Hydrological Summary for the United Kingdom

General

Weather conditions varied greatly throughout February but high pressure again dominated synoptic patterns. The corresponding meagre precipitation contributed to the driest winter (Dec-Feb) since 1964 for the UK as a whole. The drought eased marginally during February in parts of the South East but rainfall deficiencies increased appreciably elsewhere. Nonetheless, overall reservoir stocks (for England and Wales) remain within 2% of the early March average, but seasonally depressed stocks characterise a number of southern reservoirs (including Bewl, Ardingly and Colliford) – and the area subject to water use restrictions has increased. February river flows were very substantially below average throughout the country, and depressed in many spring-fed streams where flows are more typical of the late summer, but the impact of two successive notably dry winters is most evident in the exceptionally low groundwater levels in a number of major aquifers, parts of the Chalk particularly. Overall groundwater resources are healthier than in early 1992 and 1997 but the water resources outlook is fragile in parts of the English Lowlands. Accelerating evaporation losses may be expected to curtail the 2005/06 recharge season during the next 6-8 weeks (in those areas where the drought is most severe), emphasising the pivotal importance of rainfall through the early spring period.

Rainfall

The notable dry spell over the latter half of January continued into February as the Thames catchment, for example, registered only 2mm of rainfall over the first 10 days. Thereafter, weather patterns were much more unsettled with substantial rainfall in the most droughtaffected areas on the 20th (Hastings: 31.2mm), and an Arctic airflow brought substantial - and disruptive snowfall to many areas (Aberdeenshire especially) late in the month. However, away from the South East, February rainfall totals were mostly well below average – and <50% in parts of Scotland and Northern Ireland. The latter reported its lowest (provisionally) winter rainfall since 1934 and Dec-Feb rainfall deficiencies were large in all regions of the UK – parts of the Midlands and the Forth basin were particularly dry. In southern Britain, the 2005/ 06 winter drought extends a long term rainfall deficiency stretching back to October the 2004. For England and Wales, the succeeding 16-month period is the driest (in this timeframe) for 42 years. More importantly in relation to the drought's water resources and environmental impacts, most of the English Lowlands registered a 2nd successive notably dry winter. The combined Nov-Feb rainfall deficiencies are the lowest for successive winters since 1932-34 in much of central and south eastern England. This lack of winter rainfall is the primary cause of the current drought stress.

River Flow

Exceptionally low winter flows characterised most of the UK during the first half of February. The Soar, Mole and Annacloy (Northern Ireland) were among an appreciable number of index rivers registering new early February minimum daily flows; this was true of total outflows from E&W also. Recessions were then arrested, with some moderate spates in mid-month; field drains also ran healthily – a rare circumstance in eastern areas this winter. The spates were of greatest significance in responsive catchments in the most drought afflicted region, e.g. in the Mole and Gt Stour on the 20th – when several Flood Alerts were called in Sussex and Kent. Runoff recoveries were much more muted in permeable catchments but generally sufficient to increase flows above seasonal drought minima. February runoff totals were well below

Centre for Ecology & Hydrology
NATURAL ENVIRONMENT RESEARCH COUNCIL

average throughout much of the greater part of the UK, and <50% in most of southern Britain (NI also); but most exceeded February 1997. An exception was the Mimram which reported its 2nd lowest February flow in a 54-yr record. In many impermeable catchments winter (Dec-Feb) runoff was depressed, the lowest on record for the Yscir and the Forth, but the important regional dimension to the drought is best captured by longer term runoff accumulations. The Soar, Medway, Sussex Ouse, Dorset Stour and Kenwyn (each with >30-yr records) all established new 16-month minima (for sequences ending in February).

