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Abstract. Substorms are known to cause geomagnetically
induced currents (GIC) in power transmission lines through
variations in the ground magnetic field. An improved knowl-
edge and understanding of how the different phases of sub-
storms affect the ground magnetic field will ultimately help
to better understand how GIC arise. Although usually as-
sociated with high latitude power transmission networks,
GIC potentially pose a risk to mid latitude networks such
as the UK’s National Grid. Using a list of substorm expan-
sion phase onsets derived from auroral observations by the
IMAGE-FUV satellite, this study examines 553 individual
onsets. In order to cover mid latitudes, ground magnetome-
ter data from the UK Sub-Auroral Magnetometer Network
(SAMNET) are exploited. These high time resolution (5 s)
data are used to study the ground magnetic field for an hour
after onset, in particular the time derivative of the horizon-
tal magnetic field,H . The data covers the period from 2000
to 2003 (just after solar maximum). Results are compared
with a previous study of magnetic field variations at higher
latitudes, using data with a much lower (1 min) cadence dur-
ing substorms identified from geomagnetic indices during a
period just after solar minimum.

Keywords. Geomagnetism and paleomagnetism (Rapid
time variations) – Ionosphere (Mid-latitude ionosphere) –
Magnetospheric physics (Storms and substorms)

1 Introduction

Substorms are rapid reconfigurations of the terrestrial mag-
netosphere resulting from the release of solar wind energy
and momentum stored in the Earth’s magnetospheric tail.
This energy is primarily transferred into the magnetosphere
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from the interplanetary magnetic field (IMF) and solar wind
via magnetic reconnection at the dayside magnetopause. As
such, substorms represent one of the fundamental modes of
global energy circulation and magnetic flux transport in the
geospace environment (Cowley et al., 2003). Following day-
side reconnection, magnetic flux is added to the tail lobes
causing the magnetic flux density in the tail to increase. This
stored energy is eventually released in an explosive fashion
and the magnetosphere undergoes rapid reconfiguration. The
process of gradual energy storage followed by a sudden re-
lease are usually referred to as the substorm growth and the
expansion phase, respectively. Substorms can occur at any-
time but are observed more frequently during high solar ac-
tivity (Baumjohann et al., 1996).

During the expansion phase, magnetospheric currents are
diverted through the Earth’s ionosphere, resulting in large
disturbances in the magnetic field observed at the ground.
These rapid fluctuations in the ground magnetic field also
induce electric fields in the Earth’s surface. Magnetic and
electric fields in the surface of the Earth are related by

E

B
= Z (1)

whereZ is the impedance of the Earth.Z in a particular
area depends on local conditions, such as conductivity and
magnetic permeability of the ground. The depth at which the
magnetic fields can penetrate the ground is also important
as the average conductivity along this depth will affect the
electric field (Boteler, 1994). Therefore the geology of the
UK and the magnetic field variations will both have an effect
on the induced electric fields in the surface.

As a consequence of magnetic field variations on the
surface of the Earth, an electromotive force is created be-
tween earthed points of a conductor such as those in a
power transmission network, causing geomagnetically in-
duced currents (GIC) to flow along the network (e.g.Lehti-
nen and Pirjola, 1985). GIC are quasi-dc when compared
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to power transmission frequencies of 50–60 Hz, (Molinski,
2002; Kappenman, 2007). GIC enter and exit a power trans-
mission network through the earthed transformers at substa-
tions possibly causing transformer saturation that can dam-
age the transformer and disrupt the entire power network. In
1989 a geomagnetic disturbance caused the Hydro-Québec
power system to fail. At a cost of approximately $13 million,
it is a perfect example of the risk posed to power networks
(Bolduc, 2002). In 2003 large geomagnetic storms also
caused disruption to power networks including the Swedish
power system where the city of Malmo experienced blackout
for 20 to 50 min. In 2000 a GIC of about 300 A was recorded
in Sweden, the largest measured GIC value ever reported (as
far as we know) (Wik et al., 2008).

