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Abstract 

 

This study considers a specific issue, often termed the canopy effect that relates to our 

ability to provide accurate conductivity models from airborne electromagnetic (AEM) 

data. The central issue is one of the correct determination of sensor height(s) above 

the ground surface (terrain clearance) to the appropriate accuracy. The present study 

uses the radar and laser systems installed on a fixed-wing AEM system to further 

investigate the effect. The canopy effect can arise due to a variety of elevated features 

below, and in the vicinity of, the flight line. The most obvious features are well-

defined forest and copse zones together with domestic, commercial and agricultural 

buildings. Such features may cause the terrain clearance to be underestimated and this 

has the potential to introduce resistive artefacts and incorrect interface depths into 

conductivity models. Correct determination of terrain clearance is also important for 

the accurate processing of the other geophysical data sets acquired by airborne 

surveys. Radar and laser altimetry offer two very different physical measurements of 

height above ground. Airborne radars detect the range to the nearest reflecting object. 

They do this over a cone of influence that may have a radius (at the ground surface) of 

~55 m (assuming a survey height of 60 m). Reflections from objects that are off-line 

are thus a distinct possibility. In direct contrast, a laser ranging device with low beam 

divergence provides a highly focussed measurement. Laser accuracies (typically < 

2cm) are far greater than those of radars (typically ~0.5 m). In addition, the rapid 

sampling of laser ranging devices (e.g. up to 2 kHz) allows both real-time and post-
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processing algorithms to be applied to estimate the maximum range recorded across 

appropriate time/spatial windows. In our case a 2 kHz (maximum) dual-pulse laser 

when sampled at 200 Hz provides a x50 oversampling in relation to the 4 Hz 

sampling of the EM components. Our studies from recent surveys indicate that the 

radar altimeter often provides significantly underestimated values of terrain clearance. 

Such estimates may be in error by up to 10 or 15 m across dense woodland. The 

issues of accuracy and reliability raised by the routine application of laser altimetry to 

AEM surveys and conductivity models are evaluated.  It is demonstrated that it is now 

possible to obtain reliable laser estimates of true height above ground surface across: 

(a) most forms of canopy encountered, (b) built structures of limited spatial scale and 

(c) bodies of water. 

 

 

 



4 
 

Introduction 

 

Airborne electromagnetic (AEM) surveying can employ frequency-domain or time-

domain techniques. The frequency-domain systems, considered here, currently exist 

as towed-bird configurations comprising coil sets within a rigid sensor boom towed 

beneath a helicopter (HEM systems) and as fixed-wing (wing-tip sensor) mounted 

coil sets. The frequencies employed by the two systems are similar with the HEM 

configurations capable of recording to a higher frequency, in excess of 100 kHz. 

Transmitter-receiver separations are typically 8 to 9 m in modern HEM sensor birds 

while fixed-wing system separations can exceed 21 m. These differences lead to 

potential differences in operational heights in terms of maintaining adequate 

signal/characteristics. A comparison of typical HEM and fixed-wing responses 

(coupling ratios) was presented by Beamish (2003). The provision of adequate 

signal/noise at survey sensor elevations above 50 m is a critical factor when flying 

regulations preclude surveying at lower flight altitudes. Broadly, in terms of general 

AEM surveying behaviour, we can anticipate coil sensor elevations in the range 30 to 

60 m, although exceptions are inevitable. 

 

Altitude estimation in airborne systems may utilise a variety of sensors and 

procedures. These include differential or multi-receiver GPS (required as part of 

survey navigation and accurate survey data location). Radar and laser altimeter 

systems are the primary sensors used to determine the height of the sensors above 

ground surface. Multi-parameter geophysical systems may also include on-board 

barometric altimeters (recording height above mean sea level) and are typically used 

for STP (Standard Temperature and Pressure) airborne radiometric calculations. 
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Accuracies and behaviours of these systems are considered later. The main focus of 

interest for the purpose of this study are the radar and laser altimeters used to 

determine sensor (i.e. the transmitter and receiver coil pairs) height above ground 

surface. The parameter is highly significant in the estimation of conductivity data and 

models derived from the observed coil-coil coupling ratios. A study using only radar 

altitude information was presented by Beamish (2002a). 

 

Forward modelling of AEM responses allows the prediction of signal/noise 

performance of specific AEM systems and coil configurations. It is also possible to 

predict the accuracy required of the measurement of height above ground. Both 

measurement accuracies are related to the predicted, measured or assumed noise level 

of the coupling ratios. In general the highest frequency of each system determines the 

highest accuracy that should be achieved. In addition, the altitude accuracy 

requirement is more stringent for surveys performed over conductive environments 

and at low altitude. The sensitivity of coupling ratios to altitude is system specific and 

the investigations performed in this study are based on the AEM-05 fixed wing (Twin 

Otter) frequency-domain system and associated measurement systems described by 

Leväniemi et al. (2009).  The system incorporates 4 dual vertical coplanar coils 

mounted on the wingtips and provides a bandwidth from 900 Hz to 25 kHz. 

 

A simple comparison of typical radar and laser systems used in AEM surveys reveals 

the following. The typical and stated accuracy of a modern laser system is a few 

centimetres while that of a typical radar may be or the order of 0.5 m.  

This is demonstrated in Figure 1 which shows well-calibrated radar (Ralt) and laser 

(Lalt) altimeter data, sampled at 4 Hz, obtained across a 1 km section of a lake. The 
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survey aircraft undergoes a 4 m altitude undulation over the 1 km profile however the 

stated accuracies of the two devices appear to be observed. A second difference in the 

two types of altitude measurement lies in their physical beamwidths. A radar system, 

operating pulse modulation at a frequency of ~4.3 GHz, may have a beamwidth 

defined by an angle of up to 68°. The system will measure the distance to the nearest 

reflecting object within a spatial scale defined by a 3D cone of influence as indicated 

schematically in Figure 2. Reflections from objects that are off-line are a distinct 

possibility, particularly as survey elevation increases. In direct contrast, a modern 

laser system data is capable of very rapid sampling with a very low beam dispersion 

(typically 1 to 2 mrad). At normal AEM survey altitudes, a laser system should 

provide a zone of influence that is approximately a vertical tube <15 cm in diameter at 

the ground surface. This is indicated schematically in Figure 2. A final difference that 

stems from their physical beamwidths, is their differing abilities to provide accurate 

measurements of height above ground surface in the presence of elevated features. 