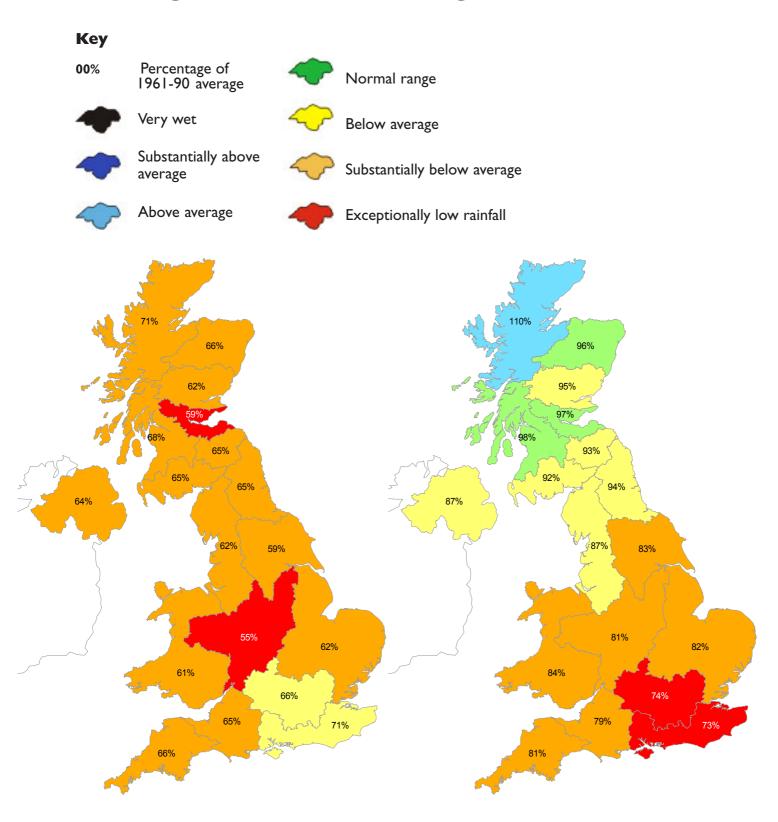
Groundwater

February precipitation (snow was important in a few outcrop areas) patterns favoured parts of the eastern Chalk and, with receptive soil conditions, the February infiltration exceeded that for the Nov-Jan period in a few areas. Generally however, infiltration was well below the monthly average and insufficient to generate substantial – and very belated – seasonal recoveries in groundwater levels. Barely discernible increases are detectable in, for instance, parts of the Cambridgeshire Chalk or in some outcrops in the North Downs. Although overall storage in the Chalk is considerably above that of the late winter in both 1992 and 1997, groundwater levels remain close to long term minima in some index wells and boreholes (e.g. Stonor). Levels in most limestone aquifers remain well below average but above drought mimima; Alstonfield (in the Carboniferous Limestone) is an exception following a steep decline through the late winter. Below average levels characterise most Permo-Triassic sandstones outcrops but the degree of depression reflects spatial variations in both infiltration patterns and the responsiveness of individual sandstone units. In the Midlands, a minor recovery was recorded at Weeford Flats which had been dry since June 2005 but Morris Dancers reported its 2nd lowest February level in a record from 1969. With the exception of a few areas (e.g. parts of Lincolnshire) soil conditions remain conducive to further recharge; rainfall until late April is likely to be very influential in determining the intensity and extent of drought conditions in the coming summer.

bruars

Rainfall...Rainfall...

