Hydrological Summary for the United Kingdom

General

Overall, January was a wet and mild month - the $2^{\text {nd }}$ warmest on record for the UK, but with very boisterous weather during the first three weeks - accompanied by many flood alerts. Drawdown of reservoir levels for flood alleviation purposes were correspondingly common but, entering February, reservoir stocks were mostly near to capacity, and overall stocks for England and Wales were around 3\% above average. More significantly, stocks in the Southern Region were around twice those of a year ago. In the South West however, Colliford reservoir remained about 20\% below average. Groundwater resources improved markedly over the month as the exceptional December/January infiltration reached the, widely depressed, water-tables in much of the English Lowlands. Residual pockets of drought stress aside (e.g. in Cornwall), the $4^{\text {th }}$ wettest October-January period in the last 36 years (for E\&W) has transformed the water resources outlook.

Rainfall

Rigorous cyclonic conditions, with damaging winds, predominated during much of January but were succeeded by more settled weather as high pressure extended across the British Isles; in some eastern areas snow and fog-drip comprised the greater part of the late-January precipitation. Frontal rainfall generated a few exceptional daily rainfall totals (e.g. 89 mm at Capel Curig on the $9^{\text {th }}$) and the early dominance of a moist westerly airflow is reflected in the January rainfall totals. Much of north-western Britain and Wales registered $>120 \%$ of the January average with totals exceeding 200% in the wettest uplands (e.g. Snowdon). Totals in a relatively thin zone across southern England were below average, notably so in a few localities (e.g. Penzance, Isle of Wight); eastern Aberdeenshire was relatively dry also. The UK reported its $6^{\text {th }}$ successive month with above average rainfall and, over wide areas, the October-January rainfall was exceptional. In this timeframe, Scotland eclipsed its previous maximum by a very wide margin (in a series from 1914) and all regions (but not all areas) registered above average rainfall. With the exception of the South West, regional accumulations over 12 months also exceed the long term average. For the Highland Region the February-January precipitation was the $3{ }^{\text {rd }}$ highest in 93 years - reinforcing the exceptional wetness of northern Scotland over the last 15 years.

River FIow

River flows began the month close to, or modestly above, bankfull over wide areas; many flood alerts were in operation. The rapid passage of most frontal systems had a moderating effect on storm rainfall totals but many rivers remained in spate - for over three weeks in the case of the Thames. Floodplain inundations were common on the 10/ $11^{\text {th }}$ (e.g. at Callender, Appleby, Wensleydale, Milton Keynes) and by the $18^{\text {th }}$, flood alerts were in operation in all regions (with 135 Flood Watches across England and Wales). Most catchments were extremely vulnerable to further precipitation but strengthening anticyclonic conditions then initiated sustained recessions in responsive catchments; these continued well into February. By contrast, flows in many permeable catchments increased as the early winter pulse of groundwater recharge fuelled
heavy spring outflows. Flows in the Lambourn during the last week of January were the highest for four years and runoff in rivers dependant on baseflow were, typically, two or three times the corresponding totals in 2006. January runoff totals were well above average across most of the UK, and a number of new monthly maxima were established (e.g. on the Naver, Yscir and Camowen). The Thames registered its $5^{\text {th }}$ highest January flow in 48 years. Runoff rates over the post-October 2006 period have been exceptional across much of northern Britain, Northern Ireland and Wales. Many northern and western index rivers established new maximum November-January runoff totals, including the Tay, Earn and Welsh Dee, each with records exceeding 50 years. By contrast, in Cornwall, the Kenwyn reported its $14^{\text {th }}$ successive month with below average flows and runoff accumulations since the early autumn of 2004 remain depressed over a wide range of timespans.

