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Abstract

TOPEX and Jason were the first two dual-frequency altimeters in space, with both operating

at Ku- and C-band.  Each thus gives two measurements of the normalized backscatter, 
0
,

(from which wind speed is calculated) and two estimates of wave height.  Departures from a

well-defined relationship between the Ku- and C-band 
0
 values give an indication of rain.

This paper investigates differences between the two instruments using data from Jason's

verification phase.  Jason's Ku-band estimates of wave height are ~1.8% less than TOPEX's,

whereas its 
0
 values are higher.  When these effects have been removed the root mean square

(r.m.s.) mismatch between TOPEX and Jason's Ku-band observations is close to that for

TOPEX's observations at its two frequencies, and the changes in 
0
 with varying wave height

conditions are the same for the two altimeters.  Rain flagging and quantitative estimates of

rain rate are both based on the atmospheric attenuation derived from the 
0
 measurements at

the two frequencies.  The attenuation estimates of TOPEX and Jason agree very well, and a

threshold of -0.5 dB is effective at removing the majority of spurious data records from the

Jason GDRs.  In the high 
0
 regime, anomalous data can be cause by processes other than

rain.  Consequently, for these low wind conditions, neither can reliable rain detection be based

on altimetry alone, nor can a generic rain flag be expected to remove all suspect data.

Keywords:  dual-frequency altimetry, TOPEX, Jason, wave height, sigma0, wind speed, rain-

flagging, rain rate

Introduction
The TOPEX altimeter (on-board the TOPEX/Poseidon satellite launched in August 1992) was the first

spaceborne altimeter to operate at two frequencies (Fu et al., 1994).  Earlier instruments had operated at

Ku-band (~13.6 GHz), but the secondary channel at C-band (5.3 GHz) was incorporated to help

determine the ionospheric delay.  Estimates of significant wave height, Hs, and normalised backscatter,
0
, were also provided for the secondary channel, although such information was probably initially

thought redundant.  Over the ice-free ocean the dominant factor affecting 
0

Ku is the wind, with many

different algorithms (e.g. Witter & Chelton, 1991) being used to convert 
0

Ku into a local wind speed,

U10.  Rain will also affect 
0
 through attenuation of the signal (reducing 

0
) and also through damping of

small-scale waves (increasing 
0
).  Such effects had been noted for single frequency altimeters (Srokosz

& Guymer, 1988; Guymer et al., 1995), but it was the advent of TOPEX that led to a leap forward in

altimetric rain studies (Quartly et al., 1996).  This was because the attenuation effect is an order of

magnitude smaller at C-band than at Ku-band, such that rain-affected points did not conform to the mean
0

Ku- 
0

C relationship produced by wind alone.  This was first used as a basis for rain detection (Quartly

et al., 1996, Tournadre & Morland, 1997), which could be used for flagging rain-contaminated data, and

then for quantitative studies of rainfall (Quartly et al., 1999, 2000).

Jason, the successor to the TOPEX/Poseidon mission, was launched in December 2001, and placed in an

orbit just ahead of TOPEX/Poseidon but following the same ground track (see Fig. 1).  Jason operates at

the same two frequencies as TOPEX, and thus can provide 'near simultaneous' estimates of Hs, 
0
 and

0
 (the derived atmospheric attenuation).  The Jason 'verification phase' lasted from January to August

2002, with the delay between the two satellites varying between 70 and 74 seconds.  Jason and TOPEX



are very similar in operation.  The main hardware differences are that Jason was constructed with newer

technology, including solid state amplifiers rather than travelling wave tubes, and is consequently lighter

and requires less power than TOPEX.  For TOPEX, estimation of geophysical parameters is carried out

on-board and transmitted with the waveform data.  Corrections are then applied to these data (Hayne et

al., 1994), but it is basically the values calculated on the satellite that are distributed to users.  For Jason,

the waveforms are retracked on the ground using more elaborate techniques (maximum likelihood

estimation) than can be implemented on the satellite.

The instantaneous altimetric footprint is a disc between 2 and 8 km in diameter, depending upon the

wave height and the geophysical parameter being derived, and this is then smeared by the ~6 km

travelled in the nominal 1 second averaging period.  Thus, although individual large waves and small

scale ripples (affecting 
0
) may evolve significantly in ~72s, there will be negligible change in a

statistical average over ~50 km
2
.  Rain is known to vary on timescales much shorter than those of wind

or waves, but again an average over a full altimeter footprint will typically not change much in 72s.

This paper examines the four measurements of Hs and 
0
 available (TOPEX-Ku, TOPEX-C, Jason-Ku &

Jason-C) to contrast the inter-frequency differences with those between instruments.  First I show an

illustrative example, and look at the statistics of the differences in wave height and backscatter.  Then I

recap the definition of attenuation from dual-frequency 
0
 measurements, and compare the mean 

0
-

0

relationships for Jason and TOPEX, and of how they each depend upon wave height.   Finally I assess the

efficacy of the Jason rain flag, first vicariously using TOPEX, and then by examining its ability to

remove anomalous data.

