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5 Abstract 
 
 

6 For the co-ordination of flood mitigation activities and for the insurance  and re-insurance 
 

7 industries,  knowledge  of the spatial  characteristics  of fluvial  flooding is important.   Past 
 

8 research  into the spatio-temporal risk of fluvial flooding is restricted to empirical  estimates 
 

9 of risk measures  and hence estimates cannot be obtained for return periods longer than the 
 

10 length of the concurrent data at the sites of interest in the sample.We  adopt  a model-based 
 

11 approach which describes the multisite joint distribution of daily mean river flows and daily 
 

12 precipitation  totals.   A measure  of spatial  dependence  is mapped  across  Great  Britain  for 
 

13 each variable  separately.  Given that an extreme event has occurred  at one site, the measure 
 

14 characterises the extent to which neighbouring  locations are affected.  For both river flow and 
 

15 precipitation we are able to quantify how events become more localised in space as the return 
 

16 periods of these events get longer at a site of interest.  For precipitation, spatial dependence 
 

17 is weaker  in the upland  areas  of Great  Britain.   For  river  flows the major  factor  affecting 
 

18 spatial  dependence  appears  to be differences in catchment  characteristics  with  areas  with 
 

19 diverse catchments exhibiting lower levels of dependence. 
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1     1  Introduction 
 
 

2     For the co-ordination of flood mitigation activities and for the insurance  and re-insurance  indus- 
 

3     tries, knowledge of the spatial characteristics of fluvial flooding is important. This study focuses 
 

4     on the spatial dependence  in extreme river flows with the aim being to map a measure of spatial 
 

5     dependence  of extreme values over Great Britain.  We analyse data series of daily mean flows as 
 

6     these exist in long concurrent records of high quality.  To provide an insight into how differences 
 

7     in regional meteorology and catchment characteristics influence spatial flood risk we also analyse 
 

8     the spatial  dependence  in extreme  daily precipitation  totals, and  carry  out an analysis  of the 
 

9     dependence  between catchment characteristics and a measure  of spatial dependence  in extreme 
 

10     river flows. 
 

11 The  spatial  risk of flooding (or extreme  precipitation)  at a set  of m gauged  sites,  denoted 

12     ∆ = {1, . . . , m}, can  be described  in many  ways.   For  a spatial  risk measure  to have  generic 
 

13     applicability  it  is important that it  is not specific to the set  of gauged  sites.   Therefore  we 
 

14     measure how extreme an event is relative to the distribution at each site, i.e. on the probability 
 

15     scale. The distributions of the variables will be different over all m sites but the probability scale 
 

16     is common  over all m sites.  Thus  levels at two  sites  are viewed to be equally  extreme  if they 
 

17     both correspond  to the pth  quantile  of the variable  at each site  even though  their  actual  flow 
 

18     levels or precipitation amounts can differ considerably.  It is helpful, however, for interpretation 
 

19     to present results in terms of return periods of events instead of quantiles of the variable.  For a 
 

20     process which is observed daily, with extreme events lasting on average k days, the pth  quantile 
 

21     corresponds  to the T year event, with 
 
 

k 
T = 

365(1 −  p) 

 
, (1.1) 

 
 

22     provided  T > 1 year to avoid issues of seasonality.  As the return period  depends  on k, which 
 

23     will be different  for different  processes,  we typically  focus on the probability  scale p but for 
 

24     applications we will present results in terms of return periods. 
 

25 Our approach  is to derive an estimate of spatial dependence  centred at each of a network of 

26     gauged sites indexed by ∆. For each site i ∈ ∆, let ∆i(d) ⊆ ∆ denote the sites in ∆, excluding site 
 

27     i, that are within d km of site i. We will evaluate the spatial dependence  between the variables 



3  

1     at the sites  in ∆i(d)  conditional  upon  an  extreme  event,  i.e. an  event  which  exceeded  the T 
 

2     year return level, occurring  at site i. Our main measure  of this conditional spatial dependence 
 

3     will be Ni(p, d), the expected  proportion  of sites  in ∆i(d)  that exceed their  pth  quantile  (or 
 

4     equivalently T year return level) during an event in which site i exceeds its pth quantile (T year 
 

5     return level), we define Ni(p, d) precisely in Section  3.  In this paper  we estimate the measure 
 

6     Ni(p, d), and  related  dependence  summaries,  for a range  of T (equivalently  p), including  very 
 

7     large T , and for a range of d. 
 

8 This raises a number  of issues including:  How are suitable events in spatial series identified? 
 

9     How is Ni(p, d) estimated, particularly when T (equivalently p) is large as empirical  estimates 
 

10     fail when T exceeds the observed amount of overlapping  data series? If a model for dependence 
 

11     is to be used can it be selected to be sufficiently general to apply to all possible combinations of 
 

12     sites?  How are missing data to be handled  as there are limited concurrent data when many sites 
 

13     are considered  simultaneously?  And how are confidence intervals for the estimate evaluated? 
 

14 This  is essentially  a  multivariate  extreme  values  problem:   given  that an  extreme  event 
 

15     occured at site i we are concerned with the occurence of extreme values at sites in ∆i(d) during 
 

16     the same event.  Though  a number  of measures  of bivariate and  multivariate dependence  have 
 

17     been developed in the hydrological literature to describe dependence in extreme values, see Dales 
 

18     and Reed (1989) and Svensson and Jones (2002), they are empirical.  Hence, they are restricted 
 

19     to measuring dependence at return periods at most as long as the length of the data series. They 
 

20     are also dependence measures for specific subclasses of (multivariate extreme value) distributions 
 

21     so will produce  biased  estimates when these distributional choices are inappropriate.  Another 
 

22     feature  of these  methods  is that for each extreme  event,  observations  are required  at all sites, 
 

23     so events with missing components at any site are removed. 
 

24 We use the methodology developed by Keef et al. (2009) which extends the approach  devel- 
 

25     oped by Heffernan and Tawn (2004).  This method adopts an asymptotically justified dependence 
 

26     model over sites and time which accounts for time lags between variables  at different sites.  The 
 

27     approach  has  a number  of benefits:  it  allows extrapolation  to events  of any  return period;  it 
 

28     compares favourably  with other available methods in terms of its ability to model a broad range 
 

29     of dependence  structures; it is applicable  to a large number  of sites; and it accounts for missing 
 

30     data. In using these methods we make the assumption that fluvial flooding in the winter (higher 
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1     flow) months has the same spatial characteristics as fluvial flooding in the summer  (lower flow) 
 

2     months.   The  simplest  alternative  to this  assumption  is to split  the data up  into  higher  and 
 

3     lower flow months.  The difficulty with this alternative is that there are very few floods in lower 
 

4     flow months.  In Environment Agency (2009) almost no difference was found between estimating 
 

5     Ni(p, d) using data from the full year and only data from the higher flow months. 
 

6 The paper  is structured as follows: Section 2 presents the network of data used in the study 
 

7     together  with  some information  about the key covariates;  in Section  3 a summary  is given of 
 

8     the methods of Keef et al. (2009); in Section 4 maps over Great Britain of spatial dependence  in 
 

9     daily river flows and  precipitation  are presented  and  interpreted;  and  in Section 5 conclusions 
 

10     are summarised. 
 
