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Abstract 

Nottingham was built near a crossing point on the River Trent in the East Midlands of 

England. Initially, the City developed on a low sandstone hill close to the north bank of the 

river, which provided a secure, well-drained location above the marshes that bordered the 

river. Geologically, Nottingham stands at the boundary between Palaeozoic rocks to the north 

and west, and Mesozoic and Cainozoic strata to the south and east. The area is underlain by 

coal-bearing Carboniferous Coal Measures, Permian dolomitic limestones, Permo-Triassic 

mudstones and weak sandstones, Jurassic clays and Quaternary glacial and alluvial deposits. 

Artificial deposits, resulting from the social, industrial and mineral extraction activities of the 

past cover the natural deposits over much of the area. 

 

This geological environment has underpinned the economic development of the area through 

the mining of coal (now largely ceased), oil extraction that was important during the Second 

World War, brickmaking from clays, alluvial sand and gravel extraction from the Trent 

Valley and gypsum extraction from the Permo-Triassic mudstones. The Permo-Triassic 

sandstone is a nationally important aquifer and has also been exploited at the surface and from 

shallow mines for sand. 

 

However, this history of the use and exploitation of mineral deposits has created a number of 

environmental problems including rising groundwater levels, abandoned mine shafts and 

mining subsidence, and, within the City itself, the occasional collapse of artificial cavities in 

the sandstone and contaminated land left by industrial activities. Natural constraints on 

development include gypsum dissolution, landslides, rockfalls, swell-shrink problems in 

Jurassic clays and flooding. Occasional minor earthquakes are attributed to movements due to 



coal mining or natural, deep geological structures. Thus, Nottingham’s geological context 

remains an important consideration when planning its future regeneration and development 

 

Introduction 

 Legget (1987) stated that “land is the surface expression of geology” and advised that “land-

use planning can only be carried out with satisfaction if there is a proper understanding of the 

geology concerned.” Therefore, geology must be considered at an early stage in the land-use 

planning process. In the case of Nottingham, its history is intimately bound up within its 

geological setting. 

  

The City of Nottingham and its suburbs straddle the River Trent, the City itself being located 

on sandstone hills close to a suitable bridging position on this major navigable river (Figure 

1). The broad relatively flat valley floor contrasts with dissected high ground to the north and 

south of the river. Although the earliest settlement may date back to Roman times (or before), 

the earliest record of Nottingham’s existence dates back to the invasion of the Danes in the 

middle of the 9th Century and their conquering of the settlement in 867 AD. The settlement 

was built on a prominent sandstone hill, above the River Trent, which could be excavated to 

create cave dwellings. Construction of the first castle, by the Normans, began in 1068 on a 

second, adjacent hill. The City gained a Royal charter in 1155. In the Middle Ages, the main 

industry was woollen manufacture. The population rose from about 1 500 at the time of the 

Norman invasion to 5 000 at the end of the 17th century, and over 28 000 at the time of the 

first census in 1801. Industry expanded in the 19th and 20th centuries, with the main ones 

being textiles, cigarette manufacture, bicycles and pharmaceuticals. The population expanded 

rapidly in the 19th century but the City’s response was poorly planned, resulting in the 

creation of appalling slums. The latter part of the 20th century has seen a gradual move from 

an economy based on heavy industry to one based on light manufacturing and services. The 

population now stands at about 260 000. 

 

The bedrock of the Nottingham area includes rocks of late Carboniferous to Jurassic in age. 

These are overlain by extensive superficial deposits of glacial and post-glacial material such 

as till, alluvium, sand and gravel. Faults trend from north-west to south-east across the area 

displacing the outcrops of Coal Measures and Triassic rocks at the surface. The Nottingham 

area is well endowed with mineral deposits including coal and gypsum that have been both 

mined and worked at the surface. Gravel, sand, brick clays and building stone also are present 



in workable amounts. Furthermore, the Sherwood Sandstone (Trias) is the second most 

important aquifer in England, supplying water to Nottingham and other areas that it underlies. 

 

Adverse ground conditions represent the principal environmental restraint on planning and 

development in the Nottingham area. The suitability of the natural ground to a particular 

engineering requirement depends mainly on the geotechnical properties of the soils or rocks 

that are present. In addition, the ground conditions may have been affected by human activity. 

In particular, coal mining has a long history in the area and has left a legacy of disturbed 

strata, abandoned shafts and deteriorating workings. Old gypsum mines are also present, as 

are artificial cavities in the sandstones beneath the City formally used for storage, shelter or 

minor industrial activities. Other factors that may complicate the ground conditions include 

disused quarries and pits, which may have been used for the disposal of a variety of waste 

materials. 

 

Bedrock geology 

The oldest rocks of the Nottingham area are Carboniferous in age and occur to the west of the 

City centre (Figure 2). The oldest of these, that are found at the surface, belong to the Lower 

Coal Measures, are 290 to 440 m in thickness and occur in the far west of the Nottingham 

area. Borehole evidence indicates that below them there are more than 600 m of rocks of 

Namurian age, principally gritstones, and that these, in turn, are underlain by some 150 m of 

limestones, sandstones and mudstones of Dinantian age. These Namurian and Dinantian strata 

outcrop to the west of the area in the southern Pennine Hills. 

  

The Middle Coal Measures also sub-crop to the west of the centre of Nottingham where the 

complete sequence ranges in thickness from 215 to 325 m. The Upper Coal Measures do not 

occur on the surface in the area and are only present, at depth, in the extreme south and west 

of the district where their maximum recorded thickness is around 170 m. Mudstone and 

siltstone and, to a lesser extent sandstone, comprise most of the Coal Measures. Their 

economic significance derives primarily from the presence of coal and, to a lesser extent, 

gannister, fireclay, ironstone, pottery clay and brick clay. Coal Measures sandstone has been 

used for buildings purposes. Regional uplift of the Pennine area by the Variscan Orogeny in 

the late Carboniferous resulted in a long period of denudation that extended into early 

Permian times and resulted in the removal of massive amounts of Carboniferous strata. 

 



The Permian strata form an area of gently undulating upland with a west facing escarpment 

(Figure 3). The rocks rest unconformably on the Coal Measures and dip gently to the east. 

The earliest Permian deposits consist of breccias deposited under continental conditions. 

These deposits are diachronous and range in age across the area from early to late Permian 

and in thickness from 0 to 8 m. The Basal Breccia is succeeded by the Cadeby Formation, 

which consists of a lower mudstone facies followed by an overlying carbonate facies. The 

mudstone facies is a few metres thick and thins out to the south but thickens eastward. Most 

of the rocks of the carbonate facies are dolomites that were originally deposited as limestones. 

They thicken to the north and reach a maximum of 65 m. The uppermost formation in the 

Permian is the Edlington Formation. This consists of silty mudstone with thin beds of 

dolomitic sandstone. It is no more than 9 m thick where it outcrops and dies out to the south.  

However, in the north-east nearly 30 m of these deposits have been found in boreholes. 

 

The strata of Triassic age in the Nottingham area fall into two groups, namely, the Sherwood 

Sandstone Group and the overlying Mercia Mudstone Group (Figure 2). The Sherwood 

Sandstone Group is subdivided into the Lenton Sandstone Formation below and the 

Nottingham Castle Sandstone Formation above (Bell & Culshaw 1993). The Lenton 

Sandstone Formation is a poorly-cemented, fine to medium-grained friable sandstone with 

lenses of mudstone and siltstone, and occasional gravelly horizons. The sandstones are 

commonly reddish in colour with yellow mottling and range up to 30 m in thickness. The 

Nottingham Castle Sandstone forms a notable outcrop northwards from the City and consists 

of buff to pale red-brown sandstone. Subordinate horizons of siltstone, mudstone and 

conglomerate occur within this sandstone and it tends to vary both vertically and laterally 

over short distances. The Nottingham Castle Sandstone thickens to the north from some 65 m 

in the south to around 150 m in the north. The sandstones of both formations consist 

predominantly of quartz particles, the quartz content commonly comprising over 90% of the 

rock. 

 

The Mercia Mudstone Group may be regarded as a fining upward sequence of strata of mostly 

hypersaline lacustrine sediments in which occurs coarser material and gypsum (Firman & 

Lovell 1988). The Sneinton Formation occurs at the base of the Mercia Mudstone Group. 

According to Bell & Culshaw (1998), the basal 6 to 9 m of the Sneinton Formation consists of 

pale grey mudstones that are, in part, finely micaceous with some silty and sandy beds. 

Overlying these basal beds are over 60 m of interbedded sandstones, siltstones and mudstones 



that pass up into the Radcliffe Formation without marked change in lithology. Medium to 

thick beds of sandstone, which are generally reddish-brown in colour, are present at some 

localities. The principal constituent in these sandstones is quartz, averaging almost 75%. 

