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Summary

• Second-generation Dynamic Global Vegetation Models (DGVMs) have recently

been developed that explicitly represent the ecological dynamics of disturbance,

vertical competition for light, and succession. Here, we introduce a modified

second-generation DGVM and examine how the representation of demographic

processes operating at two-dimensional spatial scales not represented by these

models can influence predicted community structure, and responses of ecosystems

to climate change.

• The key demographic processes we investigated were seed advection, seed mix-

ing, sapling survival, competitive exclusion and plant mortality. We varied these

parameters in the context of a simulated Amazon rainforest ecosystem containing

seven plant functional types (PFTs) that varied along a trade-off surface between

growth and the risk of starvation induced mortality.

• Varying the five unconstrained parameters generated community structures

ranging from monocultures to equal co-dominance of the seven PFTs. When

exposed to a climate change scenario, the competing impacts of CO2 fertilization

and increasing plant mortality caused ecosystem biomass to diverge substantially

between simulations, with mid-21st century biomass predictions ranging from 1.5

to 27.0 kg C m)2.

• Filtering the results using contemporary observation ranges of biomass, leaf area

index (LAI), gross primary productivity (GPP) and net primary productivity (NPP)

did not substantially constrain the potential outcomes. We conclude that demo-

graphic processes represent a large source of uncertainty in DGVM predictions.

Introduction

The terrestrial biosphere plays a critical role in regulating
the Earth’s carbon cycle (Bonan, 2008). There is concern
that terrestrial ecosystems may be unable to maintain the
current uptake of c. 33% of anthropogenic emissions
(Rodenbeck et al., 2003; Zeng et al., 2005) because of
the anticipated negative impact of heating and drying
on photosynthesis and survival (Cox et al., 2000;
Friedlingstein et al., 2006). For this reason, Dynamic
Global Vegetation Models (DGVMs), are now recognized

as a critical component of climate change prediction.
DGVM models simulate a suite of ecosystem properties
from half-hourly carbon and water exchange, through daily
growth and tissue turnover, to longer-term processes of
reproduction, competition, and mortality. These models
have become relatively advanced in their capability to simu-
late short-term surface gas and energy exchanges and atmo-
spheric CO2 (Sellers et al., 1986; Hickler et al., 2008;
Purves & Pacala, 2008; Mercado et al., 2009; Randerson
et al., 2009); by contrast, DGVMs contain relatively simple
and poorly tested representations of the processes driving
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long-term changes in vegetation composition – for example
recruitment, competition and tree mortality (Moorcroft,
2006). The large structural and parametric uncertainty con-
cerning these processes means that existing DGVMs
produce a wide variety of predictions regarding the future
strength and direction of the climate carbon cycle feedback
(Friedlingstein et al., 2006; Thornton et al., 2007; Sitch
et al., 2008). For example, some models predict cata-
strophic declines in the Amazon and Boreal forests, while
others predict relatively stable ecosystem composition and
carbon storage, even with the same future climate drivers
(as illustrated by Sitch et al., 2008). Model biases intro-
duced by these uncertainties are not readily estimated
because limited observations exist to constrain demographic
processes under rapidly altering climates (Purves & Pacala,
2008; Allen et al., 2010).

In an attempt to increase ecological realism in DGVMs,
more sophisticated models have recently been developed
that explicitly represent the demographic processes of dis-
turbance, recruitment, competition between plant types for
light, and tree mortality (Friend & White, 2000; Moorcroft
et al., 2001; Sato et al., 2007; Hickler et al., 2008; Scheiter
& Higgins, 2008). This ‘second generation’ approach has
numerous perceived benefits, including the ability to model
regrowth after disturbance, parameterize ecological dynamics
directly using tree and plot scale data, and to facilitate
the representation of coexistence of different vegetation
types by introducing different environmental niches, either
along a successional gradient of light availability or vertical
strata in the canopy (Moorcroft et al., 2001; Smith et al.,
2001; Purves & Pacala, 2008). The impact of this third
property – the ability to simulate competition and co-
existence of multiple plant types – is unclear. Successful
coexistence of multiple plant functional types (PFTs) might
buffer responses to climate change by preventing sudden
switches between mono-dominant PFTs. Conversely, rela-
tively stable past climates might discourage the survival of
those plant types which invest more resources in the toler-
ance of extreme climates, at the expense of PFTs with rapid
growth rates, making ecosystems in general more susceptible
to the effects of climate shifts.

To resolve this issue, it is necessary to understand the
processes that control community structure in second-
generation models. In this paper, we present developments
to a second-generation DGVM that facilitate the coexis-
tence of plant functional types. We then identify several
poorly constrained processes that fundamentally influence
how community structure emerges from plant demography.
These include seed advection, seed mixing, sapling mortal-
ity, competitive exclusion and stress-induced tree mortality.
While representations of these ecological processes are typi-
cally present in current DGVMs, they all depend upon
two-dimensional spatial scales not represented by these
models. For example, rates of seed mixing and advection

rates are properties of landscape heterogeneity, while the
stochasticity or determinism of competitive exclusion and
the rate of tree mortality under stress are both properties of
multiscale environmental heterogeneity (Clark et al., 2007).
DGVMs are spatially one-dimensional, as they consider
single points in space that do not interact with one-another.
Therefore, it is not possible to explicitly represent these pro-
cesses in the current modelling context, and instead their
impact must be parameterized. In this paper, we identify
five demographic processes whose outcome depends on the
sub-grid spatial heterogeneity of a landscape, and investigate
how the parameterizations affect the outcome of a one-
dimensional dynamic vegetation model.