 
 

11     2  Data selection and key  covariates 
 
 

12     For our analysis of daily precipitation data we use data from 256 raingauges across Great Britain 
 

13     (GB) provided by the UK Met Office. For the daily mean river flow we use data from a set of 271 
 

14     stations in GB provided  by the National River Flow Archive (NRFA)  (Marsh  and  Hannaford, 
 

15     2008).  For  the river  flow series the selected  stations  have  on average  40 years  of data with  a 
 

16     minimum  of 20 years and  maximum  of 60 years.  For  the raingauges  almost all of the selected 
 

17     sites have 40 years of data, mostly corresponding  to the same period,  since 1961, so have long 
 

18     spans of overlapping  series from gauge to gauge. 
 

19 Though  many  more stations/gauges  exist  we selected  sites  which are recognised  as having 
 

20     high quality data, long records with limited missing data, that provide a good spatial coverage 
 

21     of GB and  that have long periods  of overlap  with  each other.  The  stations  were also selected 
 

22     to have  as homogeneous  records  as possible;  this  selection  avoided  stations  influenced  by the 
 

23     construction  of new dams  and  flood defence systems  or stations  with  catchments  which have 
 

24     experienced  major  changes  in land  use.  When  stations  that are very close to each other  (less 
 

25     than around 25 km apart) were identified as appropriate only the station with the longest records 
 

26     was selected. 
 

27 Figures 1 and 2 shows the locations of the selected river flow stations and raingauges  respec- 
 

28     tively.  In some areas  of GB it was not possible to obtain a network of similar density of good 
 

29     quality  river flow records.   For  example,  in north-west  Scotland  and  in the East Anglian  Fens 
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1     the density of the NRFA  gauging stations is more sparse relative to the rest of GB. Due to the 
 

2     large  number  of raingauges  to choose from we were able  to achieve  a better spatial  coverage 
 

3     of the selected raingauges.  However, the density is still not uniform  over GB, with the density 
 

4     being notably lower in the Scottish Highlands  and Wales. 
 

5 Figure  1 shows the baseflow index  (BFI)  and  areas  of the selected  catchments.   The  BFI 
 

6     may  be  thought of as  a  measure  of the proportion  of the total discharge  that derives  from 
 

7     stored sources, and is a way of indexing the catchment geology.  Permeable  rocks and soils can 
 

8     store more water, resulting in a higher baseflow and more sustained flow during  periods of dry 
 

9     weather.   Impervious  clay catchments  with  minimal  lake and  reservoir  storage  typically  have 

10     BFIs in the range 0.15 −  0.35, whereas a chalk stream may have a BFI greater than 0.9 (Marsh 
 

11     and  Hannaford, 2008).   Figure  2 shows the raingauge  altitudes  and  standard annual  average 
 

12     rainfalls  (SAAR).  The  mapped  SAAR values reveal a clear rainshadow  effect.  Precipitation in 
 

13     northern and western Britain is predominantly of frontal origin, tending to fall in south-westerly 
 

14     airflow, e.g.  Manley (1970).  Orographic  enhancement of precipitation over mountainous areas 
 

15     therefore mean that south- and west-facing slopes receive considerably  more precipitation than 
 

16     areas  to the east  of the hills.   In contrast, widespread  and  persistent  precipitation  in eastern 
 

17     GB tends to occur in the onshore winds on the north side of depressions  passing eastwards on 
 

18     a more southerly track, e.g. Mayes and Sutton (1997). 
 

19 Two sets of four river flow gauges each were used as an initial test dataset when developing 
 

20     the methods,  and  are used to demonstrate  particular  features  of the dependence  in Section  4. 
 

21     The gauges are located in south-east Scotland and in the Thames  catchment in south England. 
 

22     They  were chosen to contain  only a small amount  of missing data, and  to represent  different 
 

23     catchment characteristics.  Table 1 shows the catchment area and BFI for the catchments of these 
 

24     gauging stations, it shows that the Scottish rivers generally have a lower BFI than the Thames 
 

25     rivers.  They also tend to be hillier and smaller in catchment size. Nearly all the catchments are 
 

26     essentially rural.  The exception is the Thames  at Kingston, the most downstream gauge on the 
 

27     Thames,  which has mixed land use including  urban  areas. 
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1     3  Methods 
 
 

2     3.1  Strategy 
 

3     Consider  a set  ∆ of gauging  sites,  with  hydrological  variable  Xi at gauging  site  i.  The  joint 

4     distribution  of any  multivariate  random  variable,  X = {Xi, i ∈  ∆}, where  each  Xi, i ∈  ∆ 
 

5     has a continuous  distribution  function,  can be separated  into  marginal  distribution  functions, 

6     Fi, i ∈ ∆ where Fi(x) = Pr(Xi  < x), and the dependence  structure. This separation of the joint 
 

7     distribution can be expressed as follows 
 

 
 

Pr(X1  ≤  x1, . . . , Xm  ≤  xm) = C {F1(x1), . . . , Fm(xm)}  (3.1) 
 

 
 

8     where C is a unique function, known as the copula, which determines the dependence  structure 
 

9     of X , see Joe (1997) and Nelsen (1999).  The copula formulation separates  the joint distribution 
 

10     into the m marginal  distribution functions and a joint distribution function C for the variables 
 

11     on a common marginal  distribution.  In expression (3.1), C is the joint distribution function for 
 

12     uniform  [0, 1] variables,  however the choice of common  marginal  distribution  does not matter 
 

13     and  so in different  studies  different  common  marginal  distribution  forms are  selected  for the 
 

14     convenience of the problem. 
 

15 For the construction of our spatial dependence  measure we are interested in the dependence 
 

16     structure of X only, and  so we focus on the copula  component  of expression  (3.1).  Therefore 
 

17     we initially  transform  our variable  X , e.g.  river  flow or precipitation,  to a common  marginal 
 

18     distribution.  For  the purposes  of modelling extreme  values it  is best  to use standard Gumbel 
 

19     margins  as this scale induces the most linearity in the dependence  (Heffernan and Tawn,  2004). 
 

20     Therefore we transform X to Y , so that Y has standard Gumbel marginal distributions, through 

21     the transformation Yi  = −  log{−  log[Fi(Xi)]} so that Pr(Yi  ≤  y) = exp[−  exp(− y)], for −∞ 
< 
22     y < ∞ and  i ∈  ∆.  We denote  the pth  quantile  of Yi,  for each  i, by  yp.  As all Fi,  i ∈  ∆, 

 
23     are  unknown  we use the empirical  distribution  function  of Xi to estimate  them,  so it  is only 

 
24     the ranks  of X that we use and  not the values themselves.  An important consequence  of this 

 
25     approach  is that the effect of measurement error  (including  random  and  systematic errors)  on 

 
26     flows is small for this analysis. 

 
27 The  aim  is to be  able  to estimate  features  of the distribution  of a  multivariate  random 
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1     variable  Y  when Yi  is large under  the assumption that observations on Y  are from a stationary 
 

2     time  series.  Let  Y − i  denote  Y  with  Yi  removed.   The  strategy  is first  to model the marginal 
 

3     distribution of Yi, which is given due to our choice of Gumbel  distribution.  Then  we model the 

4     conditional distribution of Y − i|Yi  = y for large values of y. Here the conditional distribution is 
 

5     the distribution of all the other elements of Y  given that Yi  is fixed equal to y.  We propose a 

6     model motivated by asymptotic probabilistic theory for this conditional distribution as y → ∞ . 
 

7     We assume that this model will be appropriate for all values of y above a high threshold u (in 
 

8     this paper  we take u = y0.975 throughout), and use the observations of Y  with Yi  > u to fit this 
 

9     model.  Having fitted the conditional distribution the final stage is the estimation of features of 

10     the fitted distribution of Y  when Yi  > v where v ≥  u. 

