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Abstract 18 

This study introduces new approaches to improve the statistical robustness of techniques for 19 

quantifying the fractal scaling of groundwater levels, and uses these techniques to investigate 20 

scaling of groundwater levels from a consolidated permeable carbonate aquifer. Six groundwater 21 

level time series and an associated river stage time series from the unconfined Chalk aquifer (a 22 

dual-porosity, fractured limestone aquifer) in the Pang-Lambourn catchment, UK, have been 23 

analysed. Surrogate data of time series with known scaling properties have been used to estimate 24 

the probability distribution of the spectral and geometric scaling exponents determined by 25 

Detrended Fluctuation Analysis (DFA) and Power Spectral Density (PSD) respectively; robust 26 

regression techniques have been used to improve estimates of the scaling exponents; and robust 27 

non-parametric techniques have been used to correlate scaling exponents with features of the 28 

boreholes and catchments. Strong statistical support has been found for temporal scaling of 29 

groundwater levels over a wide range of time scales, however, bootstrap estimates of the scaling 30 

exponents indicate a much larger range of exponents than found by previous studies, suggesting 31 

that the uncertainty in existing estimates of scaling exponents may be too small. There is robust 32 

evidence that geometrical scaling properties at each borehole can be related to the depth of the 33 

observation boreholes and distance of those boreholes from the river in the catchment, but no 34 

such correlations were found for the spectral scaling exponents. The results build on the body of 35 

evidence that groundwater levels, as with many hydrogeological phenomena, may be well 36 

modeled with mathematical concepts from statistical mechanics that do not attempt to capture 37 

every detail of these highly heterogeneous and complex systems. 38 
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 Introduction 43 

Mean groundwater levels in unconfined aquifers are affected by the catchment water balance and 44 

bulk aquifer parameters, while individual perturbations and seasonal variations in groundwater 45 

levels can be ascribed to individual rainfall events and seasonal variations in the driving 46 

variables. However, recharge and discharge phenomena act over a wide range of spatial (pore to 47 

catchment) and temporal (minutes to hundreds of years) scales, and are affected by a range of 48 

often highly non-linear processes and can be subject to feedbacks. They are influenced by highly 49 

heterogeneous hydraulic conductivity fields found in aquifers, and are controlled by spatio-50 

temporally varying driving variables, such as precipitation and evapo-transpiration. 51 

Consequently, groundwater levels in unconfined aquifers never achieve a steady state and may 52 

vary over multiple spatial and temporal scales, and there is some recent evidence that 53 

groundwater levels may show scale-invariant, or fractal behaviour (Zhang and Schilling, 2004). 54 

Typically, models of groundwater levels are based on conceptual process models which 55 

represent mechanisms associated with catchment discharge, recharge, saturated flow, baseflow 56 

and runoff. However, although process models have a long history and have proved to be 57 

invaluable for understanding the physical basis of groundwater flow dynamics, it is recognised 58 

that there are problems with such an approach. Prediction with all such classical deterministic 59 

process models is constrained by several mathematical limitations: (1) measurement error, 60 

nonlinearity and sensitivity to boundary conditions (chaos) (Smale, 1967), (2) model error 61 

(McSharry and Smith, 2004), and (3) inaccessible parameters and variables. Chaos occurs in 62 

many nonlinear systems when the temporal evolution of the model amplifies the error in the 63 

measurement of the boundary conditions: after a time, the state of the system becomes 64 

practically unpredictable, because the boundary conditions cannot be known to infinite precision. 65 

Model error occurs when the perfect model of the system is not known: it is usually the case that 66 

the model represents a simplification of a multitude of interacting, and often poorly-understood 67 

mechanisms. Finally, it is impossible to measure the parameters and variables of the aquifer at 68 

every spatial location – this poses a particular problem for the highly spatially heterogeneous 69 

nature of aquifers – exacerbating the uncertainty in predictions produced by the model. 70 

Such problems with process models are not unique to hydrogeology: in meteorology for 71 

example, it has long been recognized that chaos and model error fundamentally limit prediction 72 
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(Eady, 1951; Lorenz, 1963). The contemporary solution is essentially probabilistic: predictions 73 

are made that attempt to represent the full uncertainty due to chaos, produced by many 74 

randomized perturbations of the boundary conditions and model equations called ensemble 75 

methods (Buizza 2003). The successes of this approach have precipitated a major conceptual 76 

shift from deterministic to probabilistic modelling. 77 

This shift may help to mitigate the mathematical limitations of process hydrogeological 78 

predictions, but it is not clear that this can also satisfactorily address the effect of high spatial 79 

heterogeneity coupled with inaccessible parameters, variables and boundary conditions (Beven, 80 

