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Synopsis 

 

Detrital zircon populations within the Llandovery to Wenlock sandstones of the 

southern Midland Valley of Scotland indicate that the recycled orogenic provenance 

for these sedimentary rocks was essentially bimodal, comprising a younger Lower 

Palaeozoic component and an older predominantly Mesoproterozoic component. The 

Lower Palaeozoic contribution is dominated by Arenig/Llanvirn (c. 475 Ma) zircons 

interpreted as having been derived from a volcanic-plutonic source located within the 

Midland Valley terrane. The dominant Mesoproterozoic component within the 

sandstones is c. 1000 Ma and is thought to represent detritus shed from a Grenvillian 

(~1000-1800Ma) basement to the Midland Valley terrane. The scarcity of Archaean 

zircons precludes the Grampian metamorphic terrane Dalradian Supergroup as a 

supplier of sediment to the Ordovician-Silurian basins located along the southern 

margin of the Midland Valley. The age profiles of detrital zircon populations do not 

fit with a simple model of unroofing of a volcanic-arc complex. Rather they point to 

the periodic uplift of fault-bound, dismembered blocks of volcanic and plutonic rocks 

during a prolonged (Llandovery through to at least early Devonian) period of sinistral 

strike-slip deformation, and it was this which controlled basin development, 

sedimentary facies distribution and deformation along the southern side of the 

Midland Valley terrane. 
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Introduction 

The Midland Valley terrane of central Scotland separates the Neoproterozoic 

metamorphic rocks of the Grampian Highlands from the Lower Palaeozoic 

accretionary complex of the Southern Uplands (Fig. 1). The terrane is bounded to the 

north by the Highland Boundary Fault Zone and to the south by the Southern Upland 

Fault. The role of the Midland Valley in the history of Caledonian terrane accretion 

has long been the source of interest and speculation. Lambert & McKerrow (1976), 

Leggett (1980) and Leggett et al. (1982), amongst others, regarded the Lower 

Palaeozoic sedimentary rocks of the Midland Valley terrane as having been deposited 

in a fore-arc basin that divided the accretionary complex of the Southern Uplands 

terrane, from a basement-arc terrane to the north. In another interpretation, sediment 

derived from uplift of the Grampian terrane was dispersed across the Midland Valley 

and accumulated within the postulated Southern Uplands trench (Hutchison & Oliver 

1998; Oliver et al. 2000). Alternatively, for most of the Ordovician to earliest 

Devonian interval, the Midland Valley terrane may have formed an arc-inter arc 

region which supplied sediment into a fore-arc basin located immediately to the south 

(Bluck, et al. 1980; Bluck 1983, 1984; Smith et al. 2001; Bluck et al. 2006). 

The structural geometry of the Southern Uplands terrane is consistent with it 

having developed as an accretionary thrust complex at the Laurentian continental 

margin during northward subduction of the Iapetus Ocean. The evolution of this 

terrane has been interpreted in terms of a fore-arc, supra-subduction zone prism 

(McKerrow et al. 1977; Leggett et al. 1979; Leggett et al. 1982; Leggett 1987; 

Needham 2004), although the northern (Ordovician) part has also been interpreted as 

a subsiding, fore-arc shelf sequence rather than trench deposits (Armstrong et al. 

1996; Armstrong & Owen 2001). In an alternative model, the terrane is envisaged as 

having developed from an Ordovician back-arc setting into a mid-Silurian foreland 

basin that migrated onto the Avalonian continent following closure of the Iapetus 

Ocean (Morris 1987; Stone et al. 1987; Kneller 1991; Kneller et al. 1993). A recent 

evaluation of the basin thermal history in the Southern Uplands terrane has ruled out 

the back-arc component of this model (Stone & Merriman 2004), but the later 

evolution into a foreland fold and thrust belt remains likely, as does some link with 

the wholly Avalonian development of the coeval Windermere Supergroup foreland 

basin in the southern Lake District. 

 2



Until recently the presence of fresh, southerly derived andesitic detritus within 

some of the turbiditic sandstones of the Southern Uplands (most notably the 

Caradocian Portpatrick and Galdenoch formations) had been assumed to provide 

evidence for the existence of an Ordovician supra-subduction volcanic arc, either in 

the Midland Valley (accretionary model, with axially deflected turbidite flow) or 

offshore (back-arc model, with primary southern derivation). However, the age profile 

of detrital zircons from the Portpatrick Formation sandstones are typical of Gondwana 

and Avalonia, recording much older Neoproterozoic volcanism (U-Pb 557 ± 6 Ma and 

613 ± 12 Ma; Phillips et al. 2003; also see Kelley & Bluck 1989, 1990), rather than 

showing evidence for a contemporaneous volcanic arc. If the volcaniclastic detritus 

was indeed Avalonian it was introduced into the sedimentary basins developed 

marginal to Laurentian continent as early as the Caradoc, with profound implications 

for the palaeogeography of the Iapetus Ocean. An Avalonian source also fitted with 

isotope studies which showed that Grampian Terrane Dalradian Supergroup rocks 

were an unlikely source for the northerly derived, quartzofeldspathic units such as the 

broadly contemporaneous Kirkcolm Formation in the Southern Uplands. Smith et al. 

(2001) have suggested that one potential source of detritus for the northerly derived  

sandstones of the Ordovician northern part of the Southern Uplands terrane lay within 

the Midland Valley. However, the detrital zircon study of Waldron et al. (2008) has 

demonstrated that the late Ordovician sandstones of the northern belt of the Southern 

Uplands could well have been largely derived from a Laurentian source. This leaves 

the depositional setting and provenance of the Ordovician to Silurian strata of the 

Midland Valley terrane as poorly understood elements in the early Palaeozoic 

palaeogeography of the Scottish sector of the Iapetus Ocean.  

The primary objective of this paper is to reassess the evolution of the Midland 

Valley terrane during the Early Palaeozoic in the light of laser ablation U-Pb ages 

obtained for the detrital zircon populations within the sandstones of the March Wood, 

Hareshaw Conglomerate, Parishholm Conglomerate, Cock Rig and Craigskelly 

Conglomerate formations. These data provide important age constraints on the source 

terrane which fed sediment into the sedimentary basins along the Laurentian 

continental margin. 

 

The Lower Palaeozoic strata of the Midland Valley terrane 
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The Lower Palaeozoic sedimentary rocks of the Midland Valley terrane are mostly 

found close to its southern margin (Fig. 2). The Ordovician sequence only occurs in 

the southwest around Girvan and ranges from Llanvirn to Ashgill in age (Williams 

1962; Ingham 1978; Stone & Smellie 1988). It consists of a thick sequence of 

northwest-derived conglomerates, turbiditic sandstones and shallow water limestones 

which unconformably overlie the Tremadoc to Arenig Ballantrae ophiolitic complex. 

The Llanvirn to Caradoc sedimentary sequence includes the conglomeratic Kirkland, 

Benan and Kilranny formations which are interpreted as having been deposited in a 

proximal fore-arc basin to the Midland Valley volcanic arc, situated to the north, 

which was founded upon a basement of older (possibly Precambrian) metamorphic 

rocks intruded by granitic plutonic rocks (Bluck et al. 1980; Bluck 1984; Smith et al. 

2001; Bluck et al. 2006). The Benan and Kilranny conglomerates are characterised by 

the presence of large granitic clasts which have yielded ages in the range 590 to 450 

Ma (Rb-Sr; Longman et al. 1979), implying a prolonged period of granite intrusion. 