Features such as forest and copse zones together with domestic, commercial and 

agricultural buildings may cause either of the two systems to record an 

underestimated ground clearance and this is generally called the canopy effect (e.g. 

Fraser, 1978; Beamish, 2002a). As is demonstrated here, a conventional laser 

altimeter system in the presence of light canopy can provide penetration to the ground 

surface. Recent laser systems deployed on fixed-wing platforms and in EM birds have 

used a dual-pulse laser altimeter (Ahl and Winkler, 2006; Leväniemi et al., 2009). The 

AEM-05 system incorporated a Riegl dual pulse (meaning that it can differentiate the 

times of the first and last pulse it receives) laser in 2005. The device has a maximum 

pulse sampling rate of 2 kHz. The device is programmable so that for longer 

measurement times, single laser shots are averaged. The device then returns amplitude 
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and quality factors of the reflection characteristics. The rapid sampling of laser 

ranging devices allows both real-time and post-processing algorithms to be applied to 

estimate the maximum range recorded across appropriate time/spatial windows. It is 

this extended ability that allows for an increased accuracy and uniformly reliable 

measurement of height above ground surface for all AEM surveys. 

 

 

 

Altitude estimation in airborne systems 

 

Although different airborne systems employ different altitude estimation 

configurations, a common set of modern survey navigation/altitude sensors includes 

one or more multi-channel differential GPS systems providing x, y, z  location.  In 

these systems the vertical (z) measurement provides height above a reference geoid 

(e.g. WGS-84). Radar and laser altimeters are used to measure height above ground 

surface and a barometric sensor to measure height above mean sea level. 

 

The accuracy of the GPS vertical measurement is linked to the overall accuracy of the 

GPS installation and the processing that is carried out to reduce the error terms 

inherent in GPS location measurements. These are discussed in relation to the 

estimation of digital elevation models derived from airborne geophysical survey data 

by Richardson (2000) and Hauteneimi et al. (2005). Currently differential GPS 

involving an-board GPS receiver operated with a base station receiver, located in the 

survey area, is a common operational format. In broad terms the vertical GPS-z 

measurement is inherently less accurate than the GPS-x,y measurement. 
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Differential GPS reduces the effects of these errors and provides improved accuracy 

to the order of several metres. Note that calculated horizontal positions are more 

accurate than associated ellipsoidal heights because of the influence of satellite 

geometry on vertical positions. Some of the errors listed above influence the vertical 

component much more than the horizontal component. A rule of thumb is that the 

ellipsoidal height accuracy is 1.5 times worse than the horizontal accuracy (Natural 

Resources Canada, 1995).  

 

 

The differential GPS system operated as part of the AEM-05 system is well described 

by Hautaniemi et al. (2005). The system employs single frequency (L1) 

GPS+GLONASS constellations although the GLONASS network is now not fully 

operational. To improve the observed GPS+GLONASS data, a differential correction, 

using base station data, is applied to the observed coordinate data. In the differential 

correction, errors caused by ionospheric and tropospheric refraction, ephemeris and 

lock errors are significantly reduced. Coordinate transformation from WGS84 to local 

planar coordinate system is also undertaken. It is estimated that with single frequency 

GPS+GLONASS receivers in differential mode, and using appropriate commercial 

GPS software tools, we can measure the GPS-z reference height to a typical accuracy 

of about 1.5 metres (Hauteneimi et al., 2005). 

 

Radar and laser altimeter systems are discussed in more detail later. A typical radar 

system may have an accuracy of about 0.6 m (at 30 m elevation) increasing to ~1 m at 

elevations above 50 m. A modern laser system is far more accurate and a typical 
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accuracy is a few (e.g. 2 to 3) centimetres. On-board barometric altimeters (recording 

height above mean sea level), are typically used for STP (Standard Temperature and 

Pressure) airborne radiometric calculations. To increase reliability and accuracy for 

height estimation (e.g. for EM applications) they require simultaneous base station or 

radio-link control tower information to accommodate inherent atmospheric weather 

variations. Evaluations of the accuracies of these systems have been undertaken by 

Aviation Authorities (e.g. the Federal Aviation Authority) using simulation models. 

Typically, sustained accuracies of better than several metres cannot be expected. 

 

In broad terms the two main, sub-metre measurements of sensor elevation above 

ground currently available are those provided by radar and laser systems. It is 

acknowledged that this situation may change as multi-frequency, multi-receiver GPS 

and real-time kinematic networks and procedures continue to evolve. Despite the 

theoretical accuracies described above, the two main measurements are known to 

suffer from high inaccuracies (>50%) when attempting to record height above ground 

level across dense canopy and elevated structures. The abilities of these systems to 

provide accurate and reliable sensor elevations for airborne EM applications is the 

main issue investigated in this paper. 

 

Canopy effects, due to elevated features, result in underestimated radar and laser 

altimeter readings of height above ground. A second class of effect, termed the 

paddock effect, has been noted by Richardson (2000) and is further described by 

Brodie and Lane (2003). The paddock (meaning a ploughed portion of land) effect, as 

currently defined, results in overestimated radar altimeter readings only.  It is 

suggested that a possible reason for the observed paddock effect is that surface 
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roughness of the same order as the wavelength of the radar (=7 cm for a 4.3 GHz 

radar) influences the shape and timing of the radar reflections. A reduction in 

amplitude, or a shift in the timing, appears to result in an overestimated estimate of 

time-travel and hence altitude. Richardson (2000) and Brodie and Lane (2003) 

provide examples in which the radar altitude is overestimated by 3 to 5 m in these 

circumstances.  

