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Accurate forecasting of the change of the Earth’s internal magnetic field5

over short intervals of time (e.g. less than five years) has many applications6

for government, academic and commercial users. Forecasting can be achieved7

by making a number of reasonable assumptions about how the main field in-8

teracts with the flow in the liquid outer core. In particular, the magnetic field9

can be considered to be entrained in the large scale flow along the core-mantle10

boundary surface over short time periods, giving rise to measurable change11

of the field at the Earth’s surface. The observed change (or secular variation)12

at or above the surface of the Earth can thus be inverted to produce flow13

models; these can be used to propagate fluid parcels threaded by the field14

forwards in time to forecast the non-linear change of the magnetic field. In15

addition to prediction of field change by flow models, it would be advanta-16

geous to include observations of the field from satellite measurements or ground-17

based observatories. We therefore present a method using Ensemble Kalman18

Filtering (EnKF) to produce an optimal assimilation between magnetic field19

change as forecast from core flow models and direct observations of the field.20

We show, by assuming a steady flow and assimilating field observations an-21

nually, it is possible to produce a forecast over five years with less than 30nT22

root mean square difference from the ‘true’ field – within an assumed error23

budget. The EnKF method also allows sensitivity analysis of the field mod-24

els to noise and uncertainty within the physical representation.25

D R A F T July 3, 2009, 5:12pm D R A F T



BEGGAN & WHALER: FORECASTING WITH ENSEMBLE KALMAN FILTERING X - 3

1. Introduction

The slow temporal variation of the Earth’s magnetic field is termed ‘secular variation’26

(SV) and is related to advection and diffusion of the field within the liquid outer core.27

Forecasting the short term change of the field in an accurate and timely fashion is of great28

benefit to commercial users in areas such as mining, underground drilling and naviga-29

tion, as well as for academic and civilian users, e.g. where access to real-time data may30

not be available. The International Geomagnetic Reference Field (IGRF) model enjoys31

widespread use for this purpose. The model is revised and updated every five years and32

forecasts secular variation for the future five year period [Macmillan and Maus, 2005].33

Methods for forecasting the magnetic field change have previously relied upon extrapola-34

tion of ground-based observatory data and the forecasts can often be quite in error at the35

end of their desired lifetime.36

Recently, high resolution magnetic field models such as GRIMM [Lesur et al., 2008],37

POMME [Maus et al., 2006] and xCHAOS [Olsen and Mandea, 2008] have been developed38

using data from the CHAMP, Ørsted and SAC-C satellite missions. These provide an39

excellent description of the field, SV and secular acceleration (SA) over the period 1999–40

2009. Detailed models of the large-scale surface core flows generating the observed SV41

have been developed by a number of researchers [e.g. Hulot et al., 2002; Holme and Olsen,42

2006]. If it is assumed on short time scales that advection by core flow of the magnetic43

field dominates diffusion then, in a manner analogous to weather forecasting, the evolution44

of the field can be forecast by propagation of the flow forwards in time.45
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Using this approach, Maus et al. [2008] generated SV from a series of flow models with46

differing physical constraints to investigate how well the field could be hindcast compared47

to the CM4 magnetic field model [Sabaka et al., 2004]. They found the misfit between the48

hindcast field from core flow models and the CM4 model to be less than 100nT root mean49

square (RMS) difference after five years and up to 300nT after ten years. We improve50

upon this result by using a different flow model inversion technique and employing an51

Ensemble Kalman Filter.52

The Ensemble Kalman Filter (EnKF) is a Monte-Carlo method for optimally combining53

models of and observational information about a physical process by statistical represen-54

tation of the associated uncertainties [Evensen, 1994]. It is extensively used in weather55

and ocean dynamics forecasting to improve the accuracy of forecasts and to explore the56

sensitivity of systems to minor perturbations [Evensen et al., 2007]. Data assimilation in57

geomagnetism is still in its infancy but has recently been investigated [Fournier et al.,58

2007; Kuang et al., 2008]. In this paper, we adapt the EnKF for magnetic field prediction59

using a simple steady flow model and assuming a relatively noisy field model from lim-60

ited satellite coverage and ground-based magnetic observations is available. This scenario61

might occur at some point in the future where continuous satellite monitoring has ceased.62

2. Methods

In the following we describe the methods used to derive a steady flow model that is used63

for forecasting, the implementation of an EnKF model and the resulting improvements of64

the field forecast using EnKF with assimilation compared to the forecast. We choose a65

steady flow as experiments by Maus et al. [2008] found that hindcasts from a steady flow66
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model produced the best average long term fit to the CM4 field model and because it is67

the simplest assumption to make for a flow model. More complex flows (e.g. time-varying68

or different physical hypotheses) can be used if neccesary.69

2.1. Flow Modelling and Forecasting

Magnetic main field models are typically represented as a vector of spherical harmonic70

