
 

Near Surface 2009 – 15th European Meeting of Environmental and Engineering Geophysics 
Dublin, Ireland, 7 - 9 September 2009 

 

B11
Rapid Parallel Computation of Optimised Arrays
for Electrical Imaging Surveys
M.H. Loke* (Geotomo Software) & P. Wilkinson (British Geological Survey)

SUMMARY
Modern automatic multi-electrode survey instruments have made it possible to use non-traditional arrays
to maximise the subsurface resolution from electrical imaging surveys. One of the best methods for
generating optimised arrays is to select the array configurations that maximises the model resolution for a
homogeneous earth model. The Sherman-Morrison Rank-1 update is used to calculate the change in the
model resolution when a new array is added to a selected set of array configurations. This method had the
disadvantage that it required several hours of computer time. The algorithm was modified to calculate the
change in the model resolution rather than the entire resolution matrix. This reduces the computer time and
memory required and also the round-off errors. The matrix-vector multiplications for a single add-on array
were replaced with parallel matrix-matrix multiplications for 512 add-on arrays using the computer GPU
for the calculations. These changes reduced the computer time by more than two orders of magnitude. The
damped and smoothness-constrained least-squares formulations were used in the array optimisation model
resolution equation. The smoothness-constrained method can improve the model resolution for deep
extended structures where the resolution is poor.
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Introduction 
 In the past decade there have been many significant developments in the resistivity 
exploration method such that it is now one of the standard techniques used in engineering, 
environmental and mining surveys. Two-dimensional resistivity surveys, and even three-
dimensional surveys, are now widely carried out (Auken et al., 2006, Bingham et al., 2006). 
The development of automatic multi-electrode survey instruments has made such surveys fast 
and economical. It has also enabled the user to select the optimum array for the survey 
problem. Most surveys still use the traditional arrays such as the Wenner, Schlumberger and 
dipole-dipole. Recently there have been significant developments in algorithms to 
automatically select arrays to maximise the resolution of the subsurface inversion model 
(Stummer et al., 2004). A non-linear method that directly calculates the model resolution (the 
'Compare R' method) by Wilkinson et al. (2006) proved to be the best method (Loke et al., 
2007). However, the 'Compare R' method had the disadvantage of requiring much more 
computer time. In this paper, the numerical and computational techniques devised to reduce 
the computer time are described, followed by tests of the arrays using a synthetic model. 
 
Theory 
 The smoothness-constrained least-squares optimisation method is frequently used for 
2-D inversion of resistivity data (Loke et al., 2003). The subsurface model usually consists of 
a large number of rectangular cells. The linearised least-squares equation that gives the 
relationship between the model parameters and the measured data is given below. 
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T

i
T rCgGΔrCGG −−=+ λλ ,      (1) 

The Jacobian matrix G contains the sensitivities of the measurements with respect to the 
model parameters, C contains the roughness filter constraint, λ is the damping factor and g is 
the data misfit vector. ri-1 is the model parameter vector (the logarithm of the model resistivity 
values) for the previous iteration, while Δri is change in the model parameters. The model 
resolution matrix R (Wilkinson et al., 2004) is given by 

( ) GGCGGR TT 1−+= λ .       (2) 
The main diagonal elements of R that give an estimate of the model cells resolutions have 
values of between 1.0 (for perfect resolution) and 0.0 (no resolution). The ‘Compare R’ 
method by Wilkinson et al. (2004) attempts to determine the set of array configurations that 
will maximise the average resolution value for a homogeneous earth model.  

For a system with N electrodes, there are N(N-1)(N-2)(N-3)/8 independent four-
electrode configurations. To reduce the number of possible arrays, arrays with the Wenner-γ 
type configuration as well as those large geometric factors are excluded (Stummer et al. 
2004). A local optimisation procedure is used to select a subset of the viable configurations 
(the comprehensive data set) that will maximise the model resolution (Wilkinson et al., 2006). 
A small base data set consisting of the dipole-dipole configurations with an ‘a' spacing of 1 
unit and ‘n' values of 1 to 6 is initially selected. The change in the model resolution matrix R 
for each new array when added to the base set is then calculated. A specified number of 
configurations that give the largest increase in the model resolution are then added to the base 
set. This is repeated until the desired number of optimised array configurations is selected. 
For the following discussion, we rewrite equation (2) into the following form. 

ABR = , where GGA T= and  ( ) 1−+= CGGB T λ    (3) 
The Sherman-Morrison Rank-1 update used to calculate the new resolution matrix Rb+1 when 
a new array is added to the base set is given below.  

ggAA b1b ⊗+=+ ,   
μ+

⊗−=+ 1
zzBB b1b , 1b1b1b ABR +++ =   (4) 