11 The key step in all this process is the modelling of the conditional distribution of Y − i|Yi  = y 
 

12     for large y as all subsequent aspects of the inference hinge on this step.  This section focuses on 
 

13     this aspect.  Heffernan and Tawn  (2004) provide asymptotic theory which provides the basis for 

14     a model for the behaviour  of the conditional distribution of Y − i|Yi, when Yi  is large, and they 
 

15     perform inference for this model under  the assumption that observations of Y  are independent, 
 

16     identically  distributed,  and  without  missing  values.   Here  we will focus on  a  special  case of 
 

17     this model which appears  appropriate for our applications to fluvial and  precipitation extreme 
 

18     value modelling.  Specifically, we assume  that all variables  are non-negatively  dependent.  Full 
 

19     details  of the theory  on which  the model  is based,  the associated  conditional  models,  and  a 
 

20     discussion  of when  it  is appropriate  to make  simplifying  assumptions  such  as those  we make 
 

21     here are given in Heffernan  and  Tawn  (2004) and  Keef et al. (2009).   In Sections  3.2 and  3.3 
 

22     we describe  the associated  conditional  model for extreme  values in bivariate  and  multivariate 
 

23     cases respectively.   Then  in Sections  3.4 and  3.5 we outline  the extensions  proposed  by Keef 
 

24     et al. (2009) to cover temporal dependence  and missing data. Our spatial dependence  measure 
 

25     is presented in Section 3.6 and the methods used to evaluate uncertainty are given in Section 3.7. 
 
 

26     3.2  Bivariate  model 
 

27     Consider a high threshold u and any pair of sites i, j ∈ ∆. When the variables are non-negatively 

28     dependent, the simplified version of Heffernan and Tawn’s conditional model for Yj |Yi  = y, when 
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1     y > u, is  
 
Yj  = αj|iy + yβj|i Zj|i (3.2) 

 
 

2     where  0 ≤  αj|i  ≤  1 and  −∞ < βj|i  < 1 are  parameters  and  Zj|i  is a random  variable  with 
3     non-zero mean,  independent of Yi,  and  with distribution function Gj|i(z) = Pr(Zj|i  ≤  z).  The 

 

4     restrictions of this model are discussed in Heffernan and  Tawn  (2004).  The  formulation of the 
 

5     model  through  expression  (3.2)  is a  regression  model  of Yj   upon  Yi,  for Yi  being  above  the 
 

6     threshold u, with conditional mean and variance  given by 
 
 

E(Yj |Yi  = y) = αj|iy + yβj|i E(Zj|i) and Var(Yj |Yi  = y) = y2βj|i Var(Zj|i) 
 
 

7     for y > u; with the quantities Zj|i  being equivalent to the standardised residuals  in a classical 
 

8     regression model. 
 

9 The  parameters αj|i  and  βj|i  describe the strength of dependence  between (Yi, Yj ) when Yi 
 

10     is large.   Unlike classical regression,  E(Zj|i)  = 0, so the interpretation of αj|i  and  βj|i  is not 
 

11     as straight-forward as in a standard linear regression model.  The  parameter αj|i  describes the 
 

12     overall strength of dependence between the two variables,  as αj|i  increases the overall strength of 
 

13     dependence  between Yi  and Yj  increases.  In contrast βj|i  describes how the dependence  changes 

14     with Yi; for positive values of βj|i  the variance  of Yj |Yi  = y increases as y increases. 
 

15 To get a clearer  impression  of the roles of αj|i  and  βj|i  consider  the two examples  given in 
 

16     Figure  3 showing samples of (Yi, Yj ) when Yi  > 4.5, corresponding  to when Yi  is in the top 1% 
 

17     of the standard Gumbel distribution.  In the left hand plot both large and small values of Yj  can 
 

18     occur with large Yi, with large values of Yj  occurring  with large values of Yi  more often than if 
 

19     (Yi, Yj ) were independent.  In the right hand plot, only large values of Yj  occur with large values 
 

20     of Yi.  This  illustrates  that large values of Yj  can occur with  large values of Yi  if either  αj|i  is 
 

21     large or if βj|i  is large.  However, small and large values of Yj  occur with large Yi  only when βj|i 
 

22     is large. 
 

23 The two samples shown in Figure  3 illustrate different degrees of extremal dependence.   To 
 

24     help clarify the differences the associated probabilities of 
 

 
 

Pr(Yj  > v|Yi  > v)  (3.3) 
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j|i 

2 

Z 
Y 

1     are also given in Figure 3 for v > 4.5. In each case we compare with the true value of probability 
 

2     (3.3), which can be evaluated as we know the joint distribution of Y  that was used to simulate 
 

3     these  data.  We see that both the true probability  and  its  empirical  estimate  is larger  for the 
 

4     second sample than for the first indicating that the second parameter set (αj|i, βj|i) = (0.8, 0.1), 
 

5     leads to a stronger form of positive extremal dependence. 
 

6 The  strongest  form of extremal  dependence  is asymptotic  dependence  which occurs  when 

7     αj|i  = 1 and  βj|i  = 0 as probability (3.3) tends to a non-zero constant as v → ∞ .  In contrast, 

8     when  αj|i   < 1 then probability  (3.3)  tends  to zero as v → ∞ ,  with  this  case being  termed 
 

9     asymptotic independence.   Asymptotic dependence  and asymptotic independence  are discussed 
 

10     in Coles et al. (1999) and their relation to the Heffernan and Tawn model is discussed in Heffernan 

11     and Tawn  (2004) and Keef et al. (2009).  Under  independence  of Yj  and Yi  then P (Yj  > v|Yi  > 

12     v) = P (Yj  > v) ≈  e− v , for large v. 
 

13 Estimates α̂j|i  and β̂  
 
of the parameters α 

 
j|i 

 
and β 

 
j|i 

 
are obtained using likelihood methods 

 

14     under a working assumption that Zj|i  follows a Normal distribution.  Specifically we assume that 

15     each random  variable  Yj |Yi  = y, for y > u, j ∈ ∆\{i} has mean µj|i(y), and standard deviation, 
 

16     σj|i(y), respectively given by 
 

µj|i(y) = αj|iy + µj|iyβj|i 

17 

σj|i(y) = σj|iyβj|i . 
 
 

18     This  enables  us  to estimate  the parameters  αj|i,  βj|i,  µj|i   and  σj|i   by  applying  a  numerical 
 

19     maximisation procedure  to the following function 
 

 
tj    

 1 
   

yj,t −  µ  
j|i (yi,t ) 

  2


 
−  
) 

log{σj|i(yi,t) + 
t=1 

 

σj|i 
, 

(yi,t) 


 
 
 

20     where tj  is the number  of observations of yj  when yi  > u. This method of parameter estimation 
 

21     does not introduce  a noticeable  bias in the parameter  estimates.   Heffernan  and  Tawn  (2004) 
 

22     found some restrictions on Gj|i  but that these were insufficient to justify using any parametric 
 

23     family,  so the distribution  Gj|i  is estimated  using  the empirical  distribution  of the estimated 
 

24     standardised residuals 
 

ˆ 
j|i 

Yj  −  α̂j|iYi = 
β̂ 

 
for Yi 

 
> u.  (3.4) 

j|i 
i 
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j|i 

1 The key to the choice of the threshold u is that for Yi  > u then Yi  and Zj|i  are independent. 
 

2     The  theory  suggests  that there  should  always  be  some level u above  which  independence  is 
 

3     an  appropriate  assumption. Therefore  u needs  to be  selected  large  enough  to achieve  this 
 

4     independence,  with a test of independence  guiding this choice, but u needs to be small enough 
 

5     to ensure there are sufficient data with Yi  > u to be able to estimate the model reliably. 
 