 

The inter-calibration of radar and laser altitude estimates is best performed, or 

verified, over bodies of still water such as lakes. When such estimates are compared 

on an individual survey basis, a typical pattern emerges as shown in Figure 3. The 

radar (Ralt) and laser (Lalt) elevation estimates shown come from a small detailed 

survey (1700 line-km) that employed a line-spacing of 75 m.  The survey area in 

southern Finland is predominantly rural (fields, forests and lakes). The procedure used 

to obtain the laser estimates (the Lmax algorithm) is described later. The data, 

sampled at 4 Hz, comprise ~150,000 points and the nominal survey elevation is 30 m. 

The distinct bias to significantly positive values of the difference Lalt - Ralt is 

evident. Some 79% of the altitude estimates provide values with Lalt minus Ralt  

greater than, or equal to, zero. The smaller amount of apparently overestimated Ralt 

estimates (i.e. Lalt < Ralt) are largely confined to an amplitude range of < 4 m. A 

detailed investigation was carried out in relation to possible associations between 

areas of cultivated land (as defined on maps) and the occurrence of the condition 

Lalt<Ralt. No persistent associations, that would have supported the paddock effect, 

were found.   
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Altitude dependence of AEM coupling ratios 

 

The sensitivity of coupling ratios to altitude is system specific. Here we consider only 

the AEM-05 system. The behaviour of coupling ratios with altitude is an important 

element in determining the accuracy required in the associated estimate of altitude. 

The highest frequency of each system determines the highest accuracy required. The 

altitude accuracy requirement is most stringent for surveys performed in conductive 

environments and at low altitude. 

 

As an example, we consider the AEM-05 system and the highest frequency of 24,510 

Hz. Using a survey altitude of 30 m we calculate the response for a series of half 

space conductivities for sensor elevations that may be underestimated by up to 10 cm 

(i.e. an elevation range from 29.90 to 30 m). The response used is the modulus of the 

complex (real and imaginary) coupling ratios. The results for a resistive half space 

(1000 ohm.m) and a moderately conducting half space (10 ohm.m) are shown in 

Figure 4. The coupling ratios for an altitude of 30 m are 2258 ppm (1000 ohm.m) and 

23,984 ppm (10 ohm.m) and the results are shown normalised to these reference 

response values. 

 

The results obtained for the 1000 ohm.m half-space are clearly insensitive to errors in 

altitude. The variation over the 10 cm range is less than 10 ppm which is within the 

typical noise envelope of acquired survey data. This implies that a 10 cm altitude 

difference ascribed to the altitude would not unduly influence the models obtained 

across entirely resistive terrains. In the more conductive 10 ohm.m environment, 

response differences extend to 186 ppm indicating that a 10 cm error in altitude at a 
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nominal survey elevation of 30 m, would be significant (well above typical acquired 

noise figures at this frequency). If we were to adopt a precise noise level of, say 60 

ppm, then the required accuracy of the altitude estimate is predicted to be ~3 cm. This 

is clearly beyond the accuracy available from typical radar systems and can only be 

achieved with a laser ranging device. In practice, since the sensor is moving at ~15 m 

per second, the centimetre accuracy would only be truly meaningful in the case of a 

perfectly flat surface. The influence of altitude error decreases with decreasing 

frequency. The equivalent response at a lower frequency of 3005 Hz is also shown in 

Figure 4. 

 

As an indication of the differential effects of altitude with frequency it can be noted 

that, for the 10 ohm.m half space model and an elevation of 56 m, an elevation 

difference of 10 cm produces response differences of only 24 ppm. Since AEM 

surveys may be conducted at a variety of nominal elevations, it is the lowest elevation 

that determines the required accuracy of the height above ground measurement. 

 

 

When interpreting data from a multi-frequency system, the different sensitivities of 

the coupling ratios at each frequency produce a different error at each frequency if an 

error in the altitude assignment occurs. The errors in coupling ratios due to an 

incorrectly assigned altitude increase with both conductivity and frequency. Thus if a 

conductivity model is determined from multi-frequency data with an underestimated 

altitude, the model is progressively biased (to a progressively more resistive estimate) 

with increasing frequency. This has the net result of providing overestimated 
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resistivities in the upper sections of the model. The effect on two forms of 

conductivity model is now described. 

 

 

Influence of altitude errors on 1D conductivity models 

 

It should first be noted that the standard single frequency Fraser half-space 

transformation (Fraser, 1978), when applied using both in phase and quadrature 

coupling ratios, is effective in returning resistivity estimates unbiased by errors in the 

altitude estimate (Beard, 2000). Beamish (2002b) suggested the Fraser pseudo-layer 

procedure resulted in conservative estimates of conductivity when compared to 

estimates obtained by equivalent iterative, minimisation procedures. 

 

In order to distinguish vertical resistivity variations and obtain a formal measure of 

model validity one can use a multi-layer 1-D inversion (Beard, 2000; Constable et al., 

1987; Fitterman and Deszcz-Pan, 1998; Paterson and Redford, 1986; Sengpiel and 

Siemon, 1998). The models returned by such inversions are non-unique because they 

typically solve an underdetermined problem. They therefore employ additional 

constraints to stabilise the problem, such as the Marquardt-Levenberg regularisation 

or smoothness constraints. Smoothness constraints can be applied in the vertical or 

horizontal (lateral) directions. 

 

Multi-layer iterative minimisation inversion methods can be used to provide both 

uniform half space models (Beamish, 2002b) and models containing few or many 

layers (Tølbøll and Christensen, 2006). Here we consider how altitude errors 
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influence both few and many layer models when altitude is assumed to be known (and 

accurate) in an inversion procedure. 

 

The synthetic model comprises 2 conductive layers (100 mS/m) in a resistive (1 

mS/m) host. The first conductive layer has a thickness of 5 m and is located between 

depths of 10 and 15 m. The second conductive layer has a thickness of 20 m and is 

located between depths of 60 and 80 m. The model has five layers including the 

underlying half space. The model is used to calculate synthetic responses for the 

AEM-05 system at a fixed elevation. In this study, an elevation of 50 m is used. 

Incremental errors to the correct altitude are then introduced to allow an assessment of 

the model distortions introduced by using an incorrect altitude. 