2006). In practice, this may make it impossible to produce detailed predictions of groundwater 81 

levels with the same accuracy as, for example, daily surface temperatures. It may well be that the 82 

successes of groundwater level predictions resulting from process models calibrated against a 83 

few aquifer measurements could be the result of overfitting: that is, these predictions are accurate 84 

under limited conditions such as short time intervals or locations close to the borehole, but are 85 

erroneous for longer intervals or unmeasured sites. 86 

A different, but useful, kind of statistical prediction may be possible with models rooted 87 

in the theory of statistical mechanics, as suggested by Eady (1951). These models have their 88 

origins as explanations for the observed bulk properties of gasses and fluids, where we are 89 

ignorant about the state variables of each particle, but precise statements can be derived about 90 

statistical properties of the model variables and derived quantities (Ruelle, 1984). This is similar 91 

to the situation with unmeasured variables and heterogeneous parameters in aquifers, and 92 

statistical mechanics models might therefore be co-opted to make predictions about the bulk 93 

properties of aquifers. Critically, these models use few parameters that must be inferred from 94 

measurements, significantly reducing the risk of overfitting. 95 

Classical statistical mechanics explains the bulk statistical properties of simple systems 96 

such as ideal gasses. However, many, more complex, systems from diverse disciplinary origins 97 

show remarkably similar scale-invariant statistical fluctuations of their state variables. These 98 

fluctuations are statistically self-affine at all length scales, and this is one defining property of 99 

stochastic fractals (Falconer, 2003). Time series which have stochastic fractal noise, with power 100 

spectral density that scales as β−f , where f is frequency and β is the spectral scaling exponent, 101 

have been observed from diverse disciplines. This has prompted theoretical explanations such as 102 
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self-organised criticality (SOC) (Bak et al., 1988), expansion-modification systems (Li 1991), 103 

and lattice gas density fluctuations (Jensen, 1990). For example, SOC proposes that under 104 

constant small input flux, a local storage mechanism overflows into neighboring regions upon 105 

exceeding a capacity threshold. This situation causes cascading overflows on all length scales: 106 

time series from these simple models show scaling behaviour which is insensitive to variations in 107 

the model parameters. This suggests that this scaling behaviour is in some senses a universal 108 

property of complex media. 109 

Since the pioneering work of Hurst (1951) on reservoir capacities, temporal and spatial 110 

scaling behaviour has been observed in time series of many natural systems, including: 111 

earthquakes (Olami et al., 1992); fluvial and landscape evolution (Chase, 1992; Phillips, 2006; 112 

Murray and Fonstad, 2007); sandpiles (Bak et al., 1988); chemical reactions at mineral pore 113 

interfaces (Wells  et al., 1991); rainfall (Lovejoy and Schertzer, 1985; Tessier et al., 1996); 114 

evapo-transpiration (Famiglietti et al., 2008); river water quality (Kircher et al., 2001); and 115 

runoff and river discharge (Pelletier and Turcotte, 1997; Kantelhardt et al., 2006; Koscielny-116 

Bunde et al., 2006). To add to this list of scale invariant phenomena, Zhang and co-workers 117 

(Zhang and Schilling, 2004; Zhang and Li, 2005, 2006; Li and Zhang, 2007) have recently 118 

described scale invariance in groundwater levels from a single catchment on a till/loess system in 119 

the USA. These observations, along with the described mathematical limitations of classical 120 

process model predictions of groundwater levels and the utility of simple statistical mechanical 121 

models to explain scaling behaviour, are compelling arguments for the application of a statistical 122 

mechanical approach to the modelling of groundwater levels in permeable aquifers.  123 

However, there remain many open questions. For example: how statistically reliable is 124 

the evidence supporting the scaling hypothesis for groundwater systems, and, how confident can 125 

we be about the typical range of scaling exponents? These questions must first be addressed 126 

before we can ask how these ranges of exponents relate to our current understanding of 127 

catchment characteristics, and what they tell us about any organizing principles that may control 128 

the scaling of groundwater levels. Unfortunately, answering these questions directly is 129 

complicated by the lack of theoretical understanding of the asymptotic statistical properties of 130 

the techniques (Mandelbrot and Wallis, 1969). This leaves residual doubts about the reliability of 131 

these findings which, in other contexts, have historically been subject to substantial revisions 132 

