesting that the 18 

isolation of Clifton Pond in 1981 resulted in more uniform sediment deposition and less 19 

sediment disturbance (Sayer and Roberts, 2001).  As for Church Pond, the lake inception date 20 

of 1964 would infer more rapid sedimentation in the lower part of the core than calculated by 21 

the CRS model.  22 

 23 

3.2 %TOC, C/N and carbon isotope ratios 24 
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 1 

These data are presented in Figure 4. Downcore %TOC profiles for the three ponds show a 2 

systematic decrease in organic carbon content from the surface to the base (approximately 75 3 

cm). The organic carbon contents range from ca. 2 to 6% in Coneries, 2 to 5% in Church, and 4 

4 to 5% in Clifton. These concentrations are fairly typical of modern shallow lakes located in 5 

a peri-urban environment accumulating decaying vegetation from a variety of sources, as 6 

well as atmospheric and waterborne anthropogenic pollution. C/N ratios are widely used as 7 

source indicators for organic matter (Meyers, 1997)  and tend to range 3-9 (in aquatic; protein 8 

rich plants), 10-20 (in aquatic/terrestrial plants) and > 20 (in terrestrial biomass; protein poor 9 

plants) and are thus used as an indicator of changes in allochthonous and autochthonous 10 

organic matter in freshwater systems (Meyers and Teranes, 2001). In the Attenborough 11 

Ponds, C/N ratios are fairly constant at between 8-10; values which tend to be indicative 12 

organic matter of aquatic origin. From the work of (Cross, 2009) this most likely represents 13 

phytoplankton (Aulacoseira, Asterionella,  Synedra), cryptophyceae (Cryptomonas, 14 

Rhodomonas), and chlorophyceae (Ankyra, Chalmydomonas, Tetradon, Tetrastrum). Cross 15 

(2009) reported elevated concentrations of the latter class of green algae, ranging from 73 16 

µg/L in Coneries Pond to 13 µg/L in Clifton Pond. 17 

 18 

Most types of algae produce organic matter with δ13C values about 20‰ lower than the value 19 

for dissolved bicarbonate (HCO3
-), the main reservoir of inorganic carbon (Leng et al., 2005). 20 

On this basis the δ13C values of –29 to –25‰ typical of the ponds’ sediments would suggest a 21 

bicarbonate source with δ13Cbicarbonate within the range –9 to –5‰; values that are higher than 22 

those typical of UK groundwaters (Andrews et al., 1993; Andrews et al., 1997), suggesting an 23 

additional source of inorganic carbon (e.g. atmospheric CO2, through long residence time, or 24 

carbonate from limestone aquifers). δ13Cbicarbonate values will also be influenced by organic 25 
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productivity, with values increasing with production as the lighter isotopes are utilised by the 1 

algae and incorporated into the organic sediment. A reduction in the proportion of additional 2 

sources of inorganic carbon, or a decrease in productivity are therefore some of the factors 3 

which might cause changes in the ponds’ organic δ13C values (Leng et al., 2005). The upward 4 

decrease in core δ13C values might for example reflect reduced limestone influence with the 5 

cessation of quarrying, or changes in nutrient inputs with changes in sewage management. 6 

 7 

3.3 Nitrogen isotope ratios 8 

In common with carbon, the isotope composition of sources of nitrogen and factors 9 

influencing productivity are amongst the most important controls on the δ15N values of 10 

organic matter depositing to sediment in these shallow, well-mixed lakes (Leng et al., 2005). 11 

A comparison of the up-core changes in δ15N and δ13C values in fact reveals some co-12 

incidence: the largest changes for both values are observed for Coneries between 70 to 60 cm 13 

depth, and for Church between 50 to 0 cm depth. However, the fact that the changes are in 14 

the opposite direction (δ15N increasing and δ13C decreasing upwards) tends to argue against a 15 

change in organic productivity as the dominant cause. We therefore consider the potential 16 

sources of N. 17 

Sewage is clearly a major potential source of nutrient N in some of the Attenborough ponds. 18 

In many cases it has high δ15N values, above +10‰ (Heaton, 1986; Kendall et al., 2007), and 19 

this is confirmed for our study by a single analysis of Erewash river nitrate from close to the 20 