 

The altitude-error effect on a few layer model assessment is considered first. The 

inversion method used is the constrained conjugate gradient inversion described by 

Tartaras and Beamish (2006). Although developed for the application of lateral 

constraints to model calculations, the method is inherently stable and does not require 

regularisation even when lateral constraints are not used. In the case of the discrete 

altitude-error behaviour, lateral constraints were not employed. 

 

When dealing with survey data, the actual (or most appropriate) number of layers 

must be evaluated. In the case of the synthetic data, the number of layers is known 

precisely. The synthetic model was used to generate the 4 frequency fixed-wing 

response assuming a survey elevation of 50 m. Gaussian random errors at the 2.5% 

level were then added to the data. A series of altitude errors of between -15 m (i.e. 

underestimated elevations) and +5 m (i.e. overestimated values) were then introduced 
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to the data in 1 m increments. The results of inverting the data set are summarised in 

Figure 5. The model obtained using the correct altitude (50 m) is arrowed. All models 

across the range of altitude errors detect the 2 conductive layers within the resistive 

host. In broad terms the thickness of the upper conductor is approximately correct but 

the conductivity is underestimated. The latter result is connected with the limited 

thickness of the conductor rather than any error in altitude. The conductivity of the 

lower conductor is approximately correct but the thickness is persistently 

overestimated. The inversions return chi-square misfits (Constable et al., 1987) of 8 

for all the models when 2.5% errors are assigned. Since the expectation of the data 

misfit is 8, all the models are equally well-fitted. In this case, a ch-square misfit of 8 

corresponds to an rms misfit of unity. 

 

The effect of underestimated altitude errors on the few layer model is to artificially 

increase the depth estimate of the two conductive layers (for this model). A reciprocal 

situation occurs when altitude is overestimated and the depth to both conductive 

layers is underestimated. If we consider that altitude may be underestimated by 15 m, 

then the depth of near surface conductive features may be overestimated by ~ 15 m 

and the depth to deeper conductive features may be overestimated by more than 20 m. 

 

The corresponding behaviour in the case of many layer inversion models is now 

considered. An Occam (Constable et al., 1987) multi-layer procedure offering 

regularised, smooth models in the vertical direction is used (e.g. Farquharson et al., 

2003). The advantage of the procedure is that there is no requirement to set the 

number of conductivity interfaces (layers) within the model. The models produced 

however cannot detect interfaces; neither can they recover ‘true’ layer conductivity 
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values. The inversion model is essentially a smooth representation of the most likely 

1D conductivity distribution. The inversion starting model used a uniform half space 

divided into 35 layers above a half space.  For the synthetic model data, a standard 

error of 2.5% was assumed. 

 

The results of inverting the data set are summarised in Figure 6. The model obtained 

using the correct altitude (50 m) is arrowed. All models across the range of altitude 

errors detect the 2 conductive layers within the resistive host as 2 local maxima in the 

conductivity profile. In the vicinity of the correct altitude, both conductivities are 

clearly underestimated. The depth to the near surface conductor displays a similar 

pattern to that observed in the few layer case. As the error in the underestimated 

altitude increases, the Occam minimisation attempts to fit the incorrect data (incorrect 

by virtue of the altitude assigned) by introducing more extreme (oscillatory) model 

behaviour. Again, the inversions return chi-square misfits of 8 for all the models when 

2.5% errors are assigned. 

 

Many of the published formal AEM inversion strategies do not appear to require the 

use of an equivalent pseudolayer (a fixed high resistivity at-surface layer of variable 

thickness) to accommodate errors in altitude. It is theoretically possible to include 

sensor altitude as an unknown parameter in an inversion strategy (e.g. Hodges, 2003). 

This has the general net effect of increasing the number of unknowns thereby 

increasing the parameter resolution issues within an already underdetermined 

problem. An alternative procedure in few layer inversion strategies was proposed by 

Beamish (2002b) and reiterated by Tølbøll and Christensen (2006). The air-layer 

technique introduces a high resistivity (equivalent to air) upper layer to represent 
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sensor altitude above ground surface. The layer thickness is free to vary but the 

resistivity (e.g. 100,000 ohm.m) is highly constrained or fixed. The air-layer 

technique is more difficult to implement within a many layer, regularised inversion 

procedure since the first or second vertical derivative of the conductivity profile is 

constrained to be a smooth function.  

 

Given the difficulties arising in the case of providing an accurate and reliable estimate 

of sensor height above ground, it would be preferable to investigate the degree to 

which the estimate can be improved. As already stated, it is likely that only laser 

altimetry can provide the centimetre accuracy required. The behaviour of both radar 

and laser systems is now investigated. 

 

 

Radar and Laser altimeter systems 

 

There are, of course, a variety of radar and laser altimeter systems employed in AEM 

systems. A typical and common radar installation manufactured by Honeywell/Sperry 

or by Collins operates at a frequency of around 4.3GHz (short pulse modulation). The 

accuracy of these devices is usually quoted as being the greater of two quantities i.e. 

an absolute figure of about 0.6 m or 2% of the elevation (at low survey altitudes). 

There is a general indication that even with spatial filtering of oversampled data, an 

accuracy level of better than 1 m may not be achieved with radar altimeters (Brodie 

and Lane, 2003). A second important parameter in radar altimeters is the beamwidth. 

Normally this is defined as the angle between two directions in a plane containing the 

maximum of the beam (i.e. the vertical plane in this case) in which the radiation 
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intensity is half the maximum value of the beam or -3 dB. The radar altimeter 

effectively measures the distance to the nearest reflecting object within its beamwidth. 

A typical beamwidth figure appropriate to Honeywell/Sperry and Collins radar 

systems is 50 degrees, although mean estimates may vary between values of 45 and 

68 degrees.  

  

Modern laser altimeter systems of the type employed in AEM systems (e.g. 

manufactured by Optech and Riegl) have a typical pulse repetition rate of up 2 kHz. 

Laser systems deployed in bird systems appear to sample the laser data at the fastest 

geophysical channel rate e.g. 10 Hz. Specifications of such systems indicate that the 

laser altimeter measures the distance from the EM bird to the ground, except in areas 

of dense tree cover. The disturbances to laser EM bird altimeter data caused by trees 

and buildings are noted by Tølbøll and Christensen (2006) and Siemon (2009). 