(Hamed, 2007). 133 
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Our main aim in this paper therefore is to provide more robust empirical evidence of 134 

scaling properties of groundwater levels backed up by extensive computation and two key 135 

statistical innovations: surrogate data and robust regression. Surrogate data are generated time 136 

series whose temporal scaling properties are known: synthesizing many of these time series 137 

allows bootstrap estimates of the distribution of scaling properties of the groundwater level time 138 

series under examination. Similarly, estimating temporal scaling properties requires straight-line 139 

regression of points on log-log scales, but classical least-squares regression is adversely affected 140 

by outliers, where robust regression is not. Using these innovations we explore computationally 141 

the statistical performance of spectral and geometric techniques for estimating temporal scaling 142 

exponents under known conditions. Having quantified this performance, we extend this to 143 

analysis of the unknown scaling properties of groundwater levels. Finally, we use robust non-144 

parametric techniques to correlate these robustly estimated scaling exponents with features of the 145 

boreholes and their location in the catchment. 146 

Methods 147 

Our first task is to assess the evidence for scaling behaviour in borehole data. Firstly, we describe 148 

the classical formalism for stochastic fractal time series, which will allow analytical 149 

comparisons. We are interested in the class of time series, x(t) ,that are Gaussian stochastic 150 

processes (that is, a set of Gaussian random variables indexed by the real time index t), with the 151 

property that var[x(t1) – x(t2)] ∝ |t1 – t2|2H  for arbitrary time indices t1, t2. This condition implies 152 

that x(t) and s-H x(st) have the same distribution, for all scale factors s > 0. The parameter H is the 153 

scaling exponent (also known as the Hurst exponent) of the self-similar process. As H increases, 154 

the resulting stochastic time series becomes smoother. Since the autocorrelation can be 155 

calculated directly from this definition, it is also straightforward to show (Falconer, 2003) that 156 

the power spectrum X(f) = f-β , where the spectral scaling exponent β = 2H + 1. The 157 

measurements in this study are available at fixed time intervals, where tn = n • ∆t , i.e. we have xn 158 

= x(tn). We can simulate approximately self-similar Gaussian time series at these time points 159 

nt using the inverse discrete-time Fourier transform (hereafter, this is referred to as the power 160 

spectral method, PSM). Furthermore, we can estimate the spectral scaling exponent using the 161 

forward discrete-time Fourier transform, and since –logX(f)/log f  = β, the slope of the log-log 162 



7 

plot of f against X(f) is an estimate of the spectral scaling exponent. We call this the power 163 

spectral density (PSD) scaling exponent estimation method. 164 

The statistical self-similarity of the time series suggests an alternative formalism related 165 

to broken-line processes (Bras and Rodríguez-Iturbe, 1985). The random midpoint displacement 166 

(RMD) algorithm can simulate approximately self-affine Gaussian time series on nt . For a time 167 

series of length N that is a power of two, it involves successive subdivision in stages numbered k 168 

= 1, 2…log2 N, and in the first stage the midpoint is set to xN/2 = 1/2 (xN + x1) + ε, where ε  is a 169 

Gaussian random variable of zero mean. We then linearly interpolate the time points between [1, 170 

N/2] and between [N/2, N]. The next stage, k = 2, sets the new midpoints N/4, 3N/4 according to 171 

the same random midpoint displacement scheme. This process repeats until all time points are 172 

calculated. The variance of ε  at each stage is set to [1 - 22H-2] / 22kH . 173 

Similarly, the scaling exponent of self-affine time series can also be estimated using 174 

successive subdivision. By definition, the standard deviation (fluctuation) over any sub-interval 175 

of length L of the Gaussian time series, will be approximately LH (Falconer, 2003). Therefore, we 176 

can estimate H by first dividing up the time series into sub-intervals of length L, estimating the 177 

variance of each sub-interval, and averaging over each standard deviation estimate. Then, by 178 

increasing L and repeating the standard deviation calculations over this new sub-interval size, we 179 

can estimate H by the slope of the log-log plot of L against the average standard deviation of sub-180 

intervals at each L. Detrended fluctuation analysis (DFA) proposes two advances over this basic 181 

algorithm. Firstly, although self-affine time series are essentially unbounded (as the variance 182 

increases with L), groundwater level time series are bounded, so that estimates of the larger 183 

scales are poor. By integrating the time series with the mean removed, i.e. by calculating  184 