g is the Jacobian vector for the new array, z=Bg, μ = g.z and g⊗g denotes the matrix 
multiplication of g with gT. While this method produced the arrays with the highest 
resolution, it was the slowest taking several hours. In order to improve its computational 
efficiency, we first expand equation (4) for Rb+1 into the following form. 
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In equation (5) the change in the resolution matrix ΔRb is calculated rather then the entire 
updated resolution matrix Rb+1. The main diagonal elements of ΔRb are calculated one by one, 
avoiding the use of the temporary matrices Ab+1 and Bb+1. This reduces the computer time and 
memory required. The calculations were carried out on a 2.66 GHz Intel i7 Quad-Core system 
with a Nvidia GTX 285 graphics card. In this test, we use the same damped least squares 
formulation (C=I) and damping factor (λ=0.000025) as that used by Wilkinson et al. (2006). 
 The bulk of the numerical calculations involve matrix-vector multiplications 
of the form z=Bg and y=Az (for the first term in ΔRb in equation (5)). A single matrix-
matrix multiplication is more efficient than a series of equivalent matrix-vector 
multiplications. The next step is to calculate the change in the resolution matrix elements for a 
number of add-on arrays at the same time using the following equations.  
 BJZ =  and AZY = , where [ ]kgggJ ....21=  and [ ]k....zzzZ 21=   (6) 
The matrix J is formed from a series of the Jacobian vectors gi for k different array 
configurations. The optimum value for k was found to be 28 for 64-bit Intel CPUs with 16 
SSE registers (Leiterman 2005). The CPU used has 4 cores but the Graphics Processor Unit 
(GPU) has several hundred parallel computational units (Owens et al., 2007). The GPU is 
limited to simpler numerical operations compared to the CPU but it is well suited for the 
matrix-matrix calculations. The calculations for 512 configurations can be carried out in 
parallel using the GPU. This reduces the calculation time by a factor of about 3 (Table 1). The 
following function FCR is used to the rank the improvement in the model resolution due to an 
add-on array. 
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The change in the resolution ΔRb(j,j) can be several orders of magnitude smaller than 
resolution value Rb(j,j). Thus equation (5) is less sensitive to round-off errors compared to the 
direct use of equation (4).  The calculations for ΔRb are next carried out in single-precision to 
further reduce the computer time. Table 1 gives the computer time and average relative model 
resolution ratios achieved by the different versions of the 'Compare R' method. The average 

relative model resolution is given by ( ) ( )iRiR
m

S c

mi

i
br ∑

=

=

=
1

/1  where Rb(i) and Rb(i) are the 

base and comprehensive data sets model resolution of the ith cell for a model with m 
cells. The GPU single-precision version is about twice as fast as the double-precision version 
while differences in the average relative model resolutions are less than 1%. To put the 
numerical improvements made in perspective, the GPU version takes 33 seconds compared to 
3 hours in the original version by Wilkinson et al. (2006) for the 30 electrodes example.  
 
Results 
 Figure 1a shows a test model with 4 rectangular blocks at different depths in a 
background medium of 10 Ohm.m below a 2D survey line with 35 electrodes 1 metre apart. 
Three of the blocks have 100 Ohm.m resistivity. One block has a gradational boundary rising 
from 20 to 100 Ohm.m to simulate a smooth edge. The first test is with the Wenner array 
where all the possible measurements are used. The two upper blocks in the resulting inversion 
model  (using a L1-norm inversion method) after 6 iterations are fairly well resolved while the 
third deepest block is barely resolved (Figure 1c). In second test all the possible combinations 
of the 'a' dipole length and the 'n' separation factors for a dipole-dipole array (Figure 1b) are 
used subject to the restriction that the geometric factor does not exceed that that for a dipole-
dipole array with 'a' equals to 1 metre and 'n' equals to 6 (1056 m). The third deepest block is 
fairly well resolved but it fails to resolve the deepest block (Figure 1d).  
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 The next test is with the optimised arrays set with 2468 data points using the damped 
least-squares constraint. The arrays obtained when the average relative resolution ratio 
reached 0.9 was selected. Figure 2a shows the relative resolution section for this data set. The 
third deepest block is well resolved with a maximum resistivity of about 39 Ohm.m, and the 
deepest block is now visible (Figure 1e). The inversion model using a smaller optimised data 
set (662 data points) also manages to resolve the deepest block (Figure 1f). The final test is 
with the optimised data sets generated using the smoothness-constrained (L2-norm) least-
squares formulation (Loke at al., 2003). The results (Figures 1g and h) and relative resolution 
section (Figure 2b) are very similar to those obtained with the damped least-squares method. 
The deepest block is slightly better resolved where it reaches a maximum value of 19 Ohm.m 
(Figure 1g). The L2-norm method minimises the change in the resistivity between adjacent 
cells, while the damped least-squares method minimises the change in each cell individually. 
It is possible that the L2-norm method gives better results for extended structures at depth 
where the resolution is poor. 
 
Conclusion 
 Optimised arrays generated by maximising the model resolution have significantly 
better resolution and deeper depth of investigation compared to conventional arrays for 2D 
resistivity surveys. The computer time required to generate the optimised arrays is greatly 
reduced by using parallel numerical algorithms that can make the best use of currently 
available PC hardware. 
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Table 1. The times in seconds for 40 iterations (and average relative resolution ratio achieved) 
for the different versions of the 'Compare R' array optimisation method. 

Number of 
electrodes 

Matrix-Vector  
Double-precision 

Matrix-Matrix  
Double-precision 

GPU Matrix  
Double-precision 

GPU Matrix  
Single-precision

30 202 (0.958) 90 (0.958) 52 (0.958) 33 (0.955) 
40 1245 (0.921) 764 (0.921) 335 (0.921) 164 (0.915) 
50 6118 (0.886) 4089 (0.886) 1428 (0.886) 620 (0.880) 
60 19967 (0.858) 13944 (0.858) 4421 (0.858) 1760 (0.850) 
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Figure 1. (a) The test model. (b) Dipole-dipole array pseudosection. The inversion model for 
the (c) Wenner array,  (d) dipole-dipole array, (e) large and (f) small optimised array data sets 
using the damped least-squares constraint, (g) large and (h) small  optimised data sets using 
the smoothness-constrained least-squares equation. 
 

 
Figure 2. The relative model resolution sections for the optimised data sets using the (a) 
simple damped and (b) smoothness-constrained least-squares equations. 