Toton sewage works in April 2007, which gave a δ15N value of +14.2‰. In contrast, most 21 

other sources of  N (atmospheric deposition, fertilisers, soils, etc.) tend to have δ15N values 22 

well below +10‰ (Heaton, 1986; Kendall et al., 2007), and where N-fixing cyanobacteria 23 

contribute to sediment (as they may do in Church and Clifton Ponds (Cross, 2009)), this will 24 
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also reduce δ15N values. Sediments in lakes in remote regions of the UK, for example, 1 

typically have δ15N values below +5‰ (Jones et al., 2004). In simple source terms we would 2 

therefore expect δ15N values to be most affected by the relative proportions of sewage and 3 

non-sewage inputs of N to the different ponds; and increases in macrophyte δ15N in response 4 

to increased sewage inputs have been well documented elsewhere (Cole et al., 2004). 5 

It is therefore perhaps surprising that the δ15N values of recent sediments in the Church, 6 

Clifton and Coneries Ponds are so similar: the uppermost sections of the cores all have δ15N 7 

values between +10 to +12‰ (Figure 4), and sediment traps have also yielded δ15N values 8 

above +10‰ for all three ponds. These values may be expected for Coneries Pond, which is 9 

directly supplied by the Erewash. The fact that Church and Clifton Ponds have similarly high 10 

δ15N values suggests that they may also derive much of their nutrient N from a similar 11 

sewage source, albeit at a lower concentration. This could occur as leakage of Erewash water 12 

through the gravel banks surrounding Church and Clifton Ponds. 13 

 14 

3.4  Coliform counts 15 

 16 

Total coliform counts in sediment cores from Clifton, Church and Coneries Ponds are 17 

presented in Figure 5. Bacterial coliform numbers were highest between 0-10 cm for all three 18 

cores and no coliforms were detected at depths >64 cm at any of the sites. Coliform numbers 19 

in Church and Coneries were maximal at ∼400 colony forming units (CFU)/g sediment, 20 

whereas the coliform counts for Church remained at <200 CFU/g sediment throughout (Fig. 21 

5). Comparison of the depth profiles reveals that Clifton and Church were somewhat similar, 22 

with the greatest coliform numbers just beneath the sediment surface and no detectable 23 

coliforms observed between 30-40 cm and 50-60 cm. In contrast, relatively high numbers of 24 
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coliforms were detected between 20-30 cm and 30-40 cm as well as 50-60 cm at Coneries 1 

(Fig. 5). Research on faecal coliforms in sediments and waters has shown extended survival 2 

in the former due in part to factors such as organic matter content and sorption which 3 

provides protection against bacteriophage (Burton et al., 1987; Stenstrom and Carlander, 4 

2001). However, survival of viable enteric bacteria (Pseudomnas aeruginosa, Salmonella 5 

Newport, Escherichia coli and Klebsiella pneumoniae) in two lake and two river sediments in 6 

USA extended to no more than a few months (Burton et al., 1987). Similarly, T50- values of 7 

E. coli, faecal enterococci, Clostridium and coliphages in constructed wetland sediments 8 

ranged from 27-370 days (Stenstrom and Carlander, 2001). Sediments act as a reservoir for 9 

bacteria and can via the mechanism of sediment re-suspension contribute to bacterial 10 

numbers in overlying surface waters (Obiri-Danso and Jones, 2000). In light that indictor 11 

organism tests such as total coliform counting require viable bacteria, and that the literature 12 

suggest that these are not particularly long lived, it is not unexpected that the highest number 13 

of coliforms were observed in the uppermost interval of the sediment cores. The frequent 14 

occurrence of detectable coliforms down core at Coneries maybe attributed to the combined 15 

effect of either: Coneries receiving a greater amount and more regular supply of faecal matter 16 

than either Clifton or Church; or bioturbation of the sediment column.  17 

 18 

3.5 Sterol and Stanol Concentrations 19 

 20 

Total sterol concentrations decrease down profile in all three shallow lake sediment cores. 21 

Church and Clifton are broadly similar, with the highest values observed at the surface (0-4 22 

cm) and a gradual fall in sterol concentration to <10 µg/g at 12-16 cm (Fig. 6). Small changes 23 

in sterol concentrations occur from 12-16 to 56-60 cm and an increase in sterol values occurs 24 

in Clifton at 58-68 cm and Church at 60-64 cm (Fig. 6).  In contrast, Coneries total sterol 25 
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depth-profile shows higher concentrations in the range of 20 to 30 µg/g at the surface to 36-1 