Gauss coefficients (g = [gm
l ; hm

l ]). Secular variation of the field can be inverted for toroidal71

and poloidal flow using the linear relationship between SV and flow spherical harmonic72

coefficients. The relation is through the Gaunt/Elsasser matrix (H) whose elements de-73

pend on the main field coefficients [Whaler , 1986] which change with time. In this study,74

the main field, SV and flow coefficients are truncated at degree and order lmax = 14, thus75

we have assumed that only large scale flows are responsible for the large scale SV. Note76

that we invert SV data directly (as explained below) rather than using spherical harmonic77

models (ġ) of SV.78

With knowledge of the data covariance, we seek the flow (m̂) which can be obtained79

from the SV using the standard L2 least-squares minimisation norm. We then apply an80

additional step using an iterative L1 norm minimisation technique as described in Beggan81

et al. [2009]. The L1 norm technique improves the fit of the flow to the SV data by82

iterative reweighting of the residual differences. The flow is regularized by imposition of83

the so-called ‘strong’ norm a priori conditions [Bloxham, 1988], with a damping parameter84

controlling fit to the data versus flow smoothness.85

In our first experiment, a series of 25 monthly SV data sets, over the period 2001.9–86

2004.0, were generated from CHAMP satellite data using the ‘Virtual Observatory’87
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method of Mandea and Olsen [2006]. The SV data were inverted for a steady flow model88

[Voorhies and Backus, 1985], with a tangentially geostrophic flow constraint. This pro-89

duces a set of flow coefficents (m̂SF ) representing an ‘average’ flow over the period. The90

steady flow model was used to forecast the change of the magnetic field over the five91

year period from 2004.0 to 2009.0 and compared to the GRIMM, POMME and xCHAOS92

satellite field models.93

The Gauss coefficients from the xCHAOS model for 2004.0 were used as the starting

field model. The field was advected forward over successive months (k) for five years using

the equation:

gk+1 = gk + (Hkm̂SF )/12 (1)

with the Hk matrix updated at every timestep using the main field coefficients forecast

from the previous timestep, making the system non-linear. To evaluate the validity of

this forecast, the RMS difference (or misfit) metric (
√

dP ) to a satellite field model is

calculated by:

dP =
lmax
∑

l=1

l
∑

m=0

(l + 1)[(gm
l )field − (gm

l )forecast]
2 (2)

Figure 1 shows the misfit of the forecast from the flow model to the GRIMM, POMME94

and xCHAOS satellite field models. Note the GRIMM model spline coefficients extend to95

2006.5, while the POMME model is extrapolated beyond 2007.5 using constant SV.96

We now show how to improve upon these results by employing an Ensemble Kalman97

Filter to assimilate field observations into forecasts from core flow models.98
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2.2. Data Assimilation in Ensemble Kalman Filtering

In an EnKF, the state of a dynamic process at any particular time can be represented99

as a vector in n-dimensional space, where n is the number of parameters in the system.100

The uncertainty of the process is represented by perturbing the inputs randomly by a101

known variance (with zero-mean) to produce an ‘ensemble’ of states – conceptually imag-102

ined as a ‘cloud’ of points in n-dimensional space. The evolution of the states though103

time is controlled by propagating the ensemble forward using model equations of the sys-104

tem behavior. When an observation is available, it can be optimally assimilated into the105

ensemble by applying the standard Kalman Filter equations [Kalman, 1960]. With a suf-106

ficiently large ensemble (determined through experimentation), the mean state represents107

the most likely value for the process at the time. The evolution of the ensemble can be108

explored by examining the ‘spread’ of the states about the mean.109

A traditional Kalman Filter is implemented in two steps: (1) prediction of the evolution

of the model state by dynamic equations believed to adequately represent the system and

(2) assimilation of a measurement to correct any accumulated error from the model. At

time k, the optimal blending of a forecast state (xf
k) and measurement (zk) to generate

the assimilated state vector, xa
k, is through the so-called Kalman gain matrix (Kk):

xa
k = x

f
k + Kk(zk − x

f
k) (3)

with

Kk = P
f
k(P

f
k + Q)−1. (4)

where P
f
k is the covariance of the model and Q is the covariance of the data measurement.