Feldspar is a secondary constituent and clay size material, which forms the matrix of the 

sandstones, constitutes between 4 and 18%. Commonly, the Sneinton Formation gives rise to 

undulating, incised topography in which the more resistant beds of sandstone locally give rise 

to more marked features. However, most of the formation is overlain by alluvial deposits of 

the River Trent and its tributaries. The succeeding Radcliffe Formation consists of reddish-

brown and grey-green, laminated mudstones and siltstones with subordinate fine-grained 

sandstone. Then follows the Gunthorpe Formation, a sequence of interlayered mudstone, 

siltstone and fine-grained sandstone.  Again the rocks tend to be reddish-brown or grey-green 

in colour. Numerous dolomitic siltstone and fine-grained sandstone beds frequently form 

upstanding topographic features (Charsley et al. 1990). Some intricate patterns of gypsum 

veins are found, notably in the upper part of the sequence. The formation varies in thickness 

from about 50 to 80 m. The Cotgrave Sandstone forms the base of the following Edwalton 

Formation and is some 1.5 to 4 m thick. Most of the rest of the formation comprises reddish-

brown and grey-green, silty mudstone or siltstone except for the uppermost 7 m of alternating 

sandstones and mudstones that are referred to as the Holygate Sandstone. The whole of the 

Edwalton Formation ranges from about 35 to 54 m in thickness. The latter formation is 

succeeded by the Cropwell Bishop Formation, another sequence of reddish brown mudstones 

and siltstones with fine-grained sandstones. Thick units of stratiform gypsum (the Tutbury 

and the Newark Gypsum beds) occur locally in this formation but, generally, the formation is 

poorly exposed. It varies in thickness between about 35 and 55 m. Lastly, the Blue Anchor 

Formation represents the uppermost strata in the Mercia Mudstone Group. This consists of 

approximately 6 to 8 m of greenish, dolomitic mudstone and siltstone. It occurs in the south of 

the area but is poorly exposed except in pits or quarries (Figure 4). 

 

The Penarth Group represents a transition stage between the Triassic and Jurassic systems. It 

consists of two formations, namely, the lower Westbury Formation and the upper Lilstock 

Formation. The former consists of grey to black mudstone with thin lenses of sandstone 

towards the top. It is some 5 to 7 m thick and outcrops in the south of the area where it often 

forms an escarpment (Figure 3). A thin bed, referred to as the Rhaetic Bone Bed, occurs 

sporadically at the base of the formation and contains fossil remains of fish and reptiles. The 

Cotham Member is the only representative of the Lilstock Formation in the Nottingham 



district and is around 3 to 5 m thick, and similarly outcrops in the south of the area. It consists 

of grey silty mudstone with discontinuous bands of limestone nodules and is capped by a thin 

bed of limestone. 

 

The strata of the Lias Group of the Jurassic system occur in the south of the Nottingham 

district to the east and south of the Penarth Group (Figure 2). Only the lowest unit of the Lias 

Group, the Scunthorpe Mudstone Formation, is represented in the area. The Barnstone 

Member occurs at the base of this formation and comprises alternating beds of calcareous 

mudstone and limestone. It is about 6 m thick in this area and is succeeded by mudstone of 

the Barnby Member. 

 

The bedrock geology is described in more detail by Howard et al. (in press). 

 

Structural geology 

The Carboniferous rocks of the region were subjected to uplift during the Variscan Orogeny 

and underwent a period of erosion prior to the deposition of Permian strata. Appreciable 

faulting also took place as a result of the Variscan Orogeny and the major faults may reflect 

deeper basement structures. Periodic tectonic activity occurred during the Mesozoic era, 

which led to new faults being formed and some older faults being reactivated. The regional 

dip of the Carboniferous strata in the Nottingham area is generally towards the north-east at 

low angles (Charsley et al. 1990). The post-Carboniferous strata have not been affected by the 

Variscan Orogeny but by the younger Alpine Orogeny. The regional dip of these rocks is 

broadly towards the south east, at low angles, rarely greater than 2 (Figure 3). Angles of dip 

may increase locally due to fold structures or to drag adjacent to faults (Figure 4). A broad 

regional syncline, with gently dipping limbs and a shallow plunge to the east-south-east, 

occurs to the immediate south of Nottingham, which is complemented by anticlines to the 

north and south (Edwards 1951). The predominant trend of the faults varies between west to 

east and north-west to south-east. Another set of faults of lesser importance trend in a north-

west to south-east or north to south direction. 

 

Superficial deposits 

The distribution of superficial deposits in the Nottingham district is shown in Figure 5. These 

deposits consist of till, gravel and sand, silt, clay and organic material, which were formed 

under glacial, fluvio-glacial, periglacial, lacustrine and fluviatile conditions. The glacial tills 



are found chiefly in the south-east of the area where they occupy the higher ground, or as 

isolated patches in valleys. The thickest deposits occur on the Wolds, to the east of 

Nottingham, where as much as 35 m have been recorded. Generally, the till consists of silty or 

sandy clays with pebbles and cobbles. Where sand is the main component, the material is 

referred to as sandy till. 

 

Deposits of glacial sand and gravel, with or without flint gravel, are found in the extreme 

south of the Nottingham area, where they may be up to 4 m thick. Further north small patches 

of flint-free sand and gravel are present on higher ground. 

 

Fluvial and possibly fluvio-glacial deposits of sand and gravel were formed during later 

Pleistocene times. Firman & Lovell (1988) referred to a series of terraces being present in the 

Nottingham area and Charsley et al. (1990) indicated that the Bassingfield, Beeston and 

Holme Pierrepont Sands and Gravels are terrace deposits of the River Trent (Figure 5). The 

first consists of sand and sandy gravel that is clayey in places and contains discontinuous beds 

of clay; the second may be up to 4 m in thickness at Beeston and the third is composed of 

sand and gravel with impersistent beds of silt or silty clay. They have been eroded 

periodically and redeposited by the present day, much smaller, River Trent.   

 

Head is a deposit that has moved downslope and accumulated on lower slopes and in valley 

bottoms. Head is an unstratified or poorly stratified accumulation of particles and fragments 

of local origin that may mantle higher ground, or occur on slopes and in the bottoms of 

valleys. It is usually formed under periglacial conditions by solifluction, that is, the bodily 

creep of soil downhill. A veneer of Head is present in many areas and may be up to 4 m thick 

in places. It varies in character from relatively pure sand or clay to a chaotic mixture of clay, 

silt, sand and gravel. 

  

Lacustrine deposits, locally up to 4 m in thickness, occur south of the River Trent near 

Edwalton and Ruddington, and on Ruddington Moor (south west of Ruddington) (Figure 5). 

The lowermost beds show signs of cryoturbation and contain reworked debris from 

underlying units. Higher beds consist of silt or clay, which may be laminated or massive. 

Fossils are present in this material and, locally, the shell debris may be sufficiently 

concentrated to be mapped as ‘Shell Marl’. Organic clay and peat occur in the upper layers of 

these lacustrine deposits. 



 

Alluvial deposits occupy the floor of the River Trent and many of its tributaries. The alluvium 

consists of silts and clays overlying sands and gravels. Thicker deposits of sand and gravel 

occur within the Trent Valley and probably represent infills that have been redeposited during 

times of flood. Lenses of peat, that accumulated in cut-offs, occur within the alluvium and can 

be an unexpected cause of poor ground conditions. 

 

The superficial deposits are described in more detail by Howard et al. (2008). 

 

Artificial deposits 

Human influence on the heavily urbanized Nottingham area has been substantial (Charsley et 

al. 1990). This is illustrated in Figure 6, which shows significant areas of made, infilled and 

disturbed ground in the area. Made ground consists of material that has been deposited on top 

of the original land surface. Therefore, it includes areas of construction such as embankments 

for roads, railways and canals. Made ground in some areas may be thicker than the alluvial 

deposits beneath. For example, in the Dunkirk–Lenton Lane industrial area made ground is 

over 10 m in thickness in some areas. Many areas of made ground have been reclaimed and 

landscaped or built over. Infilled ground occurs where excavations or depressions have been 

infilled artificially. 

 

Landscaped ground refers to those areas where the original land surface has been extensively 

remodelled. It consists mainly of topsoil, subsoil that has been reworked within a location 

such as a housing estate or golf course. However, additional material such as soil, colliery 

spoil or building waste may have been brought to a site from elsewhere. Landscaping is 

ubiquitous within most urban areas. Built-over ground comprises those parts of the area, 

given over primarily to urban development, where appreciable modification and disturbance 

of the land surface has taken place at the construction stage. Usually, it excludes extensive 

areas of landscaped ground but both may exist together in places. 

 

Geological resources 

The Nottingham area is well endowed with mineral resources, especially coal and 

groundwater. Other resources include sand, gravel, brick clay, dimension stone, gypsum, and  

small deposits of oil, discovered in the 20th century and possibly with the potential for some 

renewed production in the 21st. 



 

Coal   

Coal has been mined in the Nottingham area for hundreds of years. Moller (1925) reported 

evidence of commercial scale coal mining in 1610. The first workings were from outcrops 

and then from bell pits, the scars of which may still be seen in Strelley (Ager et al. 2004). The 

pillar and stall method of working was developed around the sixteenth century and longwall 

mining began to evolve in tandem with the Industrial Revolution (Bell 1988). The extent of 

colliery-based underground coal mining is shown in Figure 7. However, as a result of the 

contraction that has taken place in the deep coal mining industry since the late 1980s, coal 

mines are no longer operational in the area. Nonetheless, the coal resources beneath the area 

remain substantial (Charsley et al. 1990). Opencast mining developed in the Nottingham 

district from the 1940s onward. These surface workings may extend to a depth of 100 m and, 

thus, the potential for opencast mining extends beyond the exposed coalfield into that part of 

the concealed coalfield where Coal Measures occur at shallow depth beneath Permian strata. 

However, urban development and local community opposition means that the potential for 

opencast development is constrained.  