 

More recent laser systems deployed on EM birds have used a dual-pulse laser 

altimeter (Leväniemi et al., 2009, Ahl and Winkler, 2006). The AEM-05 system, 

considered here, incorporated a Riegl dual pulse (meaning first and last pulse) laser in 

2005. The device has a maximum pulse sampling rate of 2 kHz. The device is 

programmable so that for longer measurement times, single laser shots are averaged. 

The device then returns amplitude and quality factors of the reflection characteristics. 

A last target detection capability of multiple (or obscured) targets is also provided. In 

theory, the control provided should allow the laser to be ‘tuned’ for routine 

measurement of distance to the ground surface through obscuring reflectors such as 

vegetation and canopy (although not through solid structures such as buildings). The 
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procedures applied to the processing of such laser data are now described and a 

detailed case study is presented. 

 

The Lmax algorithm 

 

In practice, by operating the laser at 200 Hz, an oversampling of x50 is achieved in 

relation to the standard 4 Hz sampling of the EM components. The averaging is useful 

for accurate detection of badly reflecting targets or for targets with changing 

reflection characteristics during measurement (e.g. a water surface). At a typical 

flying speed of 60 m/s, the raw 2 kHz sampling equates to a shot every 3 cm. 

Averaging over 10 points to provide a 200 Hz estimate equates to a distance of 30 cm.  

 

The laser altimeter data are recorded as a separate data stream at 200 Hz. 

The 50 point redundancy in the sampling then allows a post-processing algorithm, 

based on independent windows of 50 samples, to obtain an accurate (although 

necessarily spatially-averaged) estimate of height above ground surface for the EM 

data channels (i.e. resampled to 4 Hz). The simplest procedure is to determine the 

maximum value of the laser data across the 50-point data window. This procedure is 

referred to here as an Lmax estimate. In most cases this provides an effective measure 

of true height above ground surface through vegetation and most types of canopy we 

have encountered. In extreme cases of high reflectance (sun on water), all individual 

data point may be null returns and, in this case, the final estimate is a zero value. 

 

It should also be noted that the stated accuracy of measurement of such systems is 2.5 

cm and this should be readily achieved when averaging raw 2 kHz data across 
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reduced time intervals such as 200 Hz. In addition the most important feature of the 

laser measurement is that it is a beam with a limited amount of divergence. The stated 

beam divergence figures for the AEM-05 device indicate that the beam diameter on 

the ground will be less than 15 cm for most survey flight elevations. 

 

The behaviour of the 200 Hz laser data in relation to its resampled form and the radar 

data is best illustrated using a detailed example above a building. The use of a well-

defined structure, rather than canopy, provides a more robust example with clean edge 

effects. Figure 7a shows a downward-looking image from the AEM-05 video system 

above a single structure within an industrial estate in the UK. Survey altitude above 

ground is about 66 m and the building is about 40 m wide (edges A and B) and 5 m 

high. The flat roof of the building has a series of 4 ventilation structures, each about 1 

m high. The flight path traverses the centre of the image as shown by the dash line. 

 

Figure 7b shows the 200 Hz raw and 4 Hz resampled Lmax laser data, together with 

the radar altitude recorded across the structure. The total elevation range shown is 11 

m.  The 200 Hz laser data defines reflections from the main edges of the building (A 

and B) together with the ventilation structures. The general decreasing trend in 

elevation is due to a small (< 2 m) aircraft descent along this portion of the flight line. 

The variation is recorded by the GPS-z (height above geoid) data shown (a value of 

73 m was subtracted to contain the data within the scale of the graph). Across the 

central structure, both radar and the 200 Hz laser data provide underestimated values 

of height above ground level. The less accurate behaviour of the radar altimeter (i.e. it 

is perturbed by two structures) can also be noted. On the open ground to the north of 
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the structure, radar and laser data return correct height above ground some 20 m from 

the northern edge of the building. 

 

The Lmax 4 Hz laser data is shown by the line with open square symbols. Two 50-

point data windows centred on estimation points 1 and 2 are indicated. Using the 

simple Lmax algorithm these points would have been underestimated due to width of 

this large structure. Most structures encountered at low survey elevations are, in fact, 

single structures such as rural houses and farms. The simple Lmax algorithm is able to 

obtain accurate height above ground across the majority of these structures of limited 

spatial extent. Since the perimeters of many conurbations in the UK now contain 

industrial units of similar scale to that used in this example, a revised Lmax algorithm 

has also been evaluated here. In this case, an expanding window technique (e.g. using 

successive expansions of 50, 100, 200 data points), allows the adjacent spatial 

consistency of different estimates to be compared. Clearly many aspects of the basic 

Lmax algorithm can be developed to suite different circumstances and requirements. 

 

The extent to which laser systems are capable of providing accurate and reliable 

estimates of height above ground surface for AEM applications are now considered in 

a case study. 

 

 

Survey case study 

 

The case study example considers a portion of single survey line acquired across the 

edge of a lake, then across a dense canopy and then across a single isolated building. 
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The features are included within a profile length of some 660 m. Selected flight video 

images (Figure 8) show a lake in sunlight (labelled A), a central deciduous wooded 

area (labelled B) and an isolated building (labelled C). Figure 9 then shows a 

comparison of radar altitude (RALT, 4 Hz) and laser altitude (200 Hz, raw and 4 Hz, 

Lmax resampled) over a time interval of 11 seconds. Assuming a survey speed of 60 

m/s, the corresponding distance is 660 m.  

 

Over the lake (A), the 200 Hz laser data suffers a series of zero amplitude (null) 

returns that are classed as zero altitude. The radar altitude returns are stable across 

what is assumed to be a flat body of water. Across the wooded area (B), the 200 Hz 

laser data show a complex sequence of returns (altitudes between 46 and 68 m) that 

may be interpreted as true height above ground surface (e.g. largest altitudes, full 

penetration through the canopy,) and the height of the upper canopy (smallest 

altitudes). Between these 2 limits, we assume partial penetration of the canopy occurs. 

