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Abstract1

Diffuse reflectance spectroscopy (DRS) is increasingly being used to predict nu-2

merous soil physical, chemical and biochemical properties. However, soil properties and3

processes vary at different scales and, as a result, relationships between soil properties4

often depend on scale. In this paper we report on how the relationship between one5

such property (CEC) and the DRS of the soil depends on spatial scale. We show this6

by means of a nested analysis of covariance of soils sampled on a balanced nested design7

in a 16 km × 16 km area in eastern England. We used principal components analysis8

on the DRS to obtain a reduced number of variables while retaining key variation. The9

first principal component accounted for 99.8 % of the total variance, the second for10

0.14 %. Nested analysis of the variation in the CEC and the two principal components11

showed that the substantial variance components are at the > 2000-m scale. This is12

probably the result of differences in soil composition due to parent material.13

We then developed a model to predict CEC from the DRS and used partial least14

squares (PLS) regression do to so. Leave-one-out cross-validation results suggested a15

reasonable predictive capability (R2 = 0.71 and RMSE = 0.048 molckg−1). However,16
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the results from the independent validation were not as good, with R2= 0.27, RMSE17

= 0.056 molckg−1 and an overall correlation of 0.52. This would indicate that DRS18

may not be useful for predictions of CEC. When we applied the analysis of covariance19

between predicted and observed we found significant scale-dependent correlations at20

scales of 50 and 500 m (0.82 and 0.73 respectively). DRS measurements can therefore21

be useful to predict CEC if predictions are required, for example, at the field scale (5022

m). This study illustrates that the relationship between DRS and soil properties is scale23

dependent and that this scale dependency has important consequences for prediction24

of soil properties from DRS data.25

Keywords: Pedometrics; Nested Sampling; Diffuse Reflectance Spectra.26
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1. Introduction29

There is a large demand for data on soil for quality assessment, environmen-30

tal monitoring and precision agriculture. Diffuse reflectance spectroscopy, in the near31

infrared (NIR, 750 – 2500 nm) or visible and near infrared (VNIR, 350 – 2500 nm) fre-32

quency bands, has been proposed as a rapid, cost-effective and non-destructive method33

to obtain predictions of soil properties which would be too expensive to measure di-34

rectly on many samples (e.g. Viscarra Rossel et al., 2006; Zornoza et al., 2008). The35

method is based on the premise that the variation of the diffuse spectra of soil at these36

wavelengths is due to variation in the composition of the soil (Cohen et al., 2005).37

Predictive relationships between the spectra and target soil properties are obtained by38

chemometric methods such as partial least-squares regression (PLSR; Viscarra Rossel39

et al., 2006). Diffuse reflectance spectroscopy has been used to predict various proper-40

ties of the soil including pH, cation exchange capacity, organic matter or organic carbon41
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content, composition of the microbial community and extracellular enzyme activities42

(see Viscarra Rossel et al., 2006 and Zornoza et al., 2008).43

Variation of soil properties depends on factors such as parent material, climate,44

land use and topography. These factors all operate at different scales and will therefore45

influence soil processes and soil variation at different scales. As a consequence the46

relationship between soil variables might also be scale dependent. This has been shown47

in previous studies on heavy metals in soil (Goovaerts and Webster, 1994), organic48

carbon and urease activity (Corstanje et al., 2007), and the effects of various soil49

properties on the rates of emission of trace gases (Lark et al., 2004). One result of50

such scale-dependence is that the overall correlation between two soil properties might51

mask underlying relationships at different scales.52

We are not aware of any previous studies on how the relationship between diffuse53

reflectance spectra and soil properties depends on spatial scale. Published studies54

report that DRS is effective for predicting some soil properties such as soil organic C,55

but is less effective at predicting others such as CEC or nutrient content such as N56

or P (Viscarra Rossel et al., 2006). However, in these studies the measurements are57

made on specimens collected on some support (e.g. a core) distributed across a field or58