6 To derive the distribution of any features of the joint distribution of (Yi, Yj ), such as max- 
 

7     imum  of (Yi, Yj ),  or  Yi  + Yj   we need  to study  the behaviour  of function  h of (Yi, Yj ).   The 
 

8     distribution  of any  functional,  h(Yi, Yj ) of (Yi, Yj ) with  Yi  > v, for v > u can  be derived  by 

9     Monte  Carlo  methods  by  simulating  samples  from the fitted  distribution  (Yi, Yj )|Yi  > v and 

10     evaluating h for each replicate.  To do this first simulate Yi  > v giving a value y∗  say and second 

11     simulate  Yj |Yi  = y∗ .  As a consequence  of the Gumbel  marginal  distribution  for Yi,  the simu- 

12     lation from Yi|Yi  > u, when u is large, corresponds  to simulating from a standard exponential 

13     distribution shifted by u.  The  key to simulating from the conditional Yj |Yi  = y∗  is that under 
 

14     the conditional model (3.2) Yi  and Zj|i  are independent.  Hence independently of Yi, the variable 

15     Zj|i  is simulated from the estimated distribution Gj|i, i.e. Zj|i  is sampled from replicates of Ẑ   , 
 

16     and  Yj  is derived  using expression  (3.2).  Using a similar strategy the distribution of the func- 
 

17     tional can be obtained under  independence  and perfect dependence  by repeatedly simulating Yj 
 

18     independently of Yi  or taking Yj  = Yi.  These cases are sometimes helpful to assess the impact 
 

19     of dependence.  The sample size of the simulated sample is taken to be sufficiently large that the 
 

20     Monte  Carlo  component  of the uncertainty  of the empirical  estimate  is very small.  The  level 
 

21     v, v > u, can be arbitrarily  large and  so the proposed  strategy  provides  estimates  of features 
 

22     about the distribution of Y  within the observed tail of Yi  through to extrapolation beyond the 
 

23     maximum  Yi  observation. 
 

24 Taking  u = 4.5 we illustrate using this method for the simulated data to estimate Pr(Yj  > 
25     v|Yi  > v), for v > u in Figure  3.  Using the simulation  method  for evaluating  an estimate  of 

26     Pr(Yj  > v|Yi  > v) under  the fitted  model as described  in Section  3.1, we see in Figure  3 that 
 

27     the model-based  estimate matches well with both the empirical  and true values in the range of 
 

28     the data but continues to give a smooth extrapolation to the empirical estimate and as we know 

29     here the true value we can also see it gives a good estimate of the true value of Pr(Yj  > v|Yi  > v) 
 

30     for v beyond  the largest observed  Yi  value.  This may not be too surprising  as the basic model 
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1     formulation is correct, but recall that the α and β parameters needed to be estimated and only 
 

2     a nonparametric estimate of the form of the distribution of Zj|i  was used. 
 
 

3     3.3  Multivariate model 
 

 
4     Now consider the extension of equation (3.2) to the multivariate case. The simplified Heffernan 

 
5     and Tawn  model is  

 

Y − i  = α|iy + yβ|i Z |i (3.5) 
 

6     where 0 ≤  α|i  ≤  1 and −∞ < β|i  < 1 are parameter vectors of dimension  |∆| −  1 and Z |i  is a 
7     |∆| −  1 dimensional  random  variable  with joint distribution function G|i  and is independent of 

 

8     Yi.  Here vector algebra  is to be interpreted as componentwise. 

9 Model (3.5)  is a multivariate  regression  model  with  for every  j ∈  ∆ with  j = i the jth 
 

10     marginal  component being identical to the bivariate model (3.2).  By parametrically modelling 
 

11     the dependence  of each component of Y − i  on Yi  we remove some of the dependence  between the 
 

12     Y − i variables.  An explanation of this is that if all variables in Y − i are positively associated with 
 

13     Yi, they will all tend to be large or small together.  This tendency is mostly captured by the α 
 

14     and β parameters.  Once the common dependence  on Yi  is accounted for, the residual variation, 
 

15     determined by the joint distribution G|i  of the standardised multivariate residuals  Z |i, is then 
 

16     modelled.  We anticipate  that Z |i  will have weaker dependence  than Y − i;  for example  if Y − i 
 

17     are conditionally independent given Yi  then the Y − i  can possess arbitrarily strong dependence 
 

18     but Z |i  will be independent. 
 

19 This  residual  dependence  is captured  by  the inclusion  of a non-parametric  model  for G|i 
 

20     with  the empirical  joint  distribution  being  used.   This  corresponds  to empirically  estimating 

21     the standardised  residuals  given by expression  (3.4)  for all j ∈ ∆, to provide  an estimate  Ẑ |i 
 

22     for simultaneous  observations.   Thus  our  model  for G|i  has  a dependence  structure between 
 

23     the components of Z |i  which is identical to the sample dependence  structure in their observed 
 

24     values.  The assumption of a non-parametric model for G|i  is not as restrictive for extrapolation 
 

25     of the distribution  of Y  for large Yi  as in some other  modelling contexts.  The  reason  for this 
 

26     is that the key elements to extrapolation of this distribution are the marginal  distribution of Yi 
 

27     and the expectation and variance  structure of the conditional distribution in the regression, all 
 

28     of which are modelled parametrically. 
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j|i 

j|i 

j|i 

i|i 

Q(L)
 

j|i 

j|i 

1     3.4  Multivariate-temporal  model 
 

2     Let Yj,t  denote variable  Yj  on day t. By assuming stationarity of the multivariate time series we 
 

3     are able to model the distribution of the variable  at site j at a lag τ in relation to an extreme 

4     value at site i, i.e. the conditional distribution Yj,t+τ |Yi,t, for Yi,t  > u, for any t, τ and j using the 
 

5     methods of Heffernan and Tawn  (2004).  The methods extend directly with additional notation 
 

6     to denote  the lag, i.e. parameters  α(τ )  and  β(τ )  and  associated  variable  Z (τ ).  An exploratory 
j|i j|i j|i 

 

7     summary  measure  of bivariate dependence  that we use in this case is 
 
 

j|i  (p) = Pr (Yj,t+τ  > yp|Yi,t  > yp) , (3.6) 
 
 

8     so, P (τ )(p) is the probability that Yj  exceeds yp at lag τ from Yi  exceeding yp.  As p → 1 then 
 

P (τ )
  

(τ ) 
 

(τ ) 
9 j|i  (p) → 0 if αj|i   < 1 but tends to a non-zero constant if αj|i   = 1.  We consider  two special 

10     features of this measure,  τmax, the value of τ for which P (τ )(p) is a maximum,  and the value of 
 

11     the conditional probability at this lag, P (τmax )(p). 

12 Similarly the methods can be applied to lagged values of a single series, i.e. Yi,t+τ |Yi,t, giving 
 

13     a useful measure  for clustering of extremes in a single series to be P (τ )(p),  and  a multivariate 
 

14     extension of measure  (3.6) is studied by Keef et al. (2009). 
 