The balance between the error of the model and measurement controls the assimilation
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step. When the Kalman gain matrix has been calculated, the covariance of the assimilated

state vector is calculated as:

Pa
k = (I − Kk)P

f
k . (5)

In the EnKF, x
f
k is a model forecast with noise w

f
k , and zk is a measurement with some

associated measurement noise uk. The forecast, measurement and the newly assimilated

estimate, xa
k, are related to the true state of the system, xt

k, by:

x
f
k = xt

k + w
f
k ; xa

k = xt
k + wa

k; zk = xt
k + uk (6)

with expectations (i.e. the mean of) w
f
k = wa

k = uk = 0, given a large enough ensemble.110

If we consider the covariance of an assimilated ensemble, it can be shown [Evensen, 1994]:111

Pa = (wa)2 = (xa − xt)2

=

(

I −
Pf

Pf + Q

)

Pf

+2
Pf

Pf + Q

(

I −
Pf

Pf + Q

)

wfu. (7)

This leads to the key result of the EnKF: when the expectation wfu = 0, Equation 7 is112

equivalent to Equation 5. This occurs when a suitably large number of ensemble states113

are employed.114

2.3. Practical Implementation

There are three stages required to implement the EnKF for this problem: (1) generation115

of the initial ensemble, (2) forecasting the change of the field by driving the field model116

with SV predicted by core flow models and (3) assimilation of measurements e.g. from a117

‘true’ field model. Each of these stages is explained in detail below.118
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Initiating the Ensemble

The ensemble is initiated by generating a perturbed set of Gauss coefficients. The119

mean value of the initial ensemble is equal to the input coefficients of the field. This is120

implemented as follows:121

1. An initial state vector, at time k = 1, is set to be a vector of Gauss coefficients from122

a field model (e.g. xCHAOS).123

2. If a time series of flow models are available, rather than a single steady flow, the124

variability of the the flow model coefficients can be used as additional information. To125

generate the perturbation to the gm
l field coefficients, the standard deviation for each126

coefficient over the entire set of flow models is calculated (from the variability in each127

flow coefficient of m̂). However, with a single steady flow an alternative estimate of the128

variance must be made.129

3. A matrix of normally distributed random numbers N(0, 1) with size [lmax(lmax +2)×130

nensembles] is created, where nensembles is the number of ensemble states.131

4. The matrix of random numbers is multiplied by the standard deviation of the flow132

coefficients to give a perturbed flow coefficient matrix.133

5. The perturbed flow coefficient matrix is pre-multiplied by the H matrix to produce134

a matrix of perturbed SV coefficients, correctly scaled to reflect the uncertainty in the135

flow models.136

6. The perturbed SV coefficient matrix is then added to the initial state vector to137

produce an ensemble matrix (Ensemble1).138

Once the initial ensemble has been created, forecasting and assimilation can take place.139
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Driving the Ensemble Forecasts

The forecast (prediction) of the field is driven forwards by the summation of (1) the field140

coefficients and (2) the monthly SV coefficients from the flow model which are perturbed141

by a random matrix with zero mean and standard deviation computed from the variance142

of the flow over time. In addition, at each timestep, model noise is added to simulate the143

variance of the ensemble, forcing it to grow at each forecast iteration. The model noise is144

controlled by the size of the time-step (∆t), the standard deviation of the SV coefficients145

from the previous iteration, and a parameter ρ, which can be used to control the time146

correlation of the noise, if required [Evensen et al., 2007].147

1. The SV coefficients generated by the flow model for month k are calculated by148

multiplying the flow model coefficients by the H matrix.149

2. The monthly SV coefficients are perturbed by the standard deviation of the flow150

converted into an equivalent SV.151

3. Model noise is simulated by multiplication of a matrix of random zero-mean152

normally-distribution numbers (of size [lmax(lmax + 2) × nensembles]) with the square-root153

of the timestep
√

∆t and ρ.154

4. The matrix of perturbed SV coefficients and model noise are added to the ensemble155

from the previous timestep (Ensemblek−1) to produce the forecast for the current ensemble156

(Ensemblek).157

These four steps are repeated until a measurement becomes available for assimilation158

into the ensemble.159
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Assimilation of Measurements into the Ensemble

Over time, the forecast field will begin to diverge from the actual field. To improve160

the forecast, data can be input into the ensemble to update (correct) it. The data have161

associated errors which are used to generate a perturbed data ensemble. These perturbed162

data are assimilated into the overall ensemble using the Kalman Filter algorithm.163

1. Data, for example a set of Gauss coefficients (zk), are available with a certain (esti-164

mated or known) error for each coefficient.165

2. A matrix of zero-mean Gaussian random numbers is generated and scaled with the166

data error.167

3. The data are added to the matrix of scaled random numbers to produce a matrix of168

‘perturbed data’, with mean equal to that of the data themselves.169

4. Using Equation 3 the data perturbation matrix and the perturbed SV coefficients170

are optimally assimilated into the ensemble at this timestep.171

The covariance matrices can be estimated from the ensemble and measurement errors172