landscape according to some sampling scheme. The covariation of DRS measurements59

and soil properties therefore contains unresolved contributions from a range of spatial60

scales. Diffuse reflectance spectra are surrogates for soil properties that determine,61

more or less directly, the nature of the interaction between soil and electromagnetic62

radiation. It is therefore possible that the variations of the spectra at some spatial63

scales are dominated by variation of one soil property, and other soil properties cause64

most of the spectral variation at other scales. A weak overall correlation of the spectra65

with measurements of the soil property might therefore mask a strong relationship at66

some particular scale, and if this scale coincides with the scale at which information on67

the soil property is actually needed (e.g. field averages) then the DRS measurements68
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may be of considerably more practical value than is indicated by the simple statistics69

on the basic sample support.70

We therefore need to study the scale-dependence of the relationship between71

DRS measurements and soil properties. Spatially nested sampling is an efficient way72

to study scale-dependent variation over large areas and very disparate scales (Youden73

& Melich, 1937; Webster and Oliver, 1990). The variance of soil properties sampled74

this way can be partitioned into scale-specific components by a nested analysis of75

variance, and the covariances of properties can similarly be analysed by scale (Lark,76

2005). In a recent study (Corstanje et al., 2008) we investigated the covariance of77

soil properties such as pH, CEC and bulk density with rates of ammonia volatilization78

from soils collected by a nested scheme across a variable region in the eastern midlands79

of England. The resulting collection of soil offered the opportunity to investigate the80

relationship between the DRS of the soils and a basic soil property at disparate scales.81

That analysis is the subject of this paper.82

We chose cation exchange capacity (CEC) as the target soil property for this83

study. The CEC of the soil is a basic physico-chemical property. It is laborious to84

measure, since different cations must be extracted and determined. Nonetheless, it is85

important if we are to predict the behaviour of the soil since it affects, among other86

things, the behaviour of various pollutants in soil (Wang and Keller, 2008), the ability87

of the soil to retain and supply important plant nutrients (Bailey et al., 2008) and the88

rates of important steps in biogeochemical cycles including the emission of trace gases89

from the soil (Jarecki et al., 2008). It would therefore be useful if DRS could be used90

to predict CEC, and this has been attempted previously. Viscarra Rossel et al. (2006)91

report several studies in which CEC was predicted with reasonable success (coefficients92

of determination between 0.64 and 0.88).93

In this paper we report analyses to investigate the scale-dependent relationship94

between DRS and CEC across our study area, and an evaluation by scale of the efficacy95
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of DRS-based predictions of CEC.96

2. Materials and Methods97

2.1 The study region and the sampling scheme98

A detailed account of the study region and the sampling is given by Corstanje et99

al. (2008). The region is approximately 16 km × 16 km and lies between the towns100

of Luton (south) and Bedford (north) in the eastern midlands of England. Most of101

this region is over Cretaceous formations: Chalk, Gault Clay and Lower Greensand,102

but there is also Oxford Clay (Jurassic) in the north. Superficial material, including103

chalky boulder clay, and other glacial drift of variable texture cover the country rock104

over much of the region.105

We used a balanced nested sampling design, in which n1 sampling main stations106

are chosen on a grid or transect of interval d1. Two substations (level 2) were then107

chosen about each main station, separated from each other by fixed distance, d2, on108

a line on a random bearing. We repeated this procedure until, about each substation109

at level m − 1, two sample points (level m) separated from each other by distance110

dm were selected. A nested analysis of the variances and covariances of variables111

measured on the sample points is possible, and components associated with the spatial112

scales determined by the distances, d1, d2, . . . , dm can be estimated. As described by113