The source of these rocks is presently unknown as is the origin of an early Tremadoc 

limestone boulder described by Rushton & Tripp (1979) from the Benan 

Conglomerate. The granitic clast content of the Benan Conglomerate has been related 

to granitic magmatism and uplift in the source area to the north, with the variation in 

thickness of the conglomerate being used as evidence for oblique slip on 

contemporaneous faults located along the northern margin of Iapetus (Ince, 1984). 

The older Kirkland Conglomerate is dominated by detritus derived from the 

Ballantrae ophiolitic complex, an obducted fragment of an arc/back-arc assemblage 

composed of serpentinised ultramafic rocks, gabbroic intrusions, and early Ordovician 

within-plate and island-arc lavas (including primitive island-arc tholeiites and 

boninites; see Smellie & Stone 1992, 2001; Smellie et al. 1995), and volcaniclastic 

rocks (containing Arenig fossils, Stone & Rushton 1983). This imbricated, supra-

subduction zone ophiolitic assemblage was emplaced northwards onto the southern 

margin of the Midland Valley terrane in response to arc-continent collision and 

subsequent reversal in subduction polarity (Smellie & Stone 2001) at the end of the 

Arenig (478 ± 8 Ma; Bluck et al. 1980; Stone & Rushton 2003). The Ordovician 

conglomeratic sedimentary rocks of the Girvan area were then deposited in a 

proximal, fore-arc basin to the postulated Midland Valley arc system that developed 

after the obduction of the Ballantrae complex, possibly during the Llanvirn, when 
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subduction of the Iapetus Ocean lithosphere had been established beneath the 

Laurentian continental margin.  

In the southern Midland Valley, Llandovery to Wenlock rocks crop out in a 

series of inliers (Fig. 2): (i) the Pentland Hills inliers; (ii) the south central inliers 

(Hagshaw Hills, Lesmahagow, Carmichael and Eastfield); and (iii) the Girvan inliers 

where the Silurian rocks unconformably overlie Ordovician strata. In general, the 

Silurian inliers record the transition from an older (Llandovery) transgressive marine 

sequence (including turbiditic sandstones) to a younger (Lower Wenlock) regressive 

terrestrial succession (Cocks & Toghill 1973; Rolfe 1960, 1961; Rolfe & Fritz 1966; 

Cameron & Stephenson 1985; Robertson 1989; Smith 1995; Clarkson et al. 2001). 

Differences between the individual inliers in the thicknesses of the sequences and 

their detailed stratigraphy reflect deposition within a series of small, strike-slip sub-

basins developed oblique to the major northeast-trending Caledonian structural 

lineaments (Williams & Harper 1988; Smith 1995; Phillips et al. 1998). This Lower 

Silurian sub-basin architecture continued into the Upper Silurian and controlled the 

deposition of the redbed fluviatile sandstones and alluvial fan conglomerates which 

form the lower part of the overlying (and partly Devonian) Lanark Group. Provenance 

studies, in particular Phillips et al. (2004), have shown that strata of the Silurian 

inliers and Siluro-Devonian Lanark Group sedimentary rocks were derived from the 

same source, which included volcanic and hypabyssal igneous rocks, a wacke 

sandstone-dominated sedimentary sequence, granitic plutonic rocks and older 

metamorphic rocks (also see McGiven 1967; Bluck 1983; Heinz & Loeschke 1988; 

Syba 1989). Minor differences in sandstone composition between the inliers reflect 

the influence of the sub-basin architecture on sediment dispersal patterns. 

Palaeocurrent evidence shows that sources lay both to the north and south, leading to 

the conclusion that they were located within an originally much wider Midland Valley 

terrane (Bluck 1983, 1984; Smith 1995; Phillips et al. 1998). Apart from thin calc-

alkaline, rhyodacitic metabentonite beds (Batchelor & Clarkson 1993) in the late 

Llandovery to early Wenlock succession of the Pentland Hills inlier, there is no 

unequivocal evidence of contemporaneous volcanism within the Lower Palaeozoic 

succession of the southern Midland Valley. 

The remainder of the Lanark Group (Lower Devonian) was deposited in a 

linear, northeast–southwest-trending basin (the Lanark Basin; Bluck 1984, 2000) that 

developed during a phase of transtension that was accompanied by the eruption of 
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Siluro-Devonian calc-alkaline volcanic rocks. Conglomerates within the Siluro-

Devonian sequence of the northeast Midland Valley (Strathmore Basin) contain a 

diverse suite of granitic clasts which yield ages of between 475-457 Ma (Rb-Sr 

muscovite-whole-rock; U-Pb monazite), as well as detritus derived from a ‘cryptic 

greywacke source’ located within the Midland Valley terrane (Haughton et al. 1990; 

Haughton & Halliday 1991). Although metamorphic detritus derived from 

Neoproterozoic Dalradian rocks north of the Midland Valley terrane does occur 

within the Upper Silurian strata from the Strathmore Basin (Phillips et al. 1998), none 

has been recognised unequivocally within the sandstones of the Lanark Basin or older 

Silurian sub-basins (Phillips et al. 2004).  

 

Sandstone petrography and provenance 

Five samples of medium- to coarse-grained and granule sandstone from the Girvan, 

Hagshaw Hills, Eastfield and North Esk (Pentlands) inliers were selected for isotopic 

analysis (Figs. 2 and 3, and Table 1). The results quantify the spatial and temporal 

changes in sandstone provenance from Lower Llandovery to Mid-Wenlock times.  

The medium- to very coarse-grained sandstones are texturally and 

compositionally immature rocks with a closely packed, grain-supported texture (Fig. 

4). Although traces of chloritic, carbonate and/or clay cements are present, pressure 

solution during compaction is the main mode of cementation. The sandstones are 

typically composed of angular to subangular, low sphericity clasts of mono- and 

polycrystalline quartz, plagioclase and variably altered rock fragments (Table 2). 

Although the lithic fragments are largely composed of fine- to very fine-grained 

igneous rocks (basalt, aphyric to feldspar-phyric andesite, aphyric to quartz-feldspar-

phyric rhyolite/rhyodacite, trachytic rock, microgranite), there are also sedimentary 

(chert, mudstone, siltstone) and metasedimentary (quartzite, meta-quartz arenite, 

phyllite, metasandstone) rock fragments (Table 2). This clast assemblage is consistent 

with these sedimentary rocks having been derived from a recycled orogenic 

provenance, comprising an eroded volcanic or igneous complex with an associated 

sedimentary cover, founded upon an older metamorphic basement (cf. Phillips et al. 

2004). Minor differences in sandstone composition between the clastic sequences 

within the individual inliers are thought to record localised changes in the 

composition of the source terrane, and/or sediment dispersal patterns within 

individual sub-basins (Phillips et al. 2004). 
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The Lower Llandovery Craigskelly Conglomerate Formation (c. 40 m thick in 

the Girvan inlier) consists of well-rounded pebbles, cobbles and boulders of 

mudstone, granite, jasper, chert, felsite, microgabbro, gabbro, serpentinite and quartz 

(Cameron et al. 1986). The interbedded sandstone (sample N5075, Table 2) contains a 

similar range of igneous rock fragments (including serpentinite and basalt), as well as 

detritus derived from sedimentary and metamorphic rocks. The northeast-derived, 

Upper Llandovery Cock Rig Formation (North Esk, Pentland Hills inlier) sandstone 

(N5071) is broadly similar in composition to the Craigskelly sandstone, though this 

younger sandstone lacks serpentinite lithic clasts and contains a slightly higher 

proportion of metasedimentary rock fragments (Table 2).  

