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Bumblebee declines across Europe have been linked to loss of habitat and forage 1 

availability due to agricultural intensification. These declines may have severe 2 

ecological and commercial consequences, since bumblebees pollinate a range of 3 

wildflowers and crops. In England attempts are being made to reintroduce forage 4 

resources through agri-environment schemes, yet there are few data on how the area 5 

of forage, or landscape context in which it is provided, affect their success. We 6 

investigated the effects of sown forage patches on bumblebees across sites varying in 7 

landscape characteristics. Bumblebee densities were higher on sown patches 8 

compared to control habitats but did not vary with patch size, i.e. total forager 9 

numbers were proportional to patch area. Importantly, the relative response to sown 10 

forage patches varied widely across a landscape gradient such that their impact in 11 

terms of attracting foraging bumblebees was greatest where the proportion of arable 12 

land was highest.  13 

 14 
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1. INTRODUCTION 1 

Bumblebees (Bombus spp.) are important pollinators of a large number of native plant 2 

species and some crops (Corbet et al. 1991). Recent declines in their abundance in 3 

Europe have been linked to habitat loss and alteration resulting from intensified 4 

agriculture (Goulson et al. 2005). In particular, intensified crop management and 5 

reductions in mixed farming have led to the loss, or botanical simplification, of both 6 

semi-natural habitats (e.g. flower-rich meadows) and linear habitats (e.g. species-rich 7 

hedgerows and margins; Robinson & Sutherland 2002). This has led to a widespread 8 

decline in the quality and abundance of forage resources and nesting habitats for 9 

bumblebees (Carvell et al. 2006).  10 

Reduced pollination services can have detrimental effects on the dynamics and 11 

persistence of plant species and communities (Fontaine et al. 2006). Whilst diverse 12 

pollinator assemblages may be important to the maintenance of these services, 13 

bumblebees may be able to compensate for the losses in other pollinator groups. This 14 

makes them key species in some agro-ecosystems (Kremen et al. 2002, Kremen et al. 15 

2007). 16 

The European Union has recognized the need to counteract the negative 17 

effects of modern agriculture on the environment, and has introduced agri-18 

environment schemes whereby farmers are paid to manage their land for the benefit of 19 

particular habitats and species.  England has recently adopted the Environmental 20 

Stewardship scheme (www.defra.gov.uk/erdp/schemes/es/default.htm). This includes 21 

specific options targeted at pollinators, aiming to enhance the supply of pollen and 22 

nectar sources by sowing flower mixtures at field margins. These mixtures can 23 

significantly enhance the local density and diversity of foraging bumblebees on arable 24 

land (Carvell et al. 2004), yet their effects have not been studied with respect to the 25 

area of forage or landscape context in which they are provided. 26 

Landscape context, especially the availability of semi-natural habitats, has 27 

been recognized as important to bumblebees, and may interact with farming systems 28 

to determine local community structure (Tscharntke et al. 2005). However, recent 29 

work questions the benefit of semi-natural habitat to bumblebee communities within 30 

agricultural landscapes (Westphal et al. 2003; Kleijn et al. 2006). These studies have 31 

considered neither the targeted agri-environment scheme options for pollinators being 32 

implemented in the UK nor the response of bumblebees to introduced forage 33 

resources relative to resources elsewhere in the landscape. Here we investigate the 34 
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responses of bumblebees to habitat creation in different agricultural landscapes. We 1 

test if sown forage patches have a positive effect on forager densities and if the effect 2 

is influenced by landscape context.  3 

 4 

2. METHODS 5 

We selected eight sites across central and eastern England that represented 6 

typical land use for their locations but varied widely in landscape characteristics (table 7 

1). We randomly allocated four treatments to each site: three forage patches of 0.25, 8 

0.5 and 1ha sown with a mixture of 20% legumes (Trifolium pratense, Trifolium 9 

hybridum, Lotus corniculatus) and 80% fine leaved grasses (Festuca rubra, Poa 10 

pratensis, Cynosurus cristatus) and a control patch representing typical non-crop 11 

vegetation for the site. Loss of legumes is suggested as a major driver of declines of 12 

longer-tongued bumblebees (Goulson et al. 2005) so we expected that these 13 

bumblebee species would be most attracted to the sown patches. Each patch was 14 

separated by approximately 3km (mean=2.99±0.23km, SE) to reduce bumblebee 15 

dispersal between them (Knight et al. 2005). Patches were established between 16 

autumn 2003 and spring 2004.  17 

A circular sampling zone around each treatment patch (n=32) was extended to 18 

a radius of 1km (314 ha) to reflect the scale at which the longer-tongued bumblebees 19 

forage (Knight et al. 2005). Landscape characteristics for each zone were obtained 20 