Corstanje et al. (2008), our main stations were on nodes of a 2-km grid, chosen so that114

the associated (co)variance components would be dominated by differences between115

the major parent materials. The substations were separated by 500 m, 50 m and 2116

m. We selected 36 main stations, each with eight sample points on the nested scheme117

giving 288 sample points in total.118

2.2 Soil preparation and analysis119

This sampling exercise was done as part of a study on ammonia volatilization120

from soil, and this is reflected in the sample treatment. The soils were air-dried, large121
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plant fragments were removed, sieved to pass 0.5 mm, and then 1-kg portions were122

washed in 1.5 dm3 of 10 mm CaCl2 to remove nitrate and replace exchangeable cations123

with Ca2+. The soils were then air-dried again and re-sieved to 0.5 mm.124

2.3 Measurement of Cation Exchange Capacity125

The cation exchange capacity of each sample was determined as described by126

Rowell (1994). The exchangeable calcium, magnesium and potassium ions were ex-127

tracted from a weighed subsample of the air-dried soil into 1 m ammonium ethanoate128

buffer (pH 7). This was then displaced with ethanol and then flame photometry was129

used to measure the concentrations of the three ions. Ammonium was then extracted130

from the soil with acidified 1 m KCl and measured by steam distillation and titration.131

The CEC was then expressed as molc kg−1 air-dry soil.132

2.3 Measurement of diffuse reflectance spectra133

Soil samples were scanned in the visible–near infrared region (350–2500 nm) using134

an ASD (Analytical Spectral Devices, Boulder, CO) Agri-Spec NIR Spectrometer.135

A 20-g subsample of each soil sample was placed in a holder with a quartz window136

for scanning. Soils were illuminated and scanned from below using the spectrometer137

connected to an ASD muglight with an internal tungsten-quartz-halogen light source138

and a 12 mm spot size. Data were collected every 1 nm and every spectrum was an139

average of 25 readings. Each sample was scanned twice; the second scan was made140

after rotating the sample in its holder through 90◦ whilst placed on the muglight.141

During scanning, a Spectralon 99% reflectance panel was used to optimize and white-142

reference the spectrometer after scanning every set of ten samples. Before further143

statistical analysis, we obtained an average of two spectra for each sample, truncated144

by removing the values below 450 nm and above 2450 nm.145

2.3 Statistical analysis146

We used nested analysis of covariance to study the correlation of the DRS measurements147
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and soil CEC at different scales, and to assess predictions of CEC by partial least-148

squares regression on the DRS at a set of validation sites. In the following section we149

describe the general nested analysis. We then describe how this was used to compare150

the DRS measurements and CEC data and then to assess predictions of CEC.151

2.3.1 Nested analysis Nested analysis of covariance is described by Lark (2005) and we152

give here only a summary for the balanced case. The randomization of directions in153

the nested sampling scheme allows us to treat the values of two soil properties, u and154

v, as random variables Zu and Zv, which comprise the following components;155

Zu
ij...m = µu + Au

i +Bu
ij + · · · + εu

ij...m

Zv
ij...m = µv + Av

i +Bv
ij + · · · + εv

ij...m. (1)

The values µu, µv are the overall means of u and v, respectively. The random variables156

Au
i , A

v
i are, respectively, the differences between the corresponding overall means, µu157

and µv, and the corresponding means of the ith main station. Similarly Bu
ij, B

v
ij are158

the differences, within the ith main station, between the mean values of the ith main159

station and jth substation. The variables Au
i , B

u
ij, . . . and Av

i , B
v
ij, . . . have zero mean,160

and the variables associated with each scale in the nested scheme (e.g. Au
i and Bu

ij)161

have covariance matrices Ci, Cj, . . .. The objective of multivariate nested analysis is to162

estimate these covariance matrix components, which are additive components of C, the163

overall covariance matrix of the two random variables, since they are associated with the164

scales of interest in the sampling scheme. Because estimates of the covariance matrix165

components by method-of-moments are not guaranteed to be non-negative definite, and166

therefore admissible as covariance matrices for real random variables, Lark (2005) used167

a residual maximum likelihood (REML) algorithm due to Calvin & Dykstra (1992).168