 

Sand and gravel 

Gravel and sand deposits, which were laid down by the present and former River Trent are 

extracted for use in the construction industry. Worked deposits include gravel from beneath 

the present flood plain and from the river terraces alongside it, that is, the Holme Pierrepont, 

Bassingfield and Beeston Terraces. The silt and clay overburden is usually less than 1 m 

thick. Generally, the gravels and sands are thickest in the centre of the floodplain, the 

thickness varying from zero to over 4.5 m. Many of the gravel and sand resources have been 

sterilized by urban development. Both the Lenton Sandstone and Nottingham Castle 

Sandstone have been worked for sand, both being weakly cemented and relatively easy to 

work. Sand obtained from both these formations possesses finer and more rounded grains than 

that obtained from the Trent Valley deposits making them more suitable for use as mortar or 

in asphalt than sand from the latter. 

 

Brick clay 

The principal sources of brick clay in the Nottingham area are from the Edlington Formation 

and the Mercia Mudstone Group. Mudrocks from the Edlington Formation were extracted for 

brick making in the north west of the area but no brickworks are currently active. The 



mudrocks of the Mercia Mudstone Group’s Gunthorpe Formation were extracted for brick 

making at Dorket Head and, elsewhere, have been worked to the east and south of the City. 

Mainly the lower and upper parts of the formation were worked. Mudrocks from the Middle 

Coal Measures were worked formerly and, because of their mineralogical composition, the 

shales and mudstones from the Coal Measures often produced a high quality brick, frequently 

of engineering grade. 

 

Gypsum 

Gypsum has been extracted for many years to make plaster related products for use in the 

building and construction industry and, in the distant past, locally extracted alabaster was 

used in local churches for plaques commemorating benefactors, altars, tombs and statues. The 

works of Nottingham’s kervers (alabaster carvers) were to be found throughout England and 

were particularly popular in France. 

  

Gypsum was extracted by both surface pits and underground by pillar and stall methods.  

According to Firman (1964), gypsum was worked around East Bridgford from the 

seventeenth or eighteenth century until the 1940s from mines and shallow pits. The gypsum 

occurs primarily as crosscutting veins but also may run parallel to the bedding. Gypsum 

occurs in the lower part of the Edwalton Formation and the underlying Gunthorpe Formation 

but the principal formation from which gypsum has been worked is the Cropwell Bishop 

Formation (Figure 4), the main gypsum horizons being the Tutbury Gypsum and the Newark 

Gypsum. Firman described the Tutbury Gypsum as consisting of a composite unit of gypsum 

with subordinate mudstone, which averages 2.4 m in thickness but can be as much as 6 m 

thick. Gypsum occurs as coarsely crystalline beds, nodules or lenticular masses. The Tutbury 

Gypsum was extensively mined around Gotham Hill and is still mined using pillar and stall 

methods near East Leake. The Newark Gypsum is made up of multiple beds that vary in form. 

Sherlock & Hollingworth (1938) maintained that the Newark Gypsum was approximately 15 

to 25 m in thickness and may consist of up to 16 beds of gypsum separated by mudstone in 

which reticulate veins of gypsum may be present. The mudstone layers may be up to a metre 

thick. The dimensions of the layers of gypsum vary. They may be lens-shaped or nodular. The 

nodules have been referred to as ‘cakes’ and tend to consist of massive gypsum often fringed 

by fibrous gypsum. These nodules are either flat or convex on top. Layers of gypsum 

occasionally expand and unite into large masses, and have been given individual names such 

as the Top White Rock, Riders, Middle White Rock and Blue Rock. The thicker Top White 



Rock is white in colour with a saccharoidal texture and is one of the purer forms of gypsum, 

with only about 4% of impurities (Bell 1994). The gypsum of the Riders usually has a slightly 

bluish or pink shade indicative of the presence of mudstone. This material usually consists of 

less than 90% gypsum and at times may contain up to 25% of impurities. The gypsum in the 

Middle White Rock is white in colour and is medium to coarsely crystalline. It contains very 

fine veins of gypsiferous mudstone and a few mudstone inclusions that tend to stain the 

surrounding gypsum. It contains between 5 and 10% of impurities. The Newark Gypsum, 

according to Firman (1964), has been obtained by quarrying and underground mining around 

Cropwell Bishop since the nineteenth century 

 

Building stone 

Building stone has been quarried in the Nottingham area since medieval times when 

sandstone from the Sneinton Formation was used by the Normans in the construction of the 

first Nottingham Castle. However, the principal dimension stone in the area is obtained from 

the dolomite of the Cadeby Formation currently referred to locally as ‘Bulwell Stone’, which 

probably also has been worked since medieval times. The dolomite outcrops over a large area 

in the north-west of the area where its thickness ranges from 6 to 12 m. The dolomite has a 

granular texture resembling that of a sandstone but in places it has undergone recrystallization 

to produce a fine grained, well cemented dolomite. When first extracted, the rock is easy to 

work but with time it dries out and the outer crust becomes hardened. 

 

Groundwater 

A copious, high quality water supply is obtained from the Sherwood Sandstone Group which 

outcrops beneath much of the City of Nottingham and underlies more than two thirds of the 

Nottingham area from surface outcrop to depths of less than 280 m. This is the second most 

important aquifer in England next to the Chalk and yields water of such good quality that it 

only needs basic chlorination for use as a public supply. However, high nitrate levels have 

been encountered, especially in some rural areas where the Sherwood Sandstone is exposed 

and the use of nitrogen-based fertilizers has been high. The whole area of the outcrop has 

been designated a nitrate vulnerable area (Allen et al. 1997). The Sherwood Sandstone in the 

Nottingham area has been extensively developed for public and industrial water supply but 

groundwater abstraction was uncontrolled before 1963 and the groundwater level was 

significantly depressed. Those streams that were dependent on baseflow discharge from the 

aquifer were also adversely affected. Groundwater management policies introduced after 



1963, together with the decline in demand from industries, such as brewing, that depend on 

water, have meant that groundwater levels have risen significantly giving problems in areas 

like Basford. 

  

Groundwater yield from the carbonate facies of the Cadeby Formation is erratic except where 

there are well-developed systems of fissures. Usually, the yields of wells are only sufficient to 

supply the needs of small farms and groundwater is not abstracted for public supply from this 

limestone. The hardness of groundwater in the limestone is very high, in the range 400 to 600 

mg l-1. Other formations in the area yield limited supplies of variable quality that are 

unsuitable for use as a public supply. 

 

Oil 

The importance of the location of UK oil resources had been recognised during the 1914-18 

war and a search was made focusing on the folds flanking the Pennines, a range of hills and 

mountains running down the centre of northern England. Some exploitable reserves were 

found at Hardstoft, in Derbyshire, to the west of Nottingham, but not of sufficient importance 

to continue production after the war ended. However, the D’Arcy Oil Company continued 

exploration in the interwar years with some slight success elsewhere in the UK but their most 

significant find was at Eakring in Nottinghamshire, to the north east of Nottingham. Their 

first well in 1939 (Eakring No 1) found oil in the sands of basal Coal Measures and in three 

other sand levels. The first deep well through the Carboniferous Limestone was Well 146 at 

Dukes Wood where commercially important quantities of oil were found in very dark, fine 

grained, phyllitic sandstones, dark grey quartzite and hard, black shale at a depth of between 

2274.7 and 2276.2 m below the ground surface (www.dukeswoodoilmuseum.co.uk). This 

well and others at Caunton and Kelham Hills, in Nottinghamshire, were the start of the UK’s 

first commercial onshore oilfield. During the start of the 1939-45 war this field was rapidly 

developed at a time when oil was a vital war resource. However, in 1942 it was recognised 

that the speed of development was limited by the drilling equipment that had been designed 

for exploration not production. Therefore, arrangements were made to bring in modern, 

American oil field production rigs and technology manned by 44 Oklahoma roughnecks. 

Thus, a dramatic increase in productivity was achieved and a useful addition of 1.4 million 

barrels of high quality oil to the UK’s wartime oil supply was made by the Dukes Wood 

oilfield alone. Production continued until 1971 by which time it had produced a total of 4.7 

million barrels of oil. The site is now a nature reserve, which includes a trail that visits relics 



of its oil field past including a statue erected in 1991 commemorating and naming the 44 ‘Oil 

Patch Warriors’ from Oklahoma (Figures 8 and 9). 

 

Ground conditions: bedrock 

The bedrock strata usually provide satisfactory foundation conditions but still have the 

potential for geological hazards that may require avoidance, prevention or mitigation (Table 

1). A report (Forster 1989) on the engineering behaviour of the geological materials of the 

Nottingham area, which included a summary of their geotechnical properties, was part of an 

applied geological study by the British Geological Survey for the (then) Department of the 

Environment (Charsley et al. 1990). Much of the geotechnical data quoted below are derived 

from that report. 

 

The Lower and Upper Coal Measures are not exposed in the Nottingham area. The Middle 

Coal Measures comprise mainly mudrocks with subordinate sandstones. The clays of the 

Middle Coal Measures normally are stiff to very stiff and range from intermediate to high 

plasticity. They tend to be of medium compressibility with undrained shear strengths varying 

from 50 to 300 kPa. Standard Penetration Test (SPT) ‘N’ values suggest allowable bearing 

capacities ranging from 100 to 600 kPa. In some instances the pyrite content may be high 

enough to warrant precautions against sulphate attack on buried concrete and can result in 

acidic mine drainage from old workings. The sandstones, mudstones and coals have median 

values of unconfined compressive strength of 23 MPa, 8 MPa and 4 MPa respectively. 

