- 1 Middle Pleistocene climate and hydrological environment at the Boxgrove
- 2 hominin site (West Sussex, UK) from ostracod records

3

- 4 Jonathan A. Holmes¹, Environmental Change Research Centre, Department of
- 5 Geography, University College London, London, WC1E 6BT, UK

6

- 7 Tim Atkinson, Bloomsbury Environmental Isotope Facility, Department of Chemistry,
- 8 University College London, London, WC1H 0AJ, UK

9

- 10 D. P. Fiona Darbyshire, NERC Isotope Geosciences Laboratory, Kingsley Dunham
- 11 Centre, Keyworth, Nottingham, NG12 5GG, UK

12

- 13 David J. Horne, Department of Geography, Queen Mary University of London,
- London E1 4NS, UK, and Department of Zoology, The Natural History Museum,
- 15 Cromwell Road, London, SW7 5BD, UK

16

- José Joordens, Department of Sedimentology and Marine Geology, Vrije Universiteit
- Amsterdam, De Boelelaan 1085,1081 HV Amsterdam, the Netherlands

19

- 20 Mark B. Roberts, Institute of Archaeology, University College London, London,
- 21 WC1H 0PY, UK

22

- 23 Katharine J. Sinka, School of Environmental Sciences, University of East
- 24 Anglia, Norwich NR4 7TJ, UK

25

- John E. Whittaker, Department of Palaeontology, The Natural History Museum,
- 27 Cromwell Road, London, SW7 5BD, UK

28

26

1. Corresponding author; telephone +44 207 679 0559 email j.holmes@ucl.ac.uk

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

29

Abstract

The sediments of the Slindon Formation at the junction of the Chalk South Downs and the West Sussex Coastal Plain, as revealed and studied at Boxgrove, contain evidence for early Middle Pleistocene environments in southern England around half a million years ago. The archaeological importance of the deposits is attested to by the recovery of stone and organic tools, butchered fauna and fossil hominin remains. We combine palaeoecological and geochemical analyses of ostracods from the coastal plain deposits to reconstruct the climate and environment at one period of the hominin occupation. The stratigraphy of our study area is indicative of a terrestrial environment surrounding a small lake or pond. Ostracod assemblages from the pond sediments indicate that they were shallow but permanent, and fed by groundwater and springwater. However, the species alone cannot confirm that these ponds were completely fresh. Application of Mutual Climatic Range (MCR) techniques shows that summer temperatures were similar to present-day values and winter temperatures were probably colder, whereas mean annual air temperature was similar to present or perhaps slightly cooler. Trace-element and strontium-isotope analyses of ostracods from the pond sediments support the conclusion that they were fed largely by fresh groundwater derived from the chalk, although there may have been a minor seawater input. The carbon isotope ratios of the ostracod shells are also consistent with a groundwater source, although they also indicate that the dissolved inorganic carbon most likely did not reach equilibrium with atmospheric carbon dioxide,

indicating that the ponds had short residence time. The combination of palaeotemperature estimates with oxygen-isotope values from ostracod shells allowed us to reconstruct the oxygen-isotope ratio of the pondwater, which was close to the value of early Middle Pleistocene precipitation at this site. Values were similar to present day, suggesting that there may have been a change in seasonality or precipitation source, since the mean air temperatures might have been lower.

1. Introduction

An understanding of hominin evolution and distribution requires knowledge of the physical and biotic environment in which each species lived. Although large-scale reconstructions using, for example, marine sediments provide a valuable environmental context for hominin evolution, they must be complemented by smaller-scale, site-specific environmental investigations from localities close to where the hominin remains have been found. Here, we use a novel combination of ostracod-based palaeoecological and geochemical data to reconstruct environmental conditions at Boxgrove, an important early Palaeolithic site in southern England.

Ostracods are microscopic aquatic crustaceans. The occurrence of different ostracod species is determined by habitat type and by ecological factors such as water temperature and composition (Smith and Horne, 2002). They secrete shells of low-Mg calcite that are often well preserved in Quaternary sediments. Ostracod faunal assemblages have been used for palaeoecological reconstructions of past environment. Moreover their shells have been used in numerous geochemical and isotopic studies (Holmes and Chivas, 2002). However, quantitative palaeoecological reconstructions have not hitherto been combined with geochemical analyses of material from the same site in the approach that we adopt here.

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

Eartham Quarry (50°51'52"N, 0°39;06"W), in the Parish of Boxgrove, is located on the northern edge of the West Sussex Coastal Plain in southern England (Fig. 1) (Roberts et al., 1994). An interglacial sea-level event towards the end of the early Middle Pleistocene 'Cromerian Complex' (likely Marine Isotope Stage 13) cut a cliff into the Cretaceous Upper Chalk and Palaeogene Reading Beds and London Clay, and led to the formation of the Westbourne – Arundel 40 metre raised beach. During the early Middle Pleistocene, the southerly extension of the Weald – Artois Anticlinorum provided a substantial connection with the European mainland, to the east and west of the present Strait of Dover. The early Middle Pleistocene topography on the West Sussex Coastal Plain was also substantially different to that of the present day. A further range of chalk downland was present to the south, comprising the hills of the Portsdown and Littlehampton Anticlines (Fig. 1). The MIS 13 marine transgression entered through the gap between the distal ends of the anticlinal limbs and led to the formation of a semi-enclosed marine bay (Barnes 1980), backed at the northern edge by the 40 metre OD Westbourne to Arundel Raised Beach (Fig. 1). A massive tibia and two incisors assigned to *Homo* cf. heidelbergensis have been found in association with Lower Palaeolithic stone tools at Eartham Quarry (Roberts et al., 1994; Pitts and Roberts, 1996). The remains were found in Units 4u (incisors) and 5ac (tibia) of the marine/freshwater/terrestrial sequence found at area Q1/B (Table 1). Apart from the hominin remains, human presence at the site, indicated by stone tools and butchered bones, is found within all the sedimentary units from which the ostracod samples were taken. On the basis of foraminiferal and ostracod assemblages, these sediments are shown to have been deposited in a regressive sea followed by a fully nonmarine setting (Whittaker, 1999). The nonmarine sediments represent a localised landscape of ponds and slow-flowing

streams that existed at this part of the abandoned coastal plain, the so-called 'pond facies' in which the hominin remains were found. These freshwater sediments were surrounded by an extensive, coeval, terrestrial landscape, the deposits of which are rich in stone tools and other palaeoenvironmental remains. The 'pond facies' contain abundant ostracods, *Chara* oospores, fish remains, slug plates, mammals, birds, herpetofauna, and earthworm granules and eggs. We used the rich, well-preserved ostracod faunas from the pond facies to reconstruct the climatic and hydrological environment of the coastal plain at the time of hominin occupation. We combined ostracod faunal assemblage analyses with estimates of air temperature using a mutual ostracod temperature range (MOTR) method (Horne, 2007), supported by previous mutual climate range (MCR) reconstructions from herpetofaunas (Sinka, 1993), with trace-element (Sr/Ca and Mg/Ca) and isotope (¹⁸O/¹⁶O, ¹³C/¹²C, ⁸⁷Sr/⁸⁶Sr) analyses to address the following questions. (1) What was the source of water feeding the coastal plain ponds? (2) Was the water purely fresh or saline? (3) What was the mean annual and seasonal temperature regime of the coastal plain? Because there is no longer an extant waterbody present at or near the coastal plain, we analysed water chemistry and ostracods from small, groundwater-fed ponds at Greywell (Hampshire, UK; Fig.1), which lies ~50 km NNW of Boxgrove, for which we have detailed monthly records of ostracod assemblages and water composition over

an annual cycle (Keatings, 1999; Keatings et al., 2002). The ponds at Greywell lie in

a similar setting to the coastal plain ponds, albeit without any possibility of marine

127

128

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

2. Stratigraphy and palaeoenvironment

influence, and thus provide a useful modern analogue.

The standard conformable stratigraphical sequence at Boxgrove consists of the nearshore marine sands of the Slindon Sand Member (Unit 3 of the standard sequence) overlain by intertidal laminated muds of the Slindon Silt Member, which were laid down in a semi-enclosed marine bay, and finally by terrestrial deposits (Table 1).

At Quarry 1/B, however, this stratigraphical sequence is significantly altered. Here, Unit 3 has been truncated and subjected to pedogenesis and ripening. Locally, a large, northwest-to-southeast-trending channel and several smaller channels were cut into its surface. The main channel, which has a maximum depth of 0.8 m, is infilled with a coarse gravel deposit at the base, containing flint beach pebbles, worked flint and bone fragments and an arenaceous, fine component with some chalky clay deposition with fine to massive bedding (Figs. 2 and 3, Table 1).

The channel deposits are completely overlain by Unit 4u, the basal unit of the pond sequence, and its associated minor sub-unit 4.4u(s). Elsewhere, Unit 4u only partially covers the Unit 3 surface, although whether this distribution mirrors its original deposition or is the result of subsequent erosion is unclear. This unit is a massive silt with rare traces of bedding, although in places a sandier facies Unit 4u(s), indicating higher energy deposition, has been noted. Unit 4u is overlain by Unit 4, the thickest and most extensive of the pond deposits, which consists of a relatively homogenous, dense, massive silt. This unit has been heavily disturbed by pore water release deformation structures from dewatering, most especially towards its surface. The upper pond deposits consist of Unit 4d1, a highly calcareous white silt of variable thickness that contains intraformational calcrete nodules. Unit 4d1 is overlain by the highly mixed sediments of Unit 5ac, a poorly sorted coarse silt, with

subrounded chalk clasts and sand-size quartz grains. Bedding is occasionally present along with organic laminae similar to, but thinner than, Unit 5a. The sediments of Unit 5ac are a mix of redeposited pond sediments combined with upslope colluvial deposits. Unit 5ac is succeeded by a return to highly calcareous spring deposition of Units 4d2 and 4d3, which are in turn overlain by the marker horizon and upper bed of the Slindon Silt Member, Unit 5a. This bed, between 10 and 15mm thick has recently been mapped over a distance of 15km, between Adsdean and Slindon, by Roberts and Pope (in press). Unit 5a comprises many microlaminations of detrital organic material and was deposited in an alder/fen carr environment that developed on top of the Slindon Silts. The colluvial sedimentation that overlies Unit 5a sees a reversion to the standard stratigraphic sequence seen elsewhere at Boxgrove.

