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Abstract 

The phytoplankton community of Loch Leven in 2005 was modelled and subjected to 

a combination of different flushing rates and water temperatures in order to assess the 

lake’s sensitivity to these two climatic drivers. Whilst the simulated annual mean total 

chlorophyll a proved relatively insensitive to these changes, at the species level 

marked changes were recorded. Some species responded positively to increased 

temperature (e.g. Aulacoseira), some negatively (e.g. Asterionella), whilst others were 

negatively affected by increased flow (e.g. Aphanocapsa) and others enhanced (e.g. 

Stephanodiscus). However, this relationship with flow was season dependent with, for 

example, a simulated increase in summer inflows actually benefiting some species 

through increased nutrient supply, whereas an equivalent increase in flow in wetter 

seasons would have negatively affected those species (i.e. through flushing loss).  

Overall, the simulations showed that the range of species types simulated in the 

community was sufficient for one species to always benefit from the changing niches 

created by the multiple climatic drivers applied in this study. The level of exploitation 

by such a species was only constrained by the nutrient carrying capacity of the 

system, which led to the overall dampened response in the total chlorophyll a 

measure, both at the annual and season scale. Thus, whilst overall biomass showed 

relatively little reaction to the two climatic drivers tested, the phytoplankton 

community composition responded markedly. 
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Introduction 

There has been increasing interest in recent years in the impacts that climate change 

has had, or could have, on lake ecology (e.g. DeStasio et al., 1996; Carvalho & 

Kirika, 2003; Winder & Schindler, 2004; Elliott et al., 2006; Elliott & May, 2008). 

Whilst much of this research has focused on the direct and indirect effects of 

increased water temperature, relatively few studies (e.g. Reynolds & Lund, 1988; 

Bailey-Watts, et al. 1990; Jones & Elliott, 2007) have examined the impact of changes 

in rainfall and the way in which it affects lake phytoplankton ecology by altering the 

hydrological retention time. The latter effect could be particularly important in 

influencing water quality because an increase in retention time can be associated with 

an increase in cyanobacteria, particularly in the summer months (Reynolds, 1993; 

Carvalho et al, 2008; Paerl & Huisman, 2008). This study investigated the impact of 

changes in both retention time and water temperature upon the phytoplankton in Loch 

Leven using a process-based computer model, PROTECH (Phytoplankton RespOnses 

To Environmental Change) (Reynolds et al., 2001). 

 

Loch Leven was chosen for this study because it is a well studied water body that has 

already shown signs of being influenced by climate change (Carvalho & Kirika, 

2003). It is also an important generator of income to the local economy, with an 

estimated value of $US 2.4M ann-1. In the past, however, severe blooms of 

cyanobacteria in the lake have sometimes reduced its economic value, with one 

particular event costing an estimated $US 1.2M in lost revenue and $US 0.25M in 

increased water treatment costs to downstream industry (LLAMAG, 1993). So, it is 

important to understand the sensitivity of the phytoplankton population in the lake to 

the various aspects of changing climate. The lake and its phytoplankton community 
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have already been successfully simulated before by PROTECH (Elliott & May, 2008) 

in a study that looked at the relative effects of changing water temperature and 

nutrient supply (both nitrogen and phosphorus) upon the lake as it was in 1995. 

However, the 1995 study only included one direct climate driver, i.e. temperature. In 

the present study, PROTECH has been used to explore the sensitivity of the 

phytoplankton community of Loch Leven to the combined climate drivers of 

changing water temperature and retention time, using a more recent (especially in 

terms of nutrient supply to the lake) starting state of 2005 for the baseline simulation. 

 

Methods 

Site description 

Loch Leven is a large, shallow, eutrophic lake (surface area 13.3 km2, mean depth 

3.9 m, maximum depth 25.5 m), located in east central Scotland, UK, (56o 12’ N, 

3o 22’ W; altitude 107 m). It has a catchment area of 145 km2 and an annual retention 

time of 140 to180 days (Bailey-Watts & Kirika, 1999). 

 

Data 

The driving and validation data for the simulations were taken from 2005. This year 

was chosen due to the availability of detailed nutrient and flow data available for most 

of the major inflows to the loch. These measurements included stream discharge 

values and associated soluble reactive phosphorus (SRP), nitrate-nitrogen and silica 

concentrations collected at 8-daily intervals. In-lake SRP, nitrate-nitrogen, silica and 

chlorophyll a concentrations, and water temperature had been measured every 14 days 

and phytoplankton species biovolume was recorded monthly. Daily meteorological 

data (cloud cover, air temperature, air humidity, wind speed) were available from a 
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meteorological station at Leuchars Airfield, 35 km north-east of the lake. These wind 

speed values were corrected to local conditions by applying a 20 per cent reduction, 

following the relationships derived by Smith (1973) from wind speeds measured at 

Loch Leven and at RAF Leuchars at the same time. 