In this paper, we use the Ecosystem Demography model
(ED, Moorcroft et al., 2001), a size- and age-structured
DGVM that occupies a mid-point on the continuum from
gap models (Sato et al., 2007; Hickler et al., 2008) that
contain representations of individual trees, to area-based
DGVMs, which model the fate of a single average individual
for each PFT (Cox, 2001; Bonan et al., 2003; Sitch et al.,
2003; Woodward & Lomas, 2004; Krinner et al., 2005).
Because of this, ED is perceived as a promising template for
a second generation of land surface models, appropriate for
inclusion in large-scale climate simulations (Meir et al.,
2006; Moorcroft, 2006; Prentice et al., 2007; Huntingford
et al., 2008; Purves & Pacala, 2008).

Description

Background

In order to provide a realistic context for our study, we situ-
ate our hypothetical ecosystem in the eastern Amazon basin,
and parameterize carbon fluxes and plant allocation using
recently compiled data from three intensively studied forest
plots (Malhi et al., 2009b). Further details are given in
Supporting Information Notes S1 and Table 2. A majority
of Global Climate Models, (GCMs) predict that dry season
rainfall over Amazonia will decline (Malhi et al., 2009a),
and that temperatures will increase (Salazar et al., 2007).
This makes the Amazon an ideal place to investigate the
impact of alternative community structures on future vege-
tation structure and function. For a more complete review
on prognoses for the Amazon rainforest see Cox et al. (2004,
2008), Huntingford et al. (2008), Malhi et al. (2008,
2009b), Meir et al. (2008) and Nepstad et al. (2008).

Ecosystem Demography model

The ED model is a size- and age-structural approximation
of a gap model, the state structure of which is a nested
hierarchy of geographical grid cells, landscape age-classes
and cohorts of trees of different sizes and PFTs. The
landscape age-classes are designed to capture horizontal
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biotic heterogeneity in canopy structure that arises from
various forms of disturbance. Biotic heterogeneity does not
include physical aspects of sub-grid heterogeneity such as
variations in altitude, soils or aspect. These are not
accounted for in the model structure. At each daily time-
step, canopy tree mortality creates new areas of disturbed
ground. To make the model computationally more
efficient, the spatial locations of the disturbed areas are not
specified, and thus can be tracked as a single landscape age-
class that represents the aggregation of canopy-gap sized
areas within each grid cell that were disturbed at a similar
time in the past. To minimize the proliferation of landscape
age-classes, the vertical structure and composition of model
land classes are continually compared with each other and
merged if they are sufficiently similar.

New juvenile individuals of each PFT are recruited on a
daily time-step, based on the reproductive output of exist-
ing individuals of the same PFT. Individuals located in the
same landscape age-class, PFT and size, are tracked as
‘cohorts’. Each cohort is defined by the number of individ-
uals per unit area (nc), and a single representative tree,
defined by its structural biomass (bs), which is a function of
tree diameter D (cm), and live biomass (ba), which consists
of leaf (bl), fine root (br) and sapwood (bsw) (all in kg C per
individual yr)1). As with the landscape age-classes, cohorts
are continually compared and subsequently fused if they
are in the same PFT, landscape age-class and are close in
size. Through this procedure, the ED model explicitly
tracks horizontal and vertical heterogeneity in canopy
structure.

In the next section, we discuss model representations of
recruitment, competition and mortality. Because these
processes operate in two-dimensional spatial space and
therefore have no analogue in a one-dimensional model,
parameterization from field observations is difficult. We
introduced modifications to these processes, but unless
otherwise stated, the model is the same as EDv1.0, as
described by Moorcroft et al. (2001). Alterations made to
the energy and gas exchange algorithms are described in
Notes S1.

Modelling sapling recruitment

Sapling recruitment is the sum of plant reproduction from
local (internal) and nonlocal (external) sources. The smallest
units considered by the model are 2.5 m high saplings, we
do not model the germination of seeds and early seedling
development, but seed dispersal processes are nevertheless
responsible for the location of the resultant saplings.
External recruitment represents the advection of seeds from
other geographical areas. Seed advection (As) from multiple
directions, results in a point-specific sapling establishment
rate measured in individuals m)2 per PFT)1 yr)1. As the
distribution of different environmental conditions within a

grid cell is not represented in the model, we use the null
assumption that PFT advection is constant through time
and that the number of saplings recruited per PFT is equal.
For internal recruitment, a fixed fraction, frepro of the car-
bon available for growth (Cg, Eqn 7) is partitioned into
reproduction. The number of saplings per PFT is calculated
from this carbon supply divided by the biomass required to
make each 2.5 m sapling. The internally generated saplings
are distributed between landscape age-classes. This requires
an estimate of Xm: the probability that a propagule gener-
ated in one landscape age class establishes in a different
landscape class from that of its parents. In other words, Xm

represents how well mixed seeds are across a landscape with
respect to the landscape age-class gradient. Low levels of
‘seed mixing’ mean that seeds are likely to land near their
parent tree, and vice-versa. Subsequently, a ‘sapling mortality’
is applied (Ms) the value of which represents the dis-
crepancy between the maximum number of saplings and
the number that are realized in the model. The total
number of new established saplings in each time-step,
Nsapling, is therefore:

Nsapling ¼ As þ Cgð1�MsÞ=ðfreprob0Þt Eqn 1

where t, length of each daily time-step, in years (1 ⁄ 365);
and b0 is the sapling biomass.