Any type of geomagnetic disturbance may have an im-
pact on a power transmission network. The scale and size
of the damage to a particular power transmission network
depend on the magnitudes of GIC in different parts of the
system and on several technical matters, such as transformer
types used, configuration of the network and load situation.
Local geological conditions also influence GIC production.
When modelling GIC production in a power transmission
network there are essentially two factors to consider. First,
the electric field in the vicinity of the power transmission
network is calculated as though the network was absent, this
involves knowledge of magnetospheric-ionospheric currents
and of the Earth’s conductivity structure. Second, this pri-
mary field is used to calculate currents produced in the net-
work, so details of the power transmission network such as
line and transformer resistances, topology and configuration
of the network are also required (Lehtinen and Pirjola, 1985).

Although the UK is located at mid latitudes and is there-
fore not considered to be exposed to the risks posed by GIC,
past events have proved this not to be the case. The UK
national grid has experienced problems as a result of GIC
such as large reactive power swings and transformer fail-
ures. Although there have been no severe consequences for
customers, a prolonged geomagnetic disturbance may cause
wider disruption (Erinmez et al., 2002). The Scottish power
system has also experienced similar problems with, for ex-
ample, GIC levels at monitoring sites rising to approximately
40 A during the Halloween storm of 30 October 2003. Dur-
ing this event the surface electric field was 50 times greater
than quiet time levels (Thomson et al., 2005).

Other mid latitude countries are also investigating the GIC
risk to their power transmission systems, including South
Africa which is especially at risk because of the long trans-
mission lines involved (Ngwira et al., 2008). Failures and
damage of 15 transformers by internal heating, in the high
voltage South African main transmission system in Novem-
ber 2003 have been attributed to the production of GIC as
a result of geomagnetic disturbances (Gaunt and Coetzee,
2007; Kappenman, 2005). Measurements of GIC at this time
closely resembled the results of a model of GIC production
by geomagnetic events in the South African network (Koen,

2002). This demonstrates the potential usefulness of a GIC
model to a real power transmission network.

Since direct measurement of the electric field at the Earth’s
surface is not ideal over such a large area, the characteris-
tics of the magnetic field produced by the substorm are used
instead. Studies of the characteristics of ground magnetic
field variations have tended to focus on higher latitude areas
such as Fennoscandia, by looking at the time derivative of
the horizontal ground magnetic field,dH/dt (Viljanen et al.,
2001). In particular, a study byViljanen et al.(2006) on
the relationship between substorms andH , using the Inter-
national Monitor for Auroral Geomagnetic Effects (IMAGE)
network concludes that the largest values ofdH/dt appear
soon after the expansion phase begins, although many events
have larger values at later times. The size of max|dH/dt |

increases with increasing latitude equatorward of the auro-
ral oval, poleward of which it decreases. Furthermore, storm
time substorms can double the size of max|dH/dt | at all lat-
itudes compared to non-storm time substorms. It was also
found that althoughH is greatly influenced by the electro-
jet, dH/dt is more susceptible to the effects of smaller scale
ionospheric features. The events looked at byViljanen et al.
(2006) occurred just after sunspot minimum and magnetome-
ter data were exploited to detect the substorm onset and anal-
yseH , between magnetic latitudes 56◦ N and 75◦ N.

This study aims to characterise the magnetic field be-
haviour over the UK during a substorm. This is done by
exploiting magnetometer data, including mid latitude mag-
netometer sites, to analyse the response of the ground mag-
netic field to substorms, however a method other than ground
magnetometry is used to identify substorm onsets. This study
also uses ground magnetometer measurements recorded at a
higher sampling rate than theViljanen et al.(2006) study and
use data from a different period in the solar cycle. The results
of this study will aid GIC modelling in the UK’s power trans-
mission network.