We used this method in the present study.169

The estimated covariance matrix components were then converted to correlation170

matrices by dividing each element, Ck,l by the square-root of the product of the cor-171

responding elements on the main diagonal, Ck,k and Cl,l. We obtained confidence172
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intervals for the scale-dependent correlations with Fisher’s z-transform, following Lark173

(2005).174

2.3.2 Spectral reduction and correlation with CEC175

We used principal components analysis on the spectra to obtain a smaller number of176

variables that represent the key variations in spectral variation among our soils. This177

was done using GenStat (Payne et al., 2008) to analyse the correlation matrix of the178

spectral reflectance in the 2001 channels. Principal component analysis finds p linear179

combinations of a set of k variables that are uncorrelated (see, for example, Webster and180

Oliver, 1990). The first component has the largest variance of any possible such linear181

combination. The second component has the largest variance of any linear combination182

that is orthogonal to the first and so on. The sum of the variances of the principal183

components is equal to the sum of the variances of the original variables, but if there are184

correlations between the latter then a large proportion of the total variance of the full185

data set is represented by substantially fewer than p of the principal components. In186

fact in our case the first principal component accounted for 99.8% of the total variance,187

and the second for 0.14%. This shows that the spectra are very redundant. We used188

the nested analysis of covariance to investigate the scale-dependent correlation between189

these two principal components of the spectra and soil CEC.190

2.3.3 Prediction and validation191

The fact that more than 99% of the variance of the observations in 2001 channels192

can be accounted for by the first principal component indicates that there is a good deal193

of redundancy in the spectra, that is to say different channels are so strongly correlated194

that they present little independent information. This is a common situation in the195

analysis of spectra, and partial least squares (PLS) methods are widely used to obtain196

predictive regressions of variables of interest (such as soil properties) on such very197

redundant predictor variates.198

In this study we used PLS to obtain predictive relationships between the diffuse199
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reflectance spectra and soil CEC, using a subset of the data for estimation of the200

regression model, and the remainder to test the predictions. We used the PLS regression201

(PLSR) algorithm in the ParLes package (Viscarra Rossel, 2008). In PLSR we have n202

observations of k soil variables (predictands) in the n × k matrix Y and n values of203

a p-variate predictor (e.g. the DRS) in the n × p matrix X. In PLSR these variables204

are decomposed into common orthogonal factors (similar to the principal components205

discussed above) from which the original variates can be reconstituted by means of206

loading matrices for the predictands and predictors. The algorithm finds an orthogonal207

decomposition such that the first few factors account for as much variation in the208

predictands and predictors as possible. The decomposition can be expressed by the209

following equation210

X = TP′ + E

Y = TQ′ + F, (2)

where T is an n × l matrix of factor scores, and P and Q are, respectively, p ×211

l and k × l matrices of loadings. The number l is the number of factors that are212

assumed to be informative, and is selected according to a criterion such as the Akaike213

Information Criterion, see Viscarra Rossel (2008) for details. The matrices E and F214

contain residuals, i.e. the contributions of the excluded factors. The number of l used215

in the PLSR model was determined through leave-one-out cross-validation. We selected216

l= 4 on the basis of the RMSE and AIC criterion.217

In this study we randomly divided the main-stations of our nested sampling218

scheme into a prediction set of 29 (232 observations) for estimation of the regression219

model to predict CEC and a validation set of 7 (56 observations) to test the predic-220

tions. We used the PLSR algorithm in the ParLes software to fit the predictive model.221

In Table 1 we report the results from the cross-validation on the prediction set and222

prediction at the separate validation sites.223

Since the validation observations have a nested structure we were able to analyse224
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the covariation of the observed and predicted values of CEC by nested analysis of225

covariance. Correlations at each scale and their confidence intervals were computed.226

3. Results227

Summary statistics of the soil cation-exchange capacities are shown in Table 1.228