[Evensen, 1994]. Note it is also possible to use non-synoptic (i.e. partial) measurements173

of the field in the assimilation step with an appropriate ‘observation’ operator. Evensen174

et al. [2007] outlines and demonstrates how to efficiently code and compute the matrix175

operations for the EnKF. The number of ensemble states was set to 1000 after experimen-176

tation, though it was found that any more than 500 is adequate. Typically, a measurement177

(i.e. Gauss coefficients from a field model) is assimilated every twelve months.178
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3. Applying the Ensemble Kalman Filter to Forecasting

In Figure 1, the steady flow model prediction slowly diverges from the main field mod-179

els over the time period. Assimilating actual field measurements would be expected to180

improve the fit of the predicted field to the ‘true’ field. Any improvement is dependent181

on the errors of the input measurement. For example, a poor measurement allocated an182

associated small estimated error will increase the RMS misfit of the ‘nowcast’. However,183

it is often difficult to correctly estimate the errors associated with each Gauss coefficient184

in a field model given that we do not have full knowledge of the field [Langel et al., 1989].185

The results of the forecast with data assimilation for the GRIMM and POMME (both186

extrapolated beyond 2006.5) and xCHAOS field models are shown in Figure 2. Each187

ensemble was initiated using the xCHAOS field model. Assimiliations of noisy measur-188

ments from the relevant field model are indicated by jumps in the curves. The solid black189

line represents the misfit (Equation 2) of the mean Gauss coefficients of the ensemble to190

the satellite field models, while the dashed lines are misfits of the Gauss coefficients one191

standard deviation above or below the mean. The middle and lower panels show that the192

mean ensemble (solid line) fits to better than 25nT for both the POMME and xCHAOS193

models over the entire period. Most of the misfit is from the difference between forecast194

and model at degrees l = 1 − 4.195

From Equation 4 it should be clear that the calculation of the EnKF is sensitive to196

the estimates of input errors. Analysis of the factors affecting the forecast fidelity shows197

that the error associated with the assimilated Gauss coefficients is the major contributor.198

The error associated with the steady flow model coefficients is a secondary effect. In our199
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example, after experimentation, the error on each of the field model coefficients was set200

to z/(2 · 103). For the largest coefficient (g0
1) this is a relative error of 15nT, equivalent to201

approximately two years of SV. Larger errors than this produce forecasts that are worse202

than predictions from steady flow alone. In this case, increasing the size of the error203

estimate of the measurement by two approximately doubles the size of the misfit. A ten-204

fold increase in the measurement error results in a poor input field estimate causing a205

large divergence from the ‘true’ field (the misfit after five years rises to over 400nT).206

4. Discussion and Conclusion

The EnKF allows exploration of the system under consideration through examination207

of the ‘spread’ of the ensemble. In Figure 2, the ensemble models −1σ away from the208

mean are a poorer match to the ‘true’ model, though the +1σ model is usually better than209

the mean for the GRIMM and POMME comparisons. Another note-worthy point is that210

certain measurement assimilations have little or no effect. For example, for POMME at211

2008.0, the measurement assimilation barely alters the mean but does reduce the spread212

of the ensemble (the ±1σ states become close to the mean).213

With a steady flow model and annual data assimilations, the RMS difference between214

the forecast model and the ‘true’ field can be maintained at less than 30nT from 2004.0–215

2009.0 within assumed errors. This can result in a many-fold improvement e.g. compare216

the misfit of the forecast to xCHAOS in Figure 1 with the misfit of the mean forecast in217

Figure 2 (lower panel).218
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The use of the EnKF for this particular example is, perhaps, unneccesarily complicated.219

However, the method can be readily adapted for more complex flow regimes models and220

different data types.221

In conclusion, we have demonstrated that forecasting of secular variation using a steady222

core flow model can achieve an acceptable match to the actual field. We have adapted223

the Ensemble Kalman Filter to improve forecasts and characterise their uncertainty by224

propagating a large number of possible field models forward in time using core flow models225

to control the evolution of the individual states. Optimal assimilation of measured data226

into the ensemble produces an improvement in the fit of the forecast to the actual field.227

Our approach thus offers a method to improve operational forecasting of the magnetic228

field.229
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Figure 2. RMS difference (in nT) between a EnKF field forecast with annual assimilation

derived from SV generated by a steady flow model from CHAMP satellite data over the period

2001.9–2004.0 and the GRIMM (top panel), POMME (middle panel) and xCHAOS (bottom

panel) field models.
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