2 Data and method

Since the effect of substorms on GIC production is best
characterised by analysing the variation ofH sensed at the
ground, detection of substorm onset is established by an in-
dependant method. This is achieved by using the list pro-
duced byFrey et al.(2004) of substorm onset times and lo-
cations determined by the IMAGE-FUV satellite. Onset time
and location are found by studying images from the FUV im-
ager which observes aurora in ultra violet light, and looking
for particular behaviours (Frey et al., 2004):

– a clear local brightening of the aurora

– expansion of the aurora to the poleward boundary of the
auroral oval and spreading azimuthally in local time for
at least 20 min
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Fig. 1. Map showing the location of SAMNET stations used in this
study (blue circles), and the location of the 553 substorm onsets (red
crosses) as determined by the IMAGE-FUV satellite. (Geographic
latitudes).

– at least 30 min had passed since the previous substorm
onset, this is to eliminate events that did not develop
into full substorms

Thus the IMAGE-FUV mission produced substorm onset de-
tails from 2000 to 2005 from all over the globe. This list of
events is reduced to only substorms that happen at a time and
location suitable for scrutiny by the UK-Sub-Auroral Mag-
netometer Network (SAMNET), as it covers a range of mid
to high latitudes including those that cover the UK. Since
the peak time for substorm onset to occur is at 23:00 MLT,
the list byFrey et al.(2004) was limited to events between
18:00 MLT and 04:00 MLT and between latitudes of 25◦ N
and 90◦ N, and longitudes of 30◦ W and 60◦ E. This resulted
in a list of 553 substorm onsets that span 2000 to 2003 which
is just after a solar cycle maximum. Figure1 shows the loca-
tions of SAMNET stations and substorm onsets included in
this study.

The substorm onsets are divided into those that occur dur-
ing storm time conditions (Dst<−40 nT, 83 subtorms) and
non-storm time conditions (Dst>−40 nT, 470 substorms),
the cut off value of−40 nT is consistent withViljanen et al.
(2006). The Dst used is the daily mean value ofDst for
the day at which the substorm occurs taken from NOAA Na-
tional Geophysical Data Center (NGDC, 2009).

The time derivative of the horizontal ground magnetic field
dH/dt is the major contributor to GIC production (Viljanen
et al., 2006), so for each substorm onset an hour’s data are
needed in order to investigate the effect of substorms onH .
SAMNET data used here have a time resolution of 5 s and
only stations that had no interruptions during the required
one hour period are used.dH/dt is calculated as the differ-
ence between successive readings divided by the sampling
rate (Viljanen et al., 2001).

This study is in contrast to a similar study byViljanen
et al.(2006) on the relationship between substorm character-
istics andH which uses IMAGE to both pinpoint substorm
onset, and analyseH . Other differences include; range of
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Fig. 2. The mean max|dH/dt | at each SAMNET station against
the corrected geomagnetic latitude. The crosses are storm time sub-
storm onsets (83 events), and circles are the non-storm time onsets
(470 events).

latitude, Viljanen et al.(2006) covers CGM latitudes from
55◦ N to 75◦ N which is not low enough to adequately cover
the UK; and sampling rate,Viljanen et al.(2006) has a 1 min
time resolution on its magnetic data. The substorms inves-
tigated byViljanen et al.(2006) occur just after a sunspot
minimum, (1997–1999), whereas this study examines sub-
storms occurring just after solar maximum (2000–2003). The
differences and similarities between these studies will there-
fore improve understanding of the relationship between sub-
storms and variations inH at the Earth’s surface.

3 Results

In Fig. 2 the mean value of max|dH/dt | of all substorms
calculated at each SAMNET station is shown against the
corrected geomagnetic (CGM) latitude of the SAMNET sta-
tions. The plot shows that average max|dH/dt | increases
with latitude for storm time and non-storm time substorm on-
sets. It also shows that at all the stations the storm time values
are greater (approximately double) than the non-storm time
values, even at the lowest latitudes. The corresponding plot
by Viljanen et al.(2006, Fig. 2) also shows an increase with
latitude up to 68◦ N and the doubling of values in storm-time
conditions.