 

The mudstone facies of the Cadeby Formation consists of clays that tend to be firm to very 

stiff and more sandy components that are medium dense to dense. The moisture content of 

these materials tends to decrease with depth that is reflected in a rise in undrained cohesion 

values. Values of plasticity vary from intermediate to high and allowable bearing capacities 

tend to be in the range 200 to 400 kPa. Normally, these materials are not likely to cause 

sulphate attack on buried concrete. The carbonate facies of this formation consists of granular 

dolomitic limestone with silty micaceous bands. However, according to Forster (1992), this 

facies shows a wide range of lithological variation, with further variation being attributable to 

the effects of weathering. On weathering, the dolomitic limestone tends to produce a sandy or 

sandy, silty, clayey material. The moisture content tends to increase with depth from about 

17% within 3 m of the surface to 5% or less at depths of over 6 m, which reflects the degree 

of weathering. The weathered fine-grained material has low plasticity whilst the dolomitic 



limestone has an unconfined compressive strength usually ranging between 22 and 42 MPa. 

The results of Standard Penetration Tests and those of undrained triaxial tests suggest that the 

cohesive weathered material has an allowable bearing capacity that may vary between 150 

and 400 kPa. The dolomitic limestone is well jointed and the joints may be enlarged by 

weathering. Cambering on valley sides has tended to dilate joints to form gulls, which may 

remain open or be filled with superficial material. Karstic dissolution features occur within 

the dolomitic limestone that can act as rapid pathways for pollutants to reach groundwater. 

 

The mudrocks of the Edlington Formation also show a decrease in moisture content with 

depth, with values between 12 and 46% within the upper 3 m whilst below that depth they 

range from 12 to 22%, again reflecting a decrease in the degree of weathering with depth. 

This may suggest that the lower limit of significant weathering occurs around 3 m below the 

ground surface. Samples of mudrock exhibit a wide spread of plasticity values but most fall 

within the medium to high category.  Undrained triaxial test results suggest allowable bearing 

capacity values between 100 and 300 kPa. Generally, the clayey material is firm to stiff and 

has a medium degree of compressibility. 

 

The Lenton Sandstone Formation consists of sandstones that generally are poorly cemented 

and contain lenses of mudstone and siltstone with occasional gravelly horizons. The 

sandstones consist dominantly of quartz particles and are fine to medium grained with a mean 

grain size of around 0.19 mm (Bell & Culshaw 1993).  These sandstones generally are 

uniformly sorted and tend to have a low dry density, averaging around 1.83 Mg m-3 (Anon. 

1979).  They have a correspondingly high effective porosity with a mean value of 24%.  The 

sandstones of the Lenton Formation exhibit a higher permeability in the horizontal than the 

vertical direction but in both cases their primary (intergranular) permeability is only slightly 

permeable to very slightly permeable.  Groundwater yield is mainly by fissure flow.  In terms 

of strength, these sandstones fall just within the moderately strong category (Anon. 1970), 

their mean unconfined compressive strength being around 15 MPa. On saturation, the strength 

values decrease by about 35%. 

 

The sandstones of the Nottingham Castle Sandstone Formation also consist predominantly of 

uniformly sorted quartz grains. However, these sandstones generally are medium-grained, 

with a mean grain size of 0.27 mm. These poorly-cemented sandstones contain occasional 

pebble layers and small lenses of siltstone and mudstone. Again, most of the sandstones of 



this formation have a low dry density but some may be very low (mean value around 1.83 Mg 

m-3).  This is reflected in their high values of effective porosity, which may range from 22 to 

29% (Bell & Culshaw 1993). The mean coefficient of permeability of the sandstones of the 

Nottingham Castle Sandstone Formation is higher than that of the Lenton Sandstone 

Formation, being 2.53 x 10-7 m s-1 compared with 1.28 x 10-7 m s-1. These values are for 

vertical primary permeability, which is about two thirds that of horizontal permeability. In 

fact, the majority of the sandstones of the Nottingham Castle Sandstone Formation are just 

slightly permeable. Most of these sandstones according to their unconfined compressive 

strength could be described as either moderately weak or moderately strong, with values 

ranging from less than 6 to 22 MPa. The unconfined compressive strength tends to decline 

with increasing particle size and porosity. Furthermore, the strength of these sandstones is 

reduced to a greater extent on saturation than those of the Lenton Sandstone Formation, this 

time by around 40% on average but this may be as high as 60% or as low as 23%. The largest 

reductions of strength on saturation tend to be in the weaker sandstones with higher 

porosities. The Nottingham Castle Sandstone Formation is deeply weathered, Standard 

Penetration Test results indicating that loose sand may be present to a depth of up to 4 m, with 

medium dense sand as deep as 8 m and dense sand extending to 10 m but the weak nature of 

the sandstone may make it difficult to determine the depth to rockhead by percussion drilling 

with SPT ‘N’ value measurements (Forster 1992).  

 

The Sneinton Formation occurs at the base of the Mercia Mudstone Group and consists of 

mudstones overlain by interbedded sandstone siltstones and mudstones. These rocks tend to 

weather to give firm silty clays and dense sands respectively. The silty clays have a low 

plasticity and the results of Standard Penetration Tests suggest that allowable bearing capacity 

ranges between 200 and 400 kPa. Consolidation data indicate that these clays are of medium 

compressibility. Thick sandstones are present at some localities. These usually are either 

medium or fine-grained with a mean grain size of 0.198 mm and are poorly sorted. The dry 

density of these sandstones has a relatively small range, it being from 2.22 to 2.31 Mg m-3, 

which is reflected in the small range of porosity, namely, 8.9 to 14.1%. The sandstones are 

moderately strong (Anon. 1970) with a range of unconfined compressive strength from 17.4 

to 39.8 MPa (Bell & Culshaw 1998). The loss of strength on saturation varies from about 19 

to 45%. However, those sandstones with the highest saturation moisture contents do not 

necessarily undergo the greatest loss in strength. Dobereiner & de Freitas (1986) suggested 

that the strength of sandstones should be defined in terms of their saturated unconfined 



compressive strength and that weak sandstones, in particular, should be regarded as those 

with a saturated unconfined compressive strength in the range 0.5 to 20.0 MPa. The saturated 

unconfined compressive strength of the sandstones from the Sneinton Formation lie within the 

range 14.1 to 25.6 MPa. Consequently, most of these sandstones would be classified as weak 

according to the Dobereiner and de Freitas criterion. 

 

The mudstones of the Radcliffe, Gunthorpe, Edwalton and Cropwell Bishop Formations of 

the Mercia Mudstone Group consist of stiff to hard silty clayey material. Particle size analyses 

carried out on fresh or less weathered mudstones from the Mercia Mudstone Group tend to 

have a large proportion of silt sized particles whereas the clay fraction tends to predominate in 

the more weathered material. Such an increase in the clay fraction of the weathered material 

suggests that some silt-sized particles in the unweathered/slightly weathered mudrocks may 

be aggregates of clay sized particles (Davis 1968). The silt particles presumably are held 

together by cement that breaks down on weathering. Chandler (1969) recognized five zones 

of weathering from unweathered to fully weathered material. Weathering begins along the 

fissures in the mudrock. Such a generalized weathering profile may be modified considerably 

and lateral variations are not uncommon. The unweathered or slightly weathered mudrock 

generally has a low to intermediate plasticity. The plasticity index increases with the degree 

of weathering and when fully weathered the material can have a high plasticity. Similarly, the 

natural moisture content increases with the degree of weathering whereas the bulk density 

decreases. Values of undrained cohesion range up to 860 kPa, with weak zones of low 

strength occurring at depths down to 15 m. The compressibility of the mudrocks tends to 

increase with increasing degree of weathering, from 0.1 to 1.5 m2 MN. Usually, the sulphate 

content of these mudrocks is less than 0.2% so that in most cases ordinary concrete mixes can 

be used for buried structures. Because of the presence of veins of gypsum in these mudrocks 

it might be expected that this would provide sulphate on breakdown that would adversely 

affect the cement fraction of concrete. However, the gypsum frequently is leached from the 

mudrock in the near-surface zone. A much fuller account of the engineering geology of the 

mudstones of the Mercia Mudstone Group has been provided by Hobbs et al. (2002) and of 

engineering in these mudstones by Chandler & Forster (2000). 

 

Gypsum occurs at several horizons within the Mercia Mudstone Group but it is found 

primarily in the Cropwell Bishop Formation. The Tutbury Gypsum and Newark Gypsum 

occur in this Formation. Bell (1994) found that the dry density of gypsum in the Nottingham 



area showed little variation, ranging from 2.21 to 2.26 Mg m-3 and that the effective porosity 

varied from 1.5 to 6.6%. He found that the unconfined compressive strength tended to vary 

with the amount of impurity present in the gypsum, that is, that gypsum with the lower 

impurity content possessed lower values of strength. This was in accord with the suggestion 

made by Skinner (1959) that impurities in calcium sulphate rocks tend to reduce the crystal 

size and that the strength increases with decreasing crystal size. For example, the ranges of 

unconfined compressive strength for the three categories of gypsum related to impurity 

content mentioned above, least impurity first, were 12.2 to 28.0 MPa, 14.9 to 24.3 MPa and 

14.0 to 34.9 MPa respectively. The respective average values of strength were 18.2 MPa, 21.6 

MPa and 24.1 MPa. These values of strength indicate that the gypsum can be regarded as 

moderately strong rock (Anon. 1970). 

 

The mudstones of the Scunthorpe Mudstone Formation are fissured and very stiff but are 

often soliflucted and cryoturbated in the upper few metres, particularly on sloping ground. 