The radar, with a much lower (averaging) spatial resolution, shows a characteristic 

smooth decrease from the woodland edges (less dense foliage) through to the centre 

of the woodland (foliage most dense, and taller trees).  The laser clearly identifies the 

isolated building (C), a sports pavilion, together with the slope of its pitched roof.  

 

The resampled 4 Hz laser for the example is shown in Figure 9 by the blue trace.  

Over the body of water we obtain correspondence between the radar and laser 

estimates. Across the forested area, a realistic upper bound to the raw 200 Hz laser 

data is obtained. This upper trace follows the same trend observed in the GPS height 

above geoid (shown as the uppermost trace). The depression observed in the radar 

altitude across zone B is interpreted as reflecting the height of the canopy. The results 
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indicate that errors in the radar estimate of height above ground extend to 11 m, in 

this example. 

 

The effect of the underestimated radar altitude on conductivity models for these data 

has been investigated by comparing the results obtained using Ralt and Lmax as the 

known altitude parameter in an inversion procedure. Here we consider the two cases 

of few and many layer inversion procedures, as previously described. The many layer 

Occam procedure is considered initially as it provides an indication of the most 

appropriate number of layers for use in subsequent few layer inversions. As in the 

previous synthetic data study the inversion starting model used a uniform half space 

divided into 35 layers above a half space.  A simple and uniform standard error of 5% 

was assumed as the error model for the data. 

 

The conductivity models obtained are compared in Figure 10a (Ralt) and 10b (Lmax). 

The lateral extent of the central canopy effect as defined by the Lmax and Ralt 

altitude differences is indicated by arrows. The zone of maximum canopy effect (~12 

m) is indicated by the shaded rectangles. Both models reveal 2 conductive layers, the 

first a shallow thin zone followed by a deeper, more conductive and thicker zone. The 

geological context is a Quaternary sequence with the higher conductivities being 

ascribed to clay content. The perturbation to the model obtained using Ralt (Figure 

10a) is similar to that observed in the synthetic model study. In the case of the survey 

data, the canopy effect is progressive and leads to a depression in both shallow and 

deeper conductive zones. A further effect is to produce a highly resistive zone (<0.5 

mS/m, as indicated) in the at- and near-surface zone of maximum height of canopy. 
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Assuming a 5% error model, the chi-square misfits range from the expectation level 

of 8 to a maximum of 13 (Ralt) and 14 (Lalt).  

 

The smooth Occam models essentially map gradients in the vertical conductivity 

profiles. As can be seen in Figure 10, there are large apparent variations in the 

location of the maxima in conductivity, particularly in the deeper conductive zone, 

across the profile. A few layer inversion with lateral constraints can also be applied to 

the data, to reduce the point-to-point variability in the conductivity models and to 

better demonstrate the canopy effect.  The inversion method used is the constrained 

conjugate gradient inversion described by Tartaras and Beamish (2006). Following 

the previous Occam analysis, a 5 layer model configuration was assumed appropriate. 

The conductivity models obtained are compared in Figure 11a (using Ralt) and 

Figure11b (using Lmax). The canopy parameters are again indicated by arrows and 

the grey rectangles. In the laterally-constrained few layer models, the canopy effect is 

much clearer. In the Ralt inversion (Figure 11a) the perturbation in the depth to the 

top of each conductor follows the general behaviour of Ralt observed in Figure 9. The 

thickness of each layer remains uniform across the profile however the behaviour 

observed is linked to the fact that the starting model used is matched to that 

determined by the preceding Occam analysis. Again, the chi-square misfits are found 

to be within 2 standard deviations of the expectation values for both sets of inversion 

results. The inversions thus appear to be fitting both data sets equally well. 

 

 

Laser altimeter behaviour across bodies of water 
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One of the aspects concerning the reliability of laser altitude measurements is their 

ability to provide valid measurements across bodies of water undergoing a high light 

reflectance due to the presence and angle of the sun. The water bodies may be inland 

lakes, rivers, estuaries or the sea. The previous survey case study provided a small 

example of the behaviour observed. The high reflectance condition may also occur 

over snow/ice covered land or sea. The degree to which this condition is encountered 

is obviously survey specific. For each survey undertaken it is possible to investigate 

the Lmax data set for zero/null returns (i.e. no reflections detected across a 3 m spatial 

window). When such analyses are carried out in conjunction with topographic maps it 

is possible to establish the locations of the zero returns. Using the flight-path video 

images it is also possible to establish the qualitative reflectance characteristics at the 

locations of the zero returns. Examination of large quantities of our survey data 

reveals that the almost exclusive majority of zero returns are indeed connected with 

water bodies and the presence, strength and angle of the sun. It should be noted that 

some surveys over areas containing lakes have produced no zero returns and this is 

simply related to the prevailing weather. Low sun angles (e.g. early morning) can 

produce localised zones of zero returns. Figure 12 is an example, taken from part of a 

detailed survey area in southern Finland. The rectangle shown on a topographic 

background map was surveyed using N-S flight lines with a separation of 75 m. 

The symbols are posted at locations along each flight line which provide null returns 

using the standard Lmax algorithm. The background topographic map identifies the 

locations of all the null laser returns with lakes (shown in blue). In this example, the 

null sequences along each flight line do not involve large numbers of estimates and an 

interpolation through each sequence might be considered appropriate. 
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High angle, strong sun reflections over extensive water bodies can provide spatially 

extensive null returns in laser altimeter data. In these cases it is necessary to assume 

that the water body is flat and that the Ralt measurement can provide an adequate 

measurement of height above the water surface. The method adopted in such 

circumstances is simply to replace the laser height estimate (a null) with that obtained 

by the radar altimeter. 

 

 

 

 

Summary and conclusions 

 

The accurate and reliable estimation of height above ground (sensor elevation) 

contributes to the successful determination of conductivity models from AEM data 

sets. Both radar and laser altimeters are currently in routine use in modern AEM 

systems. The accuracy in sensor elevation required by a given AEM system is 

determined by the highest frequency employed and the associated noise level of the 

EM response at that frequency. Required sensor elevation accuracies increase at lower 

flight elevations and with increasing conductivity. Most modern AEM systems 

require the centimetre accuracy only available with laser ranging devices. 