The response time of the ground magnetic field to sub-
storm onset is an important consideration. For each event,
the time at which the maximum value ofdH/dt occurs, from
20 min before onset and 1 h after, is recorded. Then for each
SAMNET station a histogram is plotted showing how many
maxima occurred in each 1-min bin of the sampled data.
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Fig. 3. Times at which max|dH/dt | occurs at SAMNET stations,
KIL (Kilpisjarvi, 65.9◦ N), NOR (Nordii, 61.5◦ N), BOR (Borok,
54.11◦ N), HAD (Hartland, 50.99◦ N), during non-storm time. Sub-
storm onset occurs at 0 min. CGM latitudes.

Figure3 shows these results for four SAMNET stations over
a range of latitudes using only non-storm time data. All four
panels in Fig.3 have a peak in the first minute after substorm
onset and then a long tail which is as expected from such a
complex process; this is also the case for the other SAMNET
stations in this study. For some events largerdH/dt seem to
occur in the 20 min before onset, however these values could
be the result of two substorms occuring within a short time
of each other or some other activity not associated with the
substorm. Even though there are some values in the 20 min
period before onset, there is still a clear peak at the time onset
apears. The northernmost station in the figure is Kilpisjarvi
and seems to show some greater disruption than the others in
the later times. This could possibly be due to its proximity
to the auroral oval. Figure4 presents the same analysis, for
storm time events. These plots seem to show even more dis-
ruption, particularly at Kilpisjarvi, again this could in part be
due to the proximity of the auroral oval which tends to be at
lower latitudes during storm time but also there is the effect
of the small data sample: storm time substorms are only 15%
of the total substorms used in this study. Even so, there is a
peak in the first minute after substorm onset and a long tailed
distribution.

The most probable time for max|dH/dt | to occur after
substorm onset is the mode, which is calculated for each
SAMNET station and plotted against CGM latitude for non-
storm time and storm time separately in Fig.5. The non-
storm time modes almost all occur in less than a minute
whereas the storm time modes occur within 2 min. There
also appear to be two outliers in the storm time data, the out-
lier at the lower latitude is a result of a small data sample for
that particular station, however the higher latitude outlier has

−20 −10 0 10 20 30 40 50 60
0

5

#

83 storm time events

−20 −10 0 10 20 30 40 50 60
0

5

10

#

−20 −10 0 10 20 30 40 50 60
0

5

10

nu
m

be
r 

of
 e

ve
nt

s
   

   
   

 #
   

  

−20 −10 0 10 20 30 40 50 60
0

5

10

occurence time of max dH/dt [min]

#

KIL

NOR

BOR

HAD

Fig. 4. Times at which max|dH/dt | occurs at SAMNET stations,
KIL (Kilpisjarvi, 65.9◦ N), NOR (Nordii, 61.5◦ N), BOR (Borok,
54.11◦ N), HAD (Hartland, 50.99◦ N), during storm-time. Sub-
storm onset occurs at 0 min. CGM latitudes.
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Fig. 5. Mode of occurrence of max|dH/dt | times against CGM
latitude. Crosses are storm time substorm onsets (83 events), and
the circles are non-storm time substorm onsets (470 events).

a large data set. When Fig.5 is compared toViljanen et al.
(2006, Fig. 5), which also shows the most probable time of
max|dH/dt | after onset over a range of latitudes, it can be
seen that in storm time conditions the peak times start to in-
crease above 5 min at latitudes over 60◦ N, in the non storm
time case this does not happen until latitudes above 70◦ N. So
it is possible that in Fig.5 the storm time value at 66◦ N is in-
dicating the effect of the auroral oval on the occurrence times
of max|dH/dt |, however data for higher latitudes would be
needed to confirm this.
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Fig. 6. Histogram showing the standard deviation of times of occur-
rence of max|dH/dt | for each non-storm time event, 470 onsets.

Substorms are large scale events and can cause large
max|dH/dt | at a range of sites, but the coincidence of the
occurrence of max|dH/dt | at multiple sites is significant to
the development of GIC in power transmission networks. It
is therefore useful at this point to look at the standard de-
viation of the occurrence time of max|dH/dt | at the range
of SAMNET stations for each event. Shown in Fig.6 is the
non-storm time histogram of standard deviation of the time at
which max|dH/dt | occurs at SAMNET sites for each event.
There is a broad distribution with a peak around 20 min, the
median is 14.4 min. Figure7 is the same plot but for the
storm time onsets, again there is a broad range, with a peak
around the 20 min mark, the median is 15.1 min.