The median moisture content decreases with depth from about 25% at the surface to around 

16% at a depth of 4 m. The median bulk density also increases with depth from approximately 

1.97 Mg m-3 at the surface to 2.11 Mg m-3 below 4 m. The plasticity of the material increases 

with the degree of weathering, tending to vary between intermediate and high plasticity. 

Strength also tends to vary with depth as the influence of weathering declines, the undrained 

cohesion increasing from 40 kPa to 180 kPa in the depth range 0 to 5 m. The weathered 

material may be subject to swelling and shrinkage with changes in moisture content. Sulphate 

attack on buried structures is unlikely. 

 

Ground conditions: superficial deposits 

Till is not widespread in the Nottingham area but is usually a sandy clay, of variable pebble 

content, with a low to intermediate plasticity. The moisture content and bulk density vary 

within the area, the former ranging from 15 to 30%, whilst the latter ranges from 1.8 to 2.3 

Mg m-3. The tills possess a low to medium compressibility with a coefficient of consolidation 

that varies from 0.1 to 10 m2 yr-1. Values of cohesion tend to vary between 100 and 350 kPa 

and allowable bearing capacity between 200 and 600 kPa. Generally speaking, the tills do not 

give rise to problems of sulphate attack on concrete below the ground surface. 

 

Extensive deposits of gravel and sand occur in the valley of the River Trent. The lowest, the 

Holme Pierrepont Sand and Gravel, is found beneath a capping of alluvial silty clay. They 



normally comprise clean uniform gravels with some lenses of sand but silt and clay are only 

rarely present. The sand content varies from 30 to 50%. The results of Standard Penetration 

Tests suggest that three zones of relative density are present. The material at the surface may 

be relatively loosely packed with SPT ‘N’ values of around 10. A medium dense unit occurs 

beneath the loosely packed unit and has an average SPT ‘N’ value of 25. This overlies a very 

dense unit in which the SPT ‘N’ values exceed 50. These gravels afford good foundation 

conditions with allowable bearing capacities ranging up to 600 kPa. They are free draining, 

having medium to high permeability (6.2 x 10-4 to 6.2 x 10-2 m s-1). In most instances, 

sulphate attack on buried concrete structures is not likely to occur. 

 

The higher river terrace deposits consist of gravel, sand and sandy gravelly clay.  Standard 

Penetration Test ‘N’ values indicate that these deposits vary from medium dense to dense and 

occasionally may be very dense. The allowable bearing capacities of the gravel/sand material 

range from 100 to 400 kPa (Forster 1992). These deposits are unlikely to give rise to sulphate 

attack on buried concrete structures.  

 

Head in the Nottingham area usually is thin and of variable composition depending on the 

nature of the parent material ranging from a cohesive soft to stiff material  to a non-cohesive 

loose to dense material. Head may be crudely stratified but normally is massive in 

appearance. However, this could be deceptive in that relict sub-horizontal shear planes may 

be present and these may be reactivated if disturbed. If Head is composed of cohesive 

material, then this generally is of low to intermediate plasticity but may be of high to very 

high plasticity where the parent material had such a plasticity (for example, the Scunthorpe 

Mudstone). The cohesive material tends to have a low strength and in many instances may be 

close to the residual strength of the parent material. Consolidation data indicate that the 

cohesive material is of medium to high compressibility. 

 

The largest area of alluvium occurs in the valley of the River Trent where it generally lies on 

top of extensive deposits of river gravel. It is composed primarily of normally consolidated 

clay, silty clay and sandy clay. Occasionally, organic rich layers and channels are present. The 

moisture content of these alluvial soils tends to fall between 10 and 50% but in the organic 

more peaty soils it can be as high as 420%. The clays range from low to high plasticity 

depending on the proportion of clay, silt or sand they contain. Normally, the consistency 

varies from soft to firm but on occasions very soft or stiff clays may be present in the 



alluvium. The clays, silts and organic deposits range in compressibility from medium to very 

high, possessing coefficients of consolidation between 0.1 and 100 m2 yr-1. Values of 

undrained cohesion range up to 200 kPa but mostly they are below 100 kPa. Sulphate attack 

on buried concrete is not a common problem. 

 

Deposits of peat are present in the alluvium of the Trent valley and in post-glacial lacustrine 

deposits. In the alluvium they tend to occur as relatively isolated pockets and channel infills. 

The thickness of the peat varies but in one abandoned channel of the River Trent at Beeston 

up to 3.5 m of peat has been recorded (Charsley et al. 1990). Low strength, very high 

compressibility and acidic character coupled with a potential to generate methane are 

properties associated with peat. This can mean foundation failure and substantial settlement of 

buildings placed on peat if precautions are not taken. Furthermore, because the peat occurs in 

pockets or channel infillings, the possibility exists of a building being founded partly on peat 

and partly on much less compressible material, which will give rise to differential settlement. 

Depending on its thickness and depth of occurrence, peat may be removed and replaced with 

fill.  Alternatively, raft or piled foundation structures may be used. Gas proof membranes, 

with passive venting, may be needed to mitigate ground gas risks.   

 

Ground conditions: artificial deposits 

A wide variety of material has been used as fill or for made ground including many types of 

waste (Bell & Culshaw 2003). Thus the engineering behaviour of such areas depends upon 

the material’s composition, the method by which it was placed and any subsequent 

geotechnical treatment. Non-engineered fills can be regarded as those that are placed without 

any control whereas engineered fills have been compacted to some extent or to achieve a 

specified engineering performance, and consequently provide sufficient support for the 

engineering requirement. Waste fills may include inorganic mine waste, coarse colliery 

discard subject to spontaneous combustion, municipal and industrial wastes or combinations 

of some or all of them. Certain industrial wastes, in particular, may be contaminated. In the 

Nottingham area archival data frequently proves inadequate to define the total distribution and 

limits of former waste disposal sites. In addition, the character of the material at such sites 

often has not been recorded or has been recorded unreliably. The relevant local authority 

inspection strategy produced as a requirement of Part 2A of the Environmental Protection Act 

(Department of the Environment 1990) provides an overview of both the industrial history 

and likely made ground deposits in the area. 



  

There are a large number of types of industrial wastes, which include chemical wastes, off 

specification products, decommissioned plant, boiler and bottom ash. Industrial wastes 

commonly are associated with derelict sites. Unfortunately, many industrial wastes are 

contaminated to a greater or lesser extent and have the potential to cause harm to human 

health or the environment, including surface and ground water. Pulverized Fuel Ash (PFA) is 

waste that is produced by coal-fired power stations, which were once common along the 

banks of the Trent. The particles of PFA are primarily of silt size and are more or less 

spherical in shape. Their specific gravity ranges from around 1.90 to 2.72, depending on their 

source and they are non-plastic.  Ashes may exhibit cohesive properties. Most PFA is used for 

land reclamation projects or for general and structural fills (for example, embankments, 

foundation fills, fills behind retaining walls). In the Nottingham area, the most extensive 

spread of made ground in which there is industrial waste occurs between Beeston and the City 

Centre. This includes the Dunkirk-Lenton Lane industrial area where some of the thickest 

deposits of made ground occur, in places being over 10 m thick.  The made ground south of 

Wilford Lane and at the former Wilford Power Station includes some PFA. At the former site 

up to 6.5 m of PFA occurs locally. Pulverised Fuel Ash can contain total heavy metal 

concentrations in excess of generic screening values; however, the bioavailability of these to 

humans or ecological receptors is low. 

 

In developed countries the nature and composition of waste has evolved over the decades, 

reflecting industrial and domestic practices. For example, in Britain domestic waste has 

changed significantly since the 1950s, from largely ashes and little putrescible content of 

relatively high density to low density, highly putrescible waste as domestic heating switched 

from burning coal (and domestic waste) to burning natural gas or oil. Hence, waste disposal 

or sanitary landfills now usually are very mixed in composition and suffer from continuing 

organic decomposition and physico-chemical breakdown. They can consist of a heterogenous 

collection of almost anything including waste food, garden rubbish, paper, plastic, glass, 

rubber, cloth, ashes, building waste, tins and minor metallic items. Matter exists in the 

gaseous, liquid and solid states in landfills, and all landfills comprise a delicate and shifting 

balance between the three states. Any assessment of the state of a landfill and its environment 

must take into consideration the substances present in a landfill, and their mobility now and in 

the future.  Much of the material of which a modern landfill is composed is capable of 

reacting with water to give a liquid rich in organic matter, mineral salts and bacteria, namely, 



leachate. Methane and hydrogen sulphide often are produced in the process and 

accumulations of these gases in pockets in fills followed by their lateral migration have led to 

explosions in dwellings (Williams & Aitkenhead 1991). The leaching of soluble compounds 

from fill is another problem. Some materials such as ashes and industrial wastes may contain 

sulphate and other products that are potentially injurious as far as concrete is concerned. 

Waste materials disposed of in sanitary landfills have dry densities varying from 160 to 350 

kg m-3 when tipped, but after compaction the density may exceed 600 kg m-3. Moisture 

contents range from 10 to 50%, with average specific gravities of the solids varying from 1.7 

to 2.5 and low bearing capacities between 19.2 to 33.5 kPa. Settlements associated with 

landfills are likely to be large and irregular. The initial mechanical settlement of waste 

disposal fills is rapid and is due to a reduction in the initial void ratio. It takes place with no 

build up of pore water pressure. Settlement continues due to a combination of secondary 

compression (i.e. material disturbance) and physico-chemical and biochemical action. 

However, determination of the amount and rate of settlement of a landfill is not a simple task 

and a traditional soil mechanics approach for settlement prediction generally is unsatisfactory. 