The parameters As and Xm both depend upon the spatial
structure of the landscape and the likelihood of ecosystems
with different composition existing in close proximity. In a
two-dimensional spatial model of interconnected patches
(Kneitel & Chase, 2003; Leibold et al., 2004; Lischke
et al., 2006) parameters representing the spatial movement
of propagules would not be necessary, as they would be
modelled with diffusion type equations; however, without
this capacity, we must parameterize the processes of seed
dispersal within a grid cell. Here, we investigate how the
parameterization of seed advection and seed mixing affect
community structure in a sensitivity analysis.

Modelling canopy structure and coexistence

In the original EDv1.0 model (Moorcroft et al., 2001)
there were no explicit spatial dimensions associated with
each cohort, so the hypothetical leaf area of each tree
extended across the entire surface of the landscape age class,
effectively creating a steep vertical light profile that caused
unrealistic levels of shade-induced competitive exclusion
and reduced the capacity to simulate coexistence of plants
within a successional age class. Resolving these issues
requires representation of the physical dimension of tree
crowns. We adopted and modified the Perfect Plasticity
Approximation (PPA) of Purves et al. (2008b). Based on
the observation that tree crowns often occupy gaps in the
canopy that are spatially dislocated from the base of the tree,
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PPA assumes that the horizontal plasticity of crown location
and shape is infinite but that trees have realistic relation-
ships between crown area and height. The end result is that
when the total canopy area is greater than the total ground
area, the canopy is considered to be ‘closed’ and breaks into
distinct layers, each consisting of those cohorts with heights
within a particular range, such that each cohort occurs in
only one layer; in a situation with two layers, that is, canopy
and understory, the cohorts are assigned to the canopy or
understory according to their height relative to a mean
canopy intersection height ‘z*’. Trees within the same layer
do not shade each other at all and trees in a given layer are
uniformly shaded according to the total leaf area index
(LAI) above the top height of that layer. This scheme means
that a small increase in height of a cohort no longer confers
a large competitive advantage, except where cohorts cross
z*.

The original version of the PPA model assumes that z* is
spatially uniform within a stand; however, canopy inter-
section heights vary spatially such that a tree of height ‘h’
might sometimes be in the canopy and sometimes be in
the understory, depending on its circumstances. The
assumption that z* is spatially uniform, exacerbated by the
fact that ED typically aggregates the canopy into far fewer
cohorts than the original PPA method of Purves et al.,
2008b, generates a highly deterministic model of competi-
tion, whereby a single cohort with a small height advantage
might come to quickly and unrealistically dominate the
entire canopy. It is therefore difficult to represent coexis-
tence between similar PFTs without including some potential
for z* to be heterogeneous. Clark et al. (2003, 2007) pro-
pose that deterministic models of coexistence often fail
because they do not properly account for unobserved life-
history trade-offs, neglected genetic variation or spatial
heterogeneity in topology, soil type, aspect and dispersal
and recruitment processes, they term these factors ‘random
individual effects’. In the context of the PPA model, this is
analogous to the possibility that z* is spatially hetero-
geneous.

We introduced the potential influence of ‘random
individual effects’ on community composition by aggregating
all the processes that suppress the ability of the fastest grow-
ing PFTs to monopolize resources into a single ‘competitive
exclusion’ parameter Ce. This parameter controls the proba-
bility that a tree of a given height will obtain a space in the
canopy of a closed forest. The forest canopy is considered as
closed when the total canopy area (Acanopy, m2), which is
the sum of all the crown areas (Acrown, m2)

Acanopy ¼
X

Acrown; Eqn 2

exceeds the ground area of the age class in question (Ap).
Under these circumstances, the ‘extra’ crown area Aloss

(Acanopy ) Ap) is moved into the understorey. For each
cohort already in the canopy, we determine a fraction of
trees that are lost from the canopy (Lc) and moved to the
understory. Lc is calculated as

Lc ¼ Alosswc=
X
ðwcÞ; Eqn 3

where wc is a weighting of each cohort determined by basal
diameter D (cm) and the competitive exclusion coefficient
Ce

wc ¼ DCe Eqn 4

The higher the value of Ce, the greater the impact of tree
diameter on the probability of a given tree obtaining a position
in the canopy layer. That is, for high Ce values, compe-
tition is highly deterministic. Small average differences
between cohorts are still significant because there is little
randomness at the scale of individual trees. Therefore,
faster-growing trees monopolize light resources more
effectively, leading to competitive exclusion of slower-
growing trees. By contrast, low values of Ce imply that the
outcome of competition is stochastic: small differences
between cohorts do not matter greatly because randomness
at the scale of individual trees is such that all cohorts suffer
approximately equally from competition for canopy space.
The smaller the value of Ce, the greater the influence of
random factors on the competitive exclusion process, and
the higher the probability that slower-growing trees will get
into the canopy. Appropriate values of Ce are poorly con-
strained (Clark et al., 2003, 2007), thus we investigated the
effects of a wide range of Ce values on community structure
and biomass predictions.