As max|dH/dt | is not usually a result of the largestH

it is also useful to know how much of a correlation there is
between the two values. So far this study has only been con-
sideringdH/dt and therefore it has not been necessary to
consider the actual value ofH . This can be significantly dif-
ferent from one site to another due to the natural background
H and thereforeH values at different sites are not directly
comparable. In order to compare values ofH at the range of
SAMNET sites, data for 24 h before and after each substorm
onset time (i.e. a 48 h period) are examined and the median
value taken for each event at each site. This is then subtracted
from H at that site. Now data for each event at all sites can
be compared by using|H | (absolute median subtractedH ).
The largest max|dH/dt | for each event and its correspond-
ing value of |H | (i.e. the value of|H | as max|dH/dt | is
achieved) are plotted against each other in Fig.8 and9. The
non-storm time events are plotted in Fig.8 and show that
max|dH/dt | does in general increase with increasing|H |,
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Fig. 7. Standard deviation of time of occurrence of max|dH/dt |

for each storm time event, 83 onsets.

but the correlation is only 0.5988. The corresponding value
of max|dH/dt | for a given value of|H | can vary by as much
as±8 nT/s. The correlation for storm time events is 0.5886
and also shows a general increase in max|dH/dt | with |H |,
however there is considerable variation.

Since the direction of the magnetic field may be impor-
tant to the susceptibility of a power transmission network to
GIC, the directions ofdH/dt for max|dH/dt | and of the
correspondingH must also be examined. Using the same
values as in Fig.8 and 9, the largest max|dH/dt | vectors
are plotted on a compass diagram enabling the magnitude
and direction of the largest max|dH/dt | for each event to
be compared. The same is also done for the corresponding
value of median subtractedH . Figure10, shows four com-
pass plots with magnetic north pointing to the top of the page
and magnetic east to the right. The top two plots show the
vectors of the largest|dH/dt | for each event and the bottom
two plots show the corresponding value of median subtracted
H . Immediately obvious is the difference in the amount of
data available for non-storm time and storm time events. The
plots for max|dH/dt | in both non-storm and storm time plots
show that changes in the field occur in all directions with a
range of magnitudes up to about 20 nT/s. The corresponding
values of median subtractedH tend to mostly be directed to
the south, non-storm time values reach up to 750 nT. Storm
time values can reach over 1000 nT and about all of them
are directed southwards. The southward polarisation of me-
dian subtractedH is to be expected since it corresponds to a
westward current over SAMNET. The range of direction for
max|dH/dt | suggests that it is not necessarily the westward
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Fig. 8. Plot of |H | against corresponding largest max|dH/dt | for
470 non-storm time substorms. The line is the linear correlation.

current that governs the behaviour of the rapid variations in
H . Instead, smaller scale structures in the ionosphere may
play an important role.

4 Comparisons and conclusions

This study focuses on the time derivative of the horizontal
ground magnetic field as this is the key value when consid-
ering the generation of GIC from substorms (Viljanen et al.,
2001). In particular the different characteristics in storm time
and non-storm time substorms is of interest. In order to keep
the analysis ofH separate from the detection of substorm
onset, a list of substorm onsets produced by the IMAGE-
FUV satellite (Frey et al., 2004) is used to find substorms
that occurred at a time and place suitable for SAMNET;
consequently all substorms occurred just after solar maxi-
mum. The substorms are then divided into non-storm time
and storm time substorms.

These are key differences to a similar study byViljanen
et al. (2006) which was carried out using the IMAGE mag-
netometer network (geographic latitudes between 58◦ N and
79◦ N) to detect substorm onset and analyseH between 1997
and 1999 (just after solar cycle minimum) with a time reso-
lution of 1 min.

