Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water
Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L.P.H.; Bierkens, Marc F.P.; Blyth, Eleanor ORCID: https://orcid.org/0000-0002-5052-238X; de Roo, Ad; Döll, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters‐Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul. 2011 Hyperresolution global land surface modeling: meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resources Research, 47, W05301. 10, pp. https://doi.org/10.1029/2010WR010090
Full text not available from this repository.Abstract/Summary
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1029/2010WR010090 |
Programmes: | CEH Topics & Objectives 2009 - 2012 > Water > WA Topic 3 - Science for Water Management > WA - 3.3 - Better represent hydrological and biogeochemical processes in Earth System Models |
UKCEH and CEH Sections/Science Areas: | Reynard |
ISSN: | 0043-1397 |
NORA Subject Terms: | Hydrology |
Date made live: | 24 Jan 2012 11:37 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/11558 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year