Modelling plant mortality

Modelling community composition requires accurate simu-
lation of the processes controlling mortality of different
plant types. Mechanistic prediction of plant mortality is
currently a developing field (McDowell et al., 2008) and
the dominant mechanism of death remains unclear. Two
potential physiological mechanisms underlying plant
susceptibility to climate extremes and attack by biotic mor-
tality agents include hydraulic failure caused by excessive
xylem embolism and carbon starvation because of stomatal
closure and subsequent depletion of available carbohydrate
reserves used for maintenance and defence. Although not
yet understood sufficiently well to model, metabolic limita-
tions induced by restrictions on phloem transport and tissue
dehydration may exacerbate carbon starvation (Körner,
2003; McDowell & Sevanto, 2010; Sala et al., 2010).
Isohydric plants, which close their stomata during drought
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conditions, may be more likely to suffer carbon starvation
than hydraulic failure (McDowell et al., 2008, Adams et al.,
2009). Fisher et al. (2006) observed that leaf physiology
was consistent with isohydric habit in Amazonian rainforest
trees and Metcalfe et al. (2010) provide evidence suggesting
that the carbon budget and timing of death of artificially
droughted rainforest trees is consistent with death from car-
bon starvation. Therefore, in this paper, we concentrate on
carbon starvation as the likely mode of mortality. To simu-
late carbon starvation, we define a new ‘stored carbon’ pool,
bstore (kg C per individual), and model allocation to this
pool using the widespread observation that relative parti-
tioning of photosynthate to storage increases during periods
when photosynthesis is low (Gibon et al., 2009; McDowell
& Sevanto, 2010; Smith & Stitt, 2007). Allocation to the
store is thus altered according to the size of the existing pool
and a ‘target’ quantity S*, multiplied by leaf biomass, bl. S*
is an indicator of the generic strategy plants undertake to
avoid carbon starvation. The more carbon that is kept back
for storage, the more likely it is that a plant can survive periods
of negative carbon assimilation (McDowell et al., 2008).
The carbon balance (Cb) available for storage, growth and
reproduction is determined as

Cb ¼ NPP� md Eqn 5

the balance of net primary productivity (NPP) and tissue
turnover requirements (md, see Notes S1), both in kg C per
individual yr)1). The balance of stored carbon to target
stored carbon fs:

fs ¼ bstore=ðS �blÞ Eqn 6

is used to predict the flux of carbon to the storage pool as a
fraction of the carbon balance (fstore)

fstore ¼ e�4fs Eqn 7

The form of the function depicts a situation whereby
carbon allocation approaches 1.0 when the store is low,
and approaches zero when the store is higher than the
target quantity. Flux to and from the store is calculated
as:

Dbstore ¼ Cb :fstore Eqn 8

Thus if Cb is negative (if NPP is less than maintenance
demands, such as in winter or drought periods) carbon is
removed from the store. Mortality increases as bstore

declines below a threshold (see Eqn 10), so negative bstore is
avoided by gradual cohort death. Otherwise, the carbon
remaining for growth and reproduction (Cg, kg C per
individual yr)1) is what remains once allocation to the store
has been removed.

Cg ¼ Cbð1:0� fstoreÞ Eqn 9

Because each cohort in ED represents the hypothetical
means of a set of trees with broadly similar but nonetheless
variable genetic composition and environmental conditions,
the prediction of mortality based on a single threshold car-
bon storage value is inappropriate. In this case, we model
mortality rate M (fraction of trees dying yr)1) as a function
of the ratio of bstore to leaf biomass where bstore < bl

M ¼ Bm þ Smminð1:0; ðbl � bstoreÞ=bl Eqn 10

Background mortality, Bm, (1.39% yr)1, Chao et al.
(2008) occurs irrespective of the stress on the carbon store.
Sm is the mortality rate (fraction yr)1) of a single cohort
when mean cohort carbon storage is zero. The value of Sm is
also affected by spatial heterogeneity. In the hypothetical
‘average’ stand modelled by a DGVM, an ‘average’ tree may
die (making its observed mortality 100%) because its car-
bon reserves fall to zero. In reality it is unlikely that, across a
whole grid cell, all of the trees in a given PFT and size class
will die simultaneously. Because we can neither parameterize
effectively nor simulate the sub-grid cell heterogeneities that
lead to the discrepancy between stand-level and landscape-
level mortality, it is necessary to parameterize the variable
Sm as the impact of carbon deficit on mortality rates.

Plant functional types

Plant ecology models typically seek to explain the coexis-
tence of species along functional ‘trade-offs’ (Pacala et al.,
1996; Moorcroft et al., 2001; Kneitel & Chase, 2003;
Baraloto et al., 2005; Falster 2006). These compromises in
plant form and function mean that no species is the best
competitor in all environments. We use variation in S* to
represent an example of a growth vs mortality risk trade-off
surface (Hacke et al., 2006; Poorter et al., 2010). We con-
strain S* using measurements of carbon storage from a rain-
forest in Panama (Würth et al., 2005), in which the average
amount of carbon stored in trees was approximately the
same as that required to replace all of the leaf and fine root
biomass. Notably, variation between species was substantial.
We calculated the range of carbon stored between species
using the data on percentage carbon storage in different
tissues, and the mean biomass of each tissue type (Würth
et al., 2005), and found that carbon storage varied by a
factor of 2.4 (or 3.7, if one species with extremely high
levels of stem carbohydrate was taken into account).
Reflecting this, we created an array of seven tropical, ever-
green PFTs that differed in S* from 1.0 for PFT2, to 2.5
for PFT7 (Table 1). The additional properties of these
PFTs are described in Table 2. Each PFT represents a class
of species that is broadleaf, evergreen and tropical, but with
a specific range of carbon storage behaviour.
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Methods

To develop a DGVM capable of predicting vegetation con-
ditions under altered climate and CO2, we coupled the
adapted ED model to the Met Office Surface Exchange
Scheme (MOSES II, Essery et al., 2003), that has recently
evolved into joint UK land environment simulator (JULES)
(Mercado et al., 2007). JULES calculates the land surface
gas exchange and provides fluxes of carbon to ED, which
generates land surface and canopy structure to drive the
land-atmosphere interactions in return. We term the cou-
pled model JULES-ED.