[ ]( )∑ =
−=

n

i in xExx
1

ˆ , estimates of the scaling at larger sub-intervals are improved. Secondly, 185 

most groundwater level time series have trends and other local variations due to factors such as 186 

climate variation. By removing local linear trends in each sub-interval (by fitting a straight line 187 

or higher-order polynomial to the integrated time series nx̂  and subtracting this), estimates of H 188 

insensitive to these trends can be obtained. It can be shown (Heneghan and McDarby, 2000) α , 189 

the spectral scaling exponent, given by the slope of the log-log plot of L against the average 190 

standard deviation F(L)  is equal to H – 1, which is the effect of integrating to obtain nx̂ . 191 
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Here we introduce an innovation to obtain more robust estimates of groundwater level 192 

scaling exponents α and β. Reliable scaling exponent estimates generally require that the log-log 193 

plots lie on a straight line (are collinear) over a very large range of length scales. This is often 194 

difficult to obtain in practice, because most groundwater level time series are short or have 195 

measurement error that may well be temporally correlated. Either the smallest or largest scales 196 

will be unusable, or there may be length scales that are outliers, in the sense that although most 197 

of the points are collinear, a few points are not, and we wish to discard these when using line 198 

fitting to estimate the slope. The literature on techniques for addressing this problem of spurious 199 

data coming from a very different distribution to the rest is called collectively “robust statistics”. 200 

Throughout this paper, when we use the term “robust” this is the intended meaning. We use 201 

iteratively reweighted least squares line-fitting with Huber penalty function (Hastie et al., 2001), 202 

which concentrates the slope estimate only on those points that are most collinear. It should be 203 

noted that this effectively circumvents analysis of crossovers – potential changes in scaling 204 

properties at different time scales – but gives more reliable estimates of the overall scaling 205 

behaviour, which is the main aim of this paper. As a demonstration of the value of robust 206 

regression in this application, we generated PSM and RMD time series across 21 values of α in 207 

the range [0.5, 2.0]. Using ordinary least squares and robust regression, we computed the average 208 

error in the DFA estimate of α, over 10 repetitions for each value of α. The root-mean square 209 

error of the estimate of α with ordinary least squares, from PSM and RMD data was 0.17. Using 210 

robust regression, the error was reduced to 0.10 (PSM) and 0.07 (RMD), illustrating the fact that 211 

robust regression can lead to marked improvements in scaling exponent estimation. 212 

With these methods we can obtain, given a single borehole time series, values for the 213 

scaling exponents α and β. However, the statistical mechanical hypothesis holds that the 214 

groundwater system is effectively stochastic, which implies that the resulting scaling exponents 215 

are random variables. Estimates of exponents from a single time series will simply reflect the 216 

statistical variation in that set of measurements, and a true representation of the scaling 217 

exponents must be given by the distribution over the exponents. Unfortunately, a concise 218 

mathematical description of this distribution is lacking and for the purposes of this study it is 219 

reasonable to estimate this distribution by computational means, in particular, by bootstrapping 220 

with surrogate data. The surrogate data in this case are time series obtained using the PSM and 221 

RMD methods generated using scaling exponents estimated using the PSD and DFA methods on 222 
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the borehole time series data. Note that we cannot rely on PSM or RMD surrogates alone 223 

because there are subtle statistical differences between the time series they generate, differences 224 

that arise from the algorithmic details (Bras and Rodríguez-Iturbe, 1985). Assessing the extent to 225 

which scaling exponent measurement methods are sensitive to these statistical differences is an 226 

important issue that, to our knowledge, has not been addressed in the context of groundwater 227 

systems. 228 

Data 229 

The groundwater level and river stage data used in this study, come from a research site at 230 

Boxford, Berkshire, UK, Figure 1. The study site has been previously described by (Gooddy et 231 

al., 2006), but is summarized here. It is centered on the River Lambourn, a rural, predominantly 232 

groundwater-fed catchment (~200km2, Baseflow Index 0.96, mean flow ~1.75m3sec-1) which 233 

drains part of the Chalk aquifer of the Berkshire Downs. The site is underlain by thin soils, 234 

typically <1m thick. Alluvial sands and gravels are present adjacent to and below the river to a 235 

depth of about 3m, these in turn overlie up to 200m of Chalk. The Chalk is the main regional 236 

aquifer in the UK, with a mean matrix porosity of 39%, mean storage coefficient of 0.006, and 237 

transmissivity in the range 0.5 to ~8000 m2d-1 with a geometric mean of 620 m2d-1 (Bloomfield 238 

et al., 1995; Allen et al., 1997). 239 

Groundwater levels have been monitored at six locations at the site and the river level has 240 

been monitored using a stilling well for up to five years, Table 1. Water levels at the monitoring 241 

locations were measured using pressure transducers and data loggers with a measuring range of 242 