from the Land Cover Map 2000 (www.ceh.ac.uk/data/lcm), a computer-classified land 21 

cover data set derived from satellite-based multi-spectral scanners. We used the 22 

proportion of arable cropped fields as an indicator of landscape context because it was 23 

negatively correlated with the proportions of grassland, woodland (P<0.001) and 24 

urban cover (P<0.05). 25 

Bumblebee activity was recorded monthly from May to September 2005 (five 26 

occasions) when all patches were successfully established and flowering. Foraging 27 

bumblebees were counted along two fixed 2m×100m transects in the centre of each 28 

treatment patch, and the plant species on which they were foraging were noted 29 

(Banaszak 1980). In small or irregularly shaped patches we used U-shaped transects 30 

to cover an equivalent area (e.g. four 50×2m transects). All social Bombus species, 31 

cuckoo bees (subgenus Psithyrus) and honeybees (Apis mellifera) were recorded. For 32 

analysis we grouped social Bombus species into colour groups (after Fussell & Corbet 33 
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1992, but with melanic Bombus ruderatus as a separate group), tongue length groups 1 

(long >8.5mm, short <8.5mm) and diet breadth groups (defined using Simpson’s 2 

diversity index, D, based on our flower visitation data; mean=3.8, narrow=D<3.8, 3 

broad=D>3.8) (table 2). Transects were carried out between 10.00 and 17.30 during 4 

dry weather when ambient temperature was above 13°C with at least 60% clear sky, 5 

or 17°C under any sky conditions.  6 

Forage availability on every visit was measured by identifying all flowering 7 

dicotyledonous species and scoring their flower abundance in each 2×10m transect 8 

section within the following ranges: 1-5; 6–25; 26-200; 201-1000; 1001-4999 and 9 

5000+ flower units (defined as a single flower or an umbel, spike or capitulum on 10 

multi-flowered stems). For analysis, flower abundance was expressed as the median 11 

value for each range, giving an estimate of the number of flowering units on each 12 

sampling visit.  13 

The effects of patches on bee density were tested using a randomized block 14 

ANOVA on log transformed mean per transect (across all visits) with site and 15 

treatment as factors, and contrasts for effects of treatment type (control vs. sown) and 16 

patch size. Differences in flower density (mean number of flowers per transect, per 17 

sampling visit) between treatment patches across the landscape sectors were tested by 18 

ANOVA and contrasts. The relationship between bee density and % arable across 19 

sites was compared between control and sown forage patches allowing for a random 20 

site effect using residual maximum likelihood (REML).  21 

 22 

3. RESULTS  23 

We observed 6602 bees including nine social bumblebee species and at least 24 

three cuckoo bee species. The most common species groups were: Bombus lapidarius 25 

(+B. ruderarius) 45%, B. pascuorum (+B. muscorum/humilis) 31%, B. terrestris agg. 26 

(+B. lucorum) 8%, B. hortorum 8%, B. ruderatus 0.5% and B. pratorum 0.4%. 27 

Bumblebee density was significantly higher on the sown forage treatments 28 

than on the control patches (table 2) but  did not differ significantly with sown patch 29 

size for any species (table 2), suggesting that total bumblebee numbers increased in 30 

proportion to patch area. Individual bumblebee species or groups showed variable 31 

responses to the sown patches. As expected, the strongest positive response was from 32 

the longer-tongued species (Goulson et al. 2005), with B. lapidarius and B. 33 
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pascuorum, the most commonly recorded, 15-35 times more abundant on the sown 1 

forage patches than control areas. Psithyrus spp. and A. mellifera did not show a 2 

significant response to sown forage patches. The mean density of visited flowers 3 

(defined as species that bumblebees visited at least once in the study) was 4 

significantly higher on the sown forage patches than the control (F1,23=40.9, P<0.001) 5 

but did not differ significantly between sown forage patches (F2,14=1.01, P=0.39)  6 

within or between sites (F7,14=1.2, P=0.37).  7 

 The effect of landscape context was highly significant in determining the 8 

response of bumblebee density to forage patches but did not affect honeybee density 9 

which declined in both forage patches and control areas with increasing proportion of 10 

arable land (table 3). In general, significantly more bumblebees per transect were 11 

found on forage patches in landscapes in which the proportion of arable land was 12 

highest. Importantly, the density of narrow diet and longer-tongued species on control 13 

patches decreased with increasing proportion of arable land in the habitat surrounding 14 

the patches (figure 1). This suggests that non-crop habitats surrounding the patches 15 

were poorer for bumblebees as the proportion of arable land increased (e.g. control 16 