Watts & Charles (1999) discussed the settlement characteristics of landfills and suggested 

various ground improvement techniques that could be used, notably the use of surcharge 

loading, to reduce post-construction settlement. 

 

Unlike some other waste fills, colliery spoil heaps usually have well defined boundaries. 

Their distribution in the Nottingham area is shown in Figure 6. They consist of coarse 

material that reflects the various rock types discarded during coal mining operations. 

Obviously, the characteristics of coarse colliery discard differ according to the nature of the 

spoil. The method of tipping also influences the character of coarse discard. In addition, some 

spoil heaps, particularly those with relatively high coal contents, may be burnt, or still be 

burning, and this affects their mineralogical composition and physical properties. The 

moisture content of spoil increases with increasing content of fines. Generally, it falls within 

the range 5 to 15%. The range of specific gravity depends on the relative proportions of coal, 

shale, mudstone and sandstone in the spoil, and tends to vary between 1.7 and 2.7. The 

proportion of coal is of particular importance, the higher the coal content, the lower the 

specific gravity. The bulk density of material in spoil heaps shows a wide variation, most 

material falling within the range 1.5 to 2.5 Mg m-3. Low densities are mainly a function of 

low specific gravity. Bulk density tends to increase with increasing clay content. As far as the 

particle size distribution of coarse discard is concerned there is a wide variation, often most 



material falls within the sand range but significant proportions of gravel and cobble range also 

may be present. Subsequent breakdown on weathering reduces the particle size. The angle of 

shearing resistance of coarse discard usually varies from 25 to 45. With increasing content 

of fine coal, the angle of shearing resistance is reduced. Also, as the clay mineral content in 

spoil increases, so its shear strength decreases. The angle of shearing resistance is higher in 

spoil that has been burnt. The shear strength of discard within a spoil heap, and therefore its 

stability, is dependent upon the pore water pressures developed within it.  Pore water 

pressures in spoil heaps may be developed as a result of the increasing weight of material 

added during construction or by seepage though the heap of natural drainage. The relationship 

between permeability and the build-up of pore water pressures is crucial. In materials with a 

coefficient of permeability of less than 5 x 10-9 m s-1 there is no dissipation of pore water 

pressures, whilst above 5 x 10-7 m s-1 they are completely dissipated. The permeability of 

colliery discard depends primarily upon its grading and its degree of compaction. It tends to 

vary between 1 x 10-4 and 5 x 10-8 m s-1, depending upon the amount of degradation in size 

that has occurred.  

 

Spontaneous combustion of carbonaceous material, frequently aggravated by the oxidation of 

pyrite, is the most common cause of burning spoil. In fact, hot spots may occur within spoil 

heaps that have temperatures around 600C or occasionally up to 900C (Bell 1996). 

Spontaneous combustion may give rise to subsurface cavities in spoil heaps, the roofs of 

which may be incapable of supporting a person. Burnt ashes also may cover zones that are 

red-hot to appreciable depths. When steam comes in contact with red-hot carbonaceous 

material, water gas (hydrogen and carbon monoxide) is formed, and when the latter is mixed 

with air, over a wide range of concentrations, it becomes potentially explosive. Noxious gases 

are emitted from burning spoil. These include carbon monoxide, carbon dioxide, sulphur 

dioxide and, less frequently, hydrogen sulphide. Acid mine drainage may be associated with 

colliery spoil heaps. 

 

Backfilled excavations of various size and depth are widely spread across the Nottingham 

area. They may be opencast sites for coal, pits for sand, sand and gravel or brick clay, and 

quarries for aggregate, building stone or gypsum. Frequently, there is no surface indication of 

their former extent or, in some instance, their existence.  Moreover, there usually are no data 

available regarding the nature of the compaction of the material backfilling these excavations. 

The types of former excavations and the problems they may give rise to are summarized in 



Table 2. Opencast working of coal involves excavation to depths of up to around 100 m 

below the surface. However, restoration usually begins before a site is closed, which means 

that worked out areas behind the excavation front are filled with rock waste. This involves 

topsoil and subsoil being stripped and put into separate temporary dumps about the site. 

Because of high stripping ratios (often 15:1 to 25:1) coupled with bulking, there usually is 

enough spoil to more or less fill the void. Part of the M1 motorway runs over a 1960s 

opencast coal mine in the western part of the Parish of Strelley. The water table at many 

opencast sites is lowered by pumping in order to provide dry working conditions in the pit.  

This can present a problem because significant settlements of opencast backfill can occur 

when the partially saturated material becomes saturated by rising groundwater after pumping 

has ceased. In other words, settlement due to wetting collapse is more significant than that 

due to the self-weight of the backfill (Blanchfield & Anderson 2000).   

 

Some brick pits and old quarries are used as landfill sites. Former gravel pits, along the River 

Trent, where the water table is high, are allowed to flood when extraction ceases and are used 

for amenity or recreational purposes such as marinas, water sports (Holme Pierrepont), nature 

reserves (Attenborough) and fishing (Gunthorpe). 

 

Geohazards and constraints on development 

The constraints on development in the Nottingham area include slope instability, flooding, 

collapsing mines and caves, land contamination and, to a minor degree, earthquakes.  

 

Landslide 

Steep slopes are common in the Nottingham area but in most places they present little hazard 

to development unless they are disturbed by human activity or undercut by rivers. Landslides, 

for example, occur along the bluffs and cliffs of the River Trent. Generally, mudstone and 

interbedded mudstone and sandstone, which are exposed over two-thirds of the area, are 

strong enough to sustain steep slopes (Charsley et al. 1990).  However, weathered material, 

Head or colluvium on such slopes is susceptible to movement if it is weakened by the ingress 

of water. For example, landsliding has occurred on the Penarth Group escarpment at 

Cotgrave, and elsewhere, where the mudstones and black shales forming the slope have 

weathered to form clays of high to very high plasticity which, under the influence of water 

draining from minor limestones in the Lias at the top of the slope, have generated minor 

landsliding especially where undercut at the base. Furthermore, ancient slopes that developed 



under different climatic conditions during wetter, colder Devensian times may be covered in 

Head that contains relict shear planes that can be reactivated by loading, undercutting or the 

ingress of water. Rockfall and slab slides have occurred in the sandstones of the Sherwood 

Sandstone Group and the dolomites of the Cadeby Formation. These types of failures have 

taken place on the exposed sandstone in Nottingham and are mainly related to the occurrence 

of planes of weakness such as joints, bedding planes and faults, undercutting by the erosion of 

weaker sandstone beds and tree roots growing in discontinuities. In 1969 a slab weighing 18 

tonnes fell from Castle Rock, beneath Nottingham Castle, but this is exceptional and even 

much smaller failures from rock faces are uncommon. 

 

Flooding 

Major flooding of urban areas occurred in 1947 after which a programme of flood protection 

was initiated. Further peak flows occurred in 1955, 1960 and 1977 but did not result in serious 

flooding in built up areas. Then, in November 2000, major flooding affected the whole of the 

Trent valley, as well as its larger tributaries. This was of slightly lesser magnitude than the 

flood of 1947 but nonetheless was regarded as a 50 year flood. Housing and farmland were 

inundated and important communication routes were disrupted for days afterwards. In fact, 

the Midlands region experienced its wettest autumn on record, receiving 214% of the normal 

October rainfall, after the ground was saturated following an abnormally wet September. 

Much of the terrain in the catchment areas is underlain by impermeable mudrocks of 

Carboniferous, Triassic and Jurassic age covered with patches of till.  These have low 

infiltration capacities and so aided extremely rapid rates of runoff.  Hence, the river system 

quickly filled to its capacity and overflowed its banks.  Although protective defences saved 

many places from inundation, they probably contributed to constriction and ponding 

elsewhere. However, parts of the valley remained dry due to the topography of the flood 

plain. For example, around Gunthorpe and Caythorpe the dry land corresponded closely with 

the sands and gravels of the Holme Pierrepont Terrace that stands 2.5 m above the alluvium 

of the modern flood plain (Figure 10). Further flooding occurred in June 2007 associated with 

heavy, intense rainfall. This tended to cause localised ‘flash-flooding’ in the Nottingham area 

caused, in part, by overland flow over desiccated ground, rather than inundation of extensive 

areas of the main flood plains. In response to the flooding, raising of the main flood 

embankments along the River Trent through Nottingham is being planned. 

 

 



Coal mining subsidence and collapse 

Coal has been mined in the Nottingham area since at least the Middle Ages and has left 

behind a legacy of shafts, adits, subsurface workings and backfilled opencast pits over much 

of the area. These cause problems for the development and redevelopment of land, in 

particular, subsidence of the ground surface that takes place above the workings when coal is 

removed or subsequently when old workings collapse. Unfortunately, subsidence can have 

serious structural effects on surface buildings, can be responsible for flooding due to the 

lowering of the ground surface below the water table and, consequently, it can lead to the 

sterilization of land due to the need for special constructional design in site development or 

extensive remedial measures in developed areas (Bell 1988). One of the problems associated 

with old workings is that there may be no record of their existence. In Britain the first statutory 

obligation to keep mine records dates from 1850 and it was not until 1872 that the production of 

mine plans for retention by the Mines Inspectorate became compulsory. Even if old records 

exist, they may be inaccurate. 