10mH2O and a measurement resolution of 0.2cmH2O. The sampling rate was either hourly or at 243 

15-minute intervals. The resulting time series lengths varied from N = 19,750 to N = 49,133, 244 

Table 1. The number of missing measurements was at most 0.1% of the total length of each 245 

series, therefore these gaps are ignored in subsequent analysis, since this percentage of missing 246 

entries is too small to have a statistically detectable  effect on the estimated scaling exponents. 247 

Each of the seven water level time series has been normalized to the range [-1, 1] for subsequent 248 

analysis, Figure 2.  249 
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Results 250 

The performance of the PSD and DFA methods on PSM and RMD bootstrap time series are 251 

shown in Figure 3. Minimum/maximum values were assessed by generating 100 fractal time 252 

series with the same algorithm. As expected, the PSD method performs almost perfectly on PSM 253 

noise, because the method of generating the noise and measuring its scaling exponent are 254 

essentially the same. On RMD noise, however, the PSD method performs quite poorly for 255 

exponents β < 1 and β > 2. The DFA method performs well for PSM time series with exponents 256 

α < 1.2, but otherwise, it shows a significant deviation away from the true value, although the 257 

deviation is not as severe as with PSD on RMD noise. Finally, the DFA method performs very 258 

well for RMD noise for α > 0.8; for α < 0.8, there is a significant deviation away from the true 259 

value, but again not as severe as with PSD applied to RMD noise. These findings suggest that, 260 

except for the PSD method on RMD noise with high β, although an exact value for the scaling 261 

exponent is not always possible, the estimated scaling value always increases with the true value, 262 

such that comparisons between estimated values are always indicative of a comparison between 263 

the underlying, true values. 264 

Having described the techniques, we now apply these to the normalized water level time 265 

series. Figure 4 shows log-log plots of DFA sub-interval size L against fluctuation F(L), and 266 

frequency bin i against power spectral amplitude |X(i)|2 of the time series xn. It also shows the 267 

scaling exponents α and β for each time series (estimated using robust regression for the log-log 268 

line fitting). The DFA sub-intervals ranged on a logarithmic scale from L = 4 to L = N/2 points. 269 

This range is chosen for computational reasons: we need enough points to get a reasonable 270 

estimate of the trend fitting (hence at least L = 4), and enough DFA sub-intervals for the 271 

fluctuation estimates to be reliable (requiring at most L = N/2). The PSD frequency bins ranged 272 

from i = 2 to i = N/20, because the power spectral scaling did not extend past this range of 273 

frequencies. 274 

Figure 4 shows that, over the range of time scales where scaling behaviour could be 275 

reliably estimated, the data can be well modeled by a random fractal stochastic process, both in 276 

terms of spectral (PSD) and geometric (DFA) scaling. In order to assess whether there is any 277 

statistically significant difference between these exponents on the different water level time 278 

series, we generated a new set of 20 realizations of stochastic processes with the same scaling 279 
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exponents as estimated from the data. Since the DFA method is most reliable on RMD noise, we 280 

used RMD realizations for α estimates, and for the same reason, for the PSD method used PSM 281 

realizations for the β estimates. Figure 5 shows the result, where the distributions are obtained 282 

using Gaussian kernel density estimation. This shows that the distributions of the scaling 283 

exponents are clearly quite different for each water level time series, for both spectral and 284 

geometric exponents. Using the non-parametric Kolmogorov-Smirnov test, we find that all 285 

distributions are significantly different (p < 0.05, n = 20) for all pairwise combinations of water 286 

level series. The obtained values of the scaling exponents are summarized in Table 2. 287 