We drove JULES-ED using output from the IMOGEN
analogue climate model (Huntingford & Cox, 2000).
IMOGEN utilizes pattern output from the Hadley Centre
HADCM3-LC Global Circulation Model (Cox et al.,
2000) to provide climatic anomalies between a baseline
climate and a given climate change scenario. In this
instance, we use the Climate Research Unit (CRU,
University of East Anglia, Norwich, UK.) 1900–1999
climatology as a baseline dataset onto which we superim-
pose these anomalies. In order to use both the historical

climatology for spin-up, and the pattern output from the
GCM to generate forward predictions, the simulations are
not site specific. Instead, we utilize data from Malhi et al.
(2009b) who synthesized observations of the carbon econ-
omy of three Amazonian sites (Manaus, Caxiuanã and
Tapajòs) to parameterize the ecophysiology of rainforest
ecosystems (see Notes S1). We use driving climatologies for
a 3.25 · 2.5 grid cell, the south west corner of which is
located at 56.25�W and )2.5�S, encompassing all three
sites used by Malhi et al. (2009b).

Model sensitivity tests

To investigate how uncertainties in the parameterization of
demographic processes affect the development of commu-
nity structure, we conducted a global sensitivity test to five
parameters; seed advection (As), seed mixing (Xm), sapling
mortality (Ms), competitive exclusion (Ce) and stress-
induced adult mortality rate (Sm). For each parameter, we
set high and low parameter boundaries and conducted a
200-member Latin Hypercube exploration (Iman &
Conover, 1982) of the five-dimensional parameter space to
identify how different combinations of these processes affect
community structure. The parameter ranges for Xm, Ce and
Sm were between zero and one because these were the logical
endpoints of these processes. For As the minimum input
was 0 and the maximum upper limit was 50 individual
ha)1 yr)1. For Ms the maximum rate was 1.0, while we set
the minimum as 95%. The model results described later
illustrate that the output appears to be insensitive beyond
these ranges for As and Ms.

For each ensemble member, we ran the model for
400 yr, starting from bare ground in 1700. For the baseline
climatology we use 100 yr of CRU data randomized over
these 400 yr (except for the 20th century, where we use
actual year numbers). To this we added climate anomalies
generated by the IMOGEN model driven CO2 concen-
trations from the HADCM3-LC coupled climate carbon

Table 1 Value of S*, the ‘target’ carbon storage criteria between
plant functional types (PPTs)

PFT number S*

1 1.0
2 1.25
3 1.5
4 1.75
5 2.0
6 2.25
7 2.5

S* is the quantity of carbon targeted by the allocation scheme, in
multiples of the total leaf biomass (bl). The range of values chosen is
based on observations by Würth et al. (2005).

Table 2 Model parameters obtained from literature sources

Parameter Explanation Units Value Source

Mb Background mortality % 1.39 Chao et al. (2008)
D Wood density g C cm)3 0.7 Chao et al. (2008)
aleaf Leaf turnover yr)1 0.69 Wright et al. (2004)
aroot Fine root allocation yr)1 0.69 Malhi et al. (2009b)
awood Coarse wood turnover (branches & coarse roots) yr)1 0.01 Malhi et al. (2009b)
SLAc Specific leaf area (canopy) cm2 g)1 87 Carswell et al. (2002)
SLAu Specific leaf area (understory) cm2 g)1 145 Carswell et al. (2002)
rr Root respiration as a fraction of leaf respiration Fraction 0.50 Malhi et al. (2009b)
rs Stem respiration as a fraction of leaf respiration Fraction 0.63 Malhi et al. (2009b)
KN Exponent of change in nitrogen through canopy – 0.17 Mercado et al. (2007)
N0 Nitrogen concentration at canopy top KgN KgC)1 0.046 Mercado et al. (2007)
frepro Fraction of growth carbon to respiration Fraction 0.37 P Meir et al. (unpublished)
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cycle model output (Cox et al., 2000; Friedlingstein et al.,
2006; Sitch et al., 2008). This climate change scenario is
among the most extreme for Amazonia (Malhi et al.,
2009a), but appears consistent with recent climate variability
in this region (Cox et al., 2004, 2008; Jupp et al.,
2010). The annual CO2, precipitation and temperature
components of the model drivers are shown in Fig. 1.

Results and Discussion

Impact of parameter variation on ecosystem biomass
responses to climate change

Altering the five demographic parameters that control
unconstrained spatially mediated demographic processes
had a profound influence on the predicted response of eco-
system biomass to future CO2 and climate (Fig. 2a).
Biomass estimates in 2005 ranged from 6.6 to
22.1 kg C m)2 yr)1. By 2050, the competing effects of
increasing mortality and productivity in the future scenarios
create an even wider divergence in biomass (3.25–
27.0 kg C m)2 yr)1). Some ensemble members are able to
benefit from CO2 fertilization, while others are more rap-
idly affected by the increasingly severe drought events
(Fig. 1). Between 2059 and 2060, there is a large drought
event that depletes the carbon store and causes mortality in
even the most conservative plant functional types. By 2100,
plant biomass is heavily depleted in most scenarios, with the

most resilient scenario supporting 9.6 kg C m)2. The
response of LAI to changing climate and CO2 is both less
extreme and differs less between runs as LAI recovers more
quickly after disturbance and is therefore less affected by
variations in ecosystem demography. We emphasize that,
owing to the random selection of baseline climate, this illus-
tration is not meant to be proscriptive of the actual future
climate or vegetation in particular years.