 

In the case of pillared workings although the intrinsic strength of coal varies, the important factor 

as far as the pillars are concerned is that their ultimate behaviour is a function of bed thickness to 

pillar width, the depth below ground and the size of the extraction area. Slow deterioration and 

failure of pillars may take place long after mining operations have ceased. Even if pillars are 

relatively stable, the surface may be affected by void migration as the roof between the pillars 

collapses. This can take place within a few months or many years after mining ceased. The 

process can, at shallow depth, continue upwards to the ground surface leading to the sudden 

appearance of a crown hole. The maximum height of migration in exceptional cases might 

extend to 10 times the height of the original stall. However, it generally is 3 to 5 times the stall 

height. 

 

As far as old shafts are concerned, they may be unfilled or filled but in the case of the latter there 

can be no guarantee of the effectiveness of their treatment unless it has been carried out in recent 

years. The location of a shaft is of great importance in terms of the safety of a potential structure 

for, although shaft collapse is fortunately an infrequent event, its occurrence can prove 

disastrous. Moreover, from the economic point of view the sterilization of land due to the 

suspected presence of a mine shaft is unrealistic. However, the number of shafts at a site can be 

large. Gunn et al. (2008) reported 36 recorded mine shafts at the Nottingham Business Park 

development near Strelley. Figure 11 shows one of these shafts exposed by partial collapse of 



infill/cover material. The site is approximately 0.8 km by 1.8 km in size, giving a maximum area 

of about 1.44 km2. This gives a shaft density, for known shafts, of 1 per 0.04 km2. They also 

observed that the recorded locations should not be regarded as having a precision better than ± 

20 m in an easterly and a northerly direction. 

 

In longwall mining the coal is exposed at a face of up to 300 m between two parallel roadways. 

The roof is supported only in, and near, the roadways, and at the working face. After the coal has 

been won and loaded the face supports are advanced leaving the roof rocks, in the areas where 

coal has been removed, to collapse. Subsidence at the surface more or less follows the advance 

of the working face and may be regarded as immediate. As longwall mining has ceased in the 

Nottingham area it is assumed that subsidence due to this cause is unlikely in the future. Residual 

subsidence, however, may take place for a number of years after working has ceased. Ground 

movements induced at the surface by longwall mining activities are influenced by variations in 

the ground conditions, especially by the near-surface rocks and superficial deposits. However, 

the reactions of surface deposits to ground movements are usually difficult to predict reliably. 

Indeed, some 25% of all cases of mining subsidence undergo some measure of abnormal ground 

movement that, at least in part, is attributable to the near-surface strata. Faults tend to be 

locations where subsidence movement is concentrated, thereby causing abnormal deformation of 

the surface. Whilst subsidence damage to structures located close to, or on, the surface outcrop of 

a fault can be very severe, in any particular instance the areal extent of such damage is limited, 

often being confined to within a few metres of the outcrop. 

 

Fault reactivation due to mining subsidence can occur during active mining or after mining has 

ceased. In the 1950s, during mining from Clifton Colliery, some houses in West Bridgford 

suffered severe damage as a result of differential subsidence associated with a major fault. 

Donnelly (2000) described a number of instances of fault reactivation in the Nottingham area, 

most related to active mining. A number of problems, in addition to fault reactivation, can arise 

once mining operations have ceased. These include the rise of water levels in a mine after the 

cessation of the pumping that kept the workings dry and possible problems due to acid mine 

drainage, the escape of gas from poorly sealed mine shafts, and landsliding. 

 

Gypsum mining subsidence and collapse 

Subsurface mining of gypsum has taken place at East Bridgford, Cropwell Bishop, East 

Leake, Bunny and on Gotham and Thrumpton hills. Satinspar was mined at East Bridgford. 



This occurs as impersistent veins and was probably worked by following the veins. 

Accordingly, voids left by mining may have an irregular shape. Neither the actual depth nor 

extent of the workings is known except that they are shallow and some abandoned shafts have 

been located. Abandoned mine plans are held confidentially by British Gypsum for the 

workings at Cropwell Bishop but there is a possibility that mining extended north of the 

recorded workings. Mining probably took place in several seams within the Newark Gypsum, 

mainly by the pillar and stall method. Shallow outcrop workings are common at Gotham Hill 

extending towards Thrumpton, and workings from adits and shafts, which generally consist of 

a series of randomly orientated tunnels and chambers, also are present.  Gypsum was 

extracted by the pillar and stall method at Weldon Mine (one of the four mines beneath 

Gotham Hill, just west of Gotham) and the abandonment plan for the mine is available. 

Hence, the potential for subsidence does exist in these areas although there is little evidence to 

suggest that workings have collapsed. 

 

Gypsum is much more soluble than limestone because 2200 mg l-1 of calcium sulphate can be 

dissolved in non-saline water compared with 400 mg l-1 of calcium carbonate. The solution 

rate of gypsum is controlled principally by the area of its surface in contact with water and the 

flow velocity of water associated with a unit area of the material. Hence, the amount of 

fissuring in a rock mass, and whether gypsum is enclosed by permeable or impermeable beds, 

is most important. In fact, widespread dissolution of gypsum has taken place within the 

Mercia Mudstone in a zone a few metres in thickness beneath the subsoil or superficial 

deposits, much of the solution having occurred along discontinuities (Firman & Dickson 

1968).  However, the depth of the solution zone may extend to a depth of some 30 m along 

faults and heavily jointed areas (Elliott 1961). Solution depressions, accordingly, are present 

in parts of the Nottingham area and gypsum rarely is exposed at outcrop. Nonetheless, much 

of the gypsum in the Mercia Mudstone below the solution zone occurs as veins and thin 

nodules except for the Tutbury Gypsum and Newark Gypsum in the Cropwell Bishop 

Formation. This means that sizeable voids could only develop in these two gypsum horizons 

if suitable groundwater flow conditions existed. Because there is little evidence of solution 

hollows resulting from the sudden collapse of cavities it would appear that sizeable voids 

have not developed. An exception may occur near Bradmore where some steep sided hollows 

may be due to sudden collapse. Unconsolidated deposits that have accumulated in solution 

depressions may be highly compressible and could give rise to excessive settlement if loaded. 

 



 

Sandstone cave collapse 

Over 400 man-made caves or cave systems are present in the sandstone beneath central 

Nottingham (Figure. 12). Most of the caves are between 200 and 800 years old but some may 

be over 1000 years old. They have been used for a variety of purposes such as storerooms, 

dwellings, breweries, tanneries, sources of building and domestic sand, waste disposal etc. A 

register of those caves for which documentary evidence exists has been prepared by Owen 

and Walsby (1989). However, because of their age and the rebuilding that has been done over 

the centuries it is likely that unknown caves are present in the sandstone. The distribution of 

the caves closely reflects the outcrop of the Nottingham Castle Sandstone Formation, 

although they do not all occur in that formation (Figure 13). The sandstone is friable and can 

be excavated easily with hand tools but because bedding and jointing are very widely spaced 

it can stand with vertical sides and support wide voids (Figure 14). Generally, the caves are 3 

to 5 m in width and less than 10 m long. Many of the roofs are flat although some are arched 

and some of the wider caves have a central pillar to provide roof support.   

 

According to Waltham (1993), three possible types of failure may be associated with the 

caves. Firstly, he maintained that building foundations may lose their integrity if less than 3 m 

of sound rock exists above the top of the caves. However, there is no record of building 

subsidence above the caves in more than 100 years. This probably is because building 

construction in Nottingham takes the presence of caves into consideration. It has meant that 

some caves have been filled prior to construction (Walsby et al. 1993). The design of the 

Broadmarsh Shopping Centre development (in the centre of Nottingham) ensured historically 

important caves beneath it were preserved by a concrete beam that spanned them while some 

of the minor caves were infilled. In another development, in the centre of the City, the caves 

beneath the site were retained for future use by carrying the frame of the building on 

reinforced concrete columns that extended through the cave roof onto concrete pad 

foundations cast into the floor of the cave. Secondly, Waltham indicated that unloaded roofs 

may undergo progressive failure and that this ultimately could lead to the development of 

crown holes. The latter is uncommon although Waltham quoted the case of Stanford Street 

where a crown hole appeared in the road surface in June 1990. Thirdly, Waltham suggested 

that sandstone roofs and walls could deteriorate rapidly where there are open entrances to 

caves. As pointed out above, these sandstones can suffer a significant loss of strength when 

saturated that can affect the behaviour of roofs adversely.  Indeed, Waltham mentioned that in 



three caves the saturated roof beds had sagged away from the ceilings. Thus, the ingress of 

water from construction sites to the sandstone should be prevented wherever possible, 

especially where the sandstone above a cave is known to be less than 3 m. The water table 

beneath the City has risen in recent years and this has meant that some caves that have been 

used as basements have been flooded. This may affect the foundations concerned adversely. 

In fact, water levels have been lowered by pumping in the Broadmarsh complex. 

 

Subsidence investigation and remediation 

If development is to be carried out at a site where natural or artificial voids are known or 

suspected, the ground investigation should aim to detect their presence so that precautions can 

be taken against their collapse. There are numerous references relating to how to undertake a 

ground investigation in areas of abandoned mine workings such as Taylor (1968), Healy and 

Head (1984), Bell (1988) and Anon. (1999); and of how to locate old shafts (Anon. 1976). 

One of the most difficult assessments to make is the possible effects of progressive 

deterioration of voids in the ground and the consequent risk of subsidence. The most obvious 

way of dealing with old workings is to place a proposed structure away from any voids but if 

this is not possible then an attempt can be made to stabilize the ground by grouting or to use 

specialized foundation structures such as rafts. Discussion of the methods by which voids in 

the ground may be dealt with is given by Anon. (1977), Healy & Head (1984) and Waltham et 

al. (2005) and of methods to deal with shafts by Anon. (1982).  