Comparison of wave height and sigma0 data
There are various papers (Ray & Beckley, 2003; Zanife et al., 2003) that have already made some

intercomparison of Jason and TOPEX Ku-band data.  Such results are only repeated here in order to

provide foundations for the inter-frequency comparison.  For my analyses I solely use data from the

TOPEX and Jason GDRs (Geophysical Data Records) rather than the IGDRs (Interim GDRs).  The data

span used here is Jason cycles 4 to 21 (corresponding to TOPEX cycles 347 to 364.  [ Jason commenced

collecting data on 15th Jan 2002 in cycle 1, but the first few cycles have not been used here.  The single

frequency Poseidon altimeter was operating for cycle 361, and the TOPEX/Poseidon satellite was moved

to a new orbit with an interleaved ground track on August 15th, part way through cycle 365. ]  The GDRs

contain a radiometer-derived estimate of the atmospheric attenuation, which has already been applied to

the 
0
 values; these corrections (for Ku- and C-band) are here removed so that all my analysis is with the

observed values of 
0
.  No other instrumental corrections were removed.

The 
0
 values reported on the Jason GDRs correspond to the current best understanding of the actual

instrument measurement, and differ considerably from the TOPEX values.  For the first release of the

Jason IGDRs -2.26 dB was added to the 
0

Ku and -0.28 dB to 
0

C to make them consistent with TOPEX,

but this has not been done for subsequent IGDRs or for the more widely-disseminated GDRs that I have

chosen to use here.  I have re-evaluated these corrections using TOPEX-Jason matchup pairs that have

been extensively quality-controlled (see Table 1).  There is some minor variation in the derived offsets

with time (due to changes in one or the other instruments).  An effective bias was determined

independently for each cycle, with the mean offset being -2.400 dB at Ku-band (with a std. dev. of

±0.016 dB) and -0.725 dB (std. dev. = 0.029 dB) at C-band.  The precise values do depend somewhat on

the quality control of the data (see appendix for an example).  For most of this paper the Jason values are

'adjusted' to agree in the mean with those from TOPEX.  This does not imply that the latter are 'correct',

but makes it much easier for the comparison plots to show subtle differences between the two satellites.

This allows one to demonstrate whether such a bulk adjustment is sufficient to generate a consistent

TOPEX-Jason combined dataset.  [ The TOPEX 
0

C values exceed 
0

Ku by 3.55 dB on average (and of

course, the adjusted Jason values differ by that amount).  In Fig. 2a, the TOPEX and adjusted Jason 
0

C

values have had 3.55 dB subtracted from them to demonstrate how closely changes in 
0

Ku are mirrored



in 
0

C.  For many of the other plots 
0

C is used along the abscissa (x-axis); in Fig. 5 the plot as a function

of 
0

Ku has been adjusted right by 3.55 dB for ease of comparison with the other curves. ]

Example profile

Figure 2 displays the near-simultaneous TOPEX and Jason data along a typical track.  To compare the

fine detail variations in 
0
, Jason values have been adjusted to agree with TOPEX, and then 3.55 dB

removed from both C-band series.  After such an adjustment the 
0
 profiles overlie one another closely

despite variations in value of more than 10 dB.  Similarly the four measurements of wave height (Fig. 2b)

agree well.  The third set of graphs show a basic estimate of sea surface height (SSH, see caption for

details); this simple definition is useful for comparisons without bringing in the complication of different

wet tropospheric or sea state bias corrections for the two instruments.  The fourth row shows a passive

microwave brightness temperature (BT) as an indicator of possible rain.

The right-hand column focuses in on the data between 2.5˚ and 5.5˚N to reveal the differences between

the Jason and TOPEX dual-frequency observations.  Records at 2.7˚N, 3.6˚N and 4.8˚N are all affected

by rain (deduced from the sharp decrease in 
0

Ku and associated high BT values.  All three of these

features show concomitant spikes in Ku-band wave height and SSH.  I have examined a number of such

case studies: in the majority the spikes in SSH & Hs are more extreme for Jason than for TOPEX, but the

disturbances are of no greater latitudinal extent.  Jason average waveforms are retracked independently,

whereas for TOPEX the values incorporate the effect of a smoothing filter.  This on-board smoothing

may explain TOPEX's reduced Hs fluctuations in both rain-free and rain-affected areas.  The anomalies

will normally be positive in wave height and negative in SSH, because of the manner in which rain

directly at nadir affects the waveforms and the values derived from them (Guymer et al., 1995; Quartly,

1997).  The effect on wave heights derived from C-band data is much weaker, and for TOPEX is mainly

caused by the mispositioning of the C-band window due to a shift in the Ku-band tracker (Quartly, 1997).

To quantify the magnitude of these data spikes I apply an 11-point running median to the Hs data, and a

3-point running median to the SSH data and note how original values relate to these reference ones.