Filtering unrealistic ensemble members

The parameter space exploration generated wide variation
in ecosystem properties for the present day (Fig. 2a); how-
ever, many of the ensemble members generated unrealistic
predictions for ecosystem properties that can be constrained
by current observations. We filtered those ensemble mem-
bers whose biomass, GPP, NPP or LAI fell outside observed
ranges (Malhi et al., 2009b; Fisher et al., 2007; Brando
et al., 2008). To account for measurement error in the
upper and lower boundaries of the observations, we
extended the ranges by 10% on either side. After the filtering
process, 14 ensemble members remained whose estimates
of all four variables were inside the observed ranges
(Fig. 2b). While there are many fewer simulations in the fil-
tered set, the spread of predictions is not substantially
reduced, with biomass in year 2050 still ranging from 2.6
to 27.0 kg C m)2 yr)1. Filtering with this particular set of
model metrics did not allow us to constrain the different
model futures or rule out either the extremely sensitive or
extremely resistant scenarios. Therefore, satisfactory approx-
imation of contemporary ecosystem observations is not
necessarily an indicator that a model will produce accurate
future predictions. Current efforts to ‘benchmark’ vegeta-
tion models with sets of basic ecosystem data, with the
intention of constraining the range of future predictions,
should consider this possibility when interpreting their
results (Randerson et al., 2009). It is possible that addi-
tional filters not used in this experiment, notably responses
of forest to experimental drying (Fisher et al., 2007; Brando
et al., 2008) might provide more appropriate filtering data.
These kinds of plot-level observations are not yet considered
in DGVM benchmarking exercises, however, owing to the
difficulties involved in precisely replicating the experimental
conditions in DGVM models.

Community structure and its relation to ecosystem
biomass predictions

Fig. 3 illustrates the different plant community structures
found in the 14 runs that met the filtering criteria. The panels
are ordered according to their predicted ecosystem bio-
mass in 2050 (from low to high). Those runs where forest
mortality events were predicted to occur sooner, and bio-
mass in 2050 was consequentially lower (e.g. Fig. 3 – top

Fig. 1 Forcing data for model simulations: (a) carbon dioxide
concentrations, (b) temperature and (c) annual precipitation.
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two rows), were dominated by the fast-growing PFT 1
(filled circles), while those runs where the ecosystem
avoided biomass collapse for longer tended to have a more
equitable distribution of PFTs (e.g. Fig. 3 – bottom two
rows). In this particular model scenario, prevailing condi-
tions before 2000 typically favour the dominance of the
fastest-growing plant types. The persistence of PFT1 as the
dominant plant type in 2000 reflects the relatively benign
climatic conditions over the last century and is consistent
with a small fitness cost associated with low rates of carbon
storage: NPP rarely falls sufficiently to deplete stored carbon
reserves enough cause canopy tree mortality. In all cases, the
fastest-growing PFTs gain a slight initial advantage via
lower allocation to carbon storage. The eventual community
structure, however, depends upon the strength of processes
that reinforce this initial dominance, which is affected sub-
stantially by varying the spatially mediated parameters in
this sensitivity test.

Impact of individual parameters on community
structure and ecosystem properties

Illustrating detailed ecosystem composition for every
ensemble member was impractical, so we reduced the
dimensionality of the output by calculating a PFT range.
Rp, for each model run, as

Rp ¼ Bf ;1 � Bf ;7 Eqn 11

where Bf,i is the fractional biomass of the ith PFT in 2000.
Fractional biomass is the total of the total biomass
accounted for by a given PFT. Values close to 1 indicate
dominance the fastest-growing PFT and values close to zero
indicate more equitable PFT distribution. This metric of
community structure provides a single value with which to
represent how much the community is dominated by fast-
growing plants. Fig. 4 illustrates how this measure of

1950 2000 2050 2100
0

5

10

15

20

25

30(a)

(b)

B
io

m
as

s 
(k

g
 C

 m
–2

)

Year

1950 2000 2050 2100
0

5

10

15

20

25

30

B
io

m
as

s 
(k

g
 C

 m
–2

)

Year

Fig. 2 Response of the trajectory of total
plant biomass to alterations in ecological
parameterizations showing the last 150 yr of
the 400 yr simulation. (a) Includes all 200
members of the ensemble and (b) includes
only those 14 ensemble members with
acceptable biomass, leaf area index (LAI),
gross primary production (GPP) and net
primary productivity (NPP) compared with
observations. Shading on symbols indicates
the sapling mortality (Ms) parameter for each
run, and can be read from Fig. 5(d).
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community structure affects whole-ecosystem properties
(GPP, NPP LAI and biomass) used in the filtering process.
Typically, those ecosystems with a PFT range close to 1 had
high values of GPP, NPP and LAI, which were often out-
side the observational range. Ecosystem biomass was greatest
for mid-range community composition. Those ensemble
members with highly equitable PFT distribution tended to
have very low biomass, below the acceptable range.

Figs 5–7 illustrate how the five demographic parameters
that we investigated were related to PFT range index
(Eqn 10, Fig. 5), biomass predictions at 2050 (Fig. 6) and

LAI in 2005 (Fig. 7). The impact of the different para-
meters on NPP, GPP and biomass in 2005 and biomass in
2100 are illustrated in Figs S1–S4.

