nerc.ac.uk

Field inter-comparison of eleven atmospheric ammonia measurement techniques

von Bobrutzki, Kristina; Braban, Christine; Famulari, Daniela; Jones, Stephanie; Blackall, T.; Smith, T.E.L.; Blom, M.; Coe, H.; Gallagher, M.; Ghalaieny, M.; McGillen, M.R.; Pericval, C.J.; Whitehead, J.D.; Ellis, R.; Murphy, J.; Mohacsi, A.; Pogany, A.; Junninen, H.; Rantanen, S.; Sutton, Mark; Nemitz, Eiko. 2010 Field inter-comparison of eleven atmospheric ammonia measurement techniques. Atmospheric Measurement Techniques, 3. 91-112. 10.5194/amt-3-91-2010

Full text not available from this repository.

Abstract/Summary

Eleven instruments for the measurement of ambient concentrations of atmospheric ammonia gas (NH3), based on eight different measurement methods were intercompared above an intensively managed agricultural field in late summer 2008 in Southern Scotland. To test the instruments over a wide range of concentrations, the field was fertilised with urea midway through the experiment, leading to an increase in the average concentration from 10 to 100 ppbv. The instruments deployed included three wet chemistry systems, one with offline analysis (annular rotating batch denuder, RBD) and two with online-analysis (Annular Denuder sampling with online Analysis, AMANDA; AiRRmonia), two Quantum Cascade Laser Absorption Spectrometers (a large-cell dual system; DUAL-QCLAS, and a compact system; c-QCLAS), two photo-acoustic spectrometers (WaSul-Flux; Nitrolux-100), a Cavity Ring Down Spectrosmeter (CRDS), a Chemical Ionisation Mass Spectrometer (CIMS), an ion mobility spectrometer (IMS) and an Open-Path Fourier Transform Infra-Red (OP-FTIR) Spectrometer. The instruments were compared with each other and with the average concentration of all instruments. An overall good agreement of hourly average concentrations between the instruments (R2>0.84), was observed for NH3 concentrations at the field of up to 120 ppbv with the slopes against the average ranging from 0.67 (DUAL-QCLAS) to 1.13 (AiRRmonia) with intercepts of −0.74 ppbv (RBD) to +2.69 ppbv (CIMS). More variability was found for performance for lower concentrations (<10 ppbv). Here the main factors affecting measurement precision are (a) the inlet design, (b) the state of inlet filters (where applicable), and (c) the quality of gas-phase standards (where applicable). By reference to the fast (1 Hz) instruments deployed during the study, it was possible to characterize the response times of the slower instruments.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.5194/amt-3-91-2010
Programmes: CEH Topics & Objectives 2009 onwards > Biogeochemistry > BGC Topic 1 - Monitoring and Interpretation of Biogeochemical and Climate Changes > BGC - 1.4 - Develop innovative, effective methods for monitoring fluxes, exposure and effects
CEH Topics & Objectives 2009 onwards > Biogeochemistry > BGC Topic 1 - Monitoring and Interpretation of Biogeochemical and Climate Changes > BGC - 1.1 - Monitor concentrations, fluxes, physico-chemical forms of current and emerging pollutants ...
CEH Sections: Billett
ISSN: 1867-1381
Additional Information. Not used in RCUK Gateway to Research.: Atmospheric Measuremnt Technicuqes is an Open Access journal. To access full text, please click on the OFFICIAL URL link.
NORA Subject Terms: Atmospheric Sciences
Related URLs:
Date made live: 24 Feb 2010 14:24
URI: http://nora.nerc.ac.uk/id/eprint/9336

Actions (login required)

View Item View Item