40 cm depth; thereafter, there is a progressive decrease in concentrations to the base of the 2 

core at 74 cm. 3 

 4 

Ten of the eleven individual sterols were observed in this study; the compound 5α-cholestane 5 

was not detected in any of the sediments. As expected cholesterol is the most abundant sterol 6 

in the surface sediments at Coneries with concentrations in the range of 4.1 to 8.5 µg/g 7 

whereas, β-sitosterol is the principal sterol at the surface in Church and Clifton with 8 

concentrations in the range of 6.5 and 16.1 µg/g (Fig. 6). β-sitosterol is known to be derived 9 

from vascular plants and together with cholesterol, stigmasterol and campesterol are the main 10 

sterols which undergo reduction by enteric bacteria to yield 5β-stanols (Leeming et al., 1996).  11 

The greater concentration of β-sitosterol in the surface sediment at Church and Clifton as 12 

compared to Coneries may be due to the diverse range of aquatic plants whereas Coneries is 13 

devoid of aquatic plants. However, sterols from avian faeces are reported to be mainly 14 

comprised of β-sitosterol with lower amounts of  cholesterol as well as 24-15 

ethylepicoprostanol and trace quantities of other sterols (Shah et al., 2007). Therefore, the 16 

predominance of β-sitosterol in the surface sediments at Clifton and Church could be due to 17 

direct input from higher plants or possibly  from the accumulation of avian derived faecal 18 

matter or a combination of the two. The latter multiple-source explanation is probably most 19 

plausible because Attenborough Ponds is an important wildlife refuge for ~80 species of 20 

birds and the shallow gravel-pit lakes are vegetated with Phragmites communis (Reed) Typha 21 

latifolia (Bull-rush) and Spargamium erectum (Bur-reed) and the banks are populated with 22 

willow, ash and alder trees. Although this supposition appears to contradict the TOC, C/N 23 

and δ13C interpretation  (section 3.2) which suggests that all three ponds mainly accumulated 24 

organic carbon from algal sources, it should be borne in mind that molecular biomarkers 25 
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including sterols presented herein only represent a small fraction of the bulk organic matter 1 

that maybe undetected in the bulk measurements. 2 

 3 

A different situation occurs in Coneries Pond where 5β-stigmastanol is present at relatively 4 

high concentrations of up to 14.5 µg/g at 32-36 cm depth (Fig. 6). Previous studies have 5 

reported that 5β-stigmastanol is derived from the intestinal microbial reduction of the plant 6 

derived marker sitosterol (Grimalt et al., 1990). Therefore, the presence of 5β-stigmastanol at 7 

elevated concentrations relative to other sterols could indicate faecal matter from herbivorous 8 

animals and, particularly, ruminant animals such as cows and sheep. Within Coneries Pond, 9 

the high proportion of 5β-stigmastanol relative to other sterol markers in the mid-portion of 10 

the core profile suggests a possible manure/slurry input and that the accumulation had 11 

recently decreased as evidenced by the decline in 5β-stigmastanol values at the near surface 12 

<10 cm (Fig. 6). Clear evidence that Coneries has also received input from plant matter is 13 

suggested by the presence of another sterol plant marker, campesterol, at concentrations up to 14 

3.5 µg/g in 12 out of 18 sediment levels analysed (Reeves and Patton, 2005). The absence of 15 

aquatic plants in Coneries Pond confirm the notion that plant derived matter and associated 16 

sterols have been washed into the shallow lake. Comparison of the Clifton total sterol and 5β-17 

stigmastanol profiles show a clear co-variance which suggests that the small increase in total 18 

sterol values at 58 cm depth was probably due to input of herbivore faecal matter. 19 

 20 

 Concentrations of coprostanol in the samples from Coneries range from 2.2 at surface to 0.04 21 