Rainfall accumulations and return period estimates

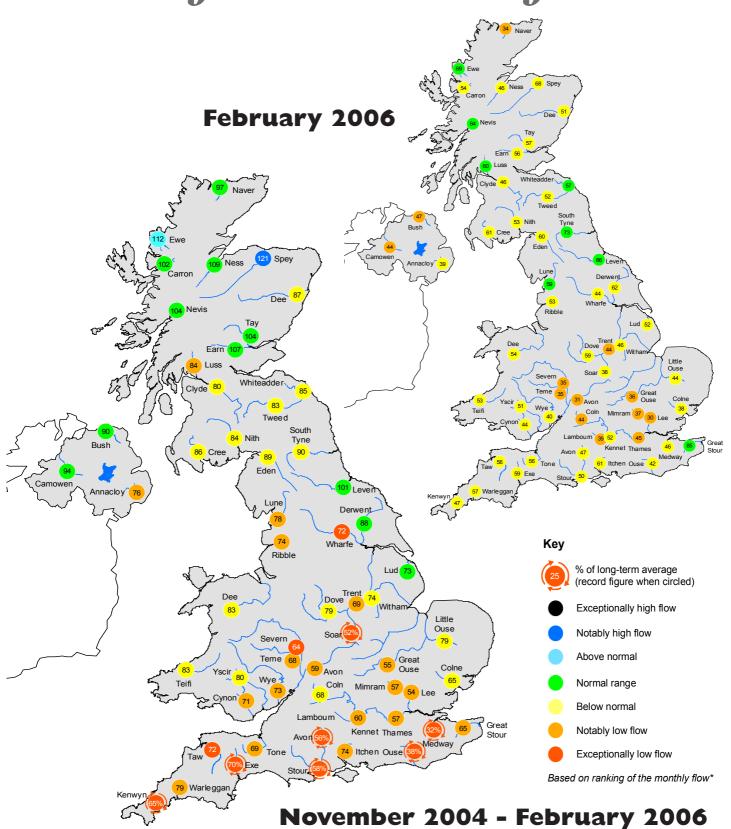

Area	Rainfall	Feb 2006	Dec 0	5-Feb 06 <i>RP</i>	Nov 0	Nov 05-Feb 06 RP		Mar 05-Feb 06 RP		4-Feb 06 RP
England & Wales	mm %	55 85	156 62	10-20	243 71	5-15	790 87	5-10	1030 83	10-20
North West	mm %	68 85	200 62	10-20	323 72	5-15	1036 85	5-10	1455 87	5-10
Northumbrian	mm %	55 93	146 65	10-20	240 77	5-10	846 98	2-5	1108 94	2-5
Severn Trent	mm %	40 72	113 55	20-30	182 66	10-20	671 87	5-10	844 81	10-20
Yorkshire	mm %	54 93	130 59	10-20	214 71	5-15	73 I 88	5-10	949 83	10-20
Anglian	mm %	39 103	90 62	10-20	129 64	10-20	526 87	5-10	665 82	10-20
Thames	mm %	42 91	122 66	5-10	174 70	5-10	566 81	5-15	705 74	30-45
Southern	mm %	63 116	155 71	5-10	204 67	5-15	636 81	5-15	800 73	30-45
Wessex	mm %	53 81	163 65	5-10	237 71	5-10	747 87	2-5	939 79	10-20
South West	mm %	75 73	253 66	5-15	391 77	5-10	1070 90	2-5	1385 81	10-20
Welsh	mm %	74 73	246 61	10-20	406 75	5-10	1187 88	2-5	1589 84	10-20
Scotland	mm %	80 76	283 68	10-20	454 79	5-10	1414 96	2-5	2078 102	2-5
Highland	mm %	101	354 71	10-20	596 85	2-5	1747 100	<2	2692 110	5-10
North East	mm %	55 79	179 66	10-20	326 87	2-5	965 94	2-5	1344 96	2-5
Тау	mm %	61 62	233 62	10-20	382 76	5-10	1214 94	2-5	1704 95	2-5
Forth	mm %	5 I 62	186 59	20-35	286 66	15-25	1066 93	2-5	1522 97	2-5
Tweed	mm %	63 89	174 65	10-20	269 74	5-15	957 95	2-5	1270 93	2-5
Solway	mm %	74 73	263 65	10-20	395 72	5-15	1297 90	2-5	1820 92	2-5
Clyde	mm %	88 71	340 68	10-20	494 72	10-20	1616 92	2-5	2393 98	2-5
Northern Ireland	mm %	43 54	198 64	10-20	277 67	10-20	958 87	5-15	1322 87	5-10

% = percentage of 1961-90 average

RP = Return period

The monthly rainfall figures' provided by the Met Office (National Climate Information Centre) are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation. All monthly totals since October 2005 are provisional (see page 12). 1961-2003 regional monthly totals were revised by the Met Office in 2004. Most of the return period estimates are based on tables provided by the Met Office (see Tabony, R. C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37) and relate to the specified span of months only (return periods may be up to an order of magnitude less if n-month periods beginning in any month are considered); RP estimates for Northern Ireland are based on the tables for north-west England. The tables reflect rainfall over the period 1911-70 and assume a stable climate. Artifacts, in the Scottish rainfall series in particular, can exaggerate the relative wetness of the recent past.