In Figure 1 we present the computed scale dependent variance components for CEC229

and the first two principal components of the DRS; PC1 and PC2. These show that230

variation in both the DRS and CEC is scale-dependent. The largest component of231

variance in CEC, which comprises 66% of the total, was at > 2000 m. Variation at this232

scale will be predominantly due to differences between parent materials. The observed233

values of CEC were smaller over Lower Greensand, where the average CEC was 0.104234

molc kg−1. Most soils over the Lower Greensand are sandy loams or loamy sands, so235

the CEC is relatively small because the soil contains relatively little clay. In contrast236

the average CEC over the Gault clay, Chalk and chalky till were larger: 0.219, 0.161237

and 0.188 molc kg−1 respectively. The second-largest component of variance was at238

the 500-m scale (15 % of the total), followed by the 50-m scale (12 %) and <2-m scale239

(6 %). In general, then, the variation of CEC appears to be dominated by parent240

material differences. The smaller variance components at the finer scales will be due241

to variation in factors such as organic matter content of the soil.242

The largest components of variance of both the first two principal components of243

the DRS were at the coarsest scale of > 2000 m — 60 and 50 % of the total for PC1244

and PC2 respectively. As with CEC, this suggests that the variation of the DRS in this245

data set is dominated by differences between the parent materials. The second-largest246

component of variance of both principal components was at the 500-m scale, with 22247

% for both PC1 and PC2. Variation at this scale will be due to differences in land use248

and management practices as well as some short-range variation in parent materials249

such as superficial deposits. The components of variance for PC1 at the finer scales of250

50 m and 2 m were small (6 and 8 %, respectively) for PC1, but slightly larger (12 and251
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16 %, respectively) for PC2.252

The results from the nested analysis of covariance of CEC and each of the first253

two principal components of DRS are presented in Figure 2. The correlations of CEC254

and PC1 are weak, and the correlation at 500 m only (0.39) is significantly different255

from zero. The overall correlation between these two variables was weak and positive256

(0.19). In the case of PC2, we found significant, strong and positive correlations at257

all scales except the finest scale of 2-m. The observed scale dependent correlations258

were 0.60, 0.65 and 0.86 for scales 50-, 500- and >2000-m respectively and the overall259

correlation was 0.47.260

The results of the PLS model fitting and validation are summarized in Table 2.261

Cross-validation of the fitted PLS model suggested that the predictions are reasonable262

(R2 = 0.71 and RMSE = 0.048 molckg−1). However, the tests on the separate vali-263

dation data are less encouraging, with R2= 0.27 and RMSE = 0.056 molckg−1. If we264

consider the scale-dependent correlations (Figure 3), then these show that the overall265

correlation of the predicted and measured values of CEC in our validation set (0.52)266

masks stronger correlations (0.82 and 0.73 respectively) at the scales 50 and 500 m,267

while the correlation at 2m is zero. A correlation at the coarsest scale is not reported268

because the estimated covariance matrix was positive semi-definite, but not positive269

definite, so the estimated correlation is 1.0, see Lark (2005).270

4. Discussion and Conclusions271

We have seen that both CEC and the principal components of the DRS show272

scale-dependent variation with the variance components increasing with distance. This273

indicates that the variation of the DRS is dominated by aspects of the composition of274

the soil associated with parent material. By contrast, for example, Corstanje et al.275

(2008) found that about 20% of the variance in urease activity in this soil occurred at276

the 2-m scale. In this environment, broad-scale variations in parent material have a277

larger impact on the DRS than factors opertating at finer scales, such as geomorpho-278
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logical or biological controls on soil composition. This was also observed for topsoil279

geochemistry in eastern England (Rawlins et al., 2003). This is likely to explain the280

scale-dependent relationship between CEC and the spectra. The soil spectrum responds281

to components of the soil which are themselves correlated with its CEC.282

In this landscape, for example, the large iron oxide content of the Lower Green-283

sand is likely to be spectrally distinctive, and we have noted that soils on the Lower284

