Circulation and melting beneath George VI Ice Shelf, Antarctica
Jenkins, Adrian ORCID: https://orcid.org/0000-0002-9117-0616; Jacobs, Stan. 2008 Circulation and melting beneath George VI Ice Shelf, Antarctica. Journal of Geophysical Research, 113 (C4), C04013. https://doi.org/10.1029/2007JC004449
Before downloading, please read NORA policies.
|
Text
Copyright American Geophysical Union 2007JC004449.pdf - Published Version Download (5MB) |
Abstract/Summary
Oceanographic data are presented from the eastern Bellingshausen Sea, representing the first near-contemporaneous sampling of conditions near both the northern and southern ice fronts of George VI Ice Shelf. Circumpolar Deep Water (CDW) with a temperature in excess of 1 degrees C floods the entire continental shelf and forms the main inflow to the cavity beneath the ice shelf. We use measurements of salinity, potential temperature, stable isotope ratios and dissolved oxygen, helium, and neon to show that the outflows contain meltwater in concentrations that rise to a maximum of around 3%. Assuming that the currents are in geostrophic balance, we calculate relative velocities along the ice front sections, then estimate the absolute velocity by inversion of the tracer conservation equations. We obtain an overall mean melt rate of 3-5 m a(-1) and a net south-to-north throughflow beneath the ice shelf of 0.17-0.27 Sv. The mean melt rate exceeds that required for equilibrium, consistent with recent observations of ice shelf thinning and retreat. Melting beneath the ice shelf drives upwelling of about 0.1 Sv in total of CDW into the surface mixed layer at the two ice fronts. The effective vertical heat flux per unit area of ice shelf cover is 8 W m(-2), more than 4 times that estimated for vertical diffusion through the main pycnocline of the neighboring open water region. The south-to-north throughflow carries a particularly strong signature of upwelled CDW, including low dissolved oxygen and high nutrient concentrations, north into Marguerite Bay.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | https://doi.org/10.1029/2007JC004449 |
Programmes: | BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Antarctic Climate and the Earth System |
ISSN: | 0148-0227 |
NORA Subject Terms: | Marine Sciences Glaciology |
Date made live: | 17 Jan 2011 11:47 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/11529 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year