To make a quantitative comparison of the data from TOPEX and Jason, the observations need to be co-

registered.  The actual averaging interval for the data is not exactly one second — for TOPEX it is

1.073s, and for Jason 1.020s; consequently the separation of these nominal observation points varies (see

Fig. 1).  Using interpolation will reduce the size of the spikes shown in Fig. 2 and spread their effect over

more points.  Instead, I match up TOPEX and Jason points within 2 km of one another (which is small

compared to the smeared one-second footprints that these observations represent).  As well as these

requirements on coincidence in time and space, some other checks are performed to end up with a

quality-controlled dataset for comparison.  These tests (see Table 1) are to avoid any occurrence of land

or sea-ice within the altimetric footprint, and involve checks on the radiometer flags, that the ocean depth

is greater than 1000m and that the data are between 50˚S and 50˚N (the latter being a very conservative

constraint).  Also, in the initial work I needed data free from the effect of rain, so editing was also done

according to BT from the microwave radiometers, waveform-derived mispointing and h (the rms

variation in range within a 1s average).  My full dataset of over-ocean matchups within 2 km contains

about 300,000 paired observations per cycle; the stringent tests to remove any possibly anomalous data

passed ~62% of these points.  Figure 3 shows the histograms for a 2-cycle period of data, both before and

after the extra selection tests.  These tests pass most points at low wave height and wind speed (high 
0
),

but proportionally fewer for high sea state conditions.  This is due to the removal of high latitude

observations, and also the choice of fixed Hs and h thresholds, as the typical values of these measures

increase with Hs (see Fu et al., 1994 and Quartly, 2000a, for example). Use of all these tests discards too

much data for ordinary applications, but that is acceptable for the present task of generating a TOPEX-

Jason matchup dataset free from any likely effect of land, ice or rain.



Wave height comparison

Figure 4a shows a scatter plot of a small selection of the matchup data for Ku-band estimates of Hs from

Jason and TOPEX.  Using the full dataset, a mean difference between the two is calculated as a function

of wave height, and also the spread (standard deviation) about this relationship noted.  Four such

comparisons are done, as shown in Figs. 4b and c. The mean relationship between the two Ku-band

estimates shows step changes at about 1.2m, 3m and 6m, which correspond to changes in the gate index

used by TOPEX in calculating Hs.  Within these ranges, polynomial expressions are used to determine Hs

from the measured waveform bins (Hayne et al., 1994); however, Quartly (2000a) showed there to be

slight discontinuities in derived parameters across the boundary between different values of the gate

index.  Note that Jason's C-band values are biased high at low Hs; Zanife et al. (2003) noted that there

was greater variability in Jason's measurements below about 1m.

Display in the form of Fig. 4b reveals the non-linearities in the effects between the two measures of Hs,

but assumes that all the errors are in the ordinate.  I also fitted straight lines to the simultaneous data,

allowing for equal errors in both estimates.  This confirmed that TOPEX's Ku- and C-band estimates are

consistent (the trend in their difference is less than 0.2%), and showed that Jason's Ku-band values are

1.8% less and it's C-band values 1.8% greater than the corresponding TOPEX ones.  Using Jason IGDRs,

Ray & Beckley (2003) found Jason to be reading 3% low relative to TOPEX at Ku-band; the slight

difference in this trend observed in this work may be due to the use of GDR data here, or the effect of my

editing criteria (Table 1), which have preferentially selected lower wave heights (Fig. 3a).

The third part of the figure shows the spread (standard deviation about the mean relationship) for each

comparison.  With the exception of the values for Hs<1m, all four of the lines are approximated well by a

straight line of slope 0.025, with the lines involving TOPEX-Ku comparisons being approximately 0.2m

below those involving Jason-C band.  [ The close-up in Fig. 2b shows that Jason-C has much greater

along-track variability than the other measures; on the other hand, it is the Ku-band channels that show

occasional large anomalies in response to rain. ]

As part of the analysis to find the background Hs value in the absence of rain, a running 11-point median

filter was applied separately to all four Hs estimates.  A comparison of the four filtered sets of Hs shows a

similar mean relationship to that shown in Fig. 4b, but with the spread reduced by about a half, with the

greatest proportional improvement for the comparison of the Jason pair and the least for the TOPEX pair

(Fig. 4d).  There are two factors involved here.  First, the Jason C-band estimates are only based on 300

radar echoes in the collecting interval, so the effect of Rayleigh (fading) noise on its waveforms will be

more pronounced that for the other three Hs estimates.  Second, the exact calculation of Hs on TOPEX

does involve some filtering beyond the 1s interval (see Quartly, 1997), so further filtering has less effect.

For comparison with wave buoys, altimeter data are often averaged over scales of 60 km or more.  The

inter-instrument comparison in Fig. 4d, showing the agreement between two altimeters viewing the wave

field ~72s apart, provides an estimate of the inherent repeatability of averaged altimetric values.

Sigma0 comparison

A similar analysis is carried out for the four 
0
 values.  In this case, the Jason measurements of 

0
Ku and

0
C have been adjusted for a mean offset with respect to TOPEX.  Figure 5a only shows the inter-

instrument comparisons, as the inter-frequency ones have a wide dynamic range, and are shown in Figs.

6 and 7.  The C-band values agree to within better than 0.05 dB over most of the range.  On the other

hand, there is a marked change in the 
0

Ku comparison.  The 'reference sigma0' on the abscissa

corresponds to 
0

Ku+3.55 dB, this being  the bulk offset between TOPEX's Ku-band and C-band.  Thus

the 
0

Ku values agree to within 0.05 dB for 
0

Ku<12.5 dB (corresponding to 90% of points in this edited

matchup dataset), but are biased (Jason reading ~0.15 dB higher than TOPEX) for 
0

Ku >13.5 dB.  This

disparity is curious, but has minimal effect upon retrieval of wind speed, as ~90% of points are

unaffected, and for those within the high 
0
 regime an error of 0.15 dB makes little difference to the

derived wind speed.  These 
0
 comparisons also show some variation with waveform-derived

mispointing (see appendix), but the effect is slight within the range of data selected according to Table 1.