Groundwater

With soils in almost all aquifer outcrop areas close to saturation, the January rainfall (mostly of moderate intensity) extended a very notable infiltration episode which began in mid-December 2006. Initial estimates indicate that in parts of the Chilterns effective rainfall total for the 2006/07 recharge season had, by mid January exceeded that for the combined recharge seasons of 2004/ 05 and 2005/06. Correspondingly, recoveries in groundwater levels have been exceptionally steep in many areas. At West Woodyates, Chilgrove and Tilshead, levels in the Chalk have risen 20-30 metres since the late-2006 minima and, by mid-January, levels at Rockley were approaching their mid-winter maximum. As notably in terms of the post-drought recovery, levels in much of the eastern Chalk had returned to, or were approaching, the normal late-winter range. Typical January levels characterised most index wells in the limestone aquifers, although levels were seasonally high in the Cotswolds. In many of the Permo-Triassic sandstones outcrops recoveries are well established - with levels in most of the south-western and northern outcrops appreciably above average. In the Midlands, however, levels remain very low in those aquifer units which respond very sluggishly to recharge (e.g. Heathlanes).

Centre for
Ecology \& Hydrology
NATURAL ENVIRONMENT RESEARCH COUNCIL

Rainfall

Rainfall accumulations and return period estimates

Area	Rainfall	Jan 2007	$\text { Oct } 06$	$-\operatorname{jan} 07$	$\text { Aug } 06$	$\text { 6-Jan } 07$	$\text { Feb } 0$	$\begin{array}{r} -\mathrm{Jan} 07 \\ R P \end{array}$		$\begin{array}{r} 4-\mathrm{Jan} 07 \\ R P \end{array}$
England \& Wales	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 107 \\ & 119 \end{aligned}$	$\begin{aligned} & 461 \\ & 127 \end{aligned}$	5-10	$\begin{aligned} & 626 \\ & 121 \end{aligned}$	5-10	$\begin{array}{r} 1000 \\ 110 \end{array}$	2-5	$\begin{array}{r} 1980 \\ 95 \end{array}$	2-5
North West	mm	$\begin{aligned} & 162 \\ & 136 \end{aligned}$	$\begin{aligned} & 697 \\ & 140 \end{aligned}$	15-25	$\begin{aligned} & 927 \\ & 128 \end{aligned}$	10-20	$\begin{array}{r} 1439 \\ 118 \end{array}$	$5-15$	$\begin{array}{r} 2852 \\ 102 \end{array}$	2-5
Northumbrian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 113 \\ & 135 \end{aligned}$	$\begin{aligned} & 429 \\ & 130 \end{aligned}$	5-10	$\begin{aligned} & 607 \\ & 125 \end{aligned}$	5-15	$\begin{aligned} & 945 \\ & 109 \end{aligned}$	2-5	$\begin{array}{r} 1999 \\ 101 \end{array}$	2-5
Severn Trent	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 86 \\ 122 \end{array}$	$\begin{aligned} & 358 \\ & 125 \end{aligned}$	$5-10$	$\begin{aligned} & 515 \\ & 122 \end{aligned}$	$5-10$	$\begin{aligned} & 843 \\ & 110 \end{aligned}$	2-5	$\begin{array}{r} 1653 \\ 94 \end{array}$	2-5
Yorkshire	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 103 \\ & 129 \end{aligned}$	$\begin{aligned} & 419 \\ & 132 \end{aligned}$	$5-15$	$\begin{aligned} & 621 \\ & 134 \end{aligned}$	15-25	$\begin{aligned} & 999 \\ & 120 \end{aligned}$	10-20	$\begin{array}{r} 1894 \\ 99 \end{array}$	2-5
Anglian	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 61 \\ 120 \end{array}$	$\begin{aligned} & 257 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 417 \\ & 130 \end{aligned}$	10-20	$\begin{aligned} & 669 \\ & 111 \end{aligned}$	2-5	$\begin{array}{r} 1292 \\ 94 \end{array}$	2-5
Thames	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 79 \\ 119 \end{array}$	$\begin{aligned} & 365 \\ & 137 \end{aligned}$	10-20	$\begin{aligned} & 508 \\ & 132 \end{aligned}$	10-20	$\begin{aligned} & 800 \\ & 114 \end{aligned}$	$5-10$	$\begin{array}{r} 1457 \\ 91 \end{array}$	$5-10$