µg/g (dry wt) at a depth of 70 cm with an average of 0.64 µg/g (Fig. 6). In contrast, 22 

coprostanol concentrations are low and declined rapidly at Church and Clifton with the 23 

exception of a single coprostanol peak at a depth of 62 cm in Church. In general, sediments 24 

with coprostanol concentrations of 0.5 µg/g are considered to have received appreciable 25 
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amounts of sewage pollution (Readman et al., 2005). Thus, using this criteria, almost the 1 

entire Coneries core is polluted with sewage, Church is contaminated at 2 cm and 62 cm 2 

depth and Clifton is not polluted, the highest coprostanol concentration being 0.4 µg/g at 3 

surface. This likely reflects the fact that although both Church and Clifton Ponds were 4 

connected to the Erewash system prior to 1981, they were less directly connected than 5 

Coneries, which lies directly between the main river inflow and the major outflow. Although 6 

treated sewage effluent is discharged into the Erewash in liquid form, the high abundance of 7 

coprostanol in Coneries as compared to Church and Clifton supports the view that faecal 8 

sterols rapidly partition into the solid phase (Mudge and Ball, 2006) and their accumulation is 9 

then controlled by fluvial/lacustrine sedimentation processes.  10 

 11 

16B3.3 Application of sewage indicator ratios to source apportionment  12 

 13 

The ratio 5β-coprostanol to total sterol provides one measure of human derived sewage input; 14 

it has also been demonstrated that human faecal contamination is indicated by 15 

coprostanol:cholesterol values >0.2.  Raw untreated sewage typically has a 5β-coprostanol / 16 

cholesterol ratio of ~10, which decreases through a sewage treatment plant (STP) such that in 17 

the discharged liquid wastewaters the ratio is approximately 2; undiluted STP wastewaters 18 

may be identified by this high ratio. As the faecal matter is dispersed in the environment, the 19 

ratio will decrease as more (non-faecal) cholesterol from animals is encountered (Grimalt and 20 

Albaiges, 1990; Grimalt et al., 1990).  In this study, coprostanol was detected in 16 out of 18 21 

sediment levels in Coneries Pond, ranging from 2.2 ng/g at the surface to 0.1 ng/g at a depth 22 

of 62 cm (Fig. 6). Down core, coprostanol to cholesterol ratios are greater than or equal to the 23 

0.2 threshold value in 14 of the 18 sediment depth intervals, confirming that Coneries Pond 24 
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has been subject to human sourced faecal matter which had been treated (Fig. 7). One 1 

plausible explanation is that the sewage treatment plants on the Erewash had discharged into 2 

the river which flows into Coneries Pond. Lower ratios ranging from 0.1 to 1.9 occur in the 3 

three levels at the base of the sediment core suggesting lower contribution of sewage sourced 4 

faecal matter in the early 1970s. In contrast, sediments from Clifton or Church Ponds gave 5 

coprostanol:cholesterol ratios ranging from 0 to < 0.2, which suggests that the sediments have 6 

not been subject to a significant amount of human-sourced sewage pollution (Fig. 7). Taken 7 

together this suggests that earth embankments that separate the Ponds (Fig. 1) may act as 8 

filters for the particulate organic matter (including sewage).  9 

 10 

 11 

Human sourced faecal contamination can be tracked in sediments using the proportion of 12 

coprostanol:(coprostanol+5α-cholestanol) (Grimalt et al., 1990; Grimalt and Albiages, 1990). 13 

5α-cholestanol is formed naturally in the environment by bacteria and generally does not 14 

have a faecal origin. Sediments with coprostanol:(coprostanol+5α-cholestanol) values > 0.7 15 

are considered contaminated with human faecal matter whereas those with values < 0.3 are 16 

categorised as uncontaminated. Sediments with ratios between these criteria can not be 17 

readily apportioned on the basis of this ratio alone. In this work, Coneries sediments at 54, 18 

62, 66 and 70 cm depth gave ratios of 1.0 because no 5α-cholestanol was detected; at 19 

shallower depths, ratios varied in a non-systematic manner from 0.1 to 0.34 (Fig. 7). 20 

Examination of the Clifton coprostanol:(coprostanol+5α-cholestanol) profile showed low 21 

values indicating minimal human faecal pollution and similarly Church yielded ratios of 22 

between 0 to <0.3 with the exception of  62 cm depth which gave a value of 1.0 (Fig. 7).  23 