The second plot of Fig. 5 shows the degree of mismatch between these near-simultaneous values.  In the

low 
0
 regime just discussed, covering ~90% of observations, the Jason and TOPEX measurements have

a spread about the mean of ~0.1 dB.  This is an indicator of the limit on repeatability of 
0

measurements.  Intriguingly, the C-band estimates of the two instruments show a slightly greater

consistency than the two Ku-band estimates.  There are a number of possible explanations.  This may be

because TOPEX's C-band values do not have the wave height dependent adjustments that were applied to

Ku-band, or it may indicate that short-term changes in ocean backscatter or atmospheric attenuation are

slightly greater at Ku-band than C-band.  The inter-frequency comparisons are also shown in Fig. 5b.  At

the high wind speed end of the range (
0

C<14 dB, 
0

Ku <10.5 dB) the standard deviation of the scatter

about a mean relationship is about 50% higher for two different frequencies on the same altimeter than

for the same frequency on two altimeters ~72s apart.  This suggests that there are other factors than just

wind speed affecting the 
0
 observation.  However, for 

0
C in the range 14-19 dB, the standard deviation

of the mismatch between the two frequencies is similar to the mismatch between two altimeters.  At even

higher 
0
 there is a greater disparity between the two frequencies than between the nearly simultaneous

measurements at the same frequency; however there are few observations in this regime.

Definition of a dual-frequency rain flag for Jason

The concept of a dual-frequency altimetric rain flag has been introduced in a number of papers, and so is

only briefly recapped here.  It is predicated on the generally tight relationship between 
0
 values at the

two radar frequencies, with 
0

Ku values significantly less than expected from the relationship being

attributed to rain.  The top panel of Fig. 6 shows 5000 observations (marked by crosses) from the edited

(rain-free, land-free, ice-free) dataset for cycles 10 and 11.  Statistics (mean and standard deviation) are

calculated from all points in the edited dataset; the number of points per 0.05 dB bin is shown in Fig. 6b.

The rain-flagging procedure involves testing whether points lie below some threshold, typically the mean

minus 0.5 dB or the mean minus two standard deviations.  (Discussion of the relative merits of these two

choices is provided in Quartly et al., (1999).)  In the example shown, both thresholds flag some points

from within the selected quality dataset; however, it is not clear whether these thresholds are too strict or

whether there were some rain-affected points within the edited dataset.  Tournadre & Morland (1997)

advocate combining the dual-frequency test with one using data from the on-board microwave

radiometer (MWR).  This will help reduce false flagging of points, but may make the technique less

sensitive to small rain cells.

Comparison with mean 
0
-

0
 relationship for TOPEX

A comparison of the 
0
-

0
 relationships for Jason and TOPEX show there to be some significant

differences, which might not be expected given that both are portrayals of the equilibrium between sea

surface roughness sensed at scales of 2.2 cm (Ku-band) and 5.7 cm (C-band) under wind-only conditions.

However, Fig. 5a has already shown there to be a 0.15 dB offset between Jason and TOPEX 
0

Ku values

at low winds.  This difference in relationship must be due to differences between the instruments and/or

their processing.  One explanation might be that TOPEX is in error due to the known degradation of the

point target response (PTR) and various power leakages (Hayne et al., 1994).  However, the shape of the

TOPEX-B mean 
0
-

0
 relationship has changed little since its first operation in February 1999.

Interestingly, the 
0
-

0
 curve for early in the TOPEX-A operation has the same shape as TOPEX-B near

the peak of the curve at 
0

C=15 dB, but a gentler slope for high 
0
, more akin to that for Jason.  (There is

no discernible seasonal change in the 
0
-

0
 curves, but later on in the TOPEX-A phase, the response at

high 
0
 did change (Quartly, 2000b), presumably due to degradation of the PTR.)

In short, separate codings are required for the Jason and TOPEX rain flags, although they only represent

different 
0
-

0
 relationships due to presently unknown 'instrumental effects'.  The scatter about the mean



relationship is portrayed in Fig. 7b, with all three curves displaying the same form, but with Jason

exhibiting the least scatter.

Variation in 
0
-

0
 relationship with time and wave height

An important aspect of an operational dual-frequency rain flag is that the observed relationship between
0

Ku and 
0

C should not vary rapidly.  To test the consistency of the empirical 
0
-

0
 relationship on short

time scales, I took cycles 4-17 and divided each into fifths (~2 days), and only considered data with a

wave height of 1.85 m to 2.15 m (because of a wave height dependency, discussed later).  From these

short selected sets of data, I determined independent 
0
-

0
 relationships, albeit only over the range 14 to

17.5 dB.  All these curves have the same shape, but with r.m.s. offsets of ~0.03 dB (in abscissa and/or

ordinate) from one another.  Fig. 7c shows the r.m.s. variations between the seventy 2-day estimates of

the mean relationship: there is little spread (~0.03 dB) at the peak of the 
0
-

0
 curve, but wider variation

on the flanks.

