nerc.ac.uk

Fluxes of submicron organic aerosol above London measured by eddy covariance using the Aerodyne HR-ToF-AMS

Phillips, G. J.; di Marco, C. F.; Farmer, D.; Kimmel, J. R.; Jimenez, J. L.; Nemitz, E. ORCID: https://orcid.org/0000-0002-1765-6298. 2009 Fluxes of submicron organic aerosol above London measured by eddy covariance using the Aerodyne HR-ToF-AMS. Eos, Transactions, American Geophysical Union, 90 (52 Fall Meet. Su), Abstract B31C-08.

Full text not available from this repository.

Abstract/Summary

Urban centres are large sources of sub-micron particles. The myriad of emission sources combined with the complex interaction between regional aerosol and the particulate and gaseous photochemistry make for a complex system. It is evident that particulate emissions from cities will affect the regional atmosphere as well as the environment within the urban area. Aerosol particles have been associated with respiratory and cardio-vascular disease and are also linked with the climate through scattering of radiation and indirect effects such as cloud formation. The Aerodyne Aerosol Mass Spectrometer (AMS) provides a powerful tool to elucidate the sources and processing of organic aerosol in the urban atmosphere. Normally this is done through concentration measurements, by statistical analysis of the organic mass spectra, e.g. using Positive Matrix Factorization (PMF). Recently the quadrupole based AMS (Q-AMS) has been used for the micrometeorological measurement of organic aerosol fluxes above several cities, based on high frequency measurements of individual masses (m/z) representative of different organic mass fractions. While providing a major step forward towards quantification of urban organic aerosol emissions and processing, the interpretation of Q-AMS flux data requires assumptions to scale up signals on individual m/z to total organic mass fluxes. In this paper we present chemically-speciated and size-segregated number aerosol fluxes measured using the next generation eddy covariance flux system based on the Aerodyne HR-ToF-AMS, now capable of recording fast-response eddy-covariance time-series of all m/z simultaneously. This allows organic mass fluxes to be calculated more quantitatively and provides 'flux mass spectra' in addition to concentration mass spectra, which produces novel information on the local emission and processing of organic aerosols in the urban environment, while concentration analysis includes the regional background. The measurements were made from the 190 m tall BT Tower in central London, UK, during the REPARTEE-2/CityFlux experiment in autumn 2007 and are interpreted in conjunction with simultaneous measurements of fluxes of CO and CO2 as well as size-segregated particle number fluxes between 60 and 1000 nm using an ultra-high sensitivity aerosol spectrometer, UHSAS (Particle Measurement Systems, now Droplet Measurement Technologies, Boulder, US).

Item Type: Publication - Article
Programmes: CEH Topics & Objectives 2009 - 2012 > Biogeochemistry > BGC Topic 2 - Biogeochemistry and Climate System Processes > BGC - 2.1 - Quantify & model processes that control the emission, fate and bioavailability of pollutants
CEH Topics & Objectives 2009 - 2012 > Biogeochemistry > BGC Topic 1 - Monitoring and Interpretation of Biogeochemical and Climate Changes > BGC - 1.4 - Develop innovative, effective methods for monitoring fluxes, exposure and effects
CEH Topics & Objectives 2009 - 2012 > Biogeochemistry > BGC Topic 1 - Monitoring and Interpretation of Biogeochemical and Climate Changes > BGC - 1.1 - Monitor concentrations, fluxes, physico-chemical forms of current and emerging pollutants ...
UKCEH and CEH Sections/Science Areas: Billett (to November 2013)
ISSN: 0096-3941
Additional Information. Not used in RCUK Gateway to Research.: Abstract only
Additional Keywords: aerosols and particles, pollution, urban systems
NORA Subject Terms: Atmospheric Sciences
Date made live: 28 Apr 2010 10:09 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/9339

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...