The pond sediments described here were deposited under fully interglacial conditions, as demonstrated by the taxonomic composition of the mammalian and herpetofaunas (Roberts and Parfitt, 1999). The excavated freshwater sediments lie some 50 to 80 metres south of the relict cliff line, with an east – west dimension of about 100 metres and a south – north distribution that has been proven, on the basis of facies distribution, to be at least 40 metres, but which probably extended to the cliff line itself. The locale, which would have been rich in terrestrial and aquatic vegetation, was utilised by many elements of the Boxgrove fauna, including hominins. The remains of butchered rhinoceroses, deer and other animals point to it being a place of food procurement and processing as well as a water source. The whole of the depositional sequence at Q1/B from the basal channel deposits up to the surface of Unit 4d3 was time equivalent and thus a chronostratigraphic correlative

of Unit 4c, the soil bed that developed on the surface of the Slindon Silts after marine regression (Table 1) (Roberts and Parfitt 1999).

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

180

181

Evidence of hominin presence at Boxgrove is found within all the major sedimentary units; from the body of the marine Slindon Sand (Unit 3) and the littoral deposits of the raised beach; up through the regressional marine sands silts; the freshwater deposits at Q1/B; and into the overlying terrestrial sediments. The archaeological signatures of these hominins are best preserved in the marine Slindon Silts of Unit 4b; the terrestrial soil horizon of Unit 4c; and at Q1/B, in the temporal correlatives of the soil horizon – the freshwater pond facies Units 3c, 3/4, 4u, 4, 4d1, 5ac, 4d2 and 4d3 (Table 1). Hominins were therefore operating at the site under widely differing climatic and environmental regimes, ranging from fully temperate littoral through to periglacial tundra. Throughout the time of occupation and exploitation the archaeological record is dominated by evidence for the collection of flint from the actively eroding chalk cliff and the butchery of predominantly large mammals across the temporally changing landscapes in front of the cliff. The site at Q1/B differs from the rest of the excavated locales at Boxgrove in that an extended vertical sediment stack is present, due to the formation of a large spring-fed freshwater pond or waterhole that was cut into the intertidal muds of the Slindon Silt Member. Archaeological remains in the form of lithic and organic artefacts and butchered faunal remains have been recovered from all the freshwater units and suggest that this area was actively used by hominins as both a semi permanent freshwater source and fixed hunting locale in the landscape. The presence of game at the waterhole is attested to by the high level of dung derived mineralised organic material at the base of the waterhole, and the skeletal remains of both butchered and natural death assemblage individuals. The most comprehensive evidence of butchery is found on

the remains of at least five rhinoceroses excavated from the freshwater sediments.

The bones of these animals point to accumulation as the result of hunting, as butchery marks indicate first access to the carcasses by hominins and no pathological evidence for natural death in these prime of life adults and juveniles.

Other species butchered in the vicinity of the waterhole include giant deer, red deer, horse and bison.

The environment at the waterhole would have changed through time, becoming progressively more heavily vegetated after marine regression. The impact of the freshwater seepage would have become immediately apparent after the sea level fell away and is shown in the sedimentary record by the main and subsidiary channels cut through the Slindon Silt and Sand. The freshwater body then gradually expanded probably by a combination of channel convergence and increased spring flow, to produce the current mapped disposition of the waterhole/pond. The water body then proceed to fill up with reworked marine sediments from the upper part of the sands and to a greater extent the silts, at the surface of the pond increasing amounts calcareous sedimentation are found in Units 4d1, 4d2 and 4d3. Early evidence for the influx of slope material into the water body is found in Unit 5ac, although this input is believed to have occurred under very wet rather than cold conditions. The emplacement of cold stage geliflucted and soliflucted sediments began with Unit 6b and culminated in the burial of the site by mass movement deposits derived from cliff collapse material and the Downland regolith.

3. Materials and analytical methods

We analyzed ostracods from Units 3c, 4u and 4u(s) exposed in Quarry 1/B (Fig. 3).

Ostracod assemblage analysis, based on presence and absence of species, was

used to assess the hydrological environment of the coastal plain and the salinity of the ponds. Ostracod identifications were confirmed using descriptions in Meisch (2000) and ecological affinities of individual species were obtained from Robinson (1998), Griffiths and Holmes (2000) and Meisch (2000). Foraminifera tests found in many of the samples were identified using descriptions in Murray (1979). Wellpreserved adult or A-1 specimens of three ostracod taxa, namely *Prionocypris* zenkeri, Candona neglecta and Ilyocypris gibba/bradyi were selected for individual geochemical analysis. These species were chosen because they are relatively abundant in the Slindon Silts freshwater sediments and two of the genera have been the subject of previous geochemical studies (*llyocypris*: Holmes et al., 1992; Candona: von Grafenstein et al., 1999). Any differences in geochemical vital effects generally occur at the genus level, so our inability to distinguish confidently between the two species of *llyocypris* is unlikely to have had any influence on any of the geochemical values. Specimens lacking signs of dissolution or diagenetic alteration were picked from the dried, coarse (>250 µm) sediment fraction and cleaned using a '0000' paintbrush and high-purity deionised water.

Clean ostracod valve material was placed into acid-washed 5ml polypropylene tubes and dissolved in 1 ml 0.6M Merck Aristar® HCl for trace-element analyses. The Ca, Mg, and Sr contents of the ostracod valves were determined using a JY-70 Plus® inductively coupled plasma-atomic emission spectrometer (ICP-AES) calibrated using multi-element standards prepared with Spectrosol® standard solutions for ICP. The results were corrected for blank contamination in the solvent acid and for instrumental drift using an external drift monitor. Multiple analyses of an 'in-house' calcite were undertaken to enable comparisons to be made between analyses performed on different occasions and to assess analytical precision. Based on

multiple analyses of this standard, precision was $\pm 0.6\%$ RSD (relative standard deviation) for Ca, $\pm 0.2\%$ RSD for Mg and $\pm 0.4\%$ RSD for Sr.

Samples of between 5 and 7 ostracod shells weighing in total between ~70 and 100 μ g destined for stable isotope analysis were brush-cleaned and air dried before loading into Labco glass Exetainer[®] tubes. Oxygen and carbon isotope analyses were made on CO₂ produced by reaction with phosphoric acid at 45°C in a ThermoFisher Gasbench II connected to a Delta V mass spectrometer. Results were expressed in standard δ units on the VPDB scale with a mean standard deviation of measurements of 0.12 ‰ and 0.16 ‰ for δ^{18} O and δ^{13} C, respectively.

Samples composed of between 3 and 5 ostracod or foraminiferal specimens for Srisotope analysis were dissolved in dilute (3%) acetic acid. After centrifuging, the solution was evaporated and the residue converted to chloride with 6M HCl. Strontium was separated by standard ion exchange techniques using BioRad® AG-50W resin and loaded on rhenium filaments with a TaF activator following the method of Birck (1986). Water samples from our modern analogue site at Greywell were filtered in the laboratory through Nalgene® filtration units fitted with 0.45 μ m nylon membranes. 5 ml aliquots were evaporated and the residue treated with 6M HCl. After chemical separation involving ion exchange procedures strontium was loaded on tantalum filaments prepared with phosphoric acid. Isotope ratio measurements were made on a Finnegan MAT 262® mass spectrometer run in multidynamic mode. The measured ratios were normalised to a value of 0.710248 for the NBS 987 Sr isotope standard. Replicate determinations (n=66) of North Atlantic seawater standard yielded a 87 Sr/ 86 Sr ratio of 0.709174 \pm 0.000023 (2 σ).

4. Results and discussion

4.1. Hydrological environment

The samples from the pond facies of Quarry 1/B contain a low diversity assemblage. Species present, in order of decreasing abundance, are *Candona neglecta, Ilyocypris* cf. *bradyi, Herpetocypris reptans, Prionocypris zenkeri, I. quinculminata,* and *Potamocypris zschokkei.* The assemblages show minimal systematic stratigraphical or spatial variations within Quarry 1/B, except locally where they additionally include *Cavernocypris subterraneana.* The presence of adults and a range of juvenile moults from all of the units indicates that the ostracod assemblages are *in situ* and have not been subjected to significant post mortem transport (Whatley, 1988). Foraminiferal tests were also found in most samples derived from the parent units 4a and 4b, the marine Slindon Silt, suggesting that they were reworked from the marine sediments. The species present, in order of decreasing abundance, are *Elphidium williamsoni*, *Haynesina germanica*, *Ammonia falsobeccarii* and *Cibicides lobatulus*.

The habitat preferences of the ostracod species (Table 2) indicate that the pond facies overlying the channels were laid down in small, permanent but shallow, ponds cut into and redepositing the marine deposits of the coastal plain, probably fed by springs or groundwater seepage and supporting rich aquatic vegetation. The presence of aquatic vegetation is confirmed by the abundance of charophyte oogonia within the sediments. Although all of the ostracod taxa are essentially freshwater species, those for which information is available can tolerate elevated salinity, up to about 16 % (Table 2), so the possibility that the coastal plain ponds were slightly saline cannot be ruled out on the basis of the ostracod assemblages alone. The foraminfera species found within the pond facies are also highly euryhaline (Murray, 1979). However, although the ostracods are unlikely to have been transported, as

discussed above, the foraminifera may have been reworked from the regressive shallow-marine deposits, from which ostracods are absent. Moreover, unequivocal ostracod indicators of elevated salinity, such as *Cyprideis torosa, Heterocypris salina* and *Candona angulata* (e.g. Meisch, 2000), are absent from the ostracod assemblages. On balance therefore, the faunal evidence does not suggest that the salinity of the ponds was markedly elevated.

4.2. Air-temperature reconstruction

Air temperature reconstructions were made using two similar but distinct mutual range methods that have been developed independently for ostracods (Horne, 2007) and herptiles (Sinka, 1993). Both methods are similar in principle to the MCR technique described for Coleoptera by Atkinson et al. (1986, 1987). They rely on first calibrating the climatic tolerance ranges of individual species within a two-dimensional space defined by climate variables, then establishing the degree of mutual overlap between all species present in a fossil assemblage (Sinka and Atkinson 1999; Horne and Mezquita 2008)

For ostracods, we estimated past mean annual air temperature (MAAT) as well as July and January by applying the Mutual Ostracod Temperature Range (MOTR) method described by Horne (2007). The MAAT ranges of the ostracod species were calculated specifically for this study, using the same GIS and database as Horne & Mezquita (2008). The MOTR method calibrates each species' tolerance range for mean July temperature and mean January temperature. These two variables are treated separately, leading to a box-shaped area being identified as the mutual range on a plot of one against the other (Fig. 4A). Five extant species that could be identified with certainty were utilised in the MOTR air-temperature reconstructions for

Boxgrove, namely *Candona neglecta*, *Cavernocypris subterraneana*, *Herpetocypris reptans*, *Potamocypris zschokkei* and *Prionocypris zenkeri*. Two taxa found in the deposits, *Ilyocypris quinculminata* and *Ilyocypris* cf. *bradyi*, were excluded because of extinction and taxonomic uncertainty, respectively. The MOTR yielded palaeo air temperature ranges of +14 to + 20 °C (July) and -4 to +4 °C (January) with a mean annual temperature of +5 to 11 °C (Fig. 4B). Present-day (1959-2006 means) instrumental values for nearby Eastbourne are +17 °C (July), +6 °C (January) and +11 °C (mean annual temperature). This indicates MIS-13 summer temperatures for Boxgrove similar to present day, while winter and mean annual temperatures may have been similar but could have been significantly colder.