Southern	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 76 \\ & 94 \end{aligned}$	$\begin{aligned} & 407 \\ & 123 \end{aligned}$	$5-10$	$\begin{aligned} & 539 \\ & 118 \end{aligned}$	2-5	$\begin{aligned} & 849 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1591 \\ 87 \end{array}$	$5-15$
Wessex	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 97 \\ 108 \end{array}$	$\begin{aligned} & 45 \mathrm{I} \\ & 129 \end{aligned}$	$5-10$	$\begin{aligned} & 569 \\ & 116 \end{aligned}$	2-5	$\begin{aligned} & 926 \\ & 108 \end{aligned}$	2-5	$\begin{array}{r} 1827 \\ 92 \end{array}$	2-5
South West	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{array}{r} 114 \\ 82 \end{array}$	$\begin{aligned} & 545 \\ & 104 \end{aligned}$	2-5	$\begin{array}{r} 665 \\ 94 \end{array}$	2-5	$\begin{array}{r} 1118 \\ 94 \end{array}$	2-5	$\begin{array}{r} 2412 \\ 86 \end{array}$	10-20
Welsh	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 185 \\ & 128 \end{aligned}$	$\begin{aligned} & 754 \\ & 129 \end{aligned}$	5-15	$\begin{aligned} & 934 \\ & 116 \end{aligned}$	2-5	$\begin{array}{r} 1480 \\ 110 \end{array}$	2-5	$\begin{array}{r} 3013 \\ 96 \end{array}$	2-5
Scotland	$\operatorname{mm}_{\%}^{\text {mm }}$	$\begin{aligned} & 248 \\ & 160 \end{aligned}$	$\begin{aligned} & 935 \\ & 149 \end{aligned}$	>100	$\begin{array}{r} 1181 \\ 133 \end{array}$	60-80	$\begin{array}{r} 1773 \\ 121 \end{array}$	30-40	$\begin{gathered} 3778 \\ \text { III } \end{gathered}$	15-25
Highland	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 350 \\ & 193 \end{aligned}$	$\begin{array}{r} 1234 \\ 162 \end{array}$	>100	$\begin{array}{r} 1494 \\ 141 \end{array}$	80-100	$\begin{array}{r} 2211 \\ 127 \end{array}$	40-60	$\begin{array}{r} 4798 \\ 118 \end{array}$	>100
North East	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 106 \\ & 103 \end{aligned}$	$\begin{aligned} & 491 \\ & 121 \end{aligned}$	$5-10$	$\begin{aligned} & 659 \\ & 112 \end{aligned}$	2-5	$\begin{array}{r} 1052 \\ 102 \end{array}$	2-5	$\begin{array}{r} 2349 \\ 99 \end{array}$	2-5
Tay	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 199 \\ & 136 \end{aligned}$	$\begin{aligned} & 799 \\ & 147 \end{aligned}$	30-50	$\begin{array}{r} 1029 \\ 135 \end{array}$	20-35	$\begin{array}{r} 1525 \\ 118 \end{array}$	5-15	$\begin{array}{r} 3169 \\ 106 \end{array}$	2-5
Forth	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 179 \\ & 151 \end{aligned}$	$\begin{aligned} & 624 \\ & 133 \end{aligned}$	10-20	$\begin{aligned} & 844 \\ & 124 \end{aligned}$	10-20	$\begin{array}{r} 1302 \\ 114 \end{array}$	$5-10$	$\begin{array}{r} 2794 \\ 106 \end{array}$	2-5
Tweed	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 128 \\ & 127 \end{aligned}$	$\begin{aligned} & 523 \\ & 133 \end{aligned}$	10-20	$\begin{aligned} & 741 \\ & 129 \end{aligned}$	10-20	$\begin{array}{r} 1125 \\ 112 \end{array}$	5-10	$\begin{array}{r} 2337 \\ 102 \end{array}$	2-5
Solway	$\underset{\%}{\mathrm{~mm}}$	$\begin{array}{r} 197 \\ 130 \end{array}$	$\begin{aligned} & 863 \\ & 142 \end{aligned}$	25-40	$\begin{array}{r} 1123 \\ 129 \end{array}$	10-20	$\begin{array}{r} 1718 \\ 120 \end{array}$	10-20	$\begin{array}{r} 3472 \\ 105 \end{array}$	2-5
Clyde	$\begin{aligned} & \mathrm{mm} \\ & \% \end{aligned}$	$\begin{aligned} & 291 \\ & 154 \end{aligned}$	$\begin{array}{r} 1137 \\ 150 \end{array}$	70-100	$\begin{array}{r} 1464 \\ 136 \end{array}$	70-100	$\begin{array}{r} 2167 \\ 124 \end{array}$	30-45	$\begin{array}{r} 4490 \\ 111 \end{array}$	10-20
Northern Ireland	$\underset{\%}{\mathrm{~mm}}$	$\begin{aligned} & 134 \\ & 116 \end{aligned}$	$\begin{aligned} & 533 \\ & 119 \end{aligned}$	2-5	$\begin{aligned} & 761 \\ & 118 \end{aligned}$	5-10	$\begin{array}{r} 1240 \\ 113 \end{array}$	5-10	$\begin{array}{r} 2531 \\ 100 \end{array}$	<2