Of the five parameters varied, sapling mortality (Ms)
had the greatest impact on community structure and eco-
system properties. To illustrate the impact of varying this
parameter on the model output, we shaded the points in
Figs 4–7 according to their value of Ms. Ms mediates the
positive feedback between fast growth and sapling produc-
tion. Those trees with fast growth rates produce large
numbers of saplings that grow quickly during situations of
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low sapling mortality, increasing the tendency of fast-
growing PFTs to become dominant. Low values of Ms

encourage this positive feedback, leading to monodomi-
nance and high PFT range. Simulations with high values
of Ms suppress this feedback and tended to have a more
equitable PFT distribution with more slow-growing PFTs
(Fig. 5d). These PFTs are less susceptible to drought
induced mortality (in the model), so the runs with high
Ms have higher biomass in 2050 (Fig. 6d). In addition, a
combination of higher allocation to storage, and less to
leaves, as well as lower overall understorey recruitment
rates, means that those communities with high values
of Ms have lower estimates of LAI (Fig. 7d). The first
order impact of lower sapling mortality on biomass
(more seeds = more biomass) was not present in 2005
(Fig. S3d).

The seed mixing parameter (Xm) had a large impact on
community structure. Initial seeding conditions are an
important control on community structure after canopy
closure. When large numbers of seeds are distributed to
other patches, and Xm is high, PFT1 dominance of one age
class makes it a source of PFT1 seed for other age-classes,
increasing its share of the seed bank and thus its increasing
ability to dominate newly disturbed areas. Where most
seeds land in their parent patch, and Xm is low, PFT1 wastes

most of its seed increasing competition with itself.
Therefore, high Xm promotes both dominance of PFT1
(Fig. 5c) and the development of communities with fast-
growing PFTs. These fast-growing PFTs are at greater risk
of dying under future droughted conditions because of their
lower carbon reserves, so forest biomass in 2050 is lower for
high Xm simulations (Fig. 6c). However, higher Xm allows
faster colonization of recently disturbed gaps, facilitating
faster regeneration and higher spatially averaged LAI
(Fig. 7c).

Seed advection (As) has a relatively minor impact on
community structure and on biomass in 2050 (Fig 5e,
6e). Increasing seed rain modulates the dominance of
the fast-growing PFT for sapling recruitment, but also
accelerates the rate of canopy closure, enhancing the
dominance of the faster-growing plants (results not
shown). The conflicting impact of these two mechanisms
may well prevent any consistent response from emerging.
As did have a notable impact on the biomass in 2100
(Fig. S2e), as higher seed rain presumably promotes a
more rapid ecosystem recovery from mortality events
(Fig. 7e). Higher seed advection also promotes higher
LAI; the number of saplings present in the understorey
increases on account of the shift in the equilibrium
between recruitment and mortality.
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There was little consistent effect of competitive exclu-
sion (Ce, panel a, Figs 5 and 6) or stress-induced mortality
(Sm, panel b, Figs 5 and 6) on either PFT composition
(Fig 5) or biomass in 2050 (Fig 6) panel. In isolation,
these parameters can exert substantial control over community
structure (results not shown), but in the global sensitivity
analysis (i.e. varying all parameters simultaneously) their
impact may well have been overridden by large variations
in the forcing caused by the other parameters. The LAI
is highest for low values of Sm, as greater mortality rates of
carbon-starved plants in shade or drought results in a lower
equilibrium LAI (Fig. 7b).

Scale limitations and parameter constraints

Typically, vegetation modellers attempt to constrain model
parameter values via observations of the processes to which
they apply. Unfortunately, the parameters we investigated
here are not amenable to observation because the scales at
which they operate are not represented in the spatially one-
dimensional model environment. For example, the rate of
seed advection As of a given PFT is likely a function of (at
least) the mean distance in space to other areas of land con-
taining that PFT. Landscape models that include a two-
dimensional spatial structure of interconnected patches,
with a representation of both spatial arrangement and dis-
tance between patches, can simulate this property, but not

one-dimensional DGVM models (Neilson et al., 2005;
Lischke et al., 2006).

Similar issues apply to the other three parameters. Seed
mixing, Xm, most obviously, is the result of the unknown
length scale of disturbance processes and patches of land
that ED represents via statistical aggregation. The length
scale of ecosystem patches in reality is controlled by the size
of disturbance events. If most disturbance events result from
the death of single trees, this generates a matrix with a small
length scale and a consequentially high rate of inter-age class
seed mixing. If mortality is spatially aggregated because of
blow-down events, pathogen outbreaks or fires, then the
length scale will be larger and mixing less likely. No
DGVM at present tracks the two-dimensional sub-grid
variation in disturbance history. Tracking disturbance
history is only made computationally possible in the ED
model by removing the spatial dimension and tracking all
patches of a common disturbance history together. This
property must therefore at present be parameterized. Here
we illustrate, for the first time in the context of a DGVM
modelling study, how the values of this property affect
model outcome. Future studies must focus on resolving this
issue either using top-down observational constraints, by
leveraging output from spatially explicit studies into the
one-dimensional model or by converting the model frame-
work to a substantially more computationally intensive
fine-mesh structure.
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Fig. 6 Response of predicted biomass in 2050 to variation in (a) competitive exclusion, Ce, (b) stress-induced mortality, Sm, (c) seed mixing,
Xm, (d) sapling mortality, Ms, and (e) seed advection, As. Square symbols denote members of the filtered ensemble with predictions of net
primary productivity (NPP), gross primary production (GPP), leaf area index (LAI) and biomass within acceptable ranges. Shading on symbols
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The degree of determinism and stochasticity of competi-
tive exclusion, Ce, depends upon smaller-scale spatial
interactions between the crowns of adjacent trees.
Simulation of this process would require at least a branch-
scale canopy simulation model (Williams, 1996), in addi-
tion to improved understanding of the genetic heterogene-
ity between plants represented by a single PFT and the
microvariation in abiotic conditions. It might be possible to
estimate locally appropriate values of Ce from community
composition data using inverse Bayesian methods (Clark
et al., 2003; Etienne & Olff, 2005).