patch log legume cover r=-0.72 P=0.043). There was no significant correlation 17 

between honeybee and bumblebee abundance suggesting little or no competition for 18 

forage resources (r=-0.296, P = 0.106). Finally, there was a strong positive correlation 19 

between the mean estimated number of flowers of all bumblebee forage plant species 20 

and the mean total number of bumblebees per patch (Total Bombus 21 

spp.=0.61+0.0022×total forage flowers,  r=0.74, P<0.001).  22 

 23 

4. DISCUSSION 24 

 Our analyses suggest that the higher densities of foraging bumblebees 25 

attracted to sown forage patches did not vary with patch size but did with landscape 26 

context. If at the start of the experiment, patches were isolated (i.e. no shared 27 

foragers), bumblebee colonies were randomly distributed within a landscape and bees 28 

foraged only on patches, we would expect forager density to decline with increasing 29 

patch size. Absence of this trend is consistent with several alternative explanations: a) 30 

An ideal free distribution; this would occur if patches were not truly isolated and 31 

bumblebees traveled between them, but seems unlikely given the limited foraging 32 

ranges described for several species, e.g. B. pascuorum, B. lapidarius 449-450m 33 

(Knight et al. 2005). b) Higher colony growth rates near larger patches (more total 34 
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forage) led to an increase in foragers visiting larger patches, offsetting expected 1 

decreases in density. c) Not all foragers within an area visited a patch, but larger 2 

patches were encountered more often, thus the proportion of foragers visiting a patch 3 

scales with its size.  4 

 In common with previous work we found higher numbers of bees on sown 5 

forage patches in areas with high levels of agriculture. Westphal et al. (2003) 6 

concluded that the abundance of mass flowering crops (MFCs), rather than that of 7 

semi-natural habitats, was an effective determinant of bumblebee forager density on 8 

flowering patches. In contrast, our data suggest that the response to introduced forage 9 

patches was driven by a lack of forage resources in the surrounding habitats typified 10 

by the control patches (MFCs had flowered earlier in all landscapes). Across our 11 

landscape gradient, increasing arable area led to a reduction in both the quantity and 12 

quality of semi-natural forage resources for bumblebees. Thus sown patches were 13 

relatively more exploited where the availability of resources from semi-natural 14 

habitats was limited. The mobility of bumblebees means that they appear able to 15 

readily locate and exploit high quality forage patches, at least within the scale at 16 

which we sampled.  17 

Although the Bombus species assemblages differed across sites, many 18 

bumblebees, especially the longer-tongued and narrow diet species, showed a positive 19 

response to the sown mixture of legume species. Bumblebees often show strong 20 

preferences for certain flowers or plant families (Heinrich 1976). The decline of our 21 

sown legume species in the UK countryside may be a principal cause of rarity and 22 

decline in some bumblebees (Goulson et al. 2005). Our results suggest that restoring 23 

forage resources through agri-environment schemes can enhance bumblebee densities 24 

and attract large numbers of foraging bumblebees, especially in intensively managed 25 

agricultural landscapes. Whilst our results focus on densities of individuals, it is 26 

important to realise that this may not reflect impacts on populations per se. This 27 

requires more direct measurements of either colony density or colony performance, 28 

and these form the basis of ongoing work. 29 
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Table 1. Landscape characteristics averaged across all patches (n=4) within sites. 1 

ANOVA revealed no significant differences between patch area characteristics within 2 

a site for each landscape type (P >0.05).  3 

Site 
Arable* 
% (SE) 

Arable 
range 

Grass† 

% (SE) 
Grass 
range 

Woodland 
% (SE) 

Woodland 
range 

Urban 
% (SE) 

Urban 
range 

1 89.7(2.1) 84.6-93.4 8.0 (2.6) 2.9-13.5 0.2 (0.2) 0-0.6 1.8 (0.7) 0.2-3.6 

2 81.2 (4.7) 75.2-95.2 15.2 (4.2) 3-21.5 1.7 (0.9) 0-4 1.8 (0.6) 0.9-3.5 

3 73.9 (2.7) 66.4-79.4 16.6 (5.4) 5.2-27.9 7.3 (4.2) 0.6-19.7 1.9 (1.4) 0-6.1 

4 71.6 (4.0) 63.3-81.0 22.3 (4.9) 15.0-36.2 4.2 (2.3) 0-8.8 0.6 (0.5) 0-2.0 

5 67.6 (4.5) 59.2-79.4 18.4 (2.6) 13.1-25.6 8.9 (2.1) 4.7-14 4.7(3.1) 0-13.1 

6 34.8 (5.5) 19.9-46.3 30.7 (7.5) 13.9-50.2 20.5 (3.2) 13.0-28.2 11.4 (3.0) 4.4-16.7 

