Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean
Kaufmann, Patrik; Fundel, Felix; Fischer, Hubertus; Bigler, Matthias; Ruth, Urs; Udisti, Roberto; Hansson, Margareta; De Angelis, Martine; Barbante, Carlo; Wolff, Eric W.; Hutterli, Manuel; Wagenbach, Dietmar. 2010 Ammonium and non-sea salt sulfate in the EPICA ice cores as indicator of biological activity in the Southern Ocean. Quaternary Science Reviews, 29 (1-2). 313-323. 10.1016/j.quascirev.2009.11.009
Full text not available from this repository. (Request a copy)Abstract/Summary
Sulfate (SO42-) and ammonium (NH4+) flux records over the last 150,000 years from both Antarctic EPICA ice cores (European Project for Ice Coring in Antarctica) are presented. The ice core record from Dome C is influenced by the Indian sector of the Southern Ocean (SO), whereas Dronning Maud Land is facing the Atlantic sector. Generally, they reflect the past atmospheric aerosol load and, thus, potentially reveal the fingerprint of marine biogenic sources from the SO. The most important feature of both, the nssSO(4)(2-) as well as NH4+ flux records, is the absence of any significant glacial cycles, in contrary to the distinct transitions for mineral dust and sea salt aerosol over the last 150,000 years. This finding challenges the iron fertilization hypothesis on long time scales, as the significant changes in dust, e.g. from the last glacial maximum toward the Holocene have neither an impact on nssSO(4)(2-) nor on NH4+ fluxes found in interior Antarctica. The inter-site correlation of both species is weak, r(2) = 0.42 for the nssSO(4)(2-) flux and r(2) = 0.12 for the NH4+ flux respectively, emphasizing the local Source characteristics of biogenic aerosol from the SO. Millennial variability in NH4+ and nssSO(4)(2-) is within the uncertainty of our flux estimates. Correlation with mineral dust and sea ice derived sodium shows only a very weak influence of dust deposition on those insignificant changes in nssSO(4)(2-) flux for the Atlantic sector of the Southern Ocean, but also small transport changes or terrigeneous sulfate contributions may contribute to those variations at EDML. (C) 2009 Elsevier Ltd. All rights reserved.
Item Type: | Publication - Article |
---|---|
Digital Object Identifier (DOI): | 10.1016/j.quascirev.2009.11.009 |
Programmes: | BAS Programmes > Polar Science for Planet Earth (2009 - ) > Chemistry and Past Climate |
ISSN: | 0277-3791 |
NORA Subject Terms: | Glaciology Chemistry |
Date made live: | 19 Aug 2010 08:33 +0 (UTC) |
URI: | https://nora.nerc.ac.uk/id/eprint/10542 |
Actions (login required)
View Item |
Document Downloads
Downloads for past 30 days
Downloads per month over past year