During sewage treatment, 5β-coprostanol may be converted to the 5β-cholestan-3α-ol form, 24 

epicoprostanol, and there is also a slow conversion of 5β-coprostanol to epi-coprostanol in 25 
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the environment and so this ratio will indicate either the degree of treatment of sewage or its 1 

age in the environment (Mudge and Ball, 2006). In the current study Coneries 5β-coprostanol 2 

to epicoprostanol ratio varied from 0.2 to 0.6 and Clifton gave ratios of 1.1 and 0.6 at 2 and 6 3 

cm depth respectively (Fig. 7). A cross-plot of the 5β-coprostanol / cholesterol ratio against 4 

the epi-coprostanol / 5β-coprostanol ratio can indicate both faecal contamination and 5 

treatment (Fig. 8). The sediments from Church and Clifton Pond indicate little sewage input 6 

and / or a high degree of treatment whereas sediments from Coneries Pond plot in an area 7 

indicative of greater sewage input. 8 

 9 

It has been previously reported that in sediments, bacteria preferentially produce 5α-10 

cholestan-3β-ol (5α-cholestanol) from cholesterol rather than the 5β isomer (Bull et al., 2003; 11 

Bull et al., 2002). This reaction occurs principally in anaerobic reducing sediments and the 12 

5α-cholestanol / cholesterol ratio may be used as a secondary (process) biomarker for such 13 

conditions. No cut-off values have been suggested for this marker and so it is used in a 14 

relative sense; the greater the ratio, the more reducing the environment.  The 5α-cholestanol / 15 

cholesterol vertical profiles are presented in Figure 9. Clifton sediments show a rather 16 

constant value of ~1, Church sediments were maximal at 2.8, whereas Coneries values range 17 

from 0.5 to 6.1 indicating a possibly more reducing environment at 20 to 50 cm (Fig. 9). It is 18 

also plausible that the rise in 5α-cholestanol / cholesterol ratios between 50 to 25 cm depth in 19 

Coneries could be related to changing redox conditions in the sedimentary column and or 20 

varying sewage treatment practices such as the introduction of filter beds and activated 21 

sludge plants. 22 

 23 

3.3 Principal component analysis 24 
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PCA indicates that a single variable at each lake is dominating the main patterns of 1 

variability in the sterol data with the first axis explaining 82.5%, 71.0% and 67.7% of the 2 

variability for Clifton, Church and Coneries Pond respectively (Figs. 10-11). Combining the 3 

datasets together indicates that that this variable is constant across all sites (PCA axis 1 4 

eigenvalue = 0.613) and when combining sites individually (Fig. 10 Clifton and Church). 5 

The first axis is dominated by sterol characteristic of faecal matter such as β-sitosterol and 6 

and the by product of sewage treatment epicoprostanol. 7 

 8 

The presence of faecal sterols strongly aligned to the first PCA axis that are representative of 9 

increasing faecal matter content suggests that the first PCA axis represents a sewage gradient, 10 

reinforcing our interpretation that the three lakes have been strongly dominated by changes in 11 

influx over their history. The observation that the uppermost samples in each lake are 12 

increasing aligned and to the right of PCA axis 1 (increasing faecal matter input) further 13 

suggest that inputs have significant increased in recent time. Conversely, the cluster of 14 

sample depth below c. 30 cm to the centre and left of the axis suggest that another unknown 15 

variable is controlling sterol input. 16 

 17 

4. Conclusions 18 

 19 

The application of bulk geochemical and isotopic (TOC, C/N, δ13C, δ15N), total coliforms and 20 

eleven faecal sterol biomarkers in sediment cores from three shallow lakes have proved 21 

useful for several reasons.  22 

 23 

1) In a system of ponds where some are supposedly isolated the δ13C and δ15N show 24 

significant inter-lake consistency. Taken together, C/N and δ13C values indicate that 25 
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the main source of organic matter in the sediments was of algal origin possibly 1 

augmented by minor contributions of vegetation and that the productivity of the lakes 2 

varied temporally. One plausible explanation is that the changes in productivity were 3 

driven by improvements in sewage treatment works (which remove nutrients other 4 

than N, utilised by phytoplankton) located upstream of the ponds and nitrate pollution 5 

does not decrease with time. δ15N values of up to +12‰ suggest that Coneries Pond 6 

received a greater amount of sewage pollution than the other ponds. The relatively 7 

elevated δ15N of +10‰ at Church and Clifton implies that they also receive treated 8 

sewage effluent from the Erewash and connected Coneries Pond. 9 

 10 

2)  Molecular level characterisation of sterol and stanol content of sediment cores from 11 

three shallow peri-urban lakes (ex-gravel pits) reveal that Coneries Pond had received 12 

a greater input of sewage than Church or Clifton Ponds. Using the coprostanol / 13 

cholesterol criteria of >0.2 to indicate sewage pollution it is possible to infer that 14 