One approach to rain-flagging is to calculate separate mean relationships for each short interval of data:

if the interval only contains 2 days of data, then the 
0
-

0
 curve is poorly defined in the less well-

populated regions.  Alternatively, very large periods of data may be used in the definition: this suffers

from variations in the mean relationship leading to a larger spread of values than are due to sea surface

processes alone.  For many studies (e.g. Quartly et al., 1996, Tournadre and Morland, 1997) a

compromise has been to determine mean relationships and rain flagging independently for each 9.9-day

cycle of data; however in this paper, a single relationship is used for all the cycles of the validation phase.

Elfouhaily et al. (1998) were the first to show that the 
0
-

0
 curve has a wave height dependency at high

0
.  This was parameterized and incorporated in the rain flagging for TOPEX (Quartly et al., 1999).

Here, I examine the effect within Jason data, using all the matchups from cycles 4 to 21 in order to have

enough observations within each narrow Hs bin.  The divergence of the lines for high 
0
 (see Fig. 7d) is

both qualitatively and quantitatively the same as for the contemporaneous TOPEX-B data, auguring that

this is a real effect related to large scale waves affecting the small-scale waves sensed by these two

frequencies.  [ A similar wave height divergence at high 
0
 is found for the Ku- and S-band observations

of the Envisat RA-2 altimeter (Tournadre & Quartly, 2003). ]  The Jason observations show a wave

height dependence to be present over the entire 
0
 range; this is not so clear for TOPEX data, but any

true physical effect may be masked by the changes in corrections with gate index (Hayne et al, 1994).

The final Jason rain flag should have the wave height dependency taken into account, such that the

derived attenuation, 
0
, is given by differencing the observed 

0
Ku relative to an expected rain-free

value that is both a function of 
0

C and Hs, viz.:
0
   =   

0
Ku  -  F (

0
C, Hs) (1)

From a visual inspection of Fig. 7d, it appears this function can be separated into a simple 
0
-

0

relationship averaged over all Hs, plus an effect proportional to Hs that applies to all 
0

C values, plus an

Hs and 
0

C dependent effect in the tail region (adjusted 
0

C > 16.4 dB).  Further work needs to be done

on this in order to quantify fully the wave height dependency.

Validation of Jason rain flag

It is not easy to provide direct validation for Jason's rain flag.  There have been two such exercises for the

TOPEX rain flag.  Cailliau & Zlotnicki (2000) compared the latter to SSM/I data, showing moderate

agreement.  Their validation data had a much larger footprint than TOPEX (~50 km versus 8 km) and

only coincided to within 30 minutes, which is a significant time in the evolution of rain cells.  A more

detailed study by McMillan et al. (2002) compared TOPEX with various ground-based radar networks.



They showed that TOPEX can detect rain cells the size of its footprint.  They also revealed much false

flagging of events at high 
0
 values, which could be avoided by incorporation of a test using data from

the microwave radiometer (MWR).  As such exercises are very laborious, I here provide assessment of

the Jason rain flag by two other methods: first by vicarious validation using TOPEX, and second by

determining the efficacy of the Jason rain flag in discarding anomalous data.

Comparison of dual-frequency rain flags

The observed atmospheric attenuations, 
0
, are calculated independently for the two satellites using

mean relationships appropriate for each.  (In practice, this means there is no need for bulk adjustment of

Jason 
0
 values to align with TOPEX distributions prior to the application of a rain-detection algorithm.)

The validation via TOPEX is performed by comparing the two estimates of 
0
 (Fig. 8). An indication of

their correspondence in setting a rain flag can be gleaned from the plot too.  The majority of points

correspond to 
0
 within 0.5 dB of zero for both TOPEX and Jason; however, there are sufficient points

in each 0.5 dB bin to define a mean curve.  The rain-related (negative) values of 
0
 show a clear

correspondence, with the mean curve lying close to the line of equality; the scatter about that mean has a

std. dev. of ~0.6 dB, but is much smaller at the origin, where the majority of observations are.  There are

also a number of observations for which 
0
 is significantly positive.  Such 'inverse behaviour' was noted

earlier for TOPEX (Quartly et al., 1996), with a possible explanation being damping of the smallest scale

waves by recently-formed freshwater slicks.  Chen et al. (1998) explored the effect for TOPEX; no

further study of the effect is offered here, except to note that the values recorded by Jason are only about

half of the magnitude of those for TOPEX, and that these points do not seem to correspond to particular

wind speed or wave height conditions.

Efficacy of a Jason rain flag

Rain within the altimetric footprint distorts the waveforms from the expected 'ocean-like' returns, leading

to anomalous values for the range, wave height and waveform-derived mispointing.  Also, as some rain

cells are significantly smaller than the distance travelled by the footprint in one second, there may be

significant variability of the estimates of height, wave height and 
0
, given by h, Hs and (

0
).  The

histograms of these six parameters are studied for cycles 10 and 11 (see Fig. 9).  From the histograms for

all data and for rain-flagged data, I determine the conditional probability of a point being contaminated

by rain (grey lines, see right hand axes).  [ Note, data displayed actually correspond to analysis for 
0

C

17 dB; observations with a high 
0
 (low wind speed) have a higher number of anomalous data, of which

a lower fraction can be ascribed to the effect of rain. ]

The first three subplots show variability within the one second records.  In all cases, at the mode of the

histograms the association with rain is less than 1%; however, large values of h and Hs and (
0
) are

highly associated with rain, and so a dual-frequency rain flag would remove these points.  If the analysis

is repeated, but without the restriction that 
0

C be less than 17 dB, then the use of a 'rain flag' alone does

not remove all anomalous data.  In that case, only around 15% of points with (
0
) > 0.2 dB were

detected by the rain flag; the proportion of high Hs values selected by the rain flag was also reduced to

30-50%.  This implies that in such calm conditions there are factors other than rain leading to high

variability within the 1 second averaging time.  Conversely, it also means that for a single-frequency

altimeter high values of h and Hs are not reliable indicators of rain (at least not in the high 
0
 regime).