 

Abandoned quarries and pits 

Old quarries and pits occur throughout the Nottingham Area. In the past, they were smaller in 

size but more frequent than they are today when excavations, especially for sand and gravel 

and brickclay, are centred on a few large-scale workings. Former quarries and pits may have 

been filled or remain unfilled. Where they have been filled, the character of the backfill may 

differ from that of the host rock and the backfill may undergo more settlement when loaded 

than the surrounding host rock.  Settlement at former opencast sites has been referred to above 

and if these are to be built over then, ideally, they should have been compacted properly. 

Quarries and pits frequently are used to dispose of waste, if the ground conditions are 

suitable. Not only are such landfills likely to settle but they also may generate methane if the 

waste contains organic material. Ideally, they should be developed as open spaces rather than 

be built over. 

 



 

Groundwater pollution 

Public water supply wells draw water from the Sherwood Sandstone Formation. The 

limestones of the Cadeby Formation also supply water locally to farms but not to public 

supply. The Coal Measures and other formations yield only limited supplies of groundwater 

for local use. To avoid groundwater pollution groundwater protection zones have been 

established within a radius of 1 km around wells in the Sherwood Sandstone Formation so 

that development likely to cause pollution is avoided. The location of waste disposal sites 

should be chosen with care so avoid the pollution of groundwater by leachates. Also, the 

extensive use of nitrogen based fertilizer has given rise to nitrate pollution, especially in rural 

areas where the limestone and sandstone is exposed. Acid mine drainage can cause pollution 

of aquifers in the Coal Measures. However, abandonment of the South Nottinghamshire 

Coalfield and the cessation of pumping minewater raise concerns over the security of the 

Sherwood Sandstone Formation that overlies the concealed part of the coalfield. Dumpleton 

et al. (2001) suggested that possible discharge of acid mine drainage both to the surface and 

into the Sherwood Sandstone might take place some 20 years after the end of dewatering. 

 

Contaminated land 

Contaminated land has been a constraint on development for at least the past 20 years. The 

shift in the local and national economic base away from old, heavy, extractive and 

manufacturing industries towards the light engineering and service industries has resulted in 

much redevelopment taking place on land affected by contamination. The long history of 

industrial activity in Nottingham has resulted in the contamination of shallow soils and water 

in both shallow and deep aquifers. Coal mining has created voids and opened discontinuities 

that both facilitate contaminant transport and act as a source of very low pH groundwater 

(Bell & Kerr 1993). Waste disposal sites may be sources of explosive and asphyxiating gases 

and pollutant-rich leachates. Such land requires a three-dimensional conceptual model to 

guide the design of a ground investigation that will refine the model and inform the appraisal 

of risk assessment and remediation options (Nathanail & Bardos 2004). Consequently, 

Nottingham has been at the forefront of risk-based approaches to managing land 

contamination. For example, the first soil washing project in the UK was used in the 

remediation of the Basford gasworks site, north of the City centre.  

 

 



 

Seismicity 

Earthquakes are occasionally felt in the Nottingham area. These usually are of low intensity 

and give rise to little or no damage. However, on 11 February 1957, the Derby earthquake, 

with its epicentre located near Diseworth, about 20 km south west of Nottingham, had an 

intensity of 6-7 on the European Macroseismic Scale (MSL) scale that affected the 

Nottingham area. The earthquake had a magnitude of 5.3 ML. Such an earthquake can cause 

minor damage such as cracks in roofs and walls, broken windows and damage to, or the 

collapse of, chimney stacks. The earthquake of 27 February 2008 at Market Rasen 

(Lincolnshire) (some 70 km north east of Nottingham) had a magnitude of 5.2 ML and an 

intensity of 6 (MSL). It occurred at an estimated depth 18.6 km and was felt across 

Nottingham. It caused damage to the steeple of St Mary Magdalene Parish Church at 

Waltham-on-the-Wolds about 30 km south east of the city as well as damage to chimney 

stacks and roofs in the epicentral area. Movement on major faults at depth is a cause of 

earthquakes and the Nottingham area is crossed by several major faults that extend into the 

Pre-Carboniferous basement. For instance, on 30 May 1984 the West Bridgford earthquake 

had its focus at a depth of 15 km. Mining-induced seismicity has been recorded in the 

Nottinghamshire coalfield but the risk of damage to properties by these events is low (Bishop 

et al. 1993). 

 

Conclusions 

Nottingham owes it origin to the fortuitous combination of geology and geography that 

resulted in the presence of a low, well-drained sandstone hill close to a crossing point of the 

River Trent. This was aided by the geotechnical properties of the sandstone that allowed rock 

shelters to be easily cut in the abandoned river cliff on the south side of the hill. This simple 

beginning was developed by slowly expanding westwards to a second hill when the Normans 

took advantage of its strategic importance to build a castle on its well-protected, cliff-bounded 

summit. 

 

The City grew and industries developed supplied by an abundance of natural geological 

resources in the form of clean water, sandstone, limestone and coal, all within easy 

transportation distance of the City. Thus, by the early 20th century Nottingham was a major 

industrial centre of the East Midlands. However, after the middle of the 20th century the old 

heavy, dirty industries were in decline and were eventually superceded by lighter 



manufacturing and service industries at the end of the 20th century. Along with this change 

came new attitudes to the protection of the environment, natural resources and the health of 

the population. Thus, Nottingham faced new challenges in its redevelopment that needed to 

deal with the poor ground conditions left by its industrial past. Challenges included 

contaminated ground, poor and uneven bearing capacity of made and infilled ground, 

underground voids, explosive and asphyxiating gases and rising groundwater. 

 

Nottingham has risen to these challenges and employed appropriate geological and 

geotechnical expertise to deal with them and create a modern city with a vigorous economy 

and high quality of life for its citizens. Such an outcome is to be expected for a city at the 

heart of the area that houses the home of the British Geological Survey at Keyworth. 
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Sandstone and the tunnel its ability to sustain stable wide spans for many years 
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Table 1. Bedrock geology – factors affecting ground conditions 

Geological 

Formation 

Geohazard Potential source 

of contamination 

Potential pathway Potential 

barrier 

Potential receptor 

Lias Group Landslides 

Shrink/swell 

clay 

No Fissure flow in 

limestone beds 

Yes  

Penarth Group Landslides 

Shrink/swell 

clay 

No  Yes Minor Aquifer 

Mercia Mudstone 

Group 

Collapse of 

workings in 

gypsum 

Sulphate from 

gypsum 

 Yes  

Sneinton 

Formation 

 No Fissure flow No Major aquifer 

Nottingham 

Castle Sandstone 

Formation 

Collapse of 

caves 

No Fissure flow No Major aquifer 

Lenton 

Sandstone 

Formation 

 No Fissure flow No Major aquifer 

Cadeby 

Formation 

Karstic 

features  

Carbon dioxide Solution-widened 

fissures 

No Major aquifer 

Coal Measures Collapse of 

workings, 

entrances 

Methane, Acid 

mine drainage 

Fissure flow; Old 

workings 

Yes  Minor Aquifer 

 



Table 2. Types and methods of coal mining and associated land-use issues. 

Type of mining 

(Period used) 

Location Method Land-use issues 

Crop working 

(Middle Ages 

and earlier) 

Exposed 

coalfield 

Direct working of 

coal at surface 

1. Very shallow workings 

2. Line of subsidence along crop 

Bell pits 

(Middle Ages) 

Wollaton, 

Trowell, 

Strelley 

Shaft c. 1.25 m 

diameter, up to 12 

m deep; radial 

working to 10 m 

from shaft 

1. Risk of voids remains 

2. Shaft sites poorly known 

3. Shaft infilling variable and doubtfully 

compacted  

Pillar and stall 

(From 15th to 

17th century) 

Wollaton, 

Trowell, 

Strelley, Nuthall 

Coal cut along 

grid of roads with 

rectangular pillars 

left for support 

1. Up to 60% coal may be left, so site 

investigation may not detect workings 

2. Moderately strong overlying beds (such as 

Cadeby Formation) may have resisted collapse, 

leaving  large voids 

3. Collapse of pillars may result in cavities and 

breccia pipes in rock above 

4. Shaft sites poorly known 

5. Shafts variably backfilled and doubtfully 

compacted 

Panel working 

and longwall 

mining 

(From 18th 

century) 

Progressively 

deeper workings 

from collieries 

on, and later to 

the east of, 

exposed 

coalfield. 

Extraction along 

continuous 

coalface (up to 

200 m wide). 

Temporary 

support of roof 

then collapse of 

all except lateral 

roadways 

1. Collapse of face underground produces 

subsidence and lowering of ground surface. 

Effects usually immediate and assumed to be 

complete within a few years 

2. Differential subsidence along faults can lead to 

severe damage 

3. Faults may ‘reactivate’ due to minewater rise 

long after cessation of mining (years to decades) 

4. Minewater rise may result in acidic minewater 

at surface 

5. Mine gases may be driven ahead of minewater 

to surface 

6. Variable backfilling and capping procedures 

applied to shafts 

Opencast 

mining 

(From 1940s) 

Wollaton, 

Strelley 

Excavation of pit, 

extraction of 

coals; backfill 

with spoil; 

restoration of site 

1. Compaction may be incomplete locally on 

earlier sites 

2. Differential settlement possible along sides of 

former workings 

3. Natural drainage altered 



 