Sinka (1993) applied the Mutual Climatic Range (MCR) method of Atkinson et al. (1986, 1987) to the Pleistocene herpetofaunas reported for British interglacial deposits, including Boxgrove. The MCR method differs from the MOTR in that it used a different climate data base, and also in that species' ranges are determined within a space defined by T_{MAX} , the mean temperature of the warmest calendar month, and T_{RANGE} , the difference between warmest and coldest months. Because T_{MAX} is close to July mean temperature, and $T_{MAX} - T_{RANGE} = T_{MIN}$ is close to January mean temperature, the results from the two methods should be comparable with one another. An important difference, however, is that whereas the MOTR method calibrates species with respect to one variable at a time, the herptile MCR approach considers both climate variables simultaneously. Consequently the mutual climatic range (MCR) area for Boxgrove herptiles is irregular in shape, in contrast to the rectangular area for the ostracod MOTR (Fig.4C).

The Boxgrove herpetofauna includes the following six species that were used in the MCR: Anguis fragilis (Slow worm), Rana temporaria (Common frog), Rana arvalis (Moor frog), Bufo bufo (Common toad), Pelobates fuscus (Common spadefoot toad) and Triturus vulgaris (Smooth newt) (Holman, 1999). Since the original herpetofaunal MCR was constructed, additional species have been identified from the freshwater sediments at Boxgrove Q1/B by the late J.A. Holman: these are Triturus cristatus (Crested Newt), Triturus helveticus (Palmate Newt), Rana (ridibunda) sp. (Indeterminate European Water Frogs), Pelodytes punctatus (Common Parsley Frog), Bufo calamita (Natterjack Toad), Lacerta vivipara (Viviparous Lizard), Natrix natrix (Grass Snake) and Coronella austriaca (Smooth Snake). Although these additional species have not been included in the existing herpetofauna MCR, they would be unlikely to alter the reconstructed temperatures significantly.

The herptile remains from Boxgrove were recovered mainly from Unit 4C (Holman, 1999), and therefore lie stratigraphically close to the units from which the ostracods were found. The MCR encompasses a range from 15 to 24 $^{\circ}$ C for T_{MAX} , -12 to +4 $^{\circ}$ C for T_{MIN} , and 2 to 13 $^{\circ}$ C for MAAT. The present climate for Eastbourne lies outside the MCR (Fig. 4), confirming the result from the MOTR method that the Boxgrove climate during MIS-13 may have had similar summer temperatures to present day, but that the seasonal range was greater and winter temperatures could have been significantly colder.

A further refinement is to combine the MOTR and MCR ranges to produce estimated ranges for summer, winter and mean annual air temperatures that are compatible for both groups of organisms. In Fig. 4C, the ostracod MOTR is superimposed on the

herptile MCR, using the assumed relationships, July mean temperature $\approx T_{MAX}$, January mean temperature $\approx T_{MIN}$ and the exact equation, $T_{RANGE} = T_{MAX} - T_{MIN}$. The combined range for T_{MAX} is 15 to 20 °C, for T_{MIN} –4 to +4 °C and for MAAT 5 to 12 °C. The effect of combining the two groups is to restrict the distributions of MAAT values obtained from each individually, markedly compared with the herptile MCR but only slightly compared with the ostracod MOTR.

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

391

386

387

388

389

390

4.3. Palaeosalinity

Sr/Ca ratios of un-evaporated waters, such as those of the coastal plain ponds investigated here, reflect water source. The Sr/Ca ratio of ostracod shells provides a proxy for the Sr/Ca of the host water, assuming the species-specific partitioning effects are known. When sea-water is added to freshwater from a single source, the Sr/Ca ratio of the resulting mixture can be described using a simple two-component mixing model. It is possible that the Boxgrove Pond waters were just such twocomponent mixtures i.e. of chalk-derived shallow groundwater with a small admixture of seawater. Because the Sr content of seawater is much greater than that of many meteoric waters, including very-shallow groundwater derived from chalk, the mixing line is highly non linear with only a small input of seawater (a few percent) required to generate a mixture with a 'marine' Sr/Ca ratio. We have no modern measurements of the Sr/Ca ratio of shallow groundwater from the Boxgrove area. However, the site from Greywell provides a useful modern analogue for the meteoric end member of the Boxgrove Pond waters (Keatings, 1999). Here, a series of shallow ponds is fed by shallow groundwater passing through Upper Chalk of similar age (Campanian to Turonian) and facies to Boxgrove, and these have a Sr/Ca_{water} ratio of 0.0012 ± 0.0001. Partitioning of trace elements into ostracod calcite is described by partition or distribution coefficients (K_D values), where $K_D[M] = (M/Ca_{shell})/M/Ca_{water}$), where M =

trace metal and M/Ca are atomic ratios. $K_D[M]$ values, with certain caveats discussed below, tend to be constant for ostracod species or even genera. We used $K_D[Sr]$ values of 0.22 for *Candona* (Keatings, 1999), 0.19 for *Prionocypris* (Holmes, unpublished data) and 0.17 for *Ilyocypris* (De Deckker, unpublished, in Holmes *et al.*, 1992) to calculate Sr/Ca values for the Boxgrove Pond waters of 0.00174 \pm 0.00043 (1s, n = 16). The inferred Sr/Ca_{water} values are slightly higher and more variable than those from Greywell, perhaps implying minor intermittent input of marine water to the ponds, although apart from this, the inferred Sr/Ca values from the Boxgrove Ponds are consistent with a chalk groundwater source. Using a simple two-component mixing model for seawater (Sr/Ca = 0.0088, Sr = 7.7 mg Γ^1) and meteoric water (Sr/Ca = 0.0012, Sr = 0.3 mg Γ^1) suggests a seawater percentage in the Boxgrove Pond of about 0.4 %.

The Sr-isotope values provide an additional tracer for water source, with the added advantage that Sr-isotopes are not fractionated between water and ostracod calcite (Reinhardt et al., 1999): the ⁸⁷Sr/⁸⁶Sr ratio of ostracod shell is thus the same as the ratio of the water in which it was formed. The ⁸⁷Sr/⁸⁶Sr ratio of ostracod shells from the Boxgrove Pond sediments is 0.70792 ± 0.00015 (1s) (Table 3), slightly higher than the value for Greywell water (0.70776 ± 0.00001, n = 4). The Sr-isotope values of the Boxgrove Ponds can be described using a similar two-component mixing model as for Sr/Ca ratios and the ⁸⁷Sr/⁸⁶Sr values also imply a small marine influence. Uncertainties in the ⁸⁷Sr/⁸⁶Sr ratios in both end members, however, lead to corresponding uncertainties in the mixing model (Fig. 5). The ⁸⁷Sr/⁸⁶Sr ratio of seawater may have been slightly lower during MIS13 (e.g. Farrell et al., 1995) compared with present. Moreover, the presence of a marine embayment close to Boxgrove may have altered the salinity and Sr isotope composition of seawater in

this area at that time, although 87 Sr/ 86 Sr ratios of marine ostracods from the Slindon Sands (0.70914 ± 0.00003, n = 8: Darbyshire and Holmes in Roberts and Pope, in press) are close to modern seawater values, suggesting that this was not the case. Moreover, small variations in the composition of seawater end member have negligible influence on the percentage of seawater in the Boxgrove Ponds inferred from the Sr-isotope mixing model (Fig. 5). Potentially much larger variations in the Sr-isotope ratio of the groundwater end member arise because the 87 Sr/ 86 Sr ratio of the Campanian to Santonian age chalk in the area from which the groundwater would have derived Sr varies from about 0.70744 to 0.70774 (McArthur et al., 2001). As shown in Fig. 5, taking a best estimate of the Sr-isotope ratio of seawater of 0.70918 and allowing the composition of meteoric water to vary between the values quoted above generates estimated seawater percentages in the Boxgrove Ponds of 0.7 and 1.8 %, slightly higher than the percentage calculated from Sr/Ca ratios.

Interestingly, both the Sr/Ca and 87 Sr/ 86 Sr ratios of individual ostracod samples from the freshwater sediments show greater variability as well as slightly higher values than those from the site at Greywell, which is unaffected by seawater. This variability is further consistent with periodic inputs of seawater, perhaps through very minor surface intrusion or sea spray, or of dried sea-salt aerosols. Despite uncertainties in the figures however, it is clear that the marine influence on salinity was minor. The Sr-isotope ratios in the foraminfera (0.70909 \pm 0.00002, n = 5) (Table 3) are much higher than those in the pond facies ostracods, yet similar to the marine ostracods from the underlying Slindon sands, suggesting that they calcified in seawater before being reworked from the underlying regressive shallow-marine facies that predate the pond facies.

4.4. Carbon isotopes

The carbon isotope ratios of ostracods from the freshwater sediments reflect carbon cycling within the waterbodies and their catchments. Fractionation of carbon from dissolved inorganic carbon (DIC) into ostracod calcite has negligible temperature control and appears to be an equilibrium process (Keatings et al, 2002). Assuming the Boxgrove Ponds were largely groundwater fed, the carbon-isotope composition of the DIC would have reflected that of groundwater. Carbon within the groundwater would have been derived from two main sources, namely the Upper Chalk bedrock and soil CO₂. The Upper Chalk has variable carbon isotope ratios, but values typically lie between about +2 to +3 % VPDB (Jarvis et al., 2006). The δ^{13} C value of soil CO₂ lies between -34 and -24 % in areas of C3 vegetation (Smith and Epstein, 1971; Deines, 1980). Assuming half of the DIC is derived from each of these two sources, the groundwater δ^{13} C value would lie somewhere between about -16 and -10.5 %, and calcite in equilibrium with that DIC would fall between about -15 and -9.5 %.