15 Because  the peak  values  at the different  sites  may  occur  some time  apart a  dependence 
 

16     measure  of more practical value is given by 
 
 
 

j|i  (p) = Pr 
\ 

max Yj,t+τ  > yp|Yi,t  > yp 
 

(3.7) 
τ ∈AL 

 
17     where AL = {− L, −L + 1, . . . , 0, . . . , L},  so Q(L)(p) is the probability that Yj  has at least one 

 
18     exceedance  of yp  within  L  days  of Yi   exceeding  yp.   Here  the choice  of the maximal  lag  L 

 
19     depends  on the temporal dependence  at each site and the cross-series lags which we identify in 

20     Sections  4.2 and  4.3.  As p → 1 then Q(τ )(p)  → 0 if α(τ ) < 1 for all τ  ∈ AL  but tends  to a 
j|i j|i 

21     non-zero constant if there is at least one lag τ ∈ AL for which α(τ ) = 1. 
 
 

22     3.5  Handling missing data 
 

 
23     Keef et al. (2009) show full details  of the method  for an  arbitrary missing data pattern.  To 

 
24     illustrate the approach  for handling  missing data here consider three sites (m = 3), with site 1 
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j|i 

1     being the conditioning site, all values of Y  being observed  at all times except time t for which 
 

2     (Y1,t, Y2,t) are observed, with Y1,t  > u, but Y3,t  is missing.  It follows that Z3|1  at time t, denoted 
 

3     Z3|1,t, is missing but Z2|1,t  is observed.  The strategy is to replace the missing value of Z3|1,t  by 

4     a sample  from the conditional  distribution  of Z3|1,t|Z2|1,t.   For  the general  case of m sites  the 
 

5     conditional distribution of interest is the distribution of all the missing elements of Z |i  given all 
 

6     the observed elements of this vector. 
 

7 The form of the conditional distribution arises from making an assumption about the copula 
 

8     family for the joint distribution of Z |i  = (Z2|1, Z3|1).  Specifically, a Gaussian  copula is assumed 
 

9     (Joe, 1997) with  its  parameters  estimated  from  the observed  pairs  of Z |i.   This  assumption 
 

10     is only made  in estimating  the conditional  distribution  of the missing values.   The  method  of 
 

11     estimating  the distribution  of the observed  values  does not change.   Consequently,  estimation 
 

12     of features  of the joint  distribution  can be derived  using the simulation  methods  described  in 
 

13     Section  3.1 with  missing  components  simply  replaced  by  sample  values  from  the conditional 
 

14     distribution of the missing component given the observed component. 
 
 

15     3.6  Spatial  dependence measures 
 

16     We can now specify the spatial  dependence  measure  Ni(p, d) that we introduced  in Section  1. 
 

17     Given that Yi,t  > yp, then Ni(p, d) is the expected proportion of stations in ∆i(d) that exceed 
 

18     yp for at least  one lag in the same event  (i.e. within  a lag of L days).   Mathematically  this  is 
 

19     expressed as 
 
 
 

Ni(p, d) = 
E (# {j ∈ ∆i(d) : maxτ ∈AL  Yj,t+τ  > yp} |Yi,t  > yp) 

, (3.8) 
#{j ∈ ∆i(d)} 

 
 

20     where 0 ≤  Ni(p, d) ≤  1 with larger  Ni(p, d) corresponding  to stronger extremal dependence  in 
 

21     the region around  site i. By estimating the expected proportion of sites instead of the expected 
 

22     number  of sites we aim to overcome the property that sites are not evenly distributed so that 
 

23     the number  of neighbouring  sites varies from site-to-site. 
 

24 Changes  in Ni(p, d) with p increasing  is an indication of how the spatial dependence  varies 
 

25     as events  become more  extreme  at site  i.  If α(τ )
 < 1 for all τ  ∈ AL and  all j ∈ ∆i(d)  then 

 

26     Ni(p, d) → 0 as p → 1.  So it  is possible to have  strong  spatial  dependence  between  sites  for 
 

27     moderate  return periods  but for larger  return periods  the dependence  weakens or becomes so 
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i=1 

1     weak that all the very largest extreme events can only occur at single sites in the network.  We 
 

2     will also assess how Ni(p, d) changes  with  d, we expect  it  to decrease  as d is increased  as the 
 

3     additional gauging stations that are included  will tend to be more widely separated and so are 
 

4     likely to have less dependence  between them. 
 
 

5     3.7  Uncertainty 
 

6     As our model is semi-parametric with a large number  of parameters,  2 
Lm |∆i(d)|,  a natural 

 
7     approach  to evaluating uncertainty is to use the block bootstrap.  We explored a number  of ways 

 
8     for selecting blocks to correspond to independent and identical events (Keef, 2007) but concluded 

 
9     that for a generic application of the methods one-year  blocks were ideal as they accounted for 

 
10     both the longer range dependence  experienced  at some sites and seasonality at all sites.  These 

 
11     one-year  blocks  were chosen  to run  from  1st  August  to 31st  July to minimise  the chance  of 

 
12     splitting an extreme fluvial event into different blocks. 

 
 
 

13     4  Results  and discussion 
 
 

14     4.1  Introduction 
 

 
15     In this section we show the results of estimating the dependence  measures of Section 3.4, namely 

 

P (τ )
  

(τmax ) 
 
(L) 

16 j|i  (p), τmax, Pj|i (p) and Qj|i  (p), for flow stations and precipitation gauges in GB. Through- 
17     out we take  yp  = u so p = 0.975.  As discussed  in Section  3.1 we estimate  all these  features, 

 
18     and  Ni(p, d), of the joint  distribution  by using empirical  estimates  derived  from a large sam- 

 
19     ple of simulated values generated from the fitted distribution.  The spatial dependence  analysis 

 
20     presented focuses on areas with radii,  d, of 30 and  60 km.  See Keef (2007) for more details on 

 
21     results for d of 90 and 120 km. 

 
22 In all cases we only present  results  for the model-based  estimator  developed  in Section  3. 

 
23     However, as in Figure  3, we assessed the fit of our models by comparing  the model-based  esti- 

 
24     mates with empirical estimates over the range for which the empirical estimates are reliable and 

 
25     found a good agreement.  Examples of such comparisons  and more general diagnostic procedures 

 
26     for these models are given by Heffernan and Tawn  (2004) and Keef et al. (2009). 
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P (τ ) 

j|i 

1     4.2  Temporal dependence in  individual series 
 

 
2     To illustrate  the use of the dependence  measures  introduced  in Section  3.4 we first  apply  the 

 
3     methods to explore the temporal dependence in river flow extremes at a single site.  The temporal 

 

4     extremal  dependence  in river  flows was estimated  using  P (τ )(p),  equation  (3.6).   A value  of 
 

5 i|i  (p)  = 0.5 means  that there  is a 50% chance  that, conditional  on variate  Yi  being  large 

6     (above  the pth  quantile)  on any  given day  t, then it  will also be large on day  t + τ .  Figure  4 

7     shows the results  for |τ |  ≤  50 days,  for the Tweed  at Peebles  and  the Thames  at Eynsham. 
 

8     The faster responding  Tweed catchment shows a relatively quick drop in dependence  over a few 
 

9     days, whereas in the larger, flatter, more permeable  Thames  catchment the dependence  recedes 
 

10     more gradually  over a period of just over 10 days. 
 
 

11     4.3  Bivariate  temporal  dependence 
 

 
12     When  estimating  the probability  of several locations  experiencing  extreme  events  at the same 

 
13     time, there is a need to define what simultaneous events are.  For example, river flows are unlikely 

 
14     to peak at exactly the same time in response to the same rainfall event, because of the different 

 

15     catchment  characteristics.   Therefore,  the lagged extremal  dependence  measure  P (τ )(p),  given 
 

16     by equation (3.6), was estimated for different pairs of gauging stations indexed by i and j for a 
 

17     range of lags, τ . 
 