 

PROTECH model description 

The PROTECH model has been developed and tested on a wide range of lakes and 

reservoirs around the world over the last two decades (Elliott et al., 2000; Lewis et al., 

2002; Elliott & Thackeray, 2004; Elliott et al., 2005; Elliott el al., 2007). The 

fundamental core of the biological component of PROTECH (Reynolds et al., 2001; 

Elliott & Thackeray, 2004) is the basic state variable equation that determines the 

daily change in the chlorophyll a concentration (ΔX/Δt, mg m-3 d-1) of each algal 

species: 

  ΔX/Δt = (r’ – S – G –D).X             (1) 

where r’ is the growth rate defined as a proportional increase over 24 hours, S is the 

loss due to settling out of the water column, G is the loss due to Daphina grazing 

(species > 50 μm are not grazed) and D is the loss due to dilution. The growth rate (r’, 

d-1) is further defined by: 

  r’ = min{r’(θ,I), r’P, r’N, r’Si}      (2) 

where r’(θ,I) is the growth rate due to temperature and daily photoperiod and r’P, r’N, 

r’Si are the growth rates determined by phosphorus, nitrogen and silica concentrations. 

The r’ values are species dependent and relate to the morphology of the alga. Thus, 

for each species within the model, the initial starting value of X mg chlorophyll a m-3 

d-1 (Eq. 1) is modified on a daily time-step to predict change in the chlorophyll a 

concentration in the water column (see Reynolds et al., 2001, for details). 
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Phytoplankton simulations 

Following examination of the phytoplankton count data to identify the most abundant 

and common species, the following phytoplankton types were selected for use in the 

model: Cryptomonas, Anabaena, Gomphosphaeria, Aphanocapsa, Microcystis, 

Stephanodiscus, Asterionella and Aulacoseira. The chlorophyll a biomass 

measurements presented in this study for these simulated species and their total 

chlorophyll a represent an integrated mean over the top 3 m of the water column, as 

this mimics the sampling method used to collect the observed data. These data were 

also used to calculate the percentage contribution of the cyanobacteria species in the 

simulated community. PROTECH does not include equations to simulate the release 

of SRP from sediment, which is an important factor in the nutrient budget of Loch 

Leven (Spears et al., 2007). Therefore, extra SRP was added to the water column from 

1st June to 30th September. This amounted to an extra 1.7 mg m-3 per 0.1 m 

PROTECH depth layer per day. Another site-specific calibration was also applied to 

this simulation by modifying the mixed depth function in PROTECH. As PROTECH 

models the deepest point in the lake, full mixing of the water column over-emphasises 

the importance of this point in lakes that are predominantly shallow, like Loch Leven. 

So, the depth of mixing was restricted to a maximum of 14.7 m from the surface, 

following the approximation used in Elliott et al. (2005). 

 

Using the 2005 simulation of Loch Leven, key factors were altered to test the effects 

of changing water temperature and daily discharge. This was achieved by 

incrementally changing the temperature in the PROTECH depth layers by 1oC to give 

a range of water temperatures that ranged from 1oC cooler to 4oC warmer. At the 
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same time, the daily discharge was multiplied by 0.5, 0.75, 1.0, 1.5 or 2.0 to give a 

range of discharge values. In addition, the original daily concentrations of nutrients 

associated with these discharges were corrected to maintain the nutrient supply at a 

50:50 ratio of point to diffuse sources; it is believed that this represents the annual 

mean split of nutrient sources at this site (May et al., this volume).  The consequence 

of using this ratio is that half of the nutrient load entering the lake is from point 

sources and independent of changes in inflow discharge whereas the other half of the 

load is from diffuse sources that change with discharge such that increased flow 

increases the nutrient load from this source. For each of these scenarios, the daily 3 m 

integrated chlorophyll a data was used to calculate an annual mean value and 

quarterly seasonal means for Spring (March-May), Summer (June-August) and 

Autumn (September-November). Winter (December-January) values were also 

calculated, but these showed little change and, therefore, were not considered further 

in this study. 