7 26.9 (2.7) 22.7-34.7 57.9 (6.4) 39.5-68.4 12.7 (3.8) 7.6-23.8 2.2 (0.7) 0.8-3.9 

8 26.5(3.3) 17.4-33.5 55.8 (3.1) 49.3-64.4 10.8(2.8) 6.8-19.2 3.3 (0.7) 2.4-5.2 
 4 

*includes cereals and mass flowering crops e.g. oilseed rape, field bean, potato.  5 
† includes improved and unimproved grassland, set-aside.  6 
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Table 2. Bumblebee forager density on control and forage patches and ANOVA tests 1 

for differences between a) control and forage patches and b) sown forage patches. 2 

S=short-tongued; L=long-tongued; BD=broad diet and ND=narrow diet. ***P<0.001, 3 

*P<0.05. 4 

Bumblebee species  
or group 

Treatment mean (± SE) 
 

P-value of contrast 

 Control 

 

Forage patch 

 

control vs. forage patches 

(1 d.f.) 

between forage patches 

(2 d.f) 

Bombus spp. 1.78 (0.70) 25.65 (4.30) <0.001*** 0.91 

B. hortorum (L, ND) 0.18 (0.11) 2.05   (0.43) <0.001*** 0.25 

B. lapidarius (S, ND) 0.83 (0.32) 13.26 (2.25) <0.001*** 0.96 

B. pascuorum (L, ND) 0.39 (0.21) 8.75   (1.89) <0.001*** 0.62 

B. pratorum (S, BD) 0.05 (0.05) 0.03   (0.01) 0.86 0.66 

B. ruderatus (L, ND) 0.04 (0.04) 0.09   (0.05) 0.50 0.93 

B. terrestris agg (S, BD) 0.30 (0.12) 1.48   (0.35) 0.016* 0.22 

short-tongued Bombus spp. 1.18 (0.43) 14.77 (2.47) <0.001*** 0.99 

long-tongued Bombus spp. 0.60 (0.34) 10.88 (2.01) <0.001*** 0.92 

broad diet Bombus spp. 0.35 (0.16) 1.50   (0.36) 0.013* 0.25 

narrow diet Bombus spp. 1.43 (0.56) 24.14 (4.07) <0.001*** 0.87 

Psithyrus spp. 0.14 (0.11) 0.30   (0.11) 0.22 0.99 

Apis mellifera 0.40 (0.33) 0.92   (0.28) 0.077 0.14 
     5 
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Table 3. Estimated slopes relating bumblebee density to % arable land across sites for 1 

control and sown forage patches, with Wald test for differences in slopes. **P<0.01, 2 

*P<0.05. 3 

 4 

Bumblebee species or group Control Sown Comparison of slopes 

 Intercept slope SE Intercept slope SE Wald P 

Bombus spp. 0.14 -0.0026 0.0051 0.61 0.011 0.037 6.18 0.013* 

B. hortorum  -0.76 0.0007 0.0055 -0.48 0.010 0.0045 3.62 0.057 

B. lapidarius  -0.20 -0.0011 0.0051 0.44 0.009 0.0040 3.86 0.049* 

B. pascuorum  -0.59 0.0001 0.0059 -0.15 0.014 0.0038 4.22 0.04* 

B. pratorum  -1.02 0.0018 0.0026 -1.00 0.001 0.0018 0.02 0.88 

B. ruderatus  -1.06 0.0023 0.0036 -1.16 0.005 0.0029 0.63 0.43 

B. terrestris agg  -0.67 0.0022 0.0063 -0.58 0.009 0.0044 0.9 0.34 

broad diet Bombus spp. -0.68 0.0026 0.0062 -0.57 0.009 0.0043 0.87 0.35 

narrow diet Bombus spp. 0.08 -0.0028 0.0050 0.58 0.011 0.0037 6.82 0.009** 

short-tongued Bombus spp. -0.05 -0.0015 0.0051 0.48 0.009 0.0039 4.28 0.039* 

long-tongued Bombus spp. -0.33 -0.0019 0.0051 0.01 0.014 0.0035 7.34 0.007** 

Psithyrus spp. -0.53 -0.0047 0.0052 -1.16 0.009 0.0044 7.93 0.005** 

Apis mellifera -0.46 -0.0033 0.0066 0.47 -0.014 0.005 2.17 0.141 

 5 
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Figure 1. Percentage of arable habitat in relation to mean density (log10) of narrow 1 

diet bumblebees on transects (2×100m) on sown (▲=0.25ha, ■=0.5ha, ●=1.0ha) and 2 

control (○) patches. Fitted line equations, control y=0.077-0.0028 x; sown 3 

y=0.58+0.011 x.  4 

 5 
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