The Lower Wenlock Parishholm Conglomerate Formation (N5067) and Mid-

Wenlock Hareshaw Conglomerate Formation (N5068) sandstones (both from the 

Hagshaw Hills inliers) were derived from the southeast. Although the lithic-rich 

sandstones within both of these formations are compositionally similar to the 

Llandovery sandstones, they also contain minor, but significant, amounts of 

metamorphic (quartz-schist, quartzofeldspathic mylonite, metabasalt) and granitic 

(diorite/granodiorites, micrographic granite, microdiorite) rock fragments (Table 2). 

The southeast-derivation of the Parishholm and Hareshaw conglomerate formations 

indicates that the recycled orogenic provenance which supplied detritus to the Lower 

Palaeozoic sedimentary sequences of the southern Midland Valley terrane was much 

wider than the current area of the terrane and extended much further to the south. The 

Mid-Wenlock March Wood Formation (Eastfield inlier) sandstone (N5065) is the 

most fine grained of the sandstones analysed. The fluviatile sandstone sequence of the 

March Wood Formation contains conglomerate inter-beds with quartzite pebbles; the 

Formation’s provenance may be expected to that of the Hareshaw Conglomerate, 

though the sequence is slightly younger in age (Fig. 3). 

Zircon has been identified in all the sandstones (Table 2), occurring as: (i) 

large, rounded detrital grains; (ii) rounded, dusty looking crystals included within 

metasedimentary rock fragments; (iii) equant to rod-shaped, anhedral to subhedral 

crystals included within plagioclase and quartz, and more rarely muscovite and 

biotite; and (iv) equant to rod-shaped, faceted crystals within granitic lithic clasts.  

 

Zircon age data 
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Data were collected using laser ablation multi-collector ICP-MS. Details of the 

analytical protocol and instrumental set-up can be found in Appendix 1. 

A number of general observations can be made regarding the detrital zircon 

populations within the Llandovery to Wenlock sandstones of the Midland Valley (see 

Fig. 6): (i) detrital zircon populations present in all five samples, irrespective of 

stratigraphical age, comprise a younger, Lower Palaeozoic component and an older 

predominantly Mesoproterozoic component (Figs. 5 and 6); (ii) the Lower Palaeozoic 

contribution in general becomes progressively ‘younger’ as the depositional age of the 

host rock becomes stratigraphically younger (Fig. 6); (iii) the younger limit of the 

Mesoproterozoic detrital zircon population becomes slightly younger as the host rocks 

get stratigraphically younger (Fig. 6); and (iv) the contribution of zircons from 

Neoproterozoic and Archaean rocks to the Midland Valley Silurian sediment was 

consistent but relatively minor. 

 

Craigskelly Conglomerate Formation 

The younger component within the sandstone (N5075) from the Craigskelly 

Conglomerate Formation (Lower Llandovery, northwest-derived) is dominantly 

Arenig/Llanvirn (c. 475) (c. 30 Ma older than age of host sediment). The Lower 

Palaeozoic part of the detrital zircon population is thought to be dating the granitic to 

rhyolitic igneous component present within the Craigskelly Conglomerate Formation 

sandstone. The age of the Lower Palaeozoic detrital zircon population within this 

sandstone is comparable to the dates obtained from granitic boulders (Rb-Sr dates 

470-560 Ma, Longman 1980; Longman et al. 1979) within the underlying Caradocian 

Benan and Kilranny conglomerate formations, which have a similar provenance 

petrographically.  

The Craigskelly Conglomerate Formation sandstone also contains significant 

Mesoproterozoic peaks (c. 1020, 1170, 1370 Ma, Figs. 5a and 6a) and much smaller 

older Palaeoproterozoic (Figs. 5a and 6a) detrital zircon components. The 

Mesoproterozoic component is most abundant at c. 1000 Ma (Fig. 6a), but there are 

no younger Proterozoic zircons present. 

 

Cock Rig Formation 

Data obtained for the Cock Rig Formation sandstone (N5071) (Upper Llandovery, 

northeast-derived) in the Pentland Hills are broadly similar to that for the Craigskelly 
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Conglomerate Formation deposited at the other end of the Midland Valley. Present 

are the younger Arenig (c. 485 Ma; Figs. 5b and 6b) and older Mesoproterozoic 

(1110, 1180, 1540 Ma; Figs. 5b and 6b) components and an minor Late Archaean (c. 

2.7 Ga) component.  

 

Parishholm Conglomerate Formation 

The detrital population within the southeast-derived Parishholm Conglomerate 

Formation (Lower Wenlock, c. 428 Ma) has a range of younger detrital zircons from 

Arenig (c. 475 Ma; Figs. 5c and 6c). This sandstone (N5071) is, however, 

distinguished from the Llandovery sandstones by a greater contribution from 

Llandovery/Ashgill (c. 445 Ma; Fig. 6c) zircons, as well as by a restricted 

Mesoproterozoic component (peaks at c. 1011, 1050, 1170 Ma; Fig. 6c). The 

Parishholm sandstone also contains Palaeoproterozoic and Neoarchaean components. 

The Parishholm Conglomerate Formation is dominated by igneous detritus (see Table 

2) suggesting that the Lower Palaeozoic component of the detrital zircon population is 

predominantly derived from a granitic to rhyolitic igneous source. The overall 

similarity in detrital zircon data from the Craigskelly, Cock Rig and Parishholm 

formation sandstones, combined with the results of the petrological provenance study, 

strongly suggests that the same/similar source which supplied detritus to the Silurian 

sandstones extended throughout the Midland Valley terrane. 

 

Hareshaw Conglomerate Formation 

In contrast to the Parishholm Conglomerate Formation, the southeast-derived 

Hareshaw Conglomerate (mid-Wenlock), is rich in metamorphic detritus which is 

apparently reflected in its detrital zircon population. Uniquely amongst the Silurian 

sandstones analysed, the Hareshaw sandstone (N5068) is dominated by 

Mesoproterozoic zircons (c. 965, 1020, 1050 Ma; Figs 5d and 6d). The much reduced 

Lower Palaeozoic component is Caradoc in age. 

 

March Wood Formation 

The sandstone (N5065) from the March Wood Formation, also mid-Wenlock (c. 426 

Ma) but probably the youngest sandstone analysed (Fig. 3), shows a return to a 

broadly bimodal population comprising a Llandovery (c. 430 Ma) and 

Arenig/Llanvirn (c. 480 Ma; Figs. 5e and 6e) contribution and an older 
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Mesoproterozoic (c. 1000-1800 Ma; Figs. 5e and 6e) component. The Llandovery 

influence is most pronounced within the March Wood Formation demonstrating the 

increase in the importance of this young/juvenile source within the mid-Silurian. 

 

Discussion 

Comparison of the zircon populations in the Midland Valley sandstones 

Since the detrital zircon populations of the Midland valley sandstones (irrespective of 

stratigraphical age) possess a younger lower Palaeozoic component and older 

predominantly Mesoproterozoic component, there appears to be a common factor to 

the source areas, even though they were deposited by currents from different 

directions into different sub-basins (see Phillips et al. 1998, 2004). The sandstones 

were deposited in relatively small strike-slip sub-basins (Smith 1995; Phillips et al. 

1998) and the source areas were probably less than 100 km distant. Erosion of horsts 

and rift shoulders was most likely to have contributed to the sub-basin fill. It is 

important to assess whether the zircon content of the samples is first cycle or recycled 

from pre-existing sedimentary sources. 