 

Results 

Comparison with observed data 

In order to validate the model, its output was compared to the available phytoplankton 

observations (Fig. 1). Total chlorophyll a was often measured in three places in Loch 

Leven during the fortnightly sampling cycle, thus an estimate of variation in 

chlorophyll a could be calculated as well as the mean value. These mean values were 

compared to the PROTECH output (Fig. 1a) and found to show a statistically 

significant fit (R2 = 0.42, P<0.001), which improved further with the exclusion of the 

single value of 100.3 mg m-3 recorded on 2nd November 2005 (R2 = 0.67, P<0.001). 

However, whilst the bimodal bloom pattern was recreated well, there were some 
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notable differences. For example, the simulated spring bloom was about 2 weeks later 

and did not decline as sharply as the observed values in May. 

 

The main simulated taxa were compared to the observed data (Fig. 2) and, because 

two different methods of enumeration were used (i.e. biovolume for observed data, 

chlorophyll a for PROTECH), only simple visual comparisons were made between 

the patterns. The model simulation captured the bimodal pattern of diatom 

development well throughout the year (Fig. 2a) and was broadly in agreement with 

the bloom of cyanobacteria in the second half of the year (Fig. 2b). However, the 

latter comparison did show that PROTECH’s simulated changes in cyanobacteria 

biomass were consistently two to three weeks later in the year than those of the 

observed values. Nevertheless, this simulation was considered adequate for use as a 

baseline for scenario testing, particularly because the use of annual and seasonal 

means in the analysis would be less affected by the differences in timing highlighted 

above. 

 

Changes in annual means of total and species chlorophyll a concentrations 

Predicted annual mean total chlorophyll a concentrations ranged between 24 and 

31 mg m-3 (Fig. 3a), changing relatively little with different flows and temperatures, 

although there was a slight tendency for the model to produce less biomass with the 

imposition of more extreme flow scenarios. However, such low levels of response in 

these annual means did not mean the community composition was unaffected. 

 

The simulated phytoplankton that equated to Asterionella produced most of the total 

chlorophyll a (Fig. 3b) and responded to increasing temperature by producing slightly 
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less biomass over the year. The percentage of cyanobacteria in the community proved 

to be especially sensitive to changes in discharge (Fig. 3c), decreasing markedly with 

increased flushing rate. This pattern of response was closely followed by the 

cyanobacteria species, Aphanocapsa (Fig. 3d). The annual means of two other species 

are also worthy of mention because their responses were different from those 

discussed above. Firstly, the small diatom, Stephanodiscus, produced more biomass 

with increasing flow (Fig. 3e). Secondly, the filamentous diatom, Aulacoseira, 

responded positively to increasing temperature (Fig. 3f), which was the opposite 

response to that of its closest competitor in the simulation, Asterionella. Overall, it 

was clear that, when the biomass produced over the whole year was taken into 

account , the lake phytoplankton community remained diatom dominated. 

 

Changes in spring means 

Dominance by diatoms in the simulations was even more marked in the spring period 

(March-May), when mean total chlorophyll a was at its highest (30-39 mg m-3) and 

relatively unaffected by the scenarios (Fig. 4a). Asterionella was the dominant diatom, 

producing nearly all of the spring biomass (Fig. 4b), but this species showed a slight 

decline (c. 1 mg m-3 per level of change) in mean chlorophyll a concentration with 

increasing flow. Two other diatoms made up the rest of the total biomass, with 

Aulacoseira showing an increase in mean spring biomass at high temperatures 

(Fig. 4c) and flows. Similarly, Stephanodiscus biomass increased rapidly with larger 

flows, although this effect was diminished at higher temperatures (Fig. 4d). 

 

Changes in summer means 

Mean total chlorophyll a in the summer period (June-August), was sensitive to both 
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changes in temperature and flow regime, with c. 20 mg m-3 difference between the 

highest and lowest mean value (Fig. 5a). Most of this change was caused by increased 

flow reducing the mean chlorophyll a level. 

 

In contrast to the pattern of change in total chlorophyll a concentration, Asterionella 

contributed far less to the overall biomass in this season than in spring and responded 

positively to increasing flow and decreasing temperature (Fig. 5b). This was because 

the total chlorophyll a comprised mainly cyanobacteria (Fig. 5c), especially 

Aphanocapsa (Fig. 5d). This species showed a marked sensitivity, decreasing in mean 

biomass with high and, to a lesser extent, low flows. Interestingly, it also showed a 

slight decline in abundance with increasing temperature. Finally, the flagellate 

Cryptomonas responded positively to decreasing flow and increased temperatures 

(Fig. 5e). 