The parameter 
2
 represents the slope of the trailing edge of the waveforms.  Positive values can be

interpreted as the square of the mispointing (deviation of boresight from nadir).  However, in general, it

is used as an indicator of the waveform shape not conforming to the expected ocean-like returns.

Extreme values of 
2
 (both positive and negative) are probably associated with rain.  The last two plots

represent spikes in the height and wave height values.  The height anomaly in Fig. 9e corresponds to the

sea surface height at a point relative to a 3-point median centred on that point, and Fig. 9f is for wave

height relative to an 11-point median.  The dual-frequency rain falg picks out the majority of extreme



height and wave height anomalies.  Again, if the analysis incorporates very low wind conditions (
0

C

>17 dB), the proportion of large spikes in height and wave height attributable to rain is reduced to ~30%.

Proportion of data flagged

The proportion of data flagged as rain, and thus discarded by most users, will depend upon the particular

editing criterion used, the threshold set and the geographical region of interest.  On the whole, there is

very little difference between a test using a specific attenuation value, 
0
, and one that relates this to a

multiple of the varying measure of scatter as shown in Fig. 7b.  This is because the majority of the data

correspond to 
0

C <17 dB, for which the scatter only varies gradually as a function of 
0
.  Users who are

particularly concerned about data flagging in low wind conditions will probably need to incorporate data

from the MWR in their editing, although the section above showed that, in the high 
0
 regime there are a

higher proportion of anomalous points due to some effect(s) other than rain.

Figure 10 shows in a global sense how the proportion of data flagged increases with the chosen threshold

for 
0
; Table 2 shows appropriate thresholds according to the proportion of data that the user can

tolerate losing.  However, the proportion of points flagged clearly varies geographically according to the

occurrence of rain.  Figure 11 shows the proportion of data flagged according to 
0
<-0.5 dB, based on

data from cycles 4 to 21.  The threshold specified here will not pick out drizzle and light rain; researchers

wishing to use the rain flag for global or regional studies of rainfall may need to adopt a slightly different

criterion (see Table 2) in order to optimise their recovery of rain events.  For example, changing the 
0

threshold to -0.3 dB leads to a much higher proportion of rain around the edge of the Antarctic continent;

it is not clear whether this is genuinely weak rain or moist snow or false flagging due to some slight

disturbance to the mean 
0
-

0
 relationship e.g. by freshwater slicks or slight inconsistencies in

calibration (cf. Fig. 7c).

Summary and discussion
The near-simultaneous measurements of TOPEX and Jason during the verification phase have been

important for comparisons of the range data from the two instruments, enabling detailed investigation of

the correction terms (e.g. Zanife et al., 2003, Vincent et al., 2003).  A similar analysis is provided here

for sea state and rain information.

Wave heights

The example profile (Fig. 2) shows that the four wave height estimates (two altimeters, two independent

frequencies) exhibit good general agreement, with the C-band values from Jason showing the largest

along-track variability.  That is partly due to the smaller number of pulses used in its calculation and the

absence of any on-board temporal smoothing.  Large spikes in Hs are most common for Jason Ku-band.

Waveform data have not been examined for this case, but it is likely that the distortions due to patchy

attenuation will be similar for both TOPEX and Jason Ku-band waveforms.  The increased prevalence

and magnitude of spikes for Jason might indicate a greater sensitivity in its retracking to non-ocean-like

waveforms.  This is not of great concern, as such points are easily removed by the rain-flagging or by use

of an along-track median filter.

Figure 4 provides the details of the comparison of the various estimates.  Jason's wave heights are found

to be ~1.8% less than those calculated for TOPEX.  Changes in the gate index used in the TOPEX wave

height calculations are believed to explain some of the features in the curves detailing the mean

differences (Fig. 4b).  The standard deviation of the scatter about these mean curves increases linearly

with wave height, apart from the increased scatter noted for Hs less than 1m.  Although all these points

have been selected as rain-free, the use of an 11-point median filter does reduce the scatter by about a



factor of two (Fig. 3d).  This provides an indication of the repeatability of averaged altimeter wave height

measurements for use in satellite-buoy comparisons.

Similar TOPEX-Jason comparisons and observations have already been reported (Ray & Beckley, 2003,

Vincent et al., 2003); what is particularly interesting in Fig. 3 is the comparison of the scatter of

observations from one instrument at two frequencies to the scatter of observations from two instruments

at the same frequency.  The two lower curves in Figs. 4c,d show that Hs estimates at TOPEX's two

frequencies agree as well as two measurements at Ku-band taken by different instruments.  The Jason C-

band values have larger along-track variability (Fig. 2), and consequently dominate all comparisons

involving that channel (Figs. 4c,d).