18 Figure  5 shows two examples  of bivariate temporal dependence  in river flows, between the 
 

19     Tweed at Kingledores and the Earn at Kinkell Bridge, and between the Thames  at Kingston and 
 

20     the Lambourn  at Shaw.  For the first pair,  the maximum  extremal dependence  occurs for a lag 
 

21     of 0 days between the series. However, because of the very slow response of the Lambourn, there 
 

22     is no well-defined maximum  for the Thames-Lambourn pair.  Instead the dependence  increases 
 

23     slowly up  to a lag of about 18 days,  after  which  it  levels off.  It is likely that the measured 
 

24     dependence  between  the Thames-Lambourn pair  reflects  the shared  seasonality  between  this 
 

25     pair.  In particular the flow regime for the Lambourn  at Shaw is dominated by seasonal behaviour. 
 

26     This  suggests that for some very slowly responding  catchments the assumption of stationarity 
 

27     may not be an acceptable assumption even taken for sub periods of a year.  For our selected set 
 

28     of gauges, 96% of the river flow gauge-pairs  have estimates of extremal dependence  that peak 

29     within  a lag of 3 days,  i.e. |τmax| ≤  3.  The  station pairs  that do not have  peak  dependence 
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1     within 3 days are those for which at least one of the pair is a very slowly responding  catchment. 
 

2     Thus  we considered  river  flow events  to be simultaneous  only if they  occur  within  3 days  of 
 

3     an extreme  observation  at the conditioning  gauge.  Hence, we take  L = 3 in the evaluation  of 
 

4     Ni(p, d) for river flows. For precipitation we estimated N|i(p, d) for both L = 0 and L = 1. We 
 

5     found no noticeable difference for these maximum  lags so we take L = 0 for the whole analyses. 
 
 

6     4.4  Spatial  dependence in  precipitation 
 

7     Figure  6 shows estimates  of the spatial  dependence  measure  Ni(p, 30) for a range  of p, and 
 

8     Figure 7 shows Ni(p, 60) for one of these values of p, with its associated 95% confidence interval. 
 

9     The median numbers  of neighbours  considered were 2 for d = 30 km and 11 for d = 60 km.  The 
 

10     return periods were calculated by taking k = 1 in expression (1.1), we estimated this measure for 
 

11     p equal to 0.975, 0.995, 0.999, 0.9995, 0.9999, 0.99995, 0.99999 and 0.999995 which correspond 
 

12     to the T = 0.1, 0.5, 3, 5, 30, 55, 274 and 548 year return periods and for d = 30 and 60. 
 

13 Both Figures 6 and 7(b) show that spatial dependence is stronger in south-east GB than in the 
 

14     mountainous north and west.  This broadly agrees with the results of Dales and Reed (1989), who 
 

15     investigated spatial dependence  in annual  maximum  daily precipitation.  The lower dependence 
 

16     in the hilly areas  may  reflect  that orographic  precipitation  varies  spatially  at the same  scale 
 

17     as the topography,  and  particularly  across major  topographical  barriers.   Svensson and  Jones 
 

18     (2002) investigated extremal dependence  between pairs of rain-gauges.  Using continuous series 
 

19     of observed  daily precipitation, they found that dependence  breaks  down across topographical 
 

20     barriers.   The  lack of topographic variation in the south and east of the country is likely to be 
 

21     the reason that dependence  in heavy precipitation is stronger over a larger area. 
 

22 Figure 6 shows that Ni(p, 30) decreases with increasing return period T for all T , correspond- 
 

23     ing to increasing p. This suggests that extreme precipitation is asymptotically independent over 
 

24     sites within d = 30 km in the rain-gauge  network.  For T = 0.1 years Figure 6(a) shows Ni(p, d), 
 

25     is between 0.4 and  0.6 for the bulk of GB. For T = 55 years, shown in Figure  6(c), the depen- 

26     dence drops to about 0.2 −  0.4. The decrease in spatial dependence with increasing return period 
 

27     seems reasonable  because of the localised character of heavy events.  Weak evidence for such a 
 

28     decrease  in dependence  was also found  by Dales and  Reed (1989),  using only annual  maxima 
 

29     data. However, Dales and  Reed (1989) were not able to quantify this changing  dependence  or 
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1     extrapolate it within their framework  of annual  maxima  analysis. 
 

2 Comparing  Ni(p, 30)  and  Ni(p, 60)  for p corresponding  to T  = 55 years  in  Figures  6(c) 
 

3     and  7(b),  it can be seen that spatial dependence  decreases with increasing  d as expected.  The 
 

4     strongest  dependence  occurs where Ni(p, 30) exceeds 0.4 at several locations  in the south  and 
 

5     east.   This  means  that if a  gauge  experiences  heavy  precipitation,  more  than 40% of gauge 
 

6     locations within 30 km also receive heavy precipitation.  In the north and  west Ni(p, 30) drops 
 

7     to around  0.2.  The corresponding  values for Ni(p, 60) are 0.3 for the southeast and 0.1 for the 
 

8     north-west.  The spatial dependence  also varies more smoothly across GB for larger d (as many 
 

9     gauges  will be the same  in neighbouring  sets)  although  the lower dependences  in hilly areas 
 

10     are still apparent. For this value of T (equivalently p) estimates of Ni(p, 90) and Ni(p, 120) are 
 

11     approximately 0 for north-west GB, see Keef (2007). 
 

12 The 95% confidence intervals for Ni(p, 60), for T = 55 years, shown in Figures  7(a) and (c) 
 

13     were derived  through  block bootstrapping  for the dependence  estimates  in Figure  7(b).   The 
 

14     widths  of the intervals  are  around  0.07, which  suggests  that the level of uncertainty  is fairly 
 

15     small.   The  widths  increase  with  increasing  return period,  and  for T  = 548 years  they  are 
 

16     around  0.12 (not shown).  Unlike when extrapolating return levels the uncertainty in Ni(p, 60) 
 

17     does not always increase with increasing  T as Ni(p, 60) is an expected proportion which tends 
 

18     to its lower bound  of zero. 
 
 

19     4.5  Spatial  dependence in  river flows 
 

 
20     The results of the spatial dependence  analysis of large river flows are presented in Figures 8 and 

 
21     9. To define return periods it is necessary to specify a value for k in expression (1.1).  The results 

 
22     in Sections  4.2 and  4.3 suggest  that for many  catchments  k = 2 is realistic,  but for some the 

 
23     return periods stated will be too low.  Using k = 2 we estimated N|i(p, d) for p equal to 0.975, 

 

24     0.995, 0.999, 0.9995, 0.9999, and 0.99995 which correspond  to the T = 0.2, 1, 5, 10, 50 and 100 
 

25     year return periods and  for d = 30 and  60 km.  The  median  numbers  of neighbours  considered 
 

26     were 3 for d = 30 km and 12 for d = 60 km. 
 

27 Overall,  the spatial  dependences  in  river  flows are  stronger  than for precipitation.   This 
 

28     may  be  because  river  flow represents  an  areally  averaged  process,  whereas  the precipitation 
 

29     observations  are  made  at a point  and  are  therefore  more  vulnerable  to small-scale  variation, 
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1     for example  from convection.  Figure  8(c) shows the Ni(p, 30) for p corresponding  to a 50 year 
 

2     return period.  A couple of locations have dependence  estimates exceeding 0.7, with most of GB 
 

3     exceeding 0.3. For comparison  consider for precipitation Ni(p, 30) for T = 55 year, i.e. roughly 
 

4     the same return period, then Figure 6(c) showed that Ni(p, 30) exceeded 0.4 at several locations 
 

5     and for the bulk of GB it exceeds 0.2. 
 