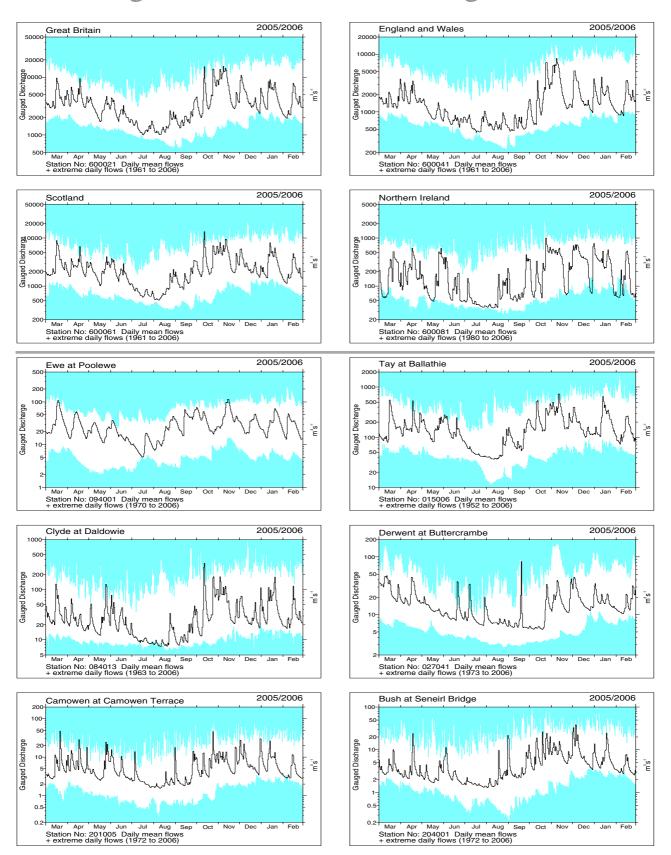
Rainfall . . . Rainfall . . .


December 2005 - February 2006

November 2004 - February 2006

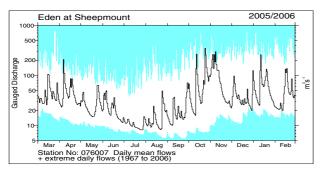
Rainfall accumulation maps

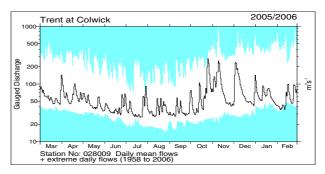
Many parts of the UK recorded their driest, or second driest, winter (Dec-Feb) for over 40 years; rainfall deficiencies exceeded 35% for much of the country. Nationwide, the rainfall deficiencies since October 2004 are less notable but the current drought stress reflects the drought's distinct regional focus (in the South East) in this timeframe. The 16-month rainfall total for the Thames region is the lowest since 1932-34.

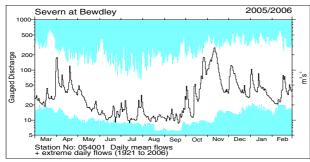

River flow ... River flow ...

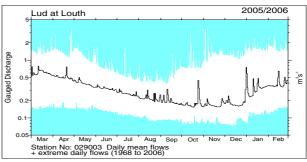
River flows

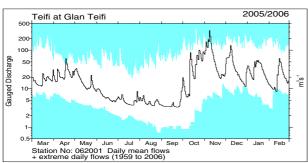
*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

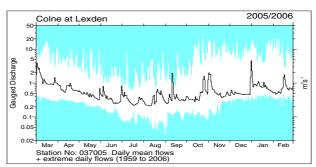

River flow ... River flow ...