Two additional processes may modify the carbon isotope composition of the DIC. First, exchange with atmospheric CO₂. This is a relatively slow process and complete isotopic equilibrium is typically achieved only in water bodies with long residence time. At complete isotopic equilibrium and a water temperature of 8 °C (the estimated mean annual temperature at Boxgrove at this time), HCO_3^- is enriched in ¹³C by 9.5 % compared to CO_2 gas (Mook, 1986). Although we do not have measurements of δ^{13} C values for MIS-13 CO_2 , a pre-Holocene value of -6.5 % (Leuenberger et al., 1992) is probably a reasonable approximation. This would yield a δ^{13} C value in DIC of +3% and in carbonate of +4 %. The ostracod values from the Boxgrove Ponds (average ~-7.8 %) are much lower than this, suggesting that complete isotopic

equilibrium with the atmosphere was not achieved, implying that the residence time of the ponds was short. Second, addition of 13 C-depleted carbon from respiration or decay of aquatic plants will further reduce the δ^{13} C of the DIC (Deines, 1980). Although the presence of *Chara* remains within the sediments and the ostracod faunal assemblages themselves both testify to the existence of macrophytes within the ponds, the observed δ^{13} C values within the ostracod shells can be explained almost entirely by a groundwater source.

4.5. Water isotopes

The oxygen-isotope ratios of ostracod shells are controlled by the oxygen-isotope ratio of the host water, calcification temperature and offsets from oxygen-isotope equilibrium (vital offsets), which seem to be constant for individual genera or even families. For candonids, the offset is well characterised as $+2.2 \pm 0.15$ % (von Grafenstein et al., 1999). For *Prionocypris*, the other genus analysed here, there is no published offset. However, values for paired analyses in the freshwater sediments show no significant difference compared with *Candona* (mean difference = -0.05 ± 0.25 , n = 7; Table 3). We therefore conclude that the vital offsets of both species are about +2.2 %. We have used a bootstrap technique (Efron and Tibsharini, 1993) to estimate the mean of the vital effect for *Prionocypris* as +2.15 with standard error ± 0.17 % (Appendix A). The δ^{18} O values for the ostracods from the Boxgrove Pond sediments fall within a fairly narrow range of -2.7 ± 0.24 for *Candona* and -2.8 ± 0.18 for *Prionocypris*, which equate to -4.9 and -5.2 % for the two species, respectively, at oxygen-isotope equilibrium.

To estimate the range of values that these data would imply for a hypothetical calcite deposited in isotopic equilibrium with the pond waters, we first subtract the vital offset

for each species. We again used a bootstrap method, to generate an empirical distribution for δ^{18} O of equilibrium calcite, with a mean value of -4.93 and standard error of 0.16 % on the PDB scale. We now use the estimated $\delta^{18}O$ values of equilibrium calcite for Boxgrove Ponds to reconstruct the oxygen-isotope ratio of meteoric precipitation at the site during the early Middle Pleistocene. To produce these reconstructions, we assume that the oxygen-isotope ratio of water in the shallow, groundwater-fed ponds with short residence time closely follows the weighted mean annual oxygen-isotope composition of local precipitation (Darling et al., 2003). The reconstruction of the past water-isotope composition of the Boxgrove Ponds from the ostracod values requires an estimate of past water temperature, for which we can use the MOTR- and MCR-derived reconstructions discussed above. Despite large differences between the reconstructed summer and winter air temperatures, ponds fed by shallow groundwater often show a small annual water temperature range that approximates the MAAT. At the Greywell site discussed above, for example, mean annual water temperature varied over a narrow range of less than 1 °C over a year, compared with air temperatures, which showed a ± 5.5 °C standard deviation over the same period. If the similarity between MAAT and water temperature also prevailed for the Boxgrove Ponds, the MOTR/MCR reconstructions of air temperature should provide a guide to likely water temperatures. The isotopic composition of the water itself can then be calculated from the temperature and the δ¹⁸O of equilibrium calcite, using the equation of Kim and O'Neil (1997). For example, if the MAAT and water temperature were 8°C, then the mean value of -4.93 % VPDB for δ^{18} O of calcite at equilibrium would imply a water composition of δ^{18} O = -6.23 VSMOW. We have again employed a bootstrap re-sampling technique to combine the empirical distribution of δ^{18} O in equilibrium calcite with the distribution of values for MAAT implied by the combined ostracod-herptile mutual climatic range

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

(Fig. 4). Fig. 6 illustrates how the distributions of temperature and $\delta^{18}O$ of calcite are combined to produce an empirical distribution for possible values for $\delta^{18}O$ of pond water, representing the full range compatible with all the evidence from ostracod $\delta^{18}O$ measurements and the MOTR-MCR reconstructions.

Variation in the pond water temperature through the year could impart further uncertainty to the reconstructed water isotope values. However, the narrow range of δ^{18} O ostracod values from across several stratigraphic levels in the freshwater facies supports the contention that conditions were stable both seasonally and between years. *Candona neglecta* is a warm-season calcifier and, had water temperatures shown seasonal variation, would have reflected spring – summer temperatures. *Prionocypris zenkeri* in contrast is a year-round calcifier, yet its δ^{18} O values are similar to those for *C. neglecta* and show no greater variability. This suggests that the seasonal temperature range (recorded by *P. zenkeri*) was no greater than the interannual range of spring-summer temperatures (recorded by *C. neglecta*), and that both were small.

A final possible influence on the $\delta^{18}O$ composition of the ponds is marine input, since seawater has a higher $\delta^{18}O$ value than meteoric water. However, a marine contribution of ~2 % to the ponds, the maximum likely content, would only have the effect of raising their $\delta^{18}O$ value by about 0.2 % and is therefore unlikely to have had a major influence in modifying freshwater values of a spring to a different composition in pond water. We have incorporated the range of calculated sea water contributions to the pond water into our bootstrap calculations (Appendix A), to yield the empirical distribution for $\delta^{18}O$ in the fresh water component (Fig. 6). This has mean –6.11 and

standard error ± 0.19 % SMOW and conforms moderately well to a normal distribution ($\chi^2 = 17.14$ with 9 d.f., p=0.046).

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

567

568

As discussed above, it is likely that the Boxgrove Ponds were supplied by groundwater from a spring and/or seepage from the underlying Chalk aguifer. The topography and structure of the Chalk aguifer precludes groundwater at Boxgrove being derived from any source apart from local precipitation falling either very close to the site itself or onto Chalk hills 100-200 m above sea level, within about 8 km north of the site. Thus the fresh water compositions (Fig. 6) reflect palaeogroundwater originally derived from within a restricted area. In modern Europe generally, the δ^{18} O value of locally derived groundwaters is close to that of average or bulk composition of local meteoric precipitation, with only minor offsets between them (Darling, 2004). The possible Middle Pleistocene thermal climates derived from MOTR and MCR in the present study can all be found across western and central Europe today, and in this region the differences between groundwaters and averaged local precipitation are less than 0.5 % δ^{18} O (Rozanski 1985; Darling et al. 2003; Darling 2004). Thus, to a first approximation we may take our reconstructed δ^{18} O values for groundwaters feeding the Boxgrove Ponds to be equivalent to the average δ^{18} O of local precipitation. Fig. 6 shows the modern values of δ^{18} O in local Chalk groundwater (-6.5 %, based on a contour map in Darling et al., 2003) and in Chalk groundwater and modern precipitation at Wallingford, 85 km north-northwest of Boxgrove (-7.20, -7.28 % respectively; Darling, 2004). The δ^{18} O of palaeo-water in the Boxgrove Ponds was clearly ~1 % heavier than modern precipitation at Wallingford, but part of this difference may be due to a modern gradient in δ^{18} O between Wallingford and the south coast of England. There are no δ^{18} O data available for precipitation at any site closer to Boxgrove (Darling and Talbot, 2003)

but the contoured difference in modern groundwater values is 0.7 ‰ heavier at Boxgrove than Wallingford. In terms of the uncertainty of ± 0.19 ‰ in the $\delta^{18}O$ of the Boxgrove Pond water, a modern groundwater value of -6.5 ‰ lies two standard errors from the best estimate of -6.11 ‰ , but this comparison takes no account of uncertainty in the modern value. Overall, we draw the conclusion that the average $\delta^{18}O$ of palaeo-precipitation on the south coast of England at the time the Slindon Silts were deposited may have been up to ~ 0.4 ‰ heavier than modern precipitation, but that this apparent difference is somewhat less than the overall uncertainties involved. A stronger conclusion is that the early Middle Pleistocene precipitation was not ^{18}O -depleted compared with modern precipitation.

4.6. Mg/Ca ratios

Mg partitioning from water into ostracod shells is temperature and species dependent, but the temperature dependence of Mg partitioning into the shells of the ostracod species analysed in this study is not known. However, we can compare the Mg/Ca ratios of *Candona* at Slindon (Mg/Ca = 0.002) with values in the closely-related species *C. candida* from Greywell (Mg/Ca = 0.011, water temperature = 11.8 ± 0.7 °C). Qualitatively, the results suggest lower water temperatures at Slindon compared with Greywell, consistent with the MOTR air temperature reconstructions discussed above. However, Mg/Ca ratios in ostracods are further complicated by highly variable Mg partitioning in water with an Mg/Ca ratio ≤0.5 (Wansard *et al.*, 1998). Greywell waters have Mg/Ca ratio of 0.028 whereas Boxgrove Pond water had unknown Mg/Ca. Although the latter was largely derived from chalk groundwater, as discussed above, the small inputs of marine water may have changed the Mg/Ca ratio sufficiently to have had a significant effect on Mg partitioning. Therefore, although the Mg/Ca ratios of *C. neglecta* might imply that calcification temperature

was less than 12°C, we cannot be certain of the magnitude of difference in the absence of an independent indicator of Mg/Ca_{water}.

5. Palaeoenvironmental implications and Conclusions

Our multiproxy palaeoecological and geochemical data suggest that the landscape at Boxgrove, during the time it was occupied by hominins in the early Middle Pleistocene, supported a small lake or small, shallow, vegetated ponds that were permanent, had short residence time and were fed by shallow chalk groundwater, possibly from springs. Sedimentological evidence from the pond sediments suggests that climatic cooling occurred sometime after the formation of the deposits that we investigated in this study, perhaps associated with the downturn at the start of the Anglian glaciation (MIS-12). This is consistent with our MOTR reconstructions, which suggest colder winter and mean annual temperatures during the formation of the pond sediments, although summer temperatures were similar to present. Mg/Ca ratios in ostracods provide qualitative evidence for lower water temperatures in the Boxgrove Ponds compared with likely modern values, although temperature inferences must be viewed with caution since Mg partitioning would also have been influenced by the water's Mg/Ca ratio.