We also assessed the extent of (non-parametric) correlation between selected geometric 288 

properties of the borehole and the fractal scaling exponents (see Table 3). This shows that 289 

although the spectral scaling β is not significantly correlated with the distance of the observation 290 

point from either the river or the stilling well in the river (site PL26U), or with the mean 291 

observation depth, the geometric scaling exponent α shows large correlations with all these 292 

parameters. 293 

Discussion 294 

In this study, we assessed the evidence for random fractal scaling behaviour in groundwater level 295 

time series, towards providing evidence on which to advance statistical mechanical models of the 296 

dynamics of unconfined aquifers. Having noted the connection between statistical mechanical 297 

models and self-affine time series, we formally defined spectrally scaled Gaussian stochastic and 298 

statistically self-affine time series. We then described two methods for generating such time 299 

series with given scaling exponents, and rehearsed two complementary methods for estimating 300 

the scaling exponents from time series. Using innovations to improve the robustness of these 301 

estimation techniques, we applied them to water level time series from an unconfined aquifer and 302 

found scaling behaviour over a wide range of time scales. Using nonparametric techniques, we 303 

found robust statistical evidence that different groundwater level series exhibit different scaling 304 

properties. We also find evidence that the geometric scaling properties at each borehole are 305 

related to the basic physical layout of the aquifer, in particular to the distance from the river and 306 

depth of the observation zone. However, we found that the spectral scaling properties of the time 307 

series were unrelated to aspects of the physical layout of the aquifer that we tested. 308 
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These findings build on the growing body of evidence that supports the scaling 309 

hypothesis in groundwater levels (Zhang and Schilling, 2004; Li and Zhang, 2007), and extends 310 

the observation to more permeable aquifers than previously reported. The bootstrap estimates of 311 

the geometric (DFA) scaling exponent range from around 1.20 to 1.65 (Figure 5), which agrees 312 

approximately with the range found by Li and Zhang (2007), i.e. 1.28 to 1.64. However, 313 

bootstraps lead to much larger ranges of scaling exponents than those found previously – our 314 

suggestion is that the uncertainty in existing estimates is too small. 315 

Also in agreement with Li and Zhang (2007), we found that the geometrical ‘roughness’ 316 

of the time series decreases with increasing distance from one of the external driving sources 317 

(here, the river flow), which is physically intuitive because the aquifer is a storage medium that 318 

tends to ‘dampen’ short-time variations in driving variables. We quantified this relationship as 319 

being particularly strong, with a correlation coefficient r > 0.8. A novel finding is that this 320 

relationship is not detected in spectral scaling exponents. Considering that for some of the 321 

boreholes, the estimated spectral scaling exponents β > 2.0, and given the poor performance of 322 

spectral methods on RMD noise for such high values of β, we caution against any physical 323 

interpretations of these results based on spectral methods that are sensitive only to statistical 324 

means and covariances. Although our findings agree with that of Li and Zhang, the evidence 325 

presented here suggests that classical linear spectral analysis cannot reliably extract sufficient 326 

information from groundwater time series to detect relationships between scaling behaviour and 327 

aspects of the physical configuration of catchments. 328 

Our methods were designed exclusively to improve the robustness of the evidence of the 329 

basic scaling hypothesis in groundwater levels, so we cannot compare existing crossover 330 

findings (Li and Zhang, 2007) with our results. However, a natural extension of this study would 331 

be to devise similarly robust methods across limited ranges of time scales, and also of interest in 332 

future work would be the investigation of multifractal scaling (Kantelhardt et al., 2006). 333 

Conclusions 334 

Our main conclusion is that these results provide a sound statistical basis for supporting the 335 

investigation of simple statistical mechanical models as highly parsimonious dynamical 336 

explanations for the behaviour of groundwater levels. Classical linear models for groundwater 337 

flow would be unable to parsimoniously represent fractal scaling – a statistical mechanical model 338 
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may actually be simpler, because classical linear systems require infinite memory to replicate the 339 

self-similar behaviour of the measured groundwater levels, whereas nonlinear models require 340 

only finite memory. More details of this line of reasoning can be found in Bras and Rodriguez-341 

Iturbe (1985). 342 

We hope that these findings motivate further research into statistical mechanical 343 

modelling of such systems, as a complementary approach to classical process-based modelling. 344 

For example, there is the need to discover dynamical explanations for these findings, in terms of 345 

parameter ranges and simple statistical state transition rules. Also needed is a comparison of 346 

these results against simulations from existing numerical groundwater models. 347 