The abundance of zircons of c. 1000 Ma suggests a Grenvillian source from 

Laurentia, but some models show that a Sveconorwegian source (Cawood et al. 2007; 

cf. the Telemarkian magmatic events in their fig. 4) could be a more likely for 

southerly derived material as Baltica is placed relatively close to the south of 

Laurentia at around 600 Ma and again as Iapetus closed at around 450 Ma. The 

general lack of late Neoproterozoic ages (c. 557 Ma) eliminates an Avalonian source 

for the detritus being supplied to the Silurian basins of the Midland Valley. The 

southerly derived sandstones in the Midland Valley have a more varied zircon 

population than those derived from the north of this terrane. Besides the dominant 

Mesoproterozoic grains, the southern source also provided Palaeoproterozoic, 

Neoarchaean and Palaeoarchaean grains. Whereas, the northerly derived sandstones 

contain a restricted population, which in addition to the Mesoproterozoic grains 

includes only a few Neoarchaean grains with or without Palaeoproterozoic 

representatives. By comparison the March Wood Formation, with an undetermined 

source-direction, has a similar population to the northwest-derived Craigskelly 

Conglomerate and so was probably sourced from the north. Possibly this reflects a 

less deeply eroded “basement” in this northerly source area. 
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The Parishholm Conglomerate and Hareshaw Conglomerate formations occur 

within the Hagshaw inlier and as such are likely to have shared a common source. The 

slightly older Parishholm Conglomerate, however, contains more felsic/acidic clasts 

of Llandovery-Arenig age. This situation might be expected in deposits derived from 

the unroofing of a source area in which arc-related rocks overlie a metamorphic 

basement. 

The March Wood Formation could have been derived from a similar source to 

the Parishholm Conglomerate Formation, but is less likely to have come from the 

same source as the Hareshaw Conglomerate, which is of a similar age, but in a 

separate inlier/sub-basin. 

Llandovery-age zircons are not detected in the Craigskelly, Cock Rig and 

Hareshaw formations, but are present in the Wenlockian Parishholm Conglomerate 

and March Wood formations. It is known from interbedded metabentonite layers that 

there was penecontemporaneous volcanism affecting the southern Midland Valley in 

the Silurian. The metabentonites are rhyodacitic and contain euhedral zircon among 

other minerals. They are recorded from, for example, the Wether Law Linn Formation 

(Upper Llandovery to Wenlock age) just above the Cock Rig Formation (Batchelor & 

Clarkson 1993), and just below in the Llandovery Reservoir Formation (Batchelor 

1999) of the Pentland Hills North Esk inlier (Fig. 3). A further metabentonite occurs 

within the Ree Burn Formation (Upper Llandovery), which lies just below the 

Parishholm Conglomerate in the Hagshaw Hills inlier (Batchelor 1999).  

 

Provenance of the Ordovician-Silurian sedimentary sequences  

in the Midland Valley terrane 

Detrital zircon populations within the Silurian sandstones sampled from the southern 

Midland Valley are bimodal and clearly record the input of sediment from two main 

sources; a Lower Palaeozoic source and an older, predominantly Mesoproterozoic, 

basement (Figs. 5 and 6), or alternatively as a result of the recycling of an older 

sedimentary sequence.  

It has been argued that the uplift of metamorphic rocks of the Grampian 

terrane shed detritus across the Midland Valley, which was then deposited within the 

Southern Uplands sedimentary basin (Hutchison & Oliver 1998; Oliver et al. 2000). 

Although metamorphic detritus derived from the Grampian terrane is a common 

component within the Siluro-Devonian sandstones and conglomerates of the northern 

 11



Midland Valley (Haughton & Bluck 1989; Phillips et al. 1998), no unequivocal 

lithologies derived from the Grampian, Northern Highlands and Hebridean terranes 

(Fig. 1) have been recognised within the Silurian inliers or Devonian (Old Red 

Sandstone facies) sandstones of the southern Midland Valley (Phillips et al. 2004). 

The metasedimentary rocks of the Neoproterozoic Dalradian Supergroup, which crop 

out extensively along the southern margin of the Grampian terrane, are typically well-

endowed with Archaean and late Palaeoproterozoic zircons (Cawood et al. 2003, 

2007). The age profile of the detrital zircon populations (see Figs. 5 and 6) present 

within the sandstones of the southern Midland Valley, with their scarcity of Archean 

and late Palaeoproterozoic ages, clearly demonstrate that the Grampian terrane did not 

supply detritus to these Ordovician-Silurian sedimentary basins. Instead, the 1000-

1800 Ma component was largely derived from a Mesoproterozoic (Grenvillian) source 

not represented in the Dalradian. Haughton (1988) and Haughton et al. (1990) 

demonstrated that a so called ‘cryptic source’ within the central part of the Midland 

Valley terrane, which supplied material to the southerly derived Lower Devonian 

Crawton Group conglomerates of the Strathmore Basin in the northeast Midland 

Valley, included a block of older (> 440 Ma) metamorphic rocks. Further evidence for 

a Grenvillian basement to the Midland Valley terrane is provided by the presence of 

Mesoproterozoic (906-1180 Ma, Davies et al. 1984; Halliday et al. 1984; Aftalion et 

al. 1984) upper amphibolite to granulite facies metamafite and garnet granulite/quartz 

granulite xenoliths of metasedimentary origin within the much younger, 

Carboniferous volcanic vents of the Midland Valley (see Upton et al. 1999). The 

older Palaeoarchean, Neoarchaean and Palaeoproterozoic components are subordinate 

and variable in distribution within the Silurian sandstones and may well be recycled 

from the proposed Grenvillian basement. Some of these components are also 

indicated in the xenoliths from the Partan Craig vent in East Lothian, i.e. zircons with 

primary ages of > 2.2 Ga and probably 2.7 to 2.8 Ga (Halliday et al. 1984).  

The Lower Palaeozoic (Cambrian to Ordovician) detrital zircon component 

within the sandstones was largely derived from a igneous/volcanic source which 

included granitic, andesitic and felsitic rocks. Geochemical studies (Heinz & 

Loeschke 1988) indicate that the fine-grained volcanic to hypabyssal igneous rocks 

belong to calc-alkaline to high-K suites, associated with a convergent plate margin, or 

continental area undergoing crustal extension. Detritus shed from this igneous source 

terrane forms a major component of the sandstones within the southern Midland 
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Valley (Table 2; also see Phillips et al. 2004). Granitic boulders, which have a 

comparable age range (Rb-Sr age dates 470-560 Ma, Longman 1980; Longman et al. 

1979) to this Lower Palaeozoic component, occur within the northerly derived Benan 

and Kilranny conglomerate formations. These conglomerates also contain detritus 

derived from the Ballantrae ophiolitic complex (Bluck 1983). Although older than the 

Craigskelly Conglomerate Formation, these Ordovician conglomerates form part of 

the same stratigraphical sequence and were, therefore, probably derived from the 

same volcanic/plutonic source. Sm-Nd isotopic provenance studies (Stone & Evans 

1995) have shown that the Craigskelly Conglomerate Formation possesses a much 

lower εNd (-8.5) than the Kilranny Conglomerate (εNd = +3.2). Stone & Evans 

(1995) suggested that the stripping of the Ballantrae ophiolite complex, progressively 

exposing the underlying basement, could explain this variation. However, the Lower 

Palaeozoic detrital zircon component in the Craigskelly Conglomerate Formation 

sandstone includes calc-alkaline intrusive/volcanic rocks indicating that this simple 

unroofing model does not fully explain the observed variation in isotopic 

composition. 

The age of the igneous component within the Silurian sandstones of the 

Midland Valley is significantly older than the depositional/stratigraphical age of the 

host sediments. This relationship does not fit with any model involving sediment 

being shed from a contemporaneous volcanic centre (i.e. the Midland Valley arc, 

Bluck 1983; Bluck et al. 2006), but is more consistent with the reworking of a pre-

existing volcanic/plutonic complex founded upon, or intruded into a Mesoproterozoic 

(Grenvillian) metamorphic basement. Such an interpretation is supported by the 

petrographic provenance study of Phillips et al. (2004) which demonstrated a recycled 

orogenic provenance for the Silurian sandstones.  