Greensand are generally lighter-textured with smaller CEC than those located over285

different parent materials. It is therefore likely that the better predictive relationships286

between CEC and the DRS will be seen at scales where these surrogate relationships287

are expressed, while the correlations at other scales are very poor. This is the behaviour288

that our nested sampling and analysis reveals in this case study.289

The important point that these results illustrate is that a poor overall correla-290

tion between DRS and a target soil property, or poor overall validation statistics for291

predictions, do not necessarily indicate that the spectra are not suitable for predictive292

purposes. For example, although the overall correlation of the predicted and measured293

spectra in our validation set was only 0.52, the correlations of the components at the294

50- and 500-m scales were much stronger. The very weak correlation at the 2-m scale295

masks the relationship at coarser scales.296

In practice we might often be interested in predicting a soil property only at297

coarser scales. For example, if we want to estimate the mean CEC for each of a set of298

fields, then the relatively good correlation of DRS and CEC at the 50-m scale suggests299

that the spectral measurements might be useful, and the average predicted CEC for a300

set of soil specimens collected within a field should give a reasonable prediction of the301

true field mean. Similarly, cokriging estimates for blocks with sides 50 m or longer, from302

a set of measurements of CEC and a denser set of DRS spectra should be reasonable,303

because the variation at fine scales, where the DRS and CEC are weakly correlated, is304

averaged out.305
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Some additional issues are raised by this study. First, it provides evidence for the306

importance of assessing predictions from spectra on separate validation data sets, and307

not giving undue weight to cross-validation assessments. Second, the scale-dependence308

in the errors from our PLSR predictions suggests that there is a need to develop309

the algorithm to allow for models where the errors are not assumed, as in standard310

implementations of PLSR as we used here, to be independent random variables. While311

the regression coefficients are still unbiased, they are not necessarily the ones that give312

us minimum variance predictions. There may therefore be advantages in extending the313

PLSR algorithm to deal with such circumstances.314

To conclude, the relationship between DRS and soil properties has been shown315

to be scale-dependent for one case study. An important consequence of this is that316

assessments of the predictive value of statistical models that use DRS to predict soil317

properties should account for scale-dependence. If this is not done then weak rela-318

tionships between spectral properties and the target soil property at one or more scale319

might obscure strong relationships at other scales, which might well be scales at which320

the soil information is needed. The nested sampling and analysis scheme used in this321

study is one way to identify such behaviour.322
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Table 1. Summary statistics - soil cation exchange capacity (n=288).

Statistic value /molc kg−1

10th percentile 0.074
Median 0.18
90th percentile 0.28
Mean 0.18
Variance 0.0067
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Table 2. Statistics for prediction performance by the partial least squares model.

These are determined by cross-validation on the prediction set, or on the independent

validation set.

Model R2 R2
adj RMSE

Cross-validation 0.71 0.71 0.048
Independent 0.27 0.24 0.056
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Figures

Figure 1. Accumulated components of variation for CEC (a) and the first two principal

components of the diffuse reflectance spectra (PC1 and PC2; represented by b

and c respectively). Components for the largest scale are plotted here against

2000 m but apply to distances > 2000 m.

Figure 2. Scale-dependent correlations between CEC and the first two principal com-

ponents of the diffuse reflectance spectra (PC1 and PC2; represented by a and b

respectively). The correlations are plotted with 95 % confidence intervals (bars).

Components for the largest scale are plotted here against 2000 m but apply to

distances > 2000 m.

Figure 3. Scale-dependent correlations between predicted and measured CEC from

the validation set. The predicted CEC were obtained using a PLS model on the

DRS. See text for details. The correlations are plotted with 95 % confidence

intervals (bars). Components for the largest scale are plotted here against 2000

m but apply to distances > 2000 m.
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