The mean of max|dH/dt | increases with CGM latitude
up to 66◦ N and storm time values are double non-storm time
values even at low CGM latitudes of 45◦ N shown in Fig.2,
essentially meaning that during storm time conditions lower
CGM latitude sites experience average max|dH/dt | levels
similar to sites approximately 5◦ higher during non-storm
times.
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Fig. 9. Plot of |H | against corresponding largest max|dH/dt | for
83 storm time substorms . The line is the linear correlation.

All latitudes show a peak occurrence time of max|dH/dt |

in the first minute after onset for non-storm time substorms,
with a long distribution tail. The similar study byViljanen
et al. (2006) shows a similar feature but the peaks occur
around 5 min after onset. As Figs.3 and4 show there is some
activity before onset occurs but a clear peak at substorm on-
set time. Since a main difference between these two studies
is the higher sampling rate of the SAMNET data we have
synthesised 1 min SAMNET data to match that of theVilja-
nen et al.(2006) study and the same analysis performed. The
results still produce a peak in the first minute after substorm
onset, so there is a reason for the difference in the studies
other than data sampling rate. This study uses IMAGE-FUV
observation of auroral brightening to determine onset (with a
time resolution of∼2 min) while the paper byViljanen et al.
(2006) uses geomagnetic indices which have comparable un-
certainty. Studies into the timings of substorm onset indi-
cators, e.g.,Rae et al.(2009) highlight the difficulty in de-
termining precise onsets times. Since each method has its
own inaccuracy and since the physics of substorm formation
and development is still being debated, substorm onset time
is somewhat subjective. For this study and the study byVil-
janen et al.(2006) it seems that the differences in pinpoint-
ing substorm onset and the time resolutions and accuracies
of the methods used may be the cause of the discrepancy in
max|dH/dt | occurrence time, and are unlikely to be a result
of physical characteristics of mid latitude substorms.

While there is some correlation between corresponding
values of|H | and max|dH/dt |, the large range (±2 nT/s
at low |H | and up to±8 nT/s at larger|H |) suggests that a
large max|dH/dt | can be produced without an initially high
|H |. There is little difference between the correlations for
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Fig. 10.Top figures are the largest max|dH/dt | vectors for the maximum site, left = non-storm time (469 substorms), right = storm time (83
substorms). Bottom figures are the simultaneous median subtractedH vectors, left = non-storm time (466 substorms), right = storm time (81
substorms). (Several outliers were removed in order to be able to display the result clearly. Magnetic north is to the top of the page and east
to the right.)

non-storm and storm time onsets indicating that the relation-
ship of max|dH/dt | and |H | is not affected by storm time
conditions.

In Fig. 10, max|dH/dt | vectors are scattered in all direc-
tions and larger values occur in storm time conditions. The
corresponding values for median subtractedH are mostly di-
rected to the south which indicates their connection to the
westward electrojet. The distribution of max|dH/dt | sug-
gests that short term changes of the field are influenced by
other ionospheric events. These results agree withViljanen
et al.(2006, Fig.8).

Although this study uses substorms that are detected in-
dependently ofH measurements and with a higher time res-
olution and at a different point in the sunspot cycle many
of the results agree with the similar study byViljanen et al.
(2006). These similarities suggest the differences between
the two studies do not impact the results i.e. the basic char-
acteristics of the ground magnetic field during substorms are
not affected by the difference in the stages of the solar cycle,
data sampling rate, method of determining onset, or loca-

tion of study. Differences between solar cycle phase do not
produce differences in the results suggesting that substorm
characteristics do not vary with the solar cycle. However
this study and that ofViljanen et al.(2006) do not cover all
phases of a solar cycle and a future study examining sub-
storm characteristics through all phases over many cycles
will be needed to determine if there is any effect. However
during active phases of the solar cycle, storm time condi-
tions that are expected to effect the ground magnetic field
are more likely, doubling the mean max|dH/dt | from those
during non-storm time conditions (as shown in Fig.2).

With respect to modelling GIC production in a power
transmission network, the information gained in this paper
will be used to construct model magnetic fields with which
to test GIC models. Of particular interest is the response
of a power transmission network to a range of field orienta-
tions and variations with time as well as simultaneity of large
dH/dt over the network. This present study will prove use-
ful in this endeavour.
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