Indirect evidence suggests that the volcanic/plutonic terrane may have been 

associated with, or covered by a wacke sandstone-dominated sedimentary sequence 

that also included minor shelf limestones. The south- to southeast-derived Siluro-

Devonian Greywacke Conglomerate Formation of the southern Midland Valley 

contains abundant pebbles and cobbles of wacke sandstone (McGiven 1967; Bluck 

1983, 1984; Smith 1995). These clasts are lithologically distinct from the Lower 

Palaeozoic strata of the Southern Uplands (Syba 1989; Stone & Evans 2001) and are 

generally thought to have been derived from within the Midland Valley terrane (Syba 

1989; Smith 1995; Phillips et al. 2004). Sparse limestone pebbles in these Siluro-
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Devonian conglomerates (Swanshaw Sandstone and Greywacke Conglomerate 

formations) contain Mid-Ordovician conodonts (Pygodus anserinus Biozone; 

Armstrong & Owen 2000; Smith 2000; Dean 2000). Similarly, rare limestone clasts 

within the Lower Devonian conglomerates (Crawton Group) of the northeast Midland 

Valley contain early Ordovician silicified brachiopod and crinoid remains (Ingham et 

al. 1985), and probable mid-Ordovician conodonts (Armstrong & Owen 2000). 

Phillips et al. (2004) noted that the range of lithologies with an igneous, 

sedimentary and metamorphic provenance in the Silurian to Lower Devonian 

sedimentary sequences of the southern Midland Valley is remarkably similar to the 

rock assemblage present within the Tyrone Igneous Complex and its Ordovician 

cover (Cooper & Johnston 2004; Cooper & Mitchell 2004). This igneous complex lies 

within an extension of the Midland Valley terrane in Ireland (see Fig. 1) and 

comprises: (a) an ophiolitic complex (the Tyrone Plutonic Group) composed mainly 

of gabbro and dolerite with minor basalt; and (b) an Arenig in age (c. 473 Ma, Cooper 

et al. 2008) arc-related, volcanic suite (Tyrone Volcanic Group) which includes 

basaltic pillow lavas, basic and intermediate tuffs and rhyolite (Hutton et al. 1985; 

Cooper & Johnston 2004; Cooper et al. 2008). Recent studies show that the ophiolite 

was obducted around c. 475 Ma, after which northward directed subduction and the 

volcanic arc were established (Cooper et al. 2008; Chew et al. 2008). Arc-related 

intrusives, ranging in composition from tonalite, to diorite and granodiorite, through 

to granite, as well as their higher level intrusive equivalents, have yielded ages in the 

range 473-464 Ma (U-Pb zircon, Hutton et al. 1985; Cooper et al. 2008). 

Biostratigraphical control on the age of the Tyrone Volcanic Group is limited to one 

stratigraphical horizon towards the top of the sequence on Slieve Gallion. Analysis of 

the graptolite fauna allowed Cooper et al. (2008) to establish a tight correlation to the 

Middle Arenig (late Castlemainian stage) for this part of the volcanic arc. Graptolite 

assemblages within the Balcreuchan Group of the Ballantrae Ophiolitic Complex on 

the southern margin of the Midland Valley terrane indicate that it is has a wider age 

range, from basal to upper Arenig (Stone & Rushton 1983). Cooper et al. (2008) 

noted that the ophiolitic assemblage in the Ballantrae Complex includes serpentinised 

mantle rocks from deeper within the ophiolite sequence than the upper crustal 

(oceanic) gabbroic Tyrone Plutonic Group. It is likely, therefore, that the local 

Ballantrae Complex was the source of serpentinite within the Craigskelly 

Conglomerate Formation and the older Kirkland, Kilranny and Benan conglomeratic 
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formations of the Girvan area. The age profile of the Lower Palaeozoic volcanic and 

plutonic components within the Craigskelly, Cock Rig, Parishholm and March Wood 

formation sandstones corresponds to the age of the Tyrone Volcanic Group 

supporting the hypothesis that this arc-related suite is representative of the source 

terrane that supplied detritus to the Ordovician-Silurian sedimentary basins of the 

southern Midland Valley.  

The Tyrone Igneous Complex is believed to be faulted against and possibly 

thrust over the Tyrone Central Inlier (Corvanaghan Formation) which is composed of 

a sequence of high-grade (garnet ± sillimanite) metasedimentary rocks similar to 

those of the Moine Group present in the Northern Highlands terrane of Scotland 

(Cooper & Johnston 2004). A recent study of the metasedimentary rocks of the 

Tyrone Central Inlier (below the Tyrone Igneous Complex) (Chew et al. 2008) dated 

leucosomes at 467+/-12 Ma, and the main fabric biotite cooling age at 468+/-1.4 Ma 

confirming that the rocks were metamorphosed to sillimanite grade during the 

Grampian orogeny. These metamorphic rocks also yield Palaeoproterozoic Sm-Nd 

model ages and detrital zircons with populations at 1.05-1.2. 1.5, 1.8, 2.7 and 3.1 Ga. 

Chew et al. (2008) noted that, besides the zircon population in the 1 to 1.8 Ga range, 

the significant population between 2.5 and 2.7 Ga indicated that a correlation with 

either the Argyll Group or the Southern Highland Group of the Dalradian Supergroup 

was most likely. They concluded that the Tyrone Central Inlier was a Laurentian 

microcontinent incorporated into an outboard volcanic arc terrane during the 

Grampian orogeny. This raises the possibility that the population of mainly 1 to 1.7 

Ga detrital zircons in the Midland Valley Silurian sandstones is from another 

basement or microcontinental source with a Grenvillian signature, possibly even the 

Moine (Northern Highlands terrane) or Grampian Group (Grampian terrane) (Cawood 

et al. 2007). 

The age profiles of detrital zircon populations present in the Silurian 

sandstones of the southern Midland Valley do not fit with a simple model of 

unroofing of a pre-existing, Tyrone-like, complex. The age of the Lower Palaeozoic 

component in the sandstones, in general, becomes progressively younger 

stratigraphically upward through the sequence (Fig. 6), with the nature of the profiles 

indicating that detritus was simultaneously being supplied from both the 

volcanic/plutonic complex and basement rocks. A regional correlation has previously 
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been made between the Tyrone Igneous and Ballantrae complexes (see Cooper et al. 

2008 and references therein). Both of these complexes were accreted/obducted onto 

the SE-margin of the Laurentian continent during the Arenig, but occur on opposite 

sides of the Midland Valley terrane. If they originally formed part of the same arc-

ophiolite complex then it has been dismembered during the subsequent closure of the 

Iapetus Ocean, probably as a result of oblique transpression focused along the 

southern margin of Laurentian (Soper et al. 1992). Williams & Harper (1988), Smith 

(1995) and Phillips et al. (1998) have all concluded that sinistral strike-slip controlled 

basin development, sedimentary facies distribution and deformation along the 

southern side of the Midland Valley terrane from the Llandovery through to at least 

early Devonian times. This prolonged period of strike-slip deformation would not 

only have led to the dismemberment of the Tyrone Igneous and Ballantrae complexes, 

but also the periodic uplift and erosion of different structural/stratigraphic levels 

within this ophiolite/arc-related assemblage. Sediment shed from these uplifted blocks 

could have included all of the required mix of volcanic, plutonic and basement 

derived lithologies recognised within the sedimentary sequences of the southern 

Midland Valley. The remains of this dismembered volcanic/plutonic source, apart 

from the Tyrone Igneous and Ballantrae complexes, are now hidden beneath the 

locally thick lower to upper Palaeozoic cover sequence which blankets the Midland 

Valley terrane. 