Similarity between reconstructed oxygen-isotope values for precipitation from the 'pond facies' ostracods and present-day values is inconsistent with reduced air temperatures during the early Middle Pleistocene interval that is the focus of our study. They could be explained by a shift in seasonal precipitation regimes or a change to a vapour source with a contrasting oxygen-isotope ratio compared to present. Ostracod carbon isotope values are consistent with the ponds being mainly groundwater fed and having a short residence time. Sr/Ca and Sr-isotope ratios in

ostracods from the pond facies confirm the ostracod faunal evidence for the ponds being freshwater, although there may have been a slightly marine influence, possibly from windborne sea spray.

The MCR reconstructions used in this paper have confirmed the data derived from other lines of evidence that the freshwater sediments were laid down at the end of a temperate stage. Although the vertebrate faunas are fully temperate, there are indications of increased continentality, as derived from the taxonomic habitat index (Roberts and Parfitt 1999), some cryophilic marine invertebrates (Whittaker 1999) and the presence of exotic rocks in the sediments of the Slindon Formation (Roberts and Pope in press). Additionally, there is little or no evidence for a hiatus, in the form of erosion or weathering profiles at the junction between the temperate and cold sediments, in the Boxgrove sequence thus indicating a relatively seamless and rapid climatic transition.

Our data illustrate the potential of combining ostracod geochemical and palaeoecological data for quantitative palaeoenvironmental reconstructions and provide information about the environment and climate of the Sussex Coastal Plain at a time when it was occupied by *H*. cf. *heidelbergensis*. Ostracod faunal assemblages can be used to inform on hydrological environment and, in favourable circumstances, to make quantitative estimates of past temperature using the MOTR method. Such reconstructions should ideally be verified using independent indicators, as we have done in this study using the herpetofauna. Although the reconstructed temperature ranges are quite large, they can be used to place useful constraints on those geochemical data that require independent estimates of temperature, especially oxygen isotopes. Mg/Ca ratios provide an additional palaeothermometer, although

quantitative reconstructions may be compromised by poor understanding of the thermodependence of Mg uptake for individual species as well as complex effects of water Mg/Ca ratio on Mg partitioning. Sr/Ca and Sr-isotope ratios provide information about salinity in some circumstances: in coastal localities, this may reflect the proportion of marine and meteoric water in a waterbody of mixed source origin.

Acknowledgements

Excavations at Boxgrove were funded by English Heritage. K. J. Sinka's work on herptile MCR and investigations at Greywell by K. W. Keatings were both funded by UK Natural Environment Research Council. We are grateful to R. I. Macphail, J. Crowther, S. A. Parfitt and the late J. A. Holman for the use of unpublished data and we thank C. Arrowsmith, H. Sloane (NIGL, Keyworth) and A. Osborn (UCL) for analytical support, I. Boomer and an anonymous referee for constructive comments, Miles Irving (UCL) for figure drafting and D. McCarroll for editorial support. NIGL Publication number 774.

Appendix A. Use of Bootstrap and Monte Carlo techniques for propagating uncertainties in palaeoenvironmental reconstructions

Palaeoenvironmental studies generate numerical data belonging to all types, from nominal categories through ranked ordinal and interval scales to continuous real numbers. The uncertainties associated with each element of data take equally varied forms. Expressed forms of uncertainties may range from simple alternative possible values or states (e.g. 'forest' or 'grassland'), through probabilities assigned to these, up to full confidence intervals around a value on a ratio scale. Combining such different types of data to form estimated values for new variables, such as

 δ^{18} O_{freshwater} in this paper, requires an adaptable technique for propagating uncertainties. The Bootstrap, in combination with Monte Carlo sampling methods that are closely related to it, provides the adaptability needed and is easy to implement using spreadsheet computer programs. Efron and Tibsharini (1993) and Davison and Hinckley (1997) provide introductions to bootstrap methods and their application.

The basic procedure in the Bootstrap technique is random re-sampling with replacement from a finite data set of *n* measured values, to generate a new set of *n* values known as a *bootstrap sample*. Because the random sampling involves replacement, it is usual for some of the *n* original values to be occur more than once in the bootstrap sample. This process is repeated a large number of times creating *N* bootstrap samples. Each sample is used to calculate a value for some statistic or quantity derived from the original data. A simple example is to find the mean for the *n* values in each bootstrap sample. Each calculated value is termed a *bootstrap* replication of the sample mean. Repetition generates *N* bootstrap replications, which together define an *empirical distribution function* (e.d.f.) of values for the mean. Because the e.d.f. is based on the original data, its average value provides a best-estimate for the mean of the population from which the data itself was a single sample. Furthermore, the standard deviation of the *N* replicates in the e.d.f. is an estimator for the standard error of the population mean.

Our initial application of the Bootstrap to the Slindon Silts provides an example. We measured δ^{18} O in paired specimens of *P.zenkeri* and *C.neglecta*, one pair from each of 7 separate sediment samples. Thus we had seven values for the difference in δ^{18} O between these species when they calcify their shells under what we assume

were identical conditions of temperature and $\delta^{18}O_{water}$. By sampling randomly and with replacement from the seven values, we created 1000 bootstrap samples and calculated the mean of each. Thus we obtained an e.d.f. for the mean difference, which had its own mean -0.045 and standard deviation 0.09 %. These are the best estimates of mean and standard error for the inter-species difference in $\delta^{18}O$.

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

727

723

724

725

726

The vital offset of *C. neglecta* is $+2.2 \pm 0.15$ % (i.e. the fractionation of δ^{18} O between ostracod calcite and inorganically-formed calcite at isotopic equilibrium with the host water) (von Grafenstein et al., 1999). The vital offset for P. zenkeri is not known, but if our assumption is correct that the paired specimens in the Slindon Silts experienced the same temperatures and $\delta^{18}O_{water}$, we can estimate it by adding the inter-species difference to von Grafenstein's value for *C. neglecta*. Using the mean values gives an estimate of +2.16 % for *P. zenkeri*. To estimate the uncertainty we must convolute the e.d.f. for the mean inter-species difference with the uncertainty in C. neglecta's vital offset. We assume that the latter is a normal distribution with standard deviation 0.15 \%. We began by generating 1000 random values from the C.neglecta error distribution. Each of these was paired with a value selected at random from the bootstrapped e.d.f. for inter-species difference. The result of adding together the members of each pair is 1000 estimated values for the vital offset of P.zenkeri, i.e. a new e.d.f. for this vital offset. The mean and standard deviation of this e.d.f. are the best estimate and error for the vital offset of *P. zenkeri*, +2.16 ± 0.18 ‰.

745

746

747

748

While the estimation of uncertainty in the inter-species difference is a simple example of the Bootstrap applied to a single variable, the calculation of *P. zenkeri*'s vital offset adds a Monte Carlo approach. Monte Carlo samples are drawn singly from an e.d.f.

or from an assumed probability density function (p.d.f.). In this case, the pairs of values needed for each replication were drawn respectively from an assumed normal distribution for the *C. neglecta* vital offset, and from a bootstrapped e.d.f. for the inter-species difference.

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

749

750

751

752

We used a further elaboration of Monte Carlo and Bootstrap procedures in estimating the $\delta^{18}O_{equilibrium}$ for calcite formed in isotopic equilibrium with the water that hosted the ostracods. We have 11 measurements of δ^{18} O in *C. neglecta* and 7 in *P. zenkeri*. We first adjusted the *P. zenkeri* values to remove the systematic inter-species difference, then subtracted the vital offset for C. neglecta from the ostracod values of both species. Bootstrap resampling was used to create 1000 bootstrap samples, each of 18 values drawn from the 18 ostracod measurements with replacement. Prior to each resampling, the P. zenkeri values were individually adjusted by adding a value randomly selected from the e.d.f of mean inter-species difference that had been previously generated. By applying this Monte Carlo adjustment before each bootstrap replication the ostracod data are adjusted to a common mean, and at the same time the uncertainty in the average difference between species is propagated. We then subtracted from every element of each bootstrap sample an individual value for the vital effect of C. neglecta, drawn by Monte Carlo sampling from a normal distribution with von Grafenstein's mean of +2.2 ± 0.15 % standard deviation. This step produced a bootstrap sample of 18 values of δ^{18} O_{equilibrium} for a hypothetical calcite formed in isotopic equilibrium with the same water as the ostracods. Calculating the mean of these 18 values, and repeating for all 1000 repetitions, produced an e.d.f. for the average $\delta^{18}O_{equilibrium}$, with mean and standard deviation of -4.93 ±0.16 % PDB.

773

To calculate the $\delta^{18}O$ of pond water we used the equation of Kim and O'Neil (1997) for the equilibrium fractionation of oxygen isotopes between calcite and water as a function of temperature,1000.ln $\alpha_{\text{calcite-H2O}}$ = 18·03.1000/T - 32·42, with T = temperature (K) and $\alpha_{\text{calcite-H2O}}$ = (1000 + $\delta^{18}O_{\text{calcite}}$)/(1000 + $\delta^{18}O_{\text{H2O}}$). If values for T and $\delta^{18}O_{\text{calcite}}$ are assumed, the equation can be solved to give $\delta^{18}O_{\text{H2O}}$. Preliminary conversion of $\delta^{18}O_{\text{calcite}}$ from the PDB to the SMOW scale is required, using $\delta^{18}O_{\text{SMOW}}$ = 1·03086 $\delta^{18}O_{\text{PDB}}$ + 30.86 (Criss, 1999, p.33).

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

781

775

776

777

778

779

780

Our estimates for T come from the combined ostracod-herptile reconstruction of MAAT by the MOTR-MCR method. Figs.4 and 4C of the main paper show that the combined MCR occupies part of a two-dimensional space that is gridded at integer values of the climate variables on both axes. The true climate lies within this range and we assume that every grid intersection has the same probability of representing it, i.e. the attribute 'true climate' has a uniform a priori probability of 1/G at all intersections within and on the boundary of the mutual range, where G is the number of such intersections, and a zero probability outside the mutual range. (This assumption has been questioned and various approaches to identifying a 'most probable' value for the climate have been suggested by Atkinson et al. 1987, Sinka 1993. Dockerty and Lovett 2003. Dockerty et al. 2003. Bray et al. 2006 and Horne and Mezquita 2008. Such modifications rest upon complex and problematic assumptions and will not be discussed here. As far as the Bootstrap-Monte Carlo methodology is concerned, it would be easy to incorporate them.) The combined ostracod-herptile MCR (Fig. 4C) has 48 grid intersections, so G = 48, and each intersection has an estimated MAAT defined by $(T_{MAX} - T_{RANGE}/2)$. The frequency distribution of MAAT among these 48 cases is shown in Fig. 6B. Note that because it is gridded, MAAT is interval data, so does not possess a continuous uncertainty distribution.

