Explore open access research and scholarly works from NERC Open Research Archive

Advanced Search

Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model

Milne, Christopher J.; Kinniburgh, David G.; de Wit, Johannes C.M.; van Riemsdijk, Willem H.; Koopal, Luuk K.. 1995 Analysis of metal-ion binding by a peat humic acid using a simple electrostatic model. Journal of Colloid and Interface Science, 175 (2). 448-460. 10.1006/jcis.1995.1475

Abstract
Ion binding to humics can only be satisfactorily described if the chemical heterogeneity is explicitly included in the binding model. For proton binding, a model based on a bimodal Langmuir-Freundlich isotherm plus a cylindrical electrical double-layer model provides a good description. Data for Cd and Ca binding to a purified peat humic acid could not be satisfactorily described by merely shifting the affinity distribution along the affinity axis (the fully coupled case). Assuming that the low pH ("carboxylic") and high pH ("phenolic") parts of the distribution are shifted independently (the highly correlated case) gave a better description but the shift for the phenolic-type sites was so large that it appears that Cd2+ and Ca2+ are not able to compete effectively with protons for binding at these sites. The uncoupled case assumes that proton and metal binding occur on different sites and only interact through the common surface electrical field. This model did not fit the data well. However, when the metal concentration, M, was substituted by the ratio, M/(H)x (H is the concentrations of protons and x is an adjustable parameter), a good fit to the experimental data was obtained. It is likely that the incorporation of ion specific nonidealities into the fully coupled model would improve it.
Documents
Full text not available from this repository. (Request a copy)
Information
Programmes:
UNSPECIFIED
Library
Metrics

Altmetric Badge

Dimensions Badge

Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email
View Item