 

Implications for sediment dispersal patterns within 

the Scottish sector of the Caledonian orogen 

It is clear from the above discussion that the likely source of the Lower Palaeozoic 

sedimentary sequences preserved along the southern margin of the Midland Valley 

was located within this elongate northeast–southwest-trending terrane. Furthermore, 

the absence of detritus derived from the Grampian terrane Dalradian Supergroup, 

situated to the north, questions any model requiring sediment dispersal across the 

Midland Valley terrane to feed the Southern Uplands sedimentary basin. Tanner & 

Sutherland (2007) have argued that the Highland Boundary Fault, which separates the 

Grampian and Midland Valley terranes, does not represent a major terrane boundary. 

Consequently, these two areas may have been in relatively close proximity during the 

Lower Palaeozoic, requiring that any sediment supplied to the Southern Upland 
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sedimentary basin from the Grampian terrane must have by-passed the Midland 

Valley (Fig. 7).  

The northerly derived conglomerates and wacke sandstones within the 

Ordovician Northern Belt of the Southern Uplands terrane, contain granite clasts (c. 

470 Ma; Elders 1987; Bluck et al. 2006), detrital micas (40Ar-39Ar cooling ages in the 

range 458-502 Ma; Kelley & Bluck 1989) and detrital garnet (Sm-Nd age c. 468 Ma; 

Oliver et al. 2000) which suggest a source within the Laurentian continent (see Smith 

et al. 2001; Phillips et al. 2003). The range of lithologies present within the 

conglomeratic rocks (e.g. Corsewall and Blackcraig conglomerates) of the Ordovician 

Corsewall and Marchburn formations of the Northern Belt of the Southern Uplands 

are similar to those found within the coarse clastic deposits in the Girvan area of the 

southern Midland Valley. This led Smith et al. (2001) to conclude that the source of 

the northerly derived sediments within the Northern Belt lay within the Midland 

Valley terrane, and included the Ballantrae and Tyrone Igneous complexes (Fig. 7). 

Transported fossils (e.g. Kilbuchophyllid corals) present within the Southern Uplands 

conglomerates (Kirkcolm Formation) are similar to the fauna present within the 

Caradocian mudstones and limestones of County Tyrone, Ireland (Bardahessiagh 

Formation, Pomeroy, Scrutton et al. 1998), providing further evidence that the 

Midland Valley terrane, at least intermittently, supplied material to the Southern 

Uplands sedimentary basin (see Fig. 7). However, although the detrital zircon 

population within the sandstones of the Kirkcolm Formation includes a significant 

Mesoproterozoic (peak at c. 1050 Ma) component, the formation is dominated by 

zircons derived from a Palaeoproterozoic (or older) source terrane. This does not fit 

with the Midland Valley being the sole source for the Kirkcolm Formation, but 

indicates a significant input of detritus from Laurentia. Oliver et al. (2000) suggested 

that metamorphic detritus (including garnet) within the sandstones of the Southern 

Uplands was derived from the uplifted Grampian terrane (also see Hutchison & Oliver 

1998). The predominantly northeast to southwest palaeoflow direction established for 

a large part of the wacke sandstone sequence in the Northern Belt (evidence 

summarised in Smith et al. 2001) raises the possibility that any detritus derived from 

the Grampian terrane may have by-passed the Midland Valley to the north, to be 

transported axially along the Southern Upland sedimentary basin (Fig. 7). Work by 

Phillips et al. (2003) dating detrital zircons (U-Pb, 557 Ma, 613 Ma and 1043 Ma) 

from the southwest-derived Portpatrick Formation (Caradoc) was interpreted in terms 
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of a provenance for relatively fresh arc-related volcanic detritus within an Avalonian 

continent fragment located near to the southern margin of Laurentia (Fig. 7).  

It is clear from the above that provenance and sediment dispersal patterns 

within the Scottish sector of the Caledonian orogen are far more complex than 

previously thought. The broadly Arenig in age, obducted ophiolite, arc-related, 

volcanic-plutonic complex and Mesoproterozoic basement which provided a major 

source of detritus to Caradoc sedimentary basins in the Midland Valley and also 

provided some detritus into the Southern Uplands basin, was located within the 

Midland Valley terrane. Evidence for Caradoc volcanism within the Midland Valley 

is lacking, questioning the reality of active arc-related volcanism within this terrane 

related to subduction and initiation of the Southern Uplands accretionary complex 

(McKerrow et al. 1977; Bluck et al. 1980; Leggett et al. 1982; Bluck 1983). The 

potential sedimentary links between the Midland Valley and Southern Uplands terrane 

have implications for the magnitude of strike-slip displacement accommodated by the 

northeast-trending, tract-bounding faults within the Northern Belt of the Southern 

Uplands (see Fig. 7). The Southern Upland-Stinchar Valley Fault is widely considered 

to be a major terrane boundary separating the Midland Valley and Southern Upland 

terranes (e.g. Elders 1987). The presence of Midland Valley-derived detritus within 

the Corsewall and Marchburn formations (Tappins Group, Smith et al. 2001) 

immediately to the south of this fault system, indicates that the Midland Valley 

terrane and northern part of the Southern Upland terrane were in relatively close 

proximity during the early Caradoc. Consequently, the amount of sinistral strike-slip 

movement accommodated by the Southern Upland-Stinchar Valley Fault system may 

have been relatively small, possibly less than a hundred kilometres. The ‘Midland 

Valley influence’ on the provenance of the Kirkcolm, Portpatrick and Shinnel 

formations decreases southward, away from this terrane, consistent with a more 

‘remote’ site of deposition within the Southern Uplands sedimentary basin. The 

present relatively close proximity of these sand-rich formations to the Midland Valley 

terrane, requires an increase in the amount of strike-slip displacement accommodated 

by other tract-bounding faults within the Northern Belt of the Southern Uplands (see 

Fig. 7). The Leadhills and Fardingmullach faults represent major structures within the 

Southern Uplands accretionary complex, and may, therefore, have accommodated a 

significant proportion of this movement. Further to the south, the Orlock Bridge Fault 

forms the boundary between the Northern (Ordovician) and Central (Silurian) belts of 
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the Southern Uplands terrane (Anderson & Oliver 1986; Phillips et al. 1995; Barnes et 

al. 1995). In southwest Scotland, this brittle fault is associated with an up to 5 km 

wide sinistral ductile shear zone, the Moniaive Shear Zone (Phillips et al. 1995), 

movement along which occurred during the mid-Wenlock (Barnes et al. 1995; Smith 

et al. 2001). Continued sinistral strike-slip deformation along the tract-bounding faults 

would have resulted in the progressive ‘telescoping’ of the Southern Uplands 

(Ordovician) sedimentary basin, and its accretion onto the southern margin of the 

Midland Valley terrane. This progressive collapse of the basin is thought to have 

occurred in response to overall sinistral transpression focused along the southern 

margin of the Laurentian continent (Barnes et al. 1995) during the final stages of 

Iapetus Ocean closure.  