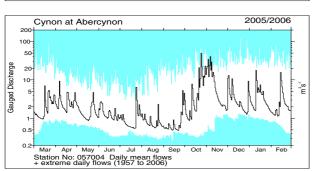


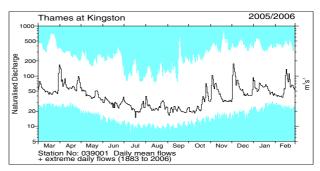

River flow hydrographs

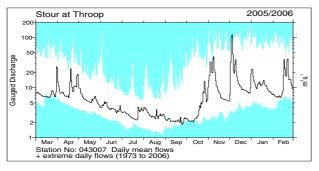

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to March 2005 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.


River flow ... River flow ...



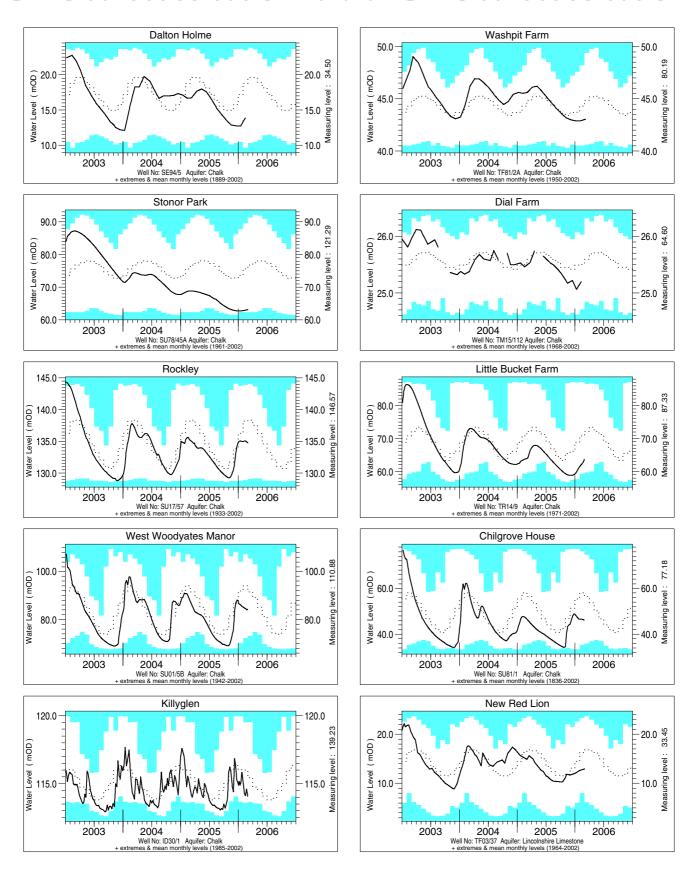






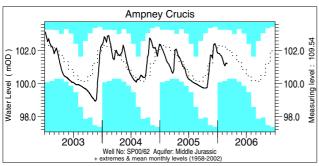
1/30

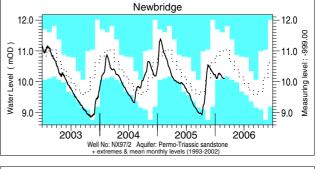
59

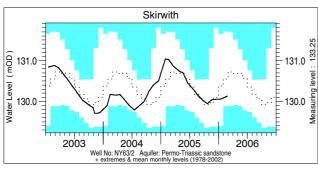

Faughan

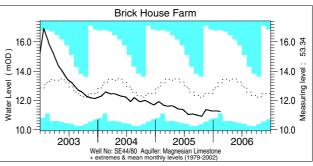
	Itchen at Highbridge+Allbrook	2005/2006
Gauged Discharge	20- 10- 5- Mar Apr May Jun Jul Aug Sep Oct Nov Station No: 042010 Daily mean flows + extreme daily flows (1958 to 2006)	Dec Jan Feb

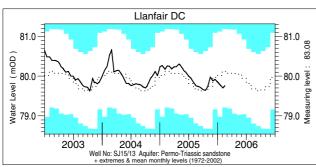
Notable runoff accumulations (a) December 2005- February 2006, (b) November 2004 - February 2006