 

The canopy effect has the potential to provide significant (up to ~50%) errors in the 

measurement of sensor elevation when AEM surveys are conducted at low altitude.  

When canopy/structures are encountered, the differences in beamwidths of the two 

devices can provide different estimates of sensor elevation. When an underestimated 



27 
 

altitude is used to derive a few or many layer conductivity model from multi-

frequency data, the net effect is to introduce near-surface resistive artefacts into the 

model.  Depths to deeper conductive zones may also be significantly overestimated. 

Examples of the behaviour of conductivity models due to incorrect altitude 

assignments have been provided here for both synthetic and survey data. Further 

discussions of the modelling and interpretation complexity introduced by the 

unreliability of sensor elevation estimates can be found in Tølbøll and Christensen 

(2006) and Siemon et al. (2009). 

 

Given the spatial complexity and persistence of canopy/structure effects in AEM data 

sets, it is worth developing a more rigorous approach to the accurate and reliable 

estimation of sensor elevation. It has been demonstrated that modern laser ranging 

devices are capable of accurate (~ 2 cm) and rapid (e.g. up to 2 kHz) sampling. These 

characteristics allow both real-time and post-processing algorithms to be developed. 

The simplest procedure, here referred to as the Lmax algorithm, is to estimate the 

maximum range recorded across appropriate time/spatial windows. These subset 

estimates are found to provide reliable estimates of height above ground surface at 

spatial scales of the order of a few tens of centimetres.  

 

The main benefit of such measurements and procedures is in relation to sensor 

elevation estimation in AEM surveys across zones of canopy and elevated structures. 

These are prevalent, for instance, in all surveys conducted in the UK. As the case 

study examples presented here demonstrate, it is now possible to obtain reliable laser 

estimates of sensor elevation across: (a) most forms of canopy (including vegetation) 

encountered, (b) built structures of limited spatial scale and (c) bodies of water. In 
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cases where the sun angle on large bodies of water produces extensive null laser 

returns, it is necessary to replace laser estimates with those from the radar altimeter. 

 

The laser measurement has a low beamwidth dispersion. This makes it amenable to  

simple correction for aircraft/bird orientation effects. Fitterman and Yin (2004) 

discuss the many aspects of bird manoeuvre distortion on frequency-domain 

helicopter-borne responses. Devices, such as GPS gyroscopes, that measure pitch, 

heading and roll are now common and the cosine correction of angles formed by pitch 

and roll allows a straightforward correction of the laser estimation of height above 

ground. 

 

Finally it is worth noting that, following the technical discussions of radar and laser 

altimeters, the estimate of radar height is essentially a form of Digital Terrain Model 

(a DTM, i.e. it contains the effects of vegetation and elevated structures). When 

processed (e.g. the Lmax algorithm) laser altimeter data is also available, the height 

estimate conforms to that of a Digital Surface Model (a DSM, i.e. a bare-earth model 

devoid of surface effects). In certain cases these data sets may be available at much 

higher resolution than that obtained by an AEM survey. Where they are not available, 

the joint availability provides a potentially useful additional topographic mapping 

service. 
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Figure Captions 

 

Figure 1. Example of Radar (Ralt) and Laser (Lalt) altimeter data recorded over a 1 

km section of a lake. The sampling interval is 4 Hz. The aircraft height undulates by 4 

m across the 1 km profile. 

 

Figure 2. Schematic representation of beamwidths associated with (a) a laser 

altimeter and (b) a radar altimeter. 

 

Figure 3. Example of typical behaviour observed between Radar altitude (Ralt) and 

Laser (Lalt) altimeter data in a largely rural survey area. The Lalt data have been 
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processed by the Lmax algorithm described in the text. The data sampling interval is 4 

Hz and the plot contains ~150,000 data points although the plot has been restricted to 

a maximum height of 60 m. The double-arrowed line indicates a scale of 20 m. 

 

Figure 4. Altitude dependence of coupling ratios across an elevation range of 10 cm. 

Responses are relative and normalised to those at an altitude of 30 m. The highest 

frequency of the AEM-05 system (24510 Hz) is shown for 2 half-space resistivity 

values (10 and 1000 ohm.m). The response at a lower frequency of 3005 Hz for a 10 

ohm.m half-space is also shown for reference. 

 

Figure 5. 1D inversion of synthetic model results illustrating the effect of incorrect 

altitude assignment on the detection of two conductive zones. The number of layers (4 

above a half-space) is assumed known and a few layer inversion is used. The data are 

correct at an altitude of 50 m. The results for a series of altitude errors between -15 m 

(underestimated) and +5 m (overestimated) are shown. The depths/thicknesses of the 

2 conductive zones (100 mS/m) are indicated by dash lines. 

 

Figure 6. 1D inversion of synthetic model results illustrating the effect of incorrect 

altitude assignment on the detection of two conductive zones. The number of layers is 

assumed unknown and a multi-layer smooth (Occam) inversion is used. The data are 

correct at an altitude of 50 m. The results for a series of altitude errors between -15 m 

(underestimated) and +5 m (overestimated) are shown. The depths/thicknesses of the 

2 conductive zones (100 mS/m) are indicated by dash lines. 
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Figure 7a. Image obtained from downward-looking video above an industrial unit. 

The flight path is shown by the horizontal dash line. The distance across the edges of 

the unit (A,B) is 40 m. The survey elevation is ~66 m. 

 

Figure 7b. Altitude estimates obtained across the industrial unit shown in Figure 7a. 

The main building is indicated by the arrowed line A,B, a second building is also 

indicated.  The four estimates of altitude shown are Radar (Ralt at 4 Hz),  raw Laser at 

200 Hz, Lmax processed Laser at 4 Hz. The height above geoid data (GPS-z) has had 

a constant value removed to allow inclusion in the plot. 