To generate an e.d.f. for $\delta^{18}O_{pondwater}$ we adopted a Monte Carlo approach. A value from the list of 48 MAATs was selected at random and combined with a value drawn at random from the e.d.f. of $\delta^{18}O_{equilibrium}$ already generated. The pair of values was then used to generate a value for $\delta^{18}O_{pondwater}$ by inserting MAAT for T and $\delta^{18}O_{equilibrium}$ for $\delta^{18}O_{calcite}$ in the Kim and O'Neil equation above. This was repeated to create 1000 replications. As a further part of each replication, allowance was made for the seawater component of the pond water. Section 4.3 of the main paper derives three estimates for the seawater component in the ponds, namely 0.4, 0.7 and 1.8 %. We assumed these to each have a probability of 1/3 and made a random selection from them for each replication. The chosen value was used to calculate the $\delta^{18}O_{freshwater}$ of the fresh water component, by assuming simple mixing with sea water with $\delta^{18}O_{seawater} = 0$ %SMOW.

These procedures gave rise to an e.d.f. for $\delta^{18}O_{freshwater}$ with mean of -6.11 and standard deviation of 0.19 ‰ SMOW, shown in Fig. 6B of the main paper. A Chi-square test of fit to a normal distribution gave χ^2 =17.14 with 9 degrees of freedom, indicating a probability of 4.6% that the e.d.f. was a sample drawn from a normal distribution with the same mean and standard deviation. Thus, the e.d.f. is not a very close fit to a normal curve, despite the visual resemblance in Fig. 6B.

This detailed example illustrates the adaptability and power of combining Bootstrap and Monte Carlo methods to propagate uncertainties from the mixed data types

commonly encountered in palaeoenvironmental reconstructions. The present example has included interval data (sea water percentage, MAAT), ratio data (δ^{18} O of ostracods) and parametric data (vital offset for *C. neglecta*). A further advantage of using these simple techniques is that implementing them helps the investigator to identify explicitly the assumptions that are being made, and thus to consider their justification.

831

832

833

834

835

847

825

826

827

828

829

830

References

- Atkinson, T.C., Briffa, K.R., Coope, G.R., 1987. Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 315, 587-592.
- Atkinson, T.C., Briffa, K.R., Coope, G.R., Joachim, M.J., Perry, D.W., 1986. Climatic calibration of coleopteran data. Chapter 41 in Berglund, B.E. (ed.) Handbook of Holocene Palaeoecology and Palaeohydrology. Chichester, J.Wiley & Sons, 839 851-858.
- Barnes, R.S.K., 1980. Coastal Lagoons. Cambridge, Cambridge University Press.106pp.
- 842 Birck, J. L., 1986. Precision K-Rb-Sr Isotopic Analysis Application to Rb-Sr 843 Chronology. Chemical Geology 56, 73-83.

Reviews 25, 1865-1876.

Bray, P.J., Blockley, S.P.E., Coope, G.R., Dadswell, L.F., Elias, S.A., Lowe, J.J.,
Pollard, A.M., 2006. Refining mutual climatic range (MCR) quantitative
estimates of palaeotemperature using ubiquity analysis. Quaternary Science

848	Criss, R.E., 1999. Principles of Stable Isotope Distribution. New York & Oxford,
849	Oxford University Press, 254pp.
850	Darling, W.G., 2004. Hydrological factors in the interpretation of stable isotopic proxy
851	data present and past: a European perspective. Quaternary Science Reviews
852	23, 743-770.
853	Darling, W.G., Talbot, J.C., 2003. The O & H stable isotope composition of fresh
854	waters in the British Isles. 1. Rainfall. Hydrology & Earth System Sciences 7,
855	163-181.
856	Darling, W.G., Bath, A.H., Talbot, J.C., 2003. The O & H stable isotopic composition
857	of fresh waters in the British Isles. 2. Surface waters and groundwater.
858	Hydrology and Earth System Sciences 7,183-195.
859	Davison, A.C., Hinckley, D.V., 1997. Bootstrap Methods and their Application.
860	Cambridge, Cambridge University Press, 582pp.
861	De Deckker, P., 1981. Ostracods of athalassic saline lakes - A review. Hydrobiologia
862	81, 131-144.
863	Deines, P. 1980. The isotopic composition of reduced organic carbon. In: Fritz, P.,
864	Fontes, J. C. (Eds.), Handbook of Environmental Isotope Geochemistry,
865	Amsterdam, Elsevier Scientific Publishing Company, pp. 329-406.
866	Dockerty, T., Lovett, A., 2003. A location-centred, GIS-based methodology for
867	estimating the potential impacts of climate change on nature reserves.
868	Transactions in GIS 7, 345-70.

Dockerty, T., Lovett, A., Watkinson, A., 2003. Climate change and nature reserves: 869 870 examining the potential impacts, with examples from Great Britain. Global 871 Environmental Change 13, 125-135. 872 Efron, B., Tibsharini, R. J., 1993. An Introduction to the Bootstrap. London, 873 Chapman & Hall, 436pp. 874 Farrell, J.W., Clemens, S.C., Grommet, L.P., 1995. Improved chronostratigraphic reference curve of late Neogene seawater 87Sr/86Sr. Geology 23, 403-406. 875 Griffiths, H. I., Holmes, J. A., 2000. Non-marine ostracods and Quaternary 876 877 palaeoenvironments. Quaternary Research Association Technical Guide 8, 878 179pp. 879 Holman, J. A. 1999. Herpetofauna. In, Roberts, M.B., Parfitt, S.A. (Eds) Boxgrove. A 880 Middle Pleistocene hominid site at Eartham Quarry, Boxgrove, West Sussex. 881 London: English Heritage Archaeological Report 17, London, English Heritage, 882 pp.181-187. 883 Holmes J. A., Hales P. E., Street-Perrott F. A., 1992. Trace-element chemistry of 884 non-marine ostracods as a means of palaeolimnological reconstruction: an example from the Quaternary of Kashmir, northern India. Chemical Geology 885 886 95, 177-106. 887 Holmes, J. A., Chivas, A. R. 2002. Ostracod shell chemistry - overview. In: Holmes, J. A., Chivas, A. R. (Eds.), The Ostracoda: Applications in Quaternary 888 889 Research, American Geophysical Union Geophysical Monograph. Washington 890 DC, American Geophysical Union, pp. 183-204.

891	Horne, D. J., 2007. A mutual temperature range method for Quaternary
892	palaeoclimatic analysis using European nonmarine Ostracoda. Quaternary
893	Science Reviews 26, 1398-1415.
894	Horne, D. J., Mezquita, F., 2008. Palaeoclimatic applications of large databases:
895	developing and testing methods of palaeotemperature reconstruction using
896	nonmarine otracods. Senckenbergiana Lethaea 88, 93-112.
897	Jarvis, I., Gale, A. S., Jenkyns, H. C., Pearce, M. A., 2006. Secular variation in Late
898	Cretaceous carbon isotopes: a new delta C-13 carbonate reference curve for
899	the Cenomanian-Campanian (99.6-70.6 Ma). Geological Magazine 143, 561
900	608.
901	Keatings, K.W., 1999. The basis for ostracod shell chemistry in palaeoclimate
902	reconstruction. Unpublished PhD thesis, Kingston University.
903	Keatings, K.W., Heaton, T.H.E., Holmes, J.A., 2002. Carbon and oxygen isotope
904	fractionation in non-marine ostracods: Results from a 'natural culture'
905	environment. Geochimica et Cosmochimica Acta 66, 1701-1711.
906	Kim, S. T., and O'Neil, J. R., 1997. Equilibrium and nonequilibrium oxygen isotope
907	effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461
908	3475.
909	Leuenberger, M., Siegenthaler, U., Langway, C.C., 1992. Carbon isotope
910	composition of atmospheric CO ₂ During the last ice-age from an Antarctic Ice
911	core. Nature 357, 488-490.

McArthur, J. M., Howarth, R. J., Bailey, T. R., 2001. Strontium isotope stratigraphy:

912

 accompanying look-up table for deriving numerical 109, 155-170. Meisch, C., 2000. Freshwater Ostracoda of western and considerations. Süßwasserfauna von Mitteleuropa 8/3. Stuttgart, Gonomic Mook, W. G., 1986. Considerations. Mook, W. G., 1986. Considerations. 20, 211-223. Murray, J. W., 1979. British Nearshore Foraminiferids. Syn (New Series), 16. London, Academic Press. Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgroup 356pp. Reinhardt E. G., Blenkinsop J., Patterson R. T., 1999. Assetting the series of the series	entral Europe. ustav Fischer, 522pp.
Meisch, C., 2000. Freshwater Ostracoda of western and of Süßwasserfauna von Mitteleuropa 8/3. Stuttgart, G. Mook, W. G., 1986. ¹³ C In atmospheric CO ₂ . Netherlands 20, 211-223. Murray, J. W., 1979. British Nearshore Foraminiferids. Syn (New Series), 16. London, Academic Press. Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgr. 356pp.	ustav Fischer, 522pp.
Süßwasserfauna von Mitteleuropa 8/3. Stuttgart, G. Mook, W. G., 1986. ¹³ C In atmospheric CO ₂ . Netherlands 20, 211-223. Murray, J. W., 1979. British Nearshore Foraminiferids. Syn (New Series), 16. London, Academic Press. Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgr 356pp.	ustav Fischer, 522pp.
Mook, W. G., 1986. ¹³ C In atmospheric CO ₂ . Netherlands 20, 211-223. Murray, J. W., 1979. British Nearshore Foraminiferids. Syn (New Series), 16. London, Academic Press. Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgr. 356pp.	
919 20, 211-223. 920 Murray, J. W., 1979. British Nearshore Foraminiferids. Sylventer (New Series), 16. London, Academic Press. 921 Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgr. 924 356pp.	Journal of Sea Research
Murray, J. W., 1979. British Nearshore Foraminiferids. Sylvania (New Series), 16. London, Academic Press. Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgr. 356pp.	
921 (New Series), 16. London, Academic Press. 922 Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life 923 years ago as revealed by the excavations at Boxgr. 924 356pp.	
Pitts, M.W., Roberts, M.B. 1997. Fairweather Eden: Life years ago as revealed by the excavations at Boxgr 356pp.	nposes of the British Fauna
years ago as revealed by the excavations at Boxgr. 356pp.	
924 356 pp.	in Britain half a million
	ove. London, Century.
925 Reinhardt E. G., Blenkinsop J., Patterson R. T., 1999. Ass	
	sessment of a Sr isotope
926 vital effect (Sr-87/Sr-86) in marine taxa from Lee St	tocking island, Bahamas.
927 Geo-Marine Letters 18, 241-246.	
928 Roberts, M.B., Parfitt, S.A. 1999. Boxgrove. A Middle Pl	eistocene hominid site at
929 Eartham Quarry, Boxgrove, West Sussex. London	, English Heritage
930 Archaeological Report 17. 456pp.	
Roberts, M.B., Pope, M.I., in press. Mapping the early Mi	ddle Pleistocene deposits
of the Slindon Formation, across the coastal plain of	of West Sussex and eastern
933 Hampshire, UK. London, Left Coast Press.	