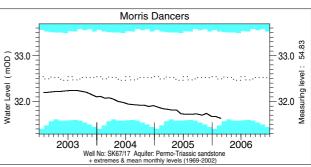

	River	%lta	Rank		River	%lta	Rank	River	%lta	Rank
a)	Forth	47	1/25	b)	Spey (Boat o'Brig)	121	50/53	Stour (Throop)	58	1/32
_	Mimram	42	2/53		Wharfe	72	2/50	Piddle	60	1/40
	Ouse (Gold Bridge)	30	1/44		Soar	52	1/34	Exe	70	1/49
	Wallington	36	2/53		Mole	55	1/29	Warleggan	79	2/36
	Severn	44	4/85		Medway	32	1/42	Kenwyn	65	1/37
	Yscir	53	1/33		Test	64	1/47	Luss	84	2/25
	Eden	60	2/39		Avon (Amesbury)	56	1/40	L Bann	73	1/25
	Clyde (Daldowie)	56	2/43		, , , , , , , , , , , , , , , , , , , ,			14 1		_
	Naver	47	1/29			6		lta = long ter Rank 1 = low		

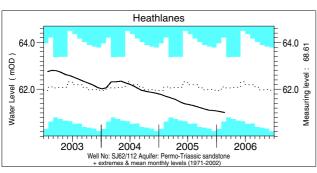

Groundwater . . . Groundwater

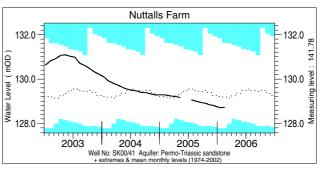


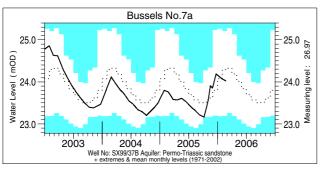

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously – the latest recorded levels are listed overleaf.

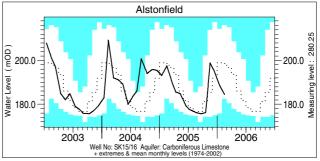

Groundwater . . . Groundwater

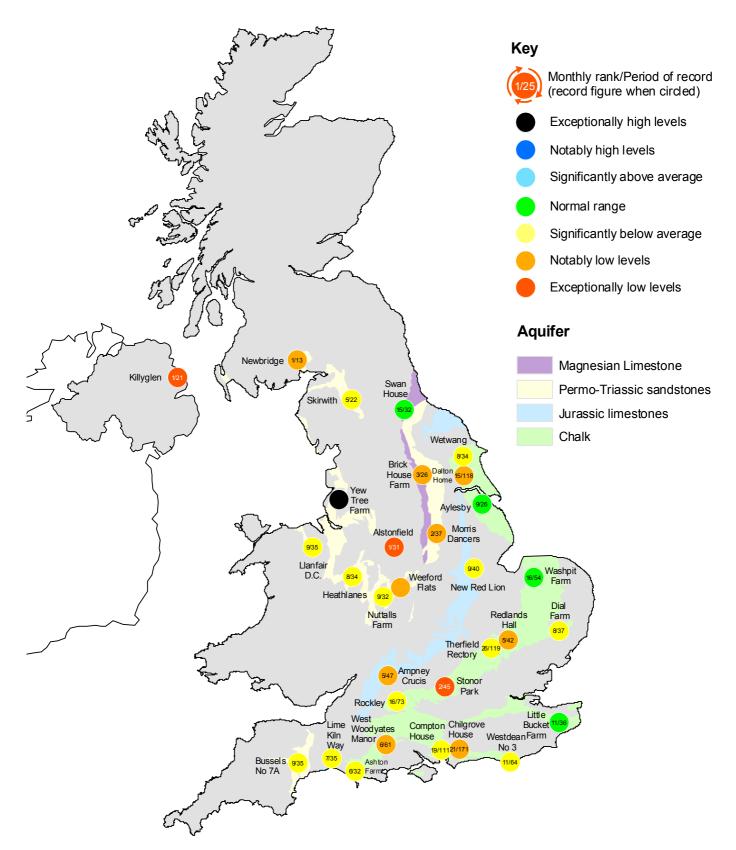












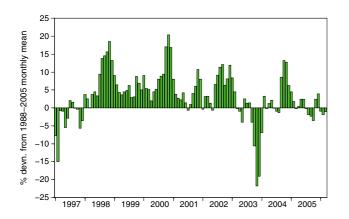
Groundwater levels February / March 2006