 

Changes in autumn means 

The autumn (September-November) mean total chlorophyll a value was the second 

highest of the four seasons and its pattern of response was similar to that observed in 

the summer. The exception was that, under high water temperatures, flow ceased to 

have a negative effect (Fig. 6a). Again, the underlying cause for the changes in total 

chlorophyll a was due to the changes in the cyanobacteria community (Fig. 6b), 

which, again, showed a considerable negative response to increased flow. The most 

abundant diatoms in the autumn community were Asterionella and Aulacoseira but, 

whilst both responded little to the changes in flow, their responses to the changes in 

temperature contrasted markedly (Fig. 6c, d). Asterionella declined in biomass with 

increasing temperature, whilst Aulacoseira increased. Again, the dominant 
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cyanobacterium was Aphanocapsa, which responded negatively to extreme flows 

(Fig. 6e). Finally, Cryptomonas produced a very unusual response surface (Fig. 6f) in 

which it responded positively when flow and temperature were both low and also 

when both were high. 

 

Discussion 

Annual mean values of measured parameters are often used to determine the overall 

quality of a water body. In this context, measures of phytoplankton are often no more 

detailed than mean annual measures of total chlorophyll a. This study illustrates why 

such measures can sometimes be too simplistic. The results show that considerable 

changes in species composition can occur in response to changing temperature and 

flow scenarios, while the overall annual mean total chlorophyll a concentrations 

change very little (Fig. 3a). It was only when low temperatures (causing lower growth 

rates) were coupled with increased flushing losses of biomass and nutrients (caused 

by high flows) that total chlorophyll a showed a slight decline; the latter is supported 

by similar observations in other lakes and reservoirs (Kalff, 2002). 

 

At the species level, a great deal of variation occurred in response to changes in 

temperature and flushing rate. Some species responded positively to increased 

temperature (e.g. Aulacoseira, Fig. 3f) and others negatively (e.g. Asterionella, Fig. 

3b). Other species produced more biomass with higher flushing, such as the small, 

fast growing diatom Stephanodiscus (Fig. 3e), whilst slower growing species like 

Aphanocapsa were outcompeted under such conditions (Fig. 3d). These results 

showed that, as one species reacted negatively to the change in conditions, another 

species responded positively. This type of response pattern dampened the effect of the 
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changes in temperature and flow on the total chlorophyll a concentration in the lake. 

Such species changes were even more evident when the seasonal trends were 

examined. 

 

The spring period was dominated by diatoms and, again, the three main species 

responded differently to the environmental change scenarios. High flows negatively 

affected Asterionella but positively benefited Stephanodiscus and, to a much lesser 

extent, Aulacoseira (Fig. 4). It seems likely that this was due, once more, to the 

flushing losses caused by the increased flow that the relatively small sized, fast 

growing, Stephanodiscus was particularly suited to survive (provided other factors 

were not limiting its growth). Such a reaction whereby smaller phytoplankton prevail 

under conditions of high flushing is well documented (Boucher et al., 1984; Rojo et 

al., 1994; Kalff, 2002) and in previous PROTECH studies, where this phytoplankton 

functional type (i.e. relatively small species sensu the C functional group after 

Reynolds, 1995) has often been seen to increase in prevalence under such conditions 

(Elliott & Jones, 2007; Bernhardt et al., 2008). 

 

The importance of seasonal means was highlighted further when the response of 

Asterionella in the summer was considered. At that time of year, its biomass was 

positively enhanced by increased flows, particularly when combined with lower 

temperatures (Fig. 5). This opposite response to that seen in the spring was related to 

the decline of its two main competitors (Cryptomonas and Aphanocapsa) under these 

conditions, as well as receiving a net benefit of increased nutrient supply via the 

larger inflows; this latter effect has been observed before for diatoms in Loch Leven, 

which benefited from additional nutrients entering during high flows (Bailey-Watts, et 
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al. 1990). Again, we see one species benefiting over another when more of the 

resources essential for growth (e.g. nutrients, light) become available. However, it 

was also clear that low flow scenarios could be relatively unfavourable for growth, 

with a decline in the two most dominant phytoplankton species (Asterionella and 

Aphanocapsa) being evident. This occurred because the reduced flow resulted in a 

reduction in the supply of diffuse source nutrients to the modelled lake. By the 

summer period, this reduction in supply, combined with naturally lower flows, was 

starting to become an important factor in reducing the overall phytoplankton carrying 

capacity and, subsequently, increasing the competition for resources. 

 

With natural inflow discharges increasing in the autumn, the nutrient restriction was 

slightly alleviated. However, it remained an influential factor at low flows for most 

species (Fig. 6), while high flows still generally caused a decline in biomass. 