6 The  pattern of stronger  dependence  in the south-east  GB  compared  with  the north and 
 

7     west, which was seen for the precipitation analysis, is barely hinted at in Figures 8 and 9(b).  A 
 

8     south-east to north-west pattern may be masked by the more pronounced  local variation in the 
 

9     dependence  in river flows. For example, an area in the Thames  catchment in southern England 
 

10     stands out as having considerably  lower dependence than the surrounding region.  This shows up 
 

11     particularly clearly for T = 0.2 years and d = 30 km in Figure 8(a).  In this area very permeable, 
 

12     and  sometimes  also  larger  than average,  catchments  are  located  close to more  impermeable 
 

13     catchments (Figure  1).  The  slower flow response  of the permeable  catchments compared  with 
 

14     the less permeable  ones means that spatial dependence  in river flow decreases when both types 
 

15     of catchments are found within ∆i(d). 
 

16 A couple of areas  further north, in the Lake District and  eastern Scotland, also have lower 
 

17     levels of dependence.  This seems to be related to whether or not there are lakes and reservoirs in 
 

18     the catchments.  The spatial dependence  is particularly low for catchments that do not contain 
 

19     large water-bodies (Calder  at Calder  Hall, Brathay at Jeffy Knotts, Dighty Water at Balmossie 
 

20     Mill, Lyon at Comrie  Bridge,  Almond  at Almondbank and  Dean  Water at Cookston),  when 
 

21     the surrounding catchments  within  30 km of them  do.  The  effect  of lakes and  reservoirs  is to 
 

22     attenuate the floods, so that the river levels rise and fall more slowly than they would otherwise 
 

23     do. 
 

24 

 
 
When  there  are  several  gauges  on the same  river  within  ∆i(d),  one would  expect  strong 

 
25     dependence  in that area.  However, because  different geologies and  other characteristics of the 

 
26     different sub-catchments affect the river flow formation,  the effect of nested catchments is not 

 
27     especially obvious in the plots.  A set of gauges along a river that do show strong dependence 

 
28     include  the Dee at Woodend,  the Dee at Park  and  the upstream  tributary Girnock  Burn  at 

 
29     Littlemill, located in north-eastern Scotland.  In general,  conditioning gauges with large catch- 

 
30     ments show stronger dependence  estimates than do conditioning gauges with small catchments, 



19  

1     presumably because the large catchments contain nested sub-catchments within ∆i(d). 
 

2 Similar  to the results  for the precipitation  analysis,  the spatial  pattern of dependence  in 
 

3     river flooding across Britain  becomes smoother  with  increasing  d (Figures   8(a)  and  9(b)).   It 
 

4     also tends  to decrease  with  increasing  T (Figure  8).  Since precipitation  is a major  driver  for 
 

5     river  flow formation,  this  is probably  largely  related  to the spatial  structure of precipitation 
 

6     events,  with  more  extreme  falls embedded  within  areas  of less extreme  precipitation  depths. 
 

7     However, it can be questioned whether flooding would ever occur, say, at a downstream gauge 
 

8     in a catchment without high flows occuring also at several of the upstream gauges.  The model is 
 

9     fitted using records which are generally around  40 years in length, and extrapolation to higher 
 

10     return periods is based on the behaviour  of these relatively frequent events (where dependence 
 

11     decreases  with  T ).   If there  is indeed  a change  in the dependence  structure for less frequent 
 

12     events longer records are needed for this to be picked up by the model. 
 

13 Figures 9(a) and (c) show the lower and upper bounds of the 95% confidence intervals derived 
 

14     through  block bootstrapping  for the dependence  estimates  in Figure  9(b).   The  widths  of the 
 

15     intervals are around  0.09, which is slightly larger than for the precipitation for the same T , but 
 

16     still rather small.  The width increases with increasing T , and for T = 100 years they are around 
 

17     0.12 wide (not shown).  There  is more variation in the confidence intervals for river flows than 
 

18     for precipitation.  The widths of the intervals do not seem to change with the magnitude of the 
 

19     dependence  estimates, but several widths exceed 0.2, particularly for the higher return periods. 
 

20     These  larger  confidence intervals  seem to correspond  to cases with  a large amount  of missing 
 

21     data for the conditioning gauge. 
 
 

22     4.6  Factors  affecting  dependence in  river flows 
 

 
23     As shown  in Section  4.5 the areas  of the country  with  diverse  catchments  appear  to exhibit 

 
24     lower  spatial  dependence  of flooding.   To  investigate  the effect  of catchment  characteristics 

 
25     on dependence  (i.e.  probability  of widespread  flooding)  we carried  out a correlation  analysis 

 
26     to determine  whether  catchments  with  similar  characteristics  had  higher  dependence  and  vice 

 
27     versa.  We looked for correlations between the absolute differences in catchment characteristics 

 
28     between two flow gauges and the pairwise dependence between these flow gauges.  The data used 

 
29     in this  study  is a subset  of the set  used  in the main  study.   In total, 36 conditioning  gauges, 
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1     and  gauges within  60 km of these  conditioning  gauges,  were used  for a pair-wise  dependence 
 

2     analysis. 
 

3 The catchment characteristics investigated include the catchment descriptors derived for the 
 

4     Flood Estimation Handbook  (FEH)  (Bayliss, 1999). In addition, the distance between each pair 
 

5     of gauges and the value of standard average annual  rainfall at the conditioning gauge (CSAAR) 
 

6     were used.  The latter was included as a proxy to see if the geographical  variation in dependence 
 

7     in precipitation, which is strong (weak)  in the south-east (north-west) with predominantly low 
 

8     (high)  CSAAR values, is carried  through to the dependence  in flow. 
 

9 Table  2 shows the Kendall’s tau dependence  measure  between each of τmax, P (τ 

 
 
max 

 
 
)(p) and 

 
Q(L) 

j|i 

10 j|i  (p) with  the differences in each of the catchment  descriptors.  For  assessing τmax,  the dif- 
11     ferences in catchment descriptors were taken as the value for the non-conditioning gauge minus 

 
12     the value for the conditioning gauge, whereas for the other two analyses the absolute difference 

 
13     of the descriptors  was used.  The  descriptors  that have a noticeable  effect  on τmax  include  the 

 
14     catchment  area,  mean  drainage  path length,  base flow index,  standard percentage  runoff, and 

 
15     flood attenuation by  reservoirs  and  lakes.   The  same  catchment  descriptors  are  found  to be 

 

16     of importance  for both P (τmax )(p) and  Q(L)(p),  although  the relationships  tend to be stronger 
j|i j|i 

17     for the former.   This  seems reasonable,  since the P (τmax )(p)  allows the maximum  dependence 
 

18     to be found among  a larger  number  of different  lags.  All the descriptors  except  CSAAR  have 
 

19     noticeable  correlations  with  P (τmax )(p).   However,  two  of the descriptors,  the mean  drainage 
 

20     path length  and  the flood attenuation by reservoirs  and  lakes, do not have a noticeable  effect 
 

21 j|i  (p).  The  most influential differences for both dependence  estimates are the differences 

22     in mean drainage  path length, proportion of time when the soil is wet, standard average annual 
 

23     rainfall,  base flow index, standard percentage runoff, and distance between the gauges. 
 