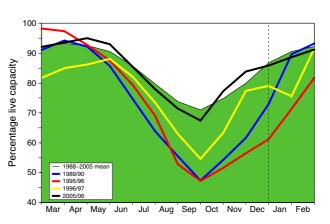
Borehole	Level	Date	Feb. av.	Borehole	Level	Date	Feb. av.	Borehole	Level	Date	Feb. av.
Dalton Holme	13.85	13/02	18.70	Chilgrove House	46.10	28/02	57.59	Llanfair DC	79.76	15/02	80.06
Washpit Farm	43.05	08/03	44.42	Killyglen	114.07	28/02	115.71	Morris Dancers	31.63	24/02	32.36
Stonor Park	63.16	01/03	75.79	New Red Lion	12.93	02/03	16.41	Heathlanes	61.01	20/02	62.04
Dial Farm	25.20	09/02	25.51	Ampney Crucis	101.21	01/03	102.22	Nuttalls Farm	128.72	15/02	129.47
Rockley	134.77	01/03	138.28	Newbridge	10.10	28/02	10.99	Bussels No.7a	24.02	22/02	24.31
Little Bucket Farm	63.65	28/02	70.45	Skirwith	130.13	24/02	130.62	Alstonfield	184.51	15/02	199.03
West Woodyates	84.31	28/02	93.24	Brick House Farm	11.25	13/02	13.25	Levels in metres	above Ord	nance D	atum

Groundwater . . . Groundwater

Groundwater levels - February 2006

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.

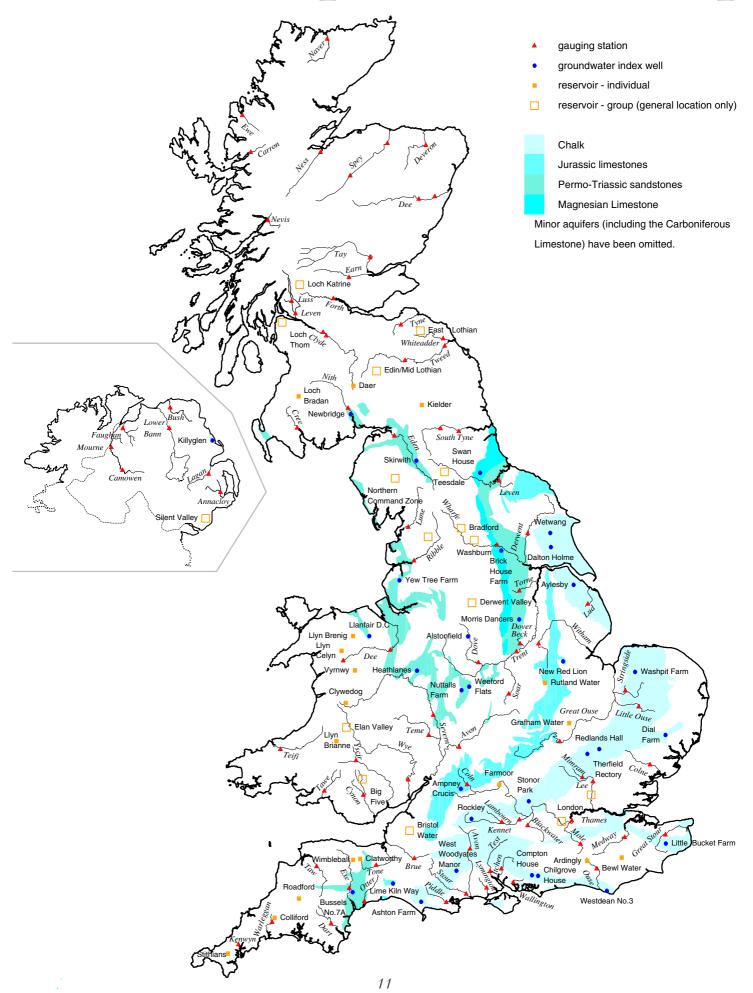

Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.


ii. Yew Tree Farm levels are now received quarterly.