Intriguingly, temperature also started to have a more obvious effect on some of the 

mean chlorophyll a values. During the autumn period, increasing temperature reduced 

the biomass of Asterionella and increased that of Aulacoseira. These two species are 

close competitors of each other, both being well adapted to low light level conditions 

(R-functional group sensu Reynolds, 1995) and, through most of the simulations, 

Asterionella was the dominant of the two. However, in this autumn period, higher 

temperatures increased the relative growth rate of Aulacoseira allowing it to produce 

more biomass than Asterionella. Finally, Cryptomonas produced a very diverse 

response in the autumn, with peaks in biomass occurring at high temperatures and 

flows and also under completely opposite conditions. Cryptomonas is a relatively 

large phytoplankter and, in PROTECH, is given specific motility characteristics to 

simulate its excellent nutrient scavenging abilities (Reynolds, 1984). Thus, it can 



 

 14

thrive under low nutrient conditions, but needs elevated temperatures under high flow 

conditions to achieve the high growth rates needed to compensate for flushing losses. 

 

Conclusion 

Temperature had little effect on the overall biomass produced by the phytoplankton in 

Loch Leven. This is in concurrence with the results of previous studies on the loch 

(Carvalho & Kirika, 2003; Elliott & May, 2008) and other experimental investigations 

(Moss et al., 2003: McKee et al., 2003). Furthermore, there was no evidence, either 

annually or seasonally, of temperature enhancing cyanobacteria abundance. Again, 

this was in agreement with the results of Elliott & May (2008), but is in contrast to 

those from a similar study where PROTECH was applied to Bassenthwaite Lake 

(Elliott et al., 2006). 

 

Changes in flow and flushing rate had a greater effect on the phytoplankton 

community than changes in temperature, at least at the seasonal scale. When the rate 

of flow was changed, there appeared to be a general response of reduced biomass with 

extreme flows. In this instance, high flows acted by causing high flushing losses and 

low flows reduced the nutrient supply, particularly in the summer. However, this 

study also illustrates how some species possess traits that could enable them to exploit 

these conditions. Small, fast growing species, such as Stephanodiscus can recoup their 

flushing losses under high flow conditions. In contrast, other species, such as 

Aphanocapsa, are ideally adapted to surviving under low nutrient conditions. Thus, as 

one species becomes stressed by a physical change (e.g. temperature, retention time), 

another species becomes better able to exploit the resources available. Such allogenic 

succession is readily recognised across ecosystems (Begon et al., 1996). 
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Figure Legends 
 
 
Fig. 1 Comparison between observed (crosses) and PROTECH simulated (solid line) 

annual mean total chlorophyll a concentrations (mg m-3) for Loch Leven, 2005. Error 

bars for observations, which are taken from multiple sites, represent 2 standard 

deviations (c. 95% confidence interval). 

 

Fig. 2 Comparison between observed (crosses) total biovolumes (µm3 ml-1) and 

PROTECH simulated (solid line) chlorophyll a concentrations (mg m-3) for the major 

taxa in Loch Leven in 2005: (a) diatoms; (b) cyanobacteria. 

 

Fig. 3 Impact of changing water temperature (oC) and discharge on the annual mean 

chlorophyll a concentration (mg m-3) in Loch Leven for: (a) total chlorophyll; (b) 

Asterionella; (c) percentage cyanobacteria; (d) Aphanocapsa; (e) Stephanodiscus; (f) 

Aulacoseira. Grey scale legends denote chlorophyll a concentration (mg m-3) bands. 

 

Fig. 4 Impact of changing water temperature (oC) and discharge of the spring mean 

chlorophyll a concentration (mg m-3) in Loch Leven for: (a) total chlorophyll a; (b) 

Asterionella; (c) Aulacoseira; (d) Stephanodiscus. Grey scale legends denote 

chlorophyll a concentration (mg m-3) bands. 

 

Fig. 5 Impact of changing water temperature (oC) and discharge of the summer mean 

chlorophyll a concentration (mg m-3) in Loch Leven for: (a) total chlorophyll a; (b) 

Asterionella; (c) percentage cyanobacteria; (d) Aphanocapsa; (e) Cryptomonas. Grey 

scale legends denote chlorophyll a concentration (mg m-3) bands. 
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Fig. 6 Impact of changing water temperature (oC) and discharge of the autumn mean 

chlorophyll a concentration (mg m-3) in Loch Leven for: (a) total chlorophyll a; (b) 

percentage cyanobacteria; (c) Asterionella; (d) Aulacoseira; (e) Aphanocapsa; (f) 

Cryptomonas. Grey scale legends denote chlorophyll a concentration (mg m-3) bands. 
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