Coneries has continually received and accumulated sewage since it’s excavation in 15 

1968. We hypothesise that the greater amounts of treated human sourced faecal matter 16 

in Coneries as compared to Church or Clifton is a function of partitioning of faecal 17 

sterols to the particulate phase and, the sinking of these particulates when the Erewash 18 

current slows as it enters Coneries Pond.   19 

 20 

3) This study also demonstrates the utility of a molecular approach to understanding 21 

the shallow lake sediments in that the dominance of β-sitosterol indicated vegetation 22 

sourced organic matter in Clifton and Church Pond even when bulk geochemical and 23 

isotope do not. Furthermore, the concentration of specific biomarkers such as 5β-24 

coprostanol and ratio of coprostanol to cholesterol ratios clearly distinguish human 25 

from ruminant sources at Coneries Pond. However, application of epicoprostanol to 26 
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5β-coprostanol ratios and 5β-coprostanol to cholesterol values to infer the degree of 1 

treatment of sewage or its age in the environment gave results which were ambiguous. 2 

 3 

Overall, the extraction and analysis of sewage biomarkers in sediments provides 4 

environmental forensic information that complements bulk geochemical and isotopic data and 5 

supplements traditional microbiological methods used in the study of lakes.  6 

 7 
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 1 

Fig 1.   The Attenborough Nature Reserve Nottinghamshire, UK containing the Coneries, 2 

Clifton and Church Ponds. 3 
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 1 

Fig 2. Fallout radionuclide concentrations in Church Pond core showing (a) total 210Pb, (b) 2 

unsupported 210Pb, (c) 137Cs concentrations versus depth, and (d) radiometric chronology  3 

showing the CRS model 210Pb dates. 4 

 5 
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 1 

Fig 3. Fallout radionuclide concentrations in Clifton Pond core showing (a) total 210Pb, (b) 2 

unsupported 210Pb, (c) 137Cs concentrations versus depth, and (d) radiometric chronology 3 

showing the CRS model 210Pb dates. 4 

 5 
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 1 

 2 

Fig 4. Comparison of organic carbon (TOC), organic carbon to nitrogen ratios (C/N), and 3 

organic δ13C and δ15N values in sediment cores from Attenborough Ponds, Nottinghamshire, 4 

U.K. 5 

 6 

 7 

 8 
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 1 

Fig 5. Comparison of total coliform counts in sediment cores from Attenborough Ponds, (a) 2 

Coneries Pond, (b) Church Pond and (c) Clifton Pond. 3 
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 1 

Fig 6. Variation in total sterol and faecal sterol concentrations in sediment cores from 2 

Attenborough Ponds. In general, 5β-sitosterol is derived from plants, 5β-stigmastanol is 3 

sourced from faecal matter from herbivorous animals and, coprostanol is from human sewage 4 

pollution (See section 3.2 for additional interpretations). 5 

 6 
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 1 

Fig 7. Ratios of sterol sewage marker compounds in sediment cores from Attenborough 2 

Ponds. Only Coneries Pond shows sustained sewage input. 3 

 4 
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 1 

Fig 8.  Cross-plot of epi-coprostanol/5β-coprostanol with 5β-coprostanol/cholesterol.  2 

 3 
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 1 

 2 

Fig 9. Variation in the ratio of 5α-cholestanol to cholesterol in sediment cores  from 3 

Attenborough Ponds.  4 
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 1 

Fig 10.  PCA axis one and two biplot for sterol sewage marker compounds Coneries Pond 2 

core. 3 
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 1 

Fig 11. PCA axis one and two combined biplot for Clifton and Church Ponds with the 2 

removal of the ordination outliner 62 cm at Church. 3 

 4 

 5 



39 
 

 1 

Appendix 1. The structure of sterol and stanol sewage markers analysed in this study. 2 
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