Reservoirs . . . Reservoirs . . .

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years


These plots are based on the England and Wales figures listed below.

Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2005		2006			Avg.	Min.	Year*
			Nov	Dec	Jan	Feb	Mar	Mar	Mar	of min.
North West	N Command Zone	124929	74	90	82	89	90	93	78	1996
	Vyrnwy	55146	82	88	85	91	90	94	59	1996
Northumbrian	Teesdale	• 87936	85	91	93	94	100	90	72	1996
	Kielder	(199175)	(98)	(91)	(92)	(93)	(92)	(93)	(81)	1993
Severn Trent	Clywedog	44922	82	82	86	87	88	90	77	1996
	Derwent Valley	• 39525	75	86	92	93	98	94	46	1996
Yorkshire	Washburn	• 22035	69	79	92	85	89	92	53	1996
	Bradford supply	• 41407	65	80	81	82	83	94	53	1996
Anglian	Grafham	(55490)	(79)	(81)	(79)	(85)	(89)	(87)	(72)	1997
	Rutland	(116580)	(73)	(73)	(72)	(80)	(83)	(88)	(71)	1992
Thames	London	• 202406	65	80	87	92	98	91	83	1988
	Farmoor	13822	100	99	98	93	99	93	64	1991
Southern	Bewl	28170	39	36	34	37	50	86	50	2006
	Ardingly	4685	44	50	57	65	77	98	77	2006
Wessex	Clatworthy	5364	55	92	99	100	100	97	82	1992
	Bristol WW	• (38666)	(47)	(59)	(71)	(76)	(81)	(92)	(65)	1992
South West	Colliford	28540	46	51	56	60	62	85	57	1997
	Roadford	34500	57	63	68	69	71	83	35	1996
	Wimbleball	21320	62	73	77	84	95	94	72	1996
	Stithians	5205	43	64	74	83	88	92	45	1992
Welsh	Celyn and Brenig	• 131155	87	95	94	96	98	97	69	1996
	Brianne	62140	99	92	97	95	95	98	92	2004
	Big Five	69762	75	87	97	97	97	95	85	1988
	Elan Valley	• 99106	83	98	100	98	98	98	88	1993
Scotland(E)	Edinburgh/Mid Lothian	• 97639	80	94	93	95	94	94	73	1999
(-)	East Lothian	• 10206	72	93	93	100	99	99	91	1990
Scotland(W)	Loch Katrine	• 111363	95	88	82	94	95	95	86	2005
(· ·)	Daer	22412	100	98	97	100	99	99	94	2004
	Loch Thom	• 11840	87	100	100	100	100	99	90	2004
Northern	Total ⁺	• 67270	80	85	92	90	88	89	81	2004
Ireland	Silent Valley	• 20634	82	92	99	94	90	82	57	2002
	heses relate to gross storage				xcludes I			*last occur		

Details of the individual reservoirs in each of the groupings listed above are available on request. The featured reservoirs may not be representative of the storage conditions across each region; this can be particularly important during droughts. The storage figures relate to the 1988-2006 period only (except for West of Scotland and Northern Ireland where data commence in the mid-1990's). In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).

Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.

*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.

The Met Office FitzRoy Road Exeter Devon EX1 3PB

Tel.: 0870 900 0100 Fax: 0870 900 5050

E-mail: enquiries@metoffice.com

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs £48 per year. Orders should be addressed to:

Hydrological Summaries National Water Archive CEH Wallingford Maclean Building Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB

Tel.: 01491 838800 Fax: 01491 692424

E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/01/97) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright. Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.

© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