 

 

 

 

Figure 8. Four images obtained from the downward-looking video across the case 

study flight line. The horizontal width of each image is ~50 m. The images show a 

lake in sunlight (A), a central deciduous wooded area (B) and an isolated building 

(labelled C). 

 

Figure 9. Altitude estimates obtained across the case study profile. Images of the 3 

zones (A, B and C) are shown in Figure 8. The four estimates of altitude shown are 

Radar (Ralt at 4 Hz),  raw Laser at 200 Hz, Lmax processed Laser at 4 Hz. The height 

above geoid data (GPS-z) has had a constant value removed to allow inclusion in the 

plot. 
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Figure 10. 1D inversion of the 4 frequency data across the case study profile. The 

number of layers is assumed unknown and a multi- layer smooth (Occam) inversion is 

used. The arrows denote the width of the canopy zone. The filled rectangle denotes 

the zone of maximum height of canopy. (a) Results obtained with radar altimeter, (b) 

Results obtained using Lmax processed laser altimeter data. 

 

Figure 11. 1D inversion of the 4 frequency data across the case study profile. The 

number of layers is assumed known and a 5-layer laterally-constrained inversion is 

used. The arrows denote the width of the canopy zone. The filled rectangle denotes 

the zone of maximum height of canopy. (a) Results obtained with radar altimeter, (b) 

Results obtained using Lmax processed laser altimeter data. 

 

Figure 12.  Topographic map across a portion of a detailed geophysical survey in 

southern Finland. Flight line spacing is 75 m. The area contains 4 water bodies shown 

in blue. The red symbols denote locations along flight lines where processed (Lmax) 

laser null returns were observed. Topographic Map © National Land Survey of 

Finland, permission no. 13/MML/08. 
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Figure 1. Example of Radar (Ralt) and Laser (Lalt) altimeter data recorded over a 1 
km section of a lake. The sampling interval is 4 Hz. The aircraft height undulates by 4 
m across the 1 km profile. 
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Figure 2. Schematic representation of beamwidths associated with (a) a laser 
altimeter and (b) a radar altimeter. 
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Figure 3. Example of typical behaviour observed between Radar altitude (Ralt) and 
Laser (Lalt) altimeter data in a largely rural survey area. The Lalt data have been 
processed by the Lmax algorithm described in the text. The data sampling interval is 4 
Hz and the plot contains ~150,000 data points although the plot has been restricted to 
a maximum height of 60 m. The double-arrowed line indicates a scale of 20 m. 
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Figure 4. Altitude dependence of coupling ratios across an elevation range of 10 cm. 
Responses are relative and normalised to those at an altitude of 30 m. The highest 
frequency of the AEM-05 system (24510 Hz) is shown for 2 half-space resistivity 
values (10 and 1000 ohm.m). The response at a lower frequency of 3005 Hz for a 10 
ohm.m half-space is also shown for reference. 
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Figure 5. 1D inversion of synthetic model results illustrating the effect of incorrect 
altitude assignment on the detection of two conductive zones. The number of layers (4 
above a half-space) is assumed known and a few layer inversion is used. The data are 
correct at an altitude of 50 m. The results for a series of altitude errors between -15 m 
(underestimated) and +5 m (overestimated) are shown. The depths/thicknesses of the 
2 conductive zones (100 mS/m) are indicated by dash lines. 
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Figure 6. 1D inversion of synthetic model results illustrating the effect of incorrect 
altitude assignment on the detection of two conductive zones. The number of layers is 
assumed unknown and a multi-layer smooth (Occam) inversion is used. The data are 
correct at an altitude of 50 m. The results for a series of altitude errors between -15 m 
(underestimated) and +5 m (overestimated) are shown. The depths/thicknesses of the 
2 conductive zones (100 mS/m) are indicated by dash lines. 
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Figure 7a. Image obtained from downward-looking video above an industrial unit. 
The flight path is shown by the horizontal dash line. The distance across the edges of 
the unit (A,B) is 40 m. The survey elevation is ~66 m. 
 
 



43 
 

 
 
Figure 7b. Altitude estimates obtained across the industrial unit shown in Figure 7a. 
The main building is indicated by the arrowed line A,B, a second building is also 
indicated.  The four estimates of altitude shown are Radar (Ralt at 4 Hz),  raw Laser at 
200 Hz, Lmax processed Laser at 4 Hz. The height above geoid data (GPS-z) has had 
a constant value removed to allow inclusion in the plot. 
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Figure 8. Four images obtained from the downward-looking video across the case 
study flight line. The horizontal width of each image is ~50 m. The images show a 
lake in sunlight (A), a central deciduous wooded area (B) and an isolated building 
(labelled C). 
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Figure 9. Altitude estimates obtained across the case study profile. Images of the 3 
zones (A, B and C) are shown in Figure 8. The four estimates of altitude shown are 
Radar (Ralt at 4 Hz),  raw Laser at 200 Hz, Lmax processed Laser at 4 Hz. The height 
above geoid data (GPS-z) has had a constant value removed to allow inclusion in the 
plot. 
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Figure 10. 1D inversion of the 4 frequency data across the case study profile. The 
number of layers is assumed unknown and a multi- layer smooth (Occam) inversion is 
used. The arrows denote the width of the canopy zone. The filled rectangle denotes 
the zone of maximum height of canopy. (a) Results obtained with radar altimeter, (b) 
Results obtained using Lmax processed laser altimeter data. 
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Figure 11. 1D inversion of the 4 frequency data across the case study profile. The 
number of layers is assumed known and a 5-layer laterally-constrained inversion is 
used. The arrows denote the width of the canopy zone. The filled rectangle denotes 
the zone of maximum height of canopy. (a) Results obtained with radar altimeter, (b) 
Results obtained using Lmax processed laser altimeter data. 
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Figure 12.  Topographic map across a portion of a detailed geophysical survey in 
southern Finland. Flight line spacing is 75 m. The area contains 4 water bodies shown 
in blue. The red symbols denote locations along flight lines where processed (Lmax) 
laser null returns were observed. Topographic Map © National Land Survey of 
Finland, permission no. 13/MML/08. 
 
 

 