934	Roberts, M.B., Stringer, C.B., Parfitt, S.A., 1994. A hominid tibia from Middle
935	Pleistocene sediments at Boxgrove, UK. Nature 369, 311-313.
936	Robinson, J. E. 1998. Ostracoda, In: Preece, R. C., Bridgland, D. R. (Eds.), Late
937	Quaternay Environmental Change in North-west Europe: Excavations at
938	Holywell Coombe, Southeast England. London, Chapman and Hall, pp. 242-
939	253.
940	Rozanski, K., 1985. Deuterium and oxygen-18 in European groundwaters – links to
941	atmospheric circulation in the past. Chemical Geology (Isotope Geoscience
942	Section) 52, 349-363.
943	Sinka, K.J., 1993. Developing the Mutual Climatic Range Method of Palaeoclimatic
944	Reconstruction. Unpublished Ph.D. Thesis, University of East Anglia, 2 vols.,
945	212pp & 136pp.
946	Sinka, K.J., Atkinson, T.C., 1999. A mutual climatic range method for reconstructing
947	palaeoclimate from plant remains. Journal of the Geological Society, London
948	156, 381-396.
949	Smith, A. J., Horne, D. J. (2002). Ecology of marine, marginal marine and nonmarine
950	ostracodes. In: Holmes, J. A., Chivas, A. R. (Eds.), The Ostracoda:
951	Applications in Quaternary Research, American Geophysical Union
952	Geophysical Monograph. Washington DC, American Geophysical Union, pp.
953	37-64.
954	Smith, B. N., Epstein, S. 1971. Two categories of ¹³ C/ ¹² C ratios for higher plants.
955	Plant Physiology 47, 380-384.

956	von Grafenstein U., Eriernkeuser H., Trimborn P., 1999. Oxygen and carbon isotopes
957	in modern fresh-water ostracod valves: assessing vital offsets and
958	autecological effects of interest for palaeoclimate studies. Palaeogeography
959	Palaeoclimatology Palaeoecology 148, 133-152.
960	Wansard G., De Deckker P., Julià R. (1998) Variability in ostracod partition
961	coefficients D(Sr) and D(Mg) implications for lacustrine palaeoenvironmental
962	reconstructions. Chemical Geology 146, 39-54.
963	Whatley, R., 1988. Population structure of ostracods: some general principles for the
964	recognition of palaeoenvironments. In De Deckker, P., Colin, JP. and
965	Peypouquet, JP., (Eds.), Ostracoda in the Earth Sciences, Amsterdam,
966	Elsevier, pp. 245-256.
967	Whittaker, J. E., 1999. Foraminifera and Ostracoda, In: Roberts, M. B., Parfitt, S. A.
968	(Eds.), Boxgrove: A Middle Pleistocene hominid site at Eartham Quarry,
969	Boxgrove, West Sussex. Archaeological Report, 17, London, English Heritage,
970	pp. 163-170.

Figures

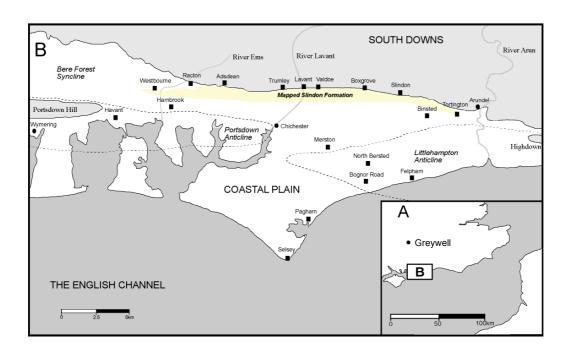
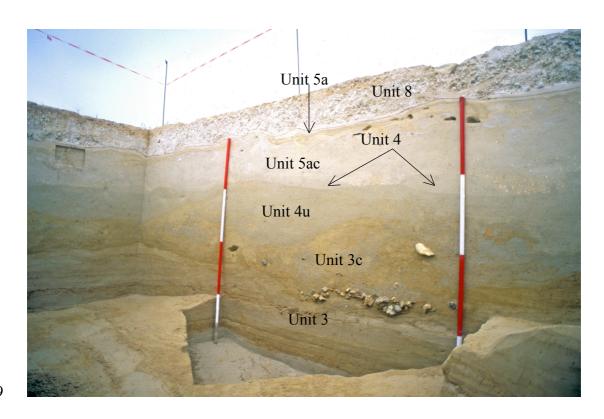



Fig. 1. Location map. A. Location of the Sussex coastal plain and Greywell. B.

Location of Eartham Quarry, at Boxgrove, and other sites on the Sussex coastal plain

C. Plan of quarries at Eartham.

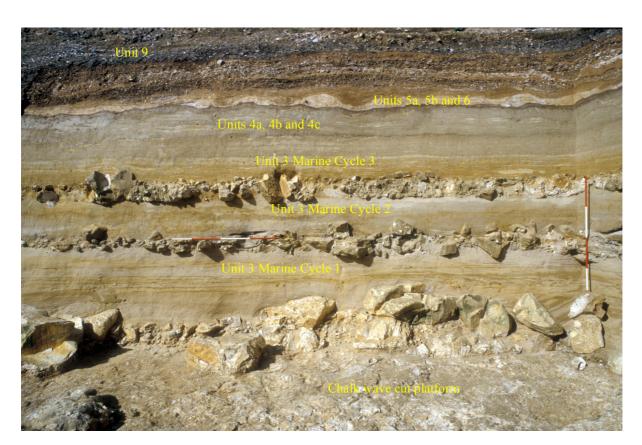


Fig. 2. A. The marine/freshwater/terrestrial sequence at Q1/B Trench 23 showing the channel and its associated infill (Unit 3c), cutting through the marine Slindon Sand (Unit 3). The channels deposits are overlain by the freshwater sediments of Units 4u and 5ac. Note the presence of the mineralised organic horizon Unit 5a, which completely covers the freshwater deposits at this part of the site (Scales in 0.50 metre divisions). B. The marine/terrestrial sequence at the Boxgrove type section Q2/GTP13 (Table 1). The lower two debris bands are the seaward ends of beaches and the upper, between marine Cycles 2 and 3. is a debris flow from cliff collapse (Scales in 0.5 metre divisions).

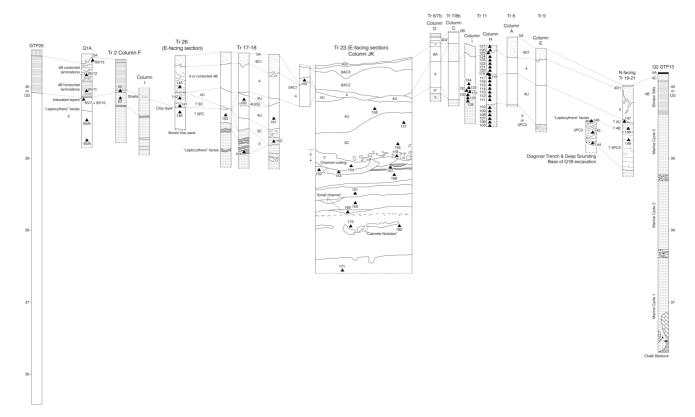
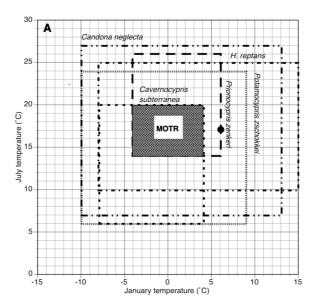
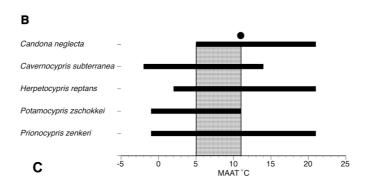




Fig. 3. Location of samples taken from Quarry 1/B. Samples from which microfossils were analysed for isotopes and/or trace elements are listed in Table 3.