Backscatter strength and wind speed

Although many users may be more concerned about the agreement in wind speed estimates based on the

four channels, the comparison in Fig. 5 is in terms of 
0
, as this is the observed parameter, which is

relevant for geophysical retrievals other than just wind speed, and is not dependent upon any particular

wind speed algorithm.  The 
0
 values for Jason are not just a simple offset from TOPEX (Fig. 5a);

however, although the region for 
0

Ku > 12.5 dB ('reference  sigma0' > 16 dB) occupies half the abscissa,

it only represents the 10% of points with the lowest wind speeds.

The 
0
 values for TOPEX are calculated from an average over waveform bins 17-48 (Zieger et al., 1991),

corresponding to a ground footprint of ~8 km diameter (see Fig. 1); those for Jason are based on the

maximum of an 8-bin running mean (O.-Z. Zanife, pers. comm., 2003).  Low wind conditions tend to

generate more specular waveforms (steeper trailing edges); the increase in 
0

Ku bias between the two

altimeters at high 
0
 may thus be a consequence of the different definitions employed.  Certainly at

higher 
0
 the bias also shows a greater dependence on waveform-derived mispointing (see appendix).

Although this change in 
0

Ku bias at low winds is detectable, it is insignificant in the calculation of wind

speed.

In all comparisons there is greater variation in the high 
0
 regime.  These observations correspond to

generally low wind speeds, for which the correlation length is less than the diameter of the altimetric

footprint.  Consequently the 
0
 observations are an average over a number of patches with different

surface roughness.  This manifests itself by i) significant changes in both 
0

Ku and 
0

C in the ~72s

interval between the two altimeters' overflights, ii) large variability in the simultaneous measurements at

two frequencies, and iii) large variation between neighbouring 
0
 observations.  The relationship between

the 
0

Ku and 
0

C values also shows a dependence on wave height, which can be explained as the large

scale waves affecting the relative roughness at scales appropriate to Ku- and C-band radar scattering.

Extended patches of high ocean backscatter have been termed 'sigma0 blooms' by Mitchum et al. (2004)

who note that the condition occurs for ~6% of TOPEX's deep ocean observations, with each typically

extending over 150 km or more.

Atmospheric attenuation and rainfall

Separate algorithms for deriving atmospheric attenuation are required for TOPEX and Jason, because of

both the large offset in their 
0
 values, and the slight change in the 

0
Ku bias at high 

0
 (Fig. 5a).  There

is some cycle-to-cycle variation (Fig. 7c), which means that for the most precise rain studies, it is

advisable to calculate the 
0
-

0
 relation independently for each cycle and instrument.  However, the

results presented in this paper are for a rain flag algorithm based on a synthesis of cycles 4 to 21.

There is close agreement between the TOPEX and Jason determinations of 
0
 (Fig. 8).  McMillan et al.

(2002) have shown that for moderate to high winds the 
0
 calculated for TOPEX is, by itself, a reliable

indicator of rain; but at high 
0
, large positive and negative values of 

0
 may arise in the absence of

rain, with passive microwave observations needed to confirm the detection of rain.  However, significant



values of 
0
 are associated with altimetric anomalies irrespective of whether rain is their cause.  Figure

9 demonstrates the usefulness of a simple dual-frequency rain flag for selecting the majority of points

having variability within their 1s averaging interval, and also those having anomalous values of 
2
, Hs or

SSH, which would all be associated with non-ocean-like waveforms.  For high 
0
 values, there are many

more anomalies not picked up by the rain flag, which may be due to patchiness in the reflectivity within

the altimetric footprint.  Some users recommend discarding all data with 
0

Ku (TOPEX scaling) above

about 13.5 dB.  An attenuation threshold of 0.5 dB below the mean 
0
-

0
 relationship appears useful for

most applications (discarding less than 1% of global data); Table 2 gives the appropriate thresholds for

users with different data quality requirements.

In all, the verification phase has enabled close comparisons of Hs, 
0
 and 

0
 observations from the two

altimeters, revealing subtle differences in their behaviour.  The analysis of this paper should help the

development of a consistent climatology of sea state and rain spanning the TOPEX and Jason missions.

Appendix: Variation of perceived 
0
 with waveform-derived mispointing

The difference between TOPEX and Jason near-simultaneous records of 
0
 is not a simple offset, but a

function itself of the observed signal strength (Fig. 5a).  This offset is also a function of 2.  This term is

a measure of how much the slope of the trailing edge of the waveform differs from that expected for

reflections from a directly nadir-pointing instrument over a rough homogeneous surface.  This term is

often referred to as 'mispointing' because pointing of the instrument away from nadir will lead to a flatter

trailing edge, and thus positive values of 2.  However, other processes e.g. slicks, sea-ice or rain

partially within the footprint, can lead to changes in the trailing edge slope.

The majority of observations have | 2|<0.04, which is one of the editing criteria used in selection of

anomaly-free data (Table 1).  However, more extreme values of 2 are associated with a change in the

bias between Jason and TOPEX (Fig. A1).  TOPEX determines 
0
 from the total of all the bins in the

AGC gate (bins 17-48), whereas Jason uses the peak of an 8-bin running average across the waveform.