Sapling mortality, Ms, which is an aggregate of seed num-
ber, seed germination, and death of the germinated seedlings,
is poorly understood and very complex to model mechanisti-
cally. Inverse estimates of seed mortality from forest inventories
might be possible, but existing forest databases typically only
measure trees > 10 cm diameter (Baker et al., 2004). Thus,
estimates of Ms are confounded with unobserved
understorey growth and mortality processes. Also, sapling
mortality is thought to be influenced by dispersal distance
via the influence of species-specific herbivores or pathogens
(Janzen, 1970; Connell, 1971) and by potential positive
interactions between parent trees and saplings, the interac-
tive consequences of which are explored by Murrell (2009).

Stress-induced mortality rates (Sm) appropriate for land-
scape-scale models or DGVMs are also difficult to para-
meterize. Allen et al. (2010) illustrate the difficulty of
quantifying rates of vegetation mortality with observations
made at multiple spatial scales. High rates of observed
stand-level mortality typically translate into much lower
landscape-level mortality rates, owing to spatial variation in
landscape properties, biotic agents, species and weather
(Allen et al., 2010). For a DGVM models, that scale
linearly from plot-level simulations to landscape-level
prediction, the appropriate scale of measurement of plant
mortality rates is therefore contentious. Landscape-level
estimates of tree mortality are very rare (Allen et al., 2010)
but may be facilitated by vegetation monitoring networks
(Phillips et al., 2009) in the future.

Spatial interactions in existing studies

The concept that spatial interactions are important for com-
munity structure is not novel (Silvertown & Law, 1987)
but is infrequently considered by the DGVM community
(Neilson et al., 2005; Midgley et al., 2007). At present, no
DGVMs represent the movement of propagules in two
dimensions, and no first-generation DGVMs represent
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Fig. 7 Response of modelled leaf area index in 2005 to variation in (a) competitive exclusion, Ce, (b) stress-induced mortality, Sm, (c) seed
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plant competition for light in a vertical profile (for a
detailed review of first generation DGVM plant competi-
tion algorithms see Arora & Boer, 2006). Literature from
forest gap models discusses possible conditions necessary for
simulating coexistence and the impact of competitive exclu-
sion and spatial processes on community structure (Adams
et al., 2007; Lischke & Löffler, 2006; Kohyama & Takada,
2009) but the emerging literature on second-generation
DGVMs provides little discussion on how plant coexistence
is generated along axes of variation other than early-to-late
successional plant traits. A vast literature on the assemblage
of communities, biodiversity and species coexistence can
potentially inform us on how best to proceed from this
point (McGill et al., 2006), and it seems likely that the pos-
sible limits on these parameters may potentially be
informed by the outcomes of more spatially explicit models
at various scales (Kneitel & Chase, 2004).

Conclusion

In this paper we introduce a series of modifications to the
ED model that more readily allow the coexistence of plant
types with similar growth rates. We conclude that, despite
major advances in dynamic global vegetation modelling,
there exist a number of processes pertaining to spatial plant
ecology that are currently beyond the capacity of even
the most sophisticated DGVMs to capture. If we fail to
appropriately represent or constrain the processes that con-
trol the emergence of plant community structure in the new
generation of global vegetation models, we risk generating
modelled communities of plants with erroneous responses
to climatic and atmospheric changes.

While we have endeavoured to create simulations that
closely reflect the behaviour of Amazonian rainforest eco-
systems, we emphasize that our purpose was not to provide
definitive predictions of the future of the Amazon, but
instead to illustrate the potential importance of the repre-
sentation of infrequently discussed plant demographic
processes of reproduction, competition and mortality on
the range of future predictions. We chose to focus on
one location to allow a detailed illustration of this high-
dimension problem; however, it seems likely that the issues
derived here may well be generically applicable, in different
modelling frameworks, and across multiple combinations
of climate and functional trade-off axes.
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Fig. S1 Response of predicted biomass at year 2005 to vari-
ation in (a) competitive exclusion, Ce, (b) stress-induced
mortality, Sm, (c) seed mixing, Xm, (d) sapling mortality,
Ms, and (e) seed advection, As.

Fig. S2 Response of predicted biomass at year 2100 to vari-
ation in (a) competitive exclusion, Ce, (b) stress-induced
mortality, Sm, (c) seed mixing, Xm, (d) sapling mortality,
Ms, and (e) seed advection, As.

Fig. S3 Response of predicted gross primary production
(GPP) at year 2100 to variation in (a) competitive exclusion
Ce, (b) stress-induced mortality, Sm, (c) seed mixing, Xm,
(d) sapling mortality, Ms, and (e) seed advection, As.

Fig. S4 Response of predicted net primary productivity
(NPP) at year 2100 to variation in (a) competitive exclu-
sion, Ce, (b) stress-induced mortality, Sm, (c) seed mixing,
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Notes S1 Detailed description of JULES gas exchange
model and algorithms controlling tree leaf area, canopy
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