 

Conclusions 

Sandstones from the Silurian sequences of the southern Midland Valley are 

compositionally similar, similar in the age distribution of their detrital zircon 

populations and were derived from a recycled orogenic provenance. Detrital zircon 

populations within the sandstones, irrespective of stratigraphical age, are dominated 

by a younger, early Palaeozoic and an older predominantly Mesoproterozoic 

component. The youngest early Palaeozoic zircons present become progressively 

younger upward through the sequence, but is dominated by Arenig/Llanvirn zircons 

dominate and are interpreted as having been derived from a pre-existing volcanic-

plutonic-ophiolite source located within the Midland Valley. The younger zircons of 

Llanvirn to Llandovery age in the Hagshaw Hills, and Llandovery age in the Eastfield 

inlier are interpreted as indicative of penecontemporaneous, but less intense, 

magmatic events associated with the development of strike-slip basins. The 

Mesoproterozoic component within the sandstones has a dominant component at c. 

1000 Ma and is thought to represent metamorphic detritus shed from a Grenvillian 

basement to the Midland Valley terrane.  

No evidence has been found to suggest that a Grampian metamorphic terrane 

supplied sediment to the Ordovician-Silurian basins located along the southern margin 

of the Midland Valley: viz, there are no Archaean and c. 1.8 Ga ‘spikes’. This 

questions any model requiring the transport of detritus across the Midland Valley, to 

be deposited within the Southern Uplands sedimentary basin from Lower Llandovery 

to Wenlock times. The Arenig age obtained for a significant proportion of the Lower 

 19



Palaeozoic detrital zircon population has led to the conclusion that an assemblage 

equivalent to the Ballantrae Complex and Tyrone Igneous Complex, and their 

associated cover sequences, formed part of the source. The age profiles of detrital 

zircon populations, however, do not fit with a simple model of unroofing of such a 

complex, rather they point to the periodic uplift of fault-bound dismembered blocks 

during a prolonged (Llandovery through to at least early Devonian) period of sinistral 

strike-slip deformation which controlled basin development, sedimentary facies 

distribution and deformation along the southern side of the Midland Valley terrane. 
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Figures 

 

Fig. 1. Simplified map showing distribution of the principal Caledonian terranes 

within the British Caledonides (terrane nomenclature after Bluck et al. 1992). TIC = 

Tyrone Igneous Complex; BC – Ballantrae Complex. 

 

Fig. 2. Simplified geological map of the Midland Valley of Scotland showing the 

distribution of Silurian inliers and the Siluro-Devonian Lanark Group. Silurian inliers: 

A, Craighead; B, Girvan Main; C, Lesmahagow; D, Hagshaw Hills; E, Carmichael; F, 

Eastfield; G, Pentland Hills (North Esk). Faults: SVF, Stinchar Valley Fault; GAF, 

Glen App Fault; KLF, Kerse Loch Fault; BF, Bankend Fault; CCF, Carmacoup Fault; 

IGF, Inchgotrick Fault; CMF, Carmichael Fault; PF, Pentland Fault, CGF, 

Crossgatehall Fault. 

 

Fig. 3. Generalised vertical sections through the Silurian inliers and Siluro-Devonian 

sequences and contemporaneous volcanic rocks of the New Cumnock, Lanark and 

Pentland Hills districts. The stratigraphical positions of the sandstones collected from 

the Hagshaw Hills, Carmichael, Eastfield and North Esk Silurian inliers of the 

southern Midland Valley are also shown. 

 

Fig. 4. Photomicrographs: (a) granule sandstone, Craigskelly Formation, Girvan inlier 

(N5075; objective x2.5); (b) granule sandstone, Cock Rig Formation, North Esk inlier 

(N5071; objective x1.0); (c) microconglomerate, Parishholm Conglomerate 

Formation, Hagshaw Hills inlier (N5067; objective x1.0); (d) granule sandstone to 

pebbly sandstone, Hareshaw Conglomerate Formation, Hagshaw Hills inlier (N5068; 

objective x1.0); and (e) medium-grained sandstone containing aligned detrital micas 

 31



and an elongate mudstone lithic clast, March Wood Formation, East Field inlier 

(N5065; objective x2.5) (all photomicrographs taken under plane polarised light). 

 

Fig. 5. Wetherill Concordia plots for detrital zircon populations within the Silurian 

sandstones of the Midland Valley of Scotland: (a) sample N5075, Craigskelly 

Conglomerate Formation; (b) sample N5071, Cock Rig Formation; (c) sample N5067 

Parisholm Conglomerate Formation; (d) sample N5068, Hareshaw Conglomerate 

Formation; and (e) sample N5065, March Wood Formation. 

 

Fig. 6. Frequency distribution plots for detrital zircon populations within the Silurian 

sandstones of the Midland Valley of Scotland: (a) sample N5075, Craigskelly 

Conglomerate Formation; (b) sample N5071, Cock Rig Formation; (c) sample N5067 

Parisholm Conglomerate Formation; (d) sample N5068, Hareshaw Conglomerate 

Formation; and (e) sample N5065, March Wood Formation. 

 

Fig. 7. Diagram showing the possible sediment dispersal patterns within the Midland 

Valley terrane and Northern Belt of the Southern Uplands terrane during the 

Ordovician and Silurian. 
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Tables 

 

Table 1. Location details for samples of sandstone collected from the Girvan, 

Hagshaw Hills, Eastfield, Carmichael and North Esk/Pentland inliers of the southern 

Midland Valley of Scotland. 

 
Sample 
Number 

Inlier Rock type Formation Age National 
Grid 

Reference 
N5065 Eastfield medium-grained 

sandstone 
March Wood 
Formation 

Mid-Wenlock NS 9632 
3356 

N5068 Hagshaw 
Hills 

granule sandstone Hareshaw 
Conglomerate 

Mid-Wenlock NS 7613 
2866 

N5067 Hagshaw 
Hills 

granule  to pebbly 
sandstone 

Parishholm 
Conglomerate 

Lower Wenlock NS 7619 
2812 

N5071 North Esk 
(Pentlands) 

very coarse-
grained sandstone 

Cock Rig Formation Upper 
Llandovery 

NS 1482 
5864 

N5075 Girvan very coarse-
grained, pebbly 
sandstone 

Craigskelly 
Conglomerate 

Lower 
Llandovery 

NS 1790 
9615 
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Table 2. Composition of sandstones from the Midland Valley selected for isotopic 

analysis. 

 
Sample/Formation Major components Minor to accessory 

components 
Comments 

N5065 
(March Wood 
Formation) 

monocrystalline quartz and 
variably altered igneous rock 
fragments including granite, 
metasandstone, biotite hornfels, 
felsite, mica-schist, acidic 
volcanic rock, hornblende-phyric 
andesite or dacite, basalt, siltstone 

polycrystalline 
quartz, muscovite, 
biotite, opaque 
minerals plagioclase, 
K-feldspar, chlorite, 
garnet, zircon 

zircon forms small 
equant to rod-
shaped crystals 
included within 
plagioclase, quartz 
and rarely biotite; 
faceted zircon 
included within 
granite lithic clasts; 
large rounded 
detrital zircon in 
matrix 

N5068 
(Hareshaw 
Conglomerate) 

mono- and polycrystalline quartz 
and variably altered igneous rock 
fragments including, feldspar-
phyric dacite, andesite, quartz-
schist, trachytic rock, quartz-
phyric rhyolite, felsite, 
muscovite-quartz-psammite, 
quartzite, basalt, microdiorite, 
diorite or granodiorite, phyllite, 
quartzofeldspathic mylonite 

polycrystalline 
plagioclase, 
sericitised 
plagioclase, opaque 
minerals, muscovite, 
garnet, quartz-
chlorite vein 
material, zircon 

zircon forms 
rounded detrital 
grains; equant to 
rod-shaped crystals 
included within 
plagioclase and 
quartz 