Thus the steepest trailing edges ( 2<0) should lead to proportionally higher 
0
 values for Jason, as shown

in Fig. A1a.  The C-band waveforms have a much flatter trailing edge (due to the larger antenna

beamwidth at the lower frequency).  The change in bias between TOPEX and Jason 
0

C values shows a

similar dependence on 2 for high values of 
0

C, but no offset at low values.  [ Note the lines in Fig. A1

are only drawn where there are sufficient data; thus 2 < -0.10 only occurs significantly for light to

moderate winds (TOPEX 
0

Ku > 11.5 dB), whereas 2 > 0.10 is only associated with high winds. ]

From Fig. A1 it is not clear how much of the effect is due to TOPEX, and how much to Jason's

processing.  Plots of the 
0
-

0
 relationship for Jason as a function of 2 (not shown) imply that values of

2 > 0.05 are associated with a relative shift between 
0

Ku and 
0

C of ~0.2 dB.  Further work may be

required to determine whether this is a processing artefact or whether such extremes of 2 are associated

with physical processes that affect the backscatter properties of the sea surface.  Certainly, there are

discrepancies between the TOPEX and Jason processing of such cases.
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Tables & Figures

Table 1 : Editing criteria used to generate a dataset free from contamination by land, ice or rain.  (T -

indicates test applied to TOPEX data; J - to Jason data.)

Parameter Test for keeping points

Topography (depth), d d < -1000 m

Latitude, -50˚ <  < 50˚

T: R.m.s. of range, h h < 0.08 m

J: R.m.s. of range, h h < 0.13 m

T: R.m.s. of wave height, Hs Hs < 0.12 m

J: R.m.s. of wave height, Hs Hs < 1.00 m

T: Waveform-derived mispointing,  < 0.22˚

J: Waveform-derived mispointing, 2 0.04 < 2 < 0.04˚

T: Brightness temperature at 18 GHz, BT18 BT18 < 180 K

J: Brightness temperature at 18 GHz, BT18 BT18 < 180 K
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Figure 10 : Cumulative probability of

observed atmospheric attenuation

exceeding a threshold (Cycles 10 and 11

used here.)

Table 2 : Global proportions of data flagged according to

various thresholds (based on cycles 10 and 11)  [ Note

proportions will change if MWR test also applied. ]

% of data

to

be

flagged

0

threshold

(dB)

Multiple

of

scatter,

s(
0

C)

0.5 -0.80 -5.64

1 -0.53 -3.74

2 -0.37 -2.69

3 -0.31 -2.26

5 -0.25 -1.83

10 -0.17 -1.31
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Figure 1 : Location of nominal '1 second' averages along track 123, for cycle 10 for Jason and

corresponding cycle 353 for TOPEX.  Circle (8km in diameter) indicates size of instantaneous AGC

footprint for TOPEX.
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data editing tests listed in Table 1. a) Ku-band value of Hs in 0.1m bins.  b) Ku- and C-band values of 
0

in 0.1 dB bins.  (Jason values not adjusted to match TOPEX.)
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Figure 2 : Comparison of various parameters for near-simultaneous TOPEX and Jason data along pass

225 (cycle 6 for Jason, cycle 349 for TOPEX).  Right-hand column shows in finer detail the variation

within the marked boxes in the left hand column.  a) Sigma0 (with bulk adjustment of Jason as discussed

in text and 3.55 dB subsequently removed from C-band values to overlie Ku-band values), b) Wave

height, c) Pseudo-SSH (which is orbit minus range with only dry tropospheric correction applied), d) 37

GHz brightness temperature from the TMR.
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black line represent Jason-Ku minus TOPEX-Ku plotted as a function of TOPEX-Ku etc. ]
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Figure 9 : Plots relating rain-flagging to other possible measures of data quality.  Shaded region indicates

histogram of all points in cycles 10 and 11 (note logarithmic axes); dark line shows histogram of those

flagged as rain by the dual-frequency technique.  The thick grey line shows proportion of points flagged

as rain (according to logarithmic axes on right hand side).  All plots relate to Jason Ku -band data, with

very low winds (
0

C >17 dB) discarded, and the rain-flagging criterion (
0
  -0.5 dB) selecting 0.85%

of the data.



Figure 10 : Cumulative probability of observed atmospheric attenuation exceeding a threshold (Cycles 10

and 11 used here.)  — Figure placed next to Table 2.
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Figure 11 : Geographical distribution of data flagged as rain, according to 
0
  -0.5 dB.  Data are from

cycles 4 to 21, of which 1.3% exceeds the threshold.  (Some spatial smoothing has been applied to

improve display.)

8 9 10 11 12 13 14 15 16 17 18 19 20

2.2

2.4

2.6

2.8

3

8 9 10 11 12 13 14 15 16 17 18 19 20
0.5

0.6

0.7

0.8

0.9

KEY

Si
gm
a0
 d
if
fe
re
nc
e 
(J
-T
) 
in
 d
B

Si
gm
a0
 d
if
fe
re
nc
e 
(J
-T
) 
in
 d
B

Sigma0 (dB)

a)

b)

Figure A1 : Changes in 
0
 offset between Jason and TOPEX as a function of Jason's waveform-derived

mispointing, 
2
.  a) Ku-band, b) C-band.
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