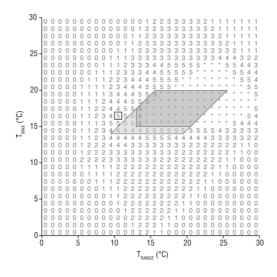


Fig. 4. Temperature reconstructions for the Slindon Silts 'pond facies'. (A) maximum and minimum January and July air-temperature ranges and (B) mean annual air temperature ranges, for the occurrences of ostracod taxa found in Units 3c, 4u and 4u(s) of the Slindon Silts freshwater facies using the MOTR method. In both figures, filled circle denotes present-day instrumental temperatures from Eastbourne. (C) Mutual climate range estimates of T_{MAX} and T_{RANGE} based on the six herptile species found in the Slindon Silts freshwater facies as presented in Sinka (1993). The numbers on the graph represent the number of the six species present in each 1°C interval of T_{MAX} and T_{RANGE} space. The asterisks represent intervals in which all six species where found. The shaded parallelogram represents the reconstructed ostracod MOTR; the dark-shaded area is the combined herptile MCR – ostracod MOTR reconstruction that is used in the oxygen isotope calculation described in the text. The small bold square represents present-day instrumental temperatures from Eastbourne

Fig. 5. Sensitivity of ⁸⁷Sr/⁸⁶Sr ratios of Boxgrove Pond water to varying proportions of seawater and differing ⁸⁷Sr/⁸⁶Sr ratios of A the marine end member and Bthe meteoric end member. In A, the ⁸⁷Sr/⁸⁶Sr ratios of the meteoric end member is set to 0.70760 and the ratio of the marine end member varied between 0.70905 and 0.70915. In B, the ⁸⁷Sr/⁸⁶Sr ratio of seawater is set to 0.7091 and the ratio of the meteoric end member varied between 0.70745 and 0.70775, the likely range of values in the upper chalk bedrock from which the shallow groundwater would have derived Sr. In both graphs, the dotted lines link the Sr-isotope ratios of the Boxgrove Pond waters, inferred from the ostracod values, with the possible range in proportion of seawater given the variability in end member composition in each case. From these graphs, it can be seen that the reconstructions of marine input to the ponds are relatively insensitive to the ⁸⁷Sr/⁸⁶Sr ratio of the marine end member, but much more sensitive to the composition of the meteoric end member

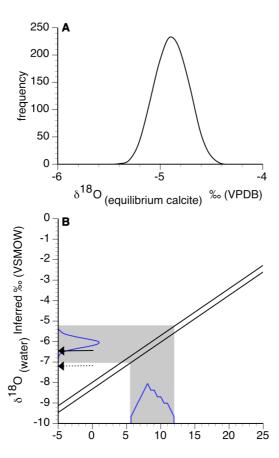


Fig. 6. A. Bootstrap distribution of 1000 replications of 18 values of $\delta^{18}O_{equilibrium}$ for a hypothetical calcite formed in isotopic equilibrium with the same water as the ostracods. The mean and standard deviation are -4.93 ±0.16 ‰ PDB. B. Inferred $\delta^{18}O$ values of Boxgrove Pond water from $\delta^{18}O$ values of ostracod shells from the Slindon Silts freshwater sediments, adjusted for vital offsets as discussed in the text. Lines are water isotope compositions (plus and minus one standard deviation around the mean of the bootstrap $\delta^{18}O$ values) calculated from ostracod shells adjusted for vital offsets. Arrows mark the approximate $\delta^{18}O$ value of modern local groundwater (solid arrow, estimated from the maps in Darling et al. 2003) and groundwater at Wallingford, Oxfordshire (dashed arrow; Darling et al. 2003). Water temperature ranges are mean annual values inferred from MOTR and MCR.

Table 1. Stratigraphic relationship between the standard Boxgrove sequence and that recorded at Quarry 1/B (Q1/B), the spring fed pond. Unit 4c and its chronostratigraphic correlatives are outlined in black and shaded. Unit 7 is a sedimentary unit that is in continuous formation until the burial of the cliff by mass movement deposits. (Not to scale).

Member	Description and Interpretation		Standard	Q1/B	Description and Interpretation		
Eartham Upper Gravel	Calcareous Head. Mass movement deposit.	Unit 10		Unit 10	Calcareous Head. Mass movement deposit.		
	Path gravel. Freeze thaw sorted flint gravel.	Unit 9					
	Chalk pellet gravel. Waterlain, weathered and sorted chalk clasts.		Unit 8	Unit 8	Chalk pellet gravel. Dewatering structures initiated.		
Eartham Lower Gravel	Cliff collapse.		Unit 7				
	Calcareous muds/brickearth. Colluvial and waterlain silts.		Units 5b, 6	Unit 6b	Calcareous muds/brickearth. Colluvial and waterlain silts.		
	Mineralised and compressed organic deposits. Alder/fen carr.	Unit 7	Unit 5a	Unit 5a	Mineralised and compressed organic deposits. Alder/fen carr.		
	Soil horizon developed on top of the silts. Polder type soil.		Unit 4c	4d2, 4d3, 5ac	Spring discharge sediments with colluvial input towards the top (5ac)		
				Unit 4d1	Spring discharge sediment. Intraformational calcretes.		
			Unit 4b				
Slindon Silt	Intertidal laminated muds laid down in a			Unit 4	Massive silt from freshwater reworking of Units 4a and 4b. Heavily deformed.		
	semi-enclosed marine bay.						
			Unit 4a	Unit 4u	Massive fine silt from freshwater reworking of Units 4a and 4b.		
				Units 3/4, 3c	Freshwater channels and freshwater scoured landsurface, from springs at cliff base.		
		Unit 7					
Slindon Sand	Near-shore marine sands.		Unit 3	Unit 3	Nearshore marine sands with a truncated upper surface.		

Table 2. Habitat affinities and water chemistry preferences for ostracod species from the sediments of the Slindon Silts freshwater facies (from information in De Deckker, 1981; Meisch, 2000).

Species	Maximum salinity tolerance	Habitat preferences
Herpetocypris reptans	15.7 ‰	Permanent waterbodies of all sizes together with sluggish streams; often associated with dense vegetation and mud substrate; often associated with <i>Chara</i>
Candona neglecta	15.7 ‰	Found in small ponds and in springs and streams; burrows into soft, organic, mud
Prionocypris zenkeri	not known	Found in gently-flowing streams, with rich aquatic vegetation, often connected to springs; often associated with <i>Chara</i>
Ilyocypris bradyi	6.4 ‰	Found in slow-flowing waters and springs, and spring-fed ponds; lives on mud substrates and aquatic vegetation
I. quinculminata	5 ‰ (I. monstrifica) Extinct, but possibly related to <i>I. monstrifica</i> , which is associated with organic muddy substrates and slow-flowing water
Cavernocypris subterrane	<i>a</i> not known	Associated with both surface and underground waters, springs, spring-fed streams and the littoral zone of spring-fed ponds and lakes
Potamocypris zshokkei	not known	Associated with slow-flowing springs, spring- fed ponds and spring-fed streams

Table 3. Geochemical data relating to ostracod shells and foraminiferal tests from the Slindon Silts freshwater facies.

1115						
1113	Quarry/Trench/Column	Level	Unit	Species		
1117	- Quarry/ Trenen/ column	Level	Onic			
1110					Mg/Ca	Sr/Ca
1119	Q1/B Tr11E Col H	MP113	4u	P. zenkeri	0.00155	0.00030
1121	Q1/B Tr11E Col H	MP113		Candona neglecta	0.00256	0.00046
1121	Q1/B Tr11E Col H Q1/B Tr11E Col I	MP113 MP132		llyocypris bradyi P. zenkeri	0.00136 0.00107	0.00019 0.00030
	Q1/B Tr11E Col I	MP132		Candona neglecta	0.00212	0.00034
1123	Q1/B Tr11E Col I Q1/B Tr11E Col H	MP132 MP114		llyocypris bradyi C. neglecta	0.00157 0.00210	0.00016 0.00041
	Q1/B Tr11E Col H	MP114	4u	C. neglecta	0.00239	0.00045
1125	Q1/B Tr11E Col H Q1/B Tr11E Col H	MP114 MP114		C. neglecta C. neglecta	0.00256 0.00263	0.00045 0.00042
1123	Q1/B Tr11E Col H	MP114		C. neglecta	0.00198	0.00042
	Q1/B	202-105		C. neglecta	0.00141	0.00062
1127	Q1/B Q1/B	202-105 202-105		C. neglecta C. neglecta	0.00132 0.00144	0.00039 0.00038
	Q1/B	202-105		C. neglecta	0.00169	0.00038
1129	Q1/B	202-105	4u	C. neglecta	0.00164	0.00035
1129						
					$\delta^{13}C$	$\delta^{18}O$
1131						
	O1 /B T=0	215/101	4	C manifesta	7.00	2.00
1133	Q1/B Tr9 Q1/B Tr11E Col H	215/101 MP116		C. neglecta C. neglecta	-7.68 -7.86	-2.69 -2.77
1133	Q1/B Tr11E Col H	MP117		C. neglecta	-7.71	-3.13
	Q1/B Tr19-21	MP147		C. neglecta	-7.61	-2.84
1135	Q1/B Tr23E Col JK Q1/B Tr23E Col JK	MP156 MP157		: C. neglecta : C. neglecta	-7.89 -7.40	-2.54 -2.96
	Q1/B Tr23E Col JK	MP158	4u	C. neglecta	-8.53	-2.40
1127	Q1/B Tr17-18	MP160		C. neglecta	-7.74	-2.78 -2.67
1137	Q1/B Tr17-18 Q1/B Tr11E Col H	MP161 MP114		C. neglecta C. neglecta	-8.67 -7.94	-2.59
	Q1/B	202-105	4u	C. neglecta	-7.96	-2.29
1139	Q1/B D95 Tr9 Q1/B Tr11E Col H	215/101 MP116		P. zenkeri P. zenkeri	-7.69 -7.65	-2.61 -3.01
	Q1/B Tr11E Col H	MP110 MP117		P. zenkeri	-7.63 -7.09	-3.00
1141	Q1/B Tr19-21	MP147		P. zenkeri	-6.99	-2.79
1141	Q1/B Tr23E Col JK Q1/B Tr17-18	MP158 MP160		P. zenkeri P. zenkeri	-8.38 -7.59	-2.93 -2.72
	Q1/B Tr17-18	MP161		P. zenkeri	-7.83	-2.56
1143					07 06	
					⁸⁷ Sr/ ⁸⁶ Sr	
1145						
1145	Q1/B Tr11E Col H	MP113	4u	P. zenkeri	0.70783	
	Q1/B Tr11E Col H	MP113		C. neglecta	0.70804	
1147	Q1/B	MP 143	4u	C. neglecta	0.70791	
	Q1/B	MP 143	4u	P. zenkeri	0.70778	
1140	Q1/B Tr11E Col I	MP132	4u	llyocypris monstrifica	0.70782	
1149	Q1/B Tr11E Col I	MP132		I. bradyi	0.70777	
	Q1/B Tr11E Col I	MP132		P. zenkeri	0.70779	
1151	Q1/B Tr11E Col H Q1/B Tr11E Col H	MP115 MP115		C. neglecta P. zenkeri	0.70808 0.70810	
1101	Q1/B Tr23E Col JK	MP158		C. neglecta	0.70817	
1152	Q1/B Tr23E Col JK	MP158		P. zenkeri	0.70786	
1153						
	Q1/B Tr23E Col JK	MP158		Elphidium williamsoni Haynesina germanica	0.70907	
1155	Q1/B Tr23E Col JK Q1/B Tr23E Col JK	MP158 MP157		Elphidium williamsoni	0.70909 0.70912	
	Q1/B Tr23E Col JK	MP157		Haynesina germanica	0.70907	
1156						
1156						
1157						
1101						