These results suggest that an explanation for the scale invariance of groundwater levels in 348 

unconfined aquifers as a ‘complex’ response to constantly changing driving inputs and boundary 349 

conditions (including boundaries imposed by management regimes) should be considered. These 350 

observations should provide additional impetus to the search for underlying organizing principles 351 

that may relate the scaling characteristics of recharge, groundwater head and discharge in 352 

permeable catchments. 353 
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Tables & Figures 485 

 486 

Table 1. Tabulated description of water level data from the Boxford site used in this study. 487 

 488 

Table 2. Median stochastic fractal scaling exponents α, β obtained for water level time series 489 

from the Boxford site. The confidence intervals are inter-quartile range, estimated using 20 490 

realizations of stochastic processes with the same scaling exponents as estimated from the data. 491 

 492 

Table 3. Spearman rank correlation coefficients ρ of stochastic fractal scaling exponents α, β 493 

against three parameters related to the Boxford site. Entries marked ‘*’ are significant at the 95% 494 

confidence level. 495 

 496 

Figure 1. Schematic illustration of the Boxford site showing the relative locations of the 497 

boreholes and the stilling well in the river Lambourn (PL26U).  498 

 499 

Figure 2. Normalised water level (NWL) time series from the Boxford site. The vertical axis is 500 

unitless, the horizontal axis is time in days since the start of the record, excluding missing 501 

measurements. 502 

 503 

Figure 3. Performance of power-spectral density (estimating β) and detrended fluctuation 504 

analysis (estimating α) methods on power-spectral (PSM) and random midpoint (RMD) noise. 505 

 506 

Figure 4. Periodograms of the results of the detrended fluctuation analysis (DFA, α estimate) and 507 

power spectral density (PSD, β estimate) estimates showing scaling behaviour of the water level 508 

time series. 509 

 510 

Figure 5. Distribution of scaling exponents for the water level time series, using Gaussian kernel 511 

density estimation. The horizontal axis is the exponent, the vertical axis probability. The top 512 

panel is the power spectral exponent β, on 20 realizations of PSM noise. Bottom panel is the 513 

geometric spectral exponent α, on 20 realizations of RMD noise. 514 
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 515 

 Table 1. 516 

 517 

518 

Borehole ID 
(measurement 
type) 

Easting Northing Distance 
from 
PL26U 
(m) 

Distance 
from 
river 
(m) 

Observation 
zone depth 
(m bGL) 

Geology Land 
cover 

Sample 
rate 
(mins) 

Record 
start 

Record 
end 

Missing data 

PL26E 442804 172269 16.5 16.0 18.0 Chalk Woodland 60 23/12/02 05/03/08 Seven 1hr gaps; 
one 27hr gap. 

PL26F 442800 172232 53.0 53.0 22.4 Chalk Woodland 60 23/12/02 26/08/05 Four 1hr gaps. 

PL26G 442829 172478 195.2 193.0 63.8 Chalk Arable 60 05/03/04 06/06/06 One 2 hour gap. 

PL26H 442814 172340 56.8 55.0 27.5 Chalk Arable 60 10/01/03 06/04/06 One 1 hr gap. 

PL26I 442822 172409 126.0 124.0 45.9 Chalk Arable 60 23/12/02 03/03/08  

PL26Q 442834 172292 34.7 7.0 2.0 Gravel Arable 15 22/02/07 18/07/08 Six gaps 1hr to 
6hrs. 

PL26U 
(stilling well - 
river) 

442800 172285 0.0 0.0 0.0 River Water 15 22/02/07 28/10/08  
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Table 2. 519 

 520 

 521 

522  PL26E PL26I PL26Q PL26U PL26G PL26H PL26F 

β 2.01±0.03 2.43±0.03 2.62±0.03 1.94±0.03 2.08±0.04 1.98±0.04 1.65±0.06 

α 1.42±0.02 1.48±0.05 1.40±0.03 1.29±0.02 1.49±0.05 1.52±0.04 1.30±0.02 
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Table 3. 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

538 

 Distance 
from 
PL26U 
against α 

Distance 
from 
river 
against α 

Depth of 
observation 
zone against 
α 

Distance 
from 
PL26U 
against β 

Distance 
from 
river 
against β 

Depth of 
observation 
zone against 
β 

Correlation 
ρ 

0.8214* 0.8571* 0.8571* 0.3214 0.2143 0.2143 

Correlation 
p-value 

0.0341 0.0238 0.0238 0.4976 0.6615 0.6615 
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Figure 2. 543 
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Figure 4. 553 
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Figure 5. 557 
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