 
 

24     5  Summary and concluding remarks 
 
 

25     In this paper  we have presented a complete study of within-event dependence  of extreme river 
 

26     flows and  precipitation  over the whole of Great Britain.  We have shown that it  is possible to 
 

27     quantify the level of extremal dependence  for a large number  of sites and hence derive measures 
 

28     of spatial  dependence  over small  and  large  spatial  scales.   The  method  that we have  used  in 
 

29     this  paper  is the first  statistical  method  that is capable  of producing  reliable  estimates  of the 
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1     probabilities of multiple, simultaneous floods and spatially widespread  extreme precipitation. 
 

2 For both precipitation and river flows, events become more localised in space as the return 
 

3     periods of these events increases.  For precipitation, spatial dependence  is weaker in the moun- 
 

4     tainous  north and  west  than in the rest  of Great Britain,  reflecting  the effect  of topographic 
 

5     variation.   This  effect  is not obvious  in the spatial  dependence  pattern for river  flows, which 
 

6     shows a more variable  pattern at smaller  scales.  The  local variability  is related  to differences 
 

7     in catchment  characteristics.   In areas  where characteristics  are similar,  spatial  dependence  is 
 

8     strong.  However, where, for example, fast-responding impermeable  catchments are located next 
 

9     to slowly-responding  permeable  catchments, the spatial dependence  in river flows is low. 
 

10 In this paper we ignore the seasonal features of the processes.  However, Keef (2007) explored 
 

11     the seasonality of dependence  in precipitation and found weaker spatial dependence  in summer 
 

12     than winter.   This  may  be attributed to the larger  numbers  of localised convective  storms  in 
 

13     summer  than winter.  In contrast, autumns and winters in Great Britain tend to be dominated 
 

14     by spatially widespread  precipitation of frontal origin.  Because of the seasonal changes in pre- 
 

15     cipitation, it seems likely that spatial dependence  in river flows may also be weaker in summer 
 

16     than in winter.   Another  feature  of flow data that we have  not examined  is the effect  of non- 
 

17     stationarity of very slowly responding  catchments.  The  flows in these catchments are baseflow 
 

18     dominated and are dominated by changes in groundwater rather than recent precipitation.  For 
 

19     these catchments the duration of high flow periods can last for weeks rather than days.  Because 
 

20     the high flows of these catchments are so different from the high flows of most catchments futher 
 

21     work is needed to ensure that the spatial aspects of flooding for these catchments are correctly 
 

22     included  in any analysis. 
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Table  1:  Catchment  area,  in km2, and  BFI  for the test river  flow dataset.  The  first  four are 
Scottish gauges, the last four are in the Thames  catchment. 

 
River Location Area BFI 
Tweed Kingledores 139 0.45 
Earn Kinkell Bridge 591 0.50 
Teith Bridge of Teith 518 0.43 
Tweed Peebles 694 0.56 
Thames Kingston 9948 0.64 
Thames Eynsham 1616 0.68 
Kennet Theale 1033 0.87 
Lambourn Shaw 234 0.97 



 

Covariate τmax P τmax (u) Q(7)(p) 
AREA 

DPL DPS 
PROPWET 

SAAR 
BFI SPR 

FARL 
URBEXT 
CSAAR 

DIST 

0.345 
0.344 
0.047 
-0.009 
0.036 
0.2 

-0.189 
-0.12 
-0.02 
0.006 
-0.003 

-0.079 
-0.092 
-0.172 
-0.222 
-0.239 
-0.183 
-0.243 
-0.09 
-0.069 
-0.013 
-0.201 

0.05 
-0.009 
-0.116 
-0.184 
-0.185 
-0.116 
-0.202 
-0.011 
-0.073 
-0.023 
-0.196 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table  2: Kendall’s tau dependence  measure  between each of τmax, P (τ max )(p) and  Q(7)(p) with 
j|i j|i 

the differences in catchment descriptors at the pair of gauges (i, j).  The catchment descriptors 
are:   AREA  - catchment  area  (km2);  DPL  - mean  drainage  path length  (km);  DPS  - mean 
drainage  path slope (m/km);  PROPWET - proportion  of time  when the soil is wet;  SAAR - 
standard average annual  rainfall (mm); BFI - base flow index; SPR - standard percentage runoff; 
FARL  - flood attenuation by reservoirs  and  lakes; URBEXT - extent of urban  and  suburban 
land  cover in 1990; CSAAR  value of SAAR at gauge i;  and  DIST  - the distance between each 
pair of gauges. 

 
 

j|i j|i 



 

 
 

 
 

 
Figure  1:  Locations of the selected river flow gauging  stations.  Characteristics of the stations 

 
are shown:  baseflow index (left) and catchment area (km2) (right). 
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Figure 2: Locations of the selected raingauges.  Characteristics of the gauge locations are shown: 

 
altitude (m) (left) and standard average annual  rainfall (mm)  (right). 
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Figure 3: Top plots are data simulated for Heffernan and Tawn model, solid lines the conditional 

median  and  dashed  lines the 0.025 and  0.975 conditional quantiles of Yj |Yi, Yi  > 4.5.  Left plot 

αj|i  = 0.3, βj|i  = 0.7, right plot αj|i  = 0.8, βj|i  = 0.1.  In both data sets Zj|i  follows a Normal 

distribution with mean 0.5 and variance  0.25 and Yi, Yj  follow a standard Gumbel  distribution. 

Lower plots show Pj|i(v) = Pr(Yj  > v|Yi  > v) for the respective data sets, solid lines show true 

values,  dashed  lines show values  estimated  empirically  from the simulated  data, dotted lines 

show values estimated by fitting the model to the simulated data. 
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Figure  4: Temporal  dependence  in river flow at a) the Tweed at Peebles and b) the Thames  at 
Eynsham,  for lags from -50 to 50 days. 
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Figure 5: Cross-series temporal extremal dependence  between a) the Tweed at Kingledores and 
the Earn  at Kinkell Bridge, at lags of -50 to 50 days with respect to the Tweed at Kingledores, 
and  b)  the Thames  at Kingston  and  the Lambourn  at Shaw,  at lags of -50 to 50 days  with 
respect to the Thames  at Kingston. 
(a) 

 
 
 
 
 
 
 
 
 

−40 −20 0 20 40 
 
 

τ 
 
(b) 

 
 
 
 
 
 
 
 
 

−40 −20 0 20 40 
 
 

τ 



 

 



 

 
 

 
 

 
 

 
 

 
Figure  6: Estimated spatial dependence  in precipitation, Ni(p, 30) corresponding  to a range of 

 
T year return periods:  (a) T = 0.1, (b) T = 5, (c) T = 55 and (d) T = 548, in all L = 0. 
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Figure  7:  Estimated  spatial  dependence  in precipitation,  Ni(p, 60) corresponding  to T = 55 

years:  (a)  lower bound  of 95% confidence interval,  (b)  estimate,  and  (c) upper  bound  of 95% 

confidence interval, in all L = 0. 
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Figure 8: Spatial dependence  in river flows, Ni(p, 30): corresponding  to a range of T year return 

 
periods:  (a) T = 0.2, (b) T = 5, (c) T = 50 and (d) T = 100, in all L = 3. 

 

 
 
 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
 
 

(a) (b) 
 
 
 
 

N N 
 
 
 
 

120 km 120 km 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
 
 
 
 

N N 
 
 
 
 

120 km 120 km 



 

 
 

 
 

 
 

 
Figure 9: Estimated spatial dependence  in river flows, Ni(p, 60) corresponding  to T = 50 years: 

(a) lower bound of 95% confidence interval, (b) estimate, and (c) upper bound of 95% confidence 

interval, in all L = 3. 
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