N5067 
(Parishholm 
Conglomerate) 

andesitic to dacitic igneous rock 
fragments, monocrystalline 
quartz, subordinate 
polycrystalline quartz; rock 
fragments include diorite, 
granodiorite, microgranite, basalt, 
plagioclase-phyric andesite, 
quartzite, chert, feldspar-phyric 
dacite, meta-quartz arenite, 
felsite/chert, trachytic rock, 
siltstone, sandstone, hornblende-
phyric andesite/dacite, K-
feldspar-rich granite (syenitic) 

micrographic 
intergrowth, 
microcline, chlorite, 
muscovite, garnet, 
epidote 

zircon forms small 
equant to rod-
shaped crystals 
included within 
plagioclase and 
variably strained 
quartz; faceted 
crystals included 
within dioritic, 
granodioritic, and 
granitic lithic 
clasts,  

N5071 
(Cock Rig 
Formation) 

rock fragments, mono- and 
polycrystalline quartz; rock 
fragments include quartzite, meta-
quartz arenite, feldspar-phyric 
andesite or dacite, felsite/chert, 
metasandstone, rhyolite, 
microgranite, trachytic rock, 
sandstone, quartz-phyric rhyolite 

plagioclase, biotite, 
K-feldspar, 
muscovite, apatite, 
microcline, garnet, 
micrographic 
intergrowth 

zircon forms small 
equant to rod-
shaped crystals 
included in 
plagioclase and 
quartz 

N5075 
(Craigskelly 
Conglomerate) 

mono- and polycrystalline quartz 
and rock fragments, including 
basalt, quartz-phyric rhyolite, 
siltstone, quartz-zoisite rock, 
trachytic rock, quartzite, 
metasandstone, phyllite, quartz-
feldspar-phyric rhyolite 

plagioclase, biotite, 
opaque minerals, 
serpentinite, chlorite, 
muscovite, rutile, 
apatite, tourmaline, 
titanite, epidote, 
garnet, zircon 

zircon forms small 
equant to rod-
shaped crystals 
included within 
quartz and 
muscovite; large 
rounded detrital 
zircons also present 
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Appendix: zircon age dating analytical methods 

Laser ablation U-Pb data were acquired using a Nu Instruments, Nu Plasma HR multi-

collector inductively coupled plasma mass spectrometer (MC-ICP-MS) equipped with 

a multi-ion-counting array. Data were collected using a single static acquisition with 

the configuration shown in Table A1. Instrumental parameters are detailed in Table 

A2.  

Ablation was conducted using a Nu Wave Research UP193SS (193 nm), 

Nd:YAG laser ablation system and an in-house designed low volume ‘zircon ablation 

cell’, based on the design of Bleiner & Gunther (2001). Samples were mounted in 25 

mm epoxy resin discs and polished to reveal an equatorial section of the mineral 

grains. Ablated sample material was transported from the laser cell into the MC-ICP-

MS using a continuous flow of 400 ml/min of He gas. 

The MC-ICP-MS was tuned at the start of each analytical session using a 300 

ppt solution of Tl-235U  introduced via a Nu Instruments DSN-100 de-solvating 

nebuliser, using an ESI PFA-50 nebuliser tip. Ion counter (IC)-Faraday gains were 

determined for each of the three IC’s using a weaker 50 ppt Tl-235U solution, jumping 

the 205Tl peak through each IC, and comparing it to the equivalent Faraday signal. IC 

gains were of the order of 62, 72 and 79 % for IC0, IC1 and IC2 respectively, over the 

eight analytical sessions. Repeat measurement of the gains showed that these values 

were reproducible to within << 0.1 % (2SD) over an approximately 8 hour operating 

period. 

Data were acquired using the Nu Instruments time resolved analysis (TRA) 

software. An instrument zero and on-peak zero were measured at the start of each run, 

each for a total of 60 seconds. After completion of the baselines, the laser was fired 

and sample data were acquired for approximately 40 seconds per ablation for a run of 

10-15 (max 6) ablations. During the course of each acquisition the Tl-235U solution 

was co-aspirated to allow for the measurement and correction of instrument induced 

mass bias and plasma induced elemental fractionation. 202Hg was measured 

simultaneously, and used to correct for the isobaric interference of 204Hg on the 204Pb 

peak, (assuming 204Hg/202Hg = 0.229887). 

The laser sampling protocol employed varied, depending upon sample size. 

For example, where samples were large enough, a dynamic sampling approach was 

taken (30 x 30 µm raster, using a 25 µm spot and 15 µm raster spacing). However, for 

the smaller grains found in some of the samples, a static sampling approach was taken 
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using a 35-50 µm ablation spot. In all cases, samples were normalised to the relevant 

standard data ‘like-for-like’, according to spot size and fluence. 

The internationally recognised 91500 zircon was used as a matrix matched 

standard and analysed at regular intervals throughout each session. Data were 

normalised according to the deviation of the average daily 207Pb/206Pb and 206Pb/238U 

values obtained for 91500. In the case of the latter, this is to correct for elemental 

fractionation in the plasma (dynamic ablation). Within-run laser-induced static 

elemental fractionation ablation is negligible due to ablation pit aspect ratios < 0.5. 

Normalisation of the 207Pb/206Pb ratio of 91500 corrects for any drift, or offset, from 

the gain value recorded previously for the ion-counters. Uncertainties for each ratio 

are propagated relative to the respective reproducibility of the standard, to take into 

account the errors associated with the normalisation process and additionally to allow 

for variations in reproducibility according to count rate of the less abundant 207Pb 

peak. 

All data were processed using an in-house spreadsheet calculation routine and 

are tabulated in Table A3. Data recording < 0.01 mV 207Pb (i.e. below the detection 

limit) have been rejected and those reporting > 300 cps 204Pb in the sample after 

correction for the isobaric interference of 204Hg have been assessed and corrected for 

common-Pb where required. All data are plotted on Tera-Wasserberg Concordia plots 

(Fig. 5). Frequency distribution plots (Fig. 6) have been generated on all data < 10% 

discordant. All quoted data point ages are 206Pb/238U ages unless otherwise stated. 

 

Table A1. Configuration of the 'Zircon' collector block, used for LA-MC-ICP-MS U-

Pb analysis at NERC Isotope and Geochemistry Laboratories. 

 
Ex 

High 
High 

6 
 High 

4 
High 

3 
High 

2 
High 

1 
Axial Low 

1 
Low 

2 
 IC0 IC1 Low 

3 
IC2 Low 

4 
Low 5 

238U 235U  - - - - - - -  207Pb 206Pb 205Tl 204Pb&Hg 203Tl 202Hg 

 

Table A2. Instrument and Laser operating parameters. 

 

ICP Laser 
Model Name Nu Instruments, Nu 

Plasma HR MC-ICP-MS 
 Model Name New Wave Research 

UP193SS laser 
ablation system 

Forward Power 1300 W  Operating 
Wavelength 

193 nm 

Reflected Power < 1 W  Max Output  8 J/cm2 
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Energy  
Cool Gas 15 l/min  Pulse Width 3 ns 
Aux Gas 0.8 l/min  Repetition Rate 1-10 Hz 
Nebuliser ESI PFA-50 (50 ul/min 

uptake rate) fitted to a Nu 
Instruments DSN-100 

 Cell Volume ~ 3 cm3 

Sample Cone Nickel with 1.15 mm 
orifice 

 Carrier Gas He (flow rate ~ 400 
ul/min) 

Skimmer Cone Nickel with 0.6 mm 
orifice 

 Spot Size Range 
used 

25-50 um 

Collector Types  12 Faraday and 3 ion 
counters (ETP discrete 
dynode multipliers) 

   

 

Table A3. Analytical data obtained for detrital zircon populations within the Midland 

Valley sandstones.  
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