[^0]
Rainfall... Rainfall...

Key
Sery Normal range

October 2006 - January 2007
February 2006 - January 2007

Rainfall accumulation maps

The regional rainfall maps covering the last 4- and 12-month periods demonstrate why the focus of hydrological stress has switched from drought to the risk of flooding, in north-west Britain especially. The February 2006 - January 2007 period is the 6th wettest for the UK as whole in a series from 1914 and positive anomalies in the $20-30 \%$ range characterise the October 2006 - January 2007 rainfall over most of the region afflicted by drought in the summer of 2006. The exception is the South West where within-region variations in accumulated rainfall totals remain large.

River flow . . . River flow

River flows

*Comparisons based on percentage flows alone can be misleading. A given percentage flow can represent extreme drought conditions in permeable catchments where flow patterns are relatively stable but be well within the normal range in impermeable catchments where the natural variation in flows is much greater. Note: the period of record on which these percentages are based varies from station to station. Percentages may be omitted where flows are under review.

River flow . . . River flow

River flow hydrographs

The river flow hydrographs show the daily mean flows together with the maximum and minimum daily flows prior to February 2006 (shown by the shaded areas). Daily flows falling outside the maximum/minimum range are indicated where the bold trace enters the shaded areas.

River flow . . . River flow

Notable runoff accumulations (a) November 2006 - January 2007, (b) November 2004 - January 2007

Groundwater . . . Groundwater

Groundwater levels normally rise and fall with the seasons, reaching a peak in the spring following replenishment through the winter (when evaporation losses are low and soil moist). They decline through the summer and early autumn. This seasonal variation is much reduced when the aquifer is confined below overlying impermeable strata. The monthly mean and the highest and lowest levels recorded for each month are displayed in a similar style to the river flow hydrographs. Note that most groundwater levels are not measured continuously - the latest recorded levels are listed overleaf.

Groundwater . . . Groundwater

Groundwater levels January / February 2007

Borehole

 Dalton Holme Washpit Farm Stonor Park Dial Farm Rockley Well House Inn West WoodyatesLevel Date Jan. av.
15.13 08/01 17.16 $43.70 \quad 05 / 02 \quad 43.78$ $69.27 \quad 31 / 01 \quad 73.42$ $25.06 \quad 12 / 01 \quad 25.49$ $143.63 \quad 31 / 01 \quad 136.26$ $97.70 \quad 29 / 01 \quad 94.90$ $98.72 \quad 31 / 01 \quad 91.55$

Borehole

Chilgrove House Killyglen New Red Lion Ampney Crucis Newbridge Skirwith Swan House

Lev

Level Date Jan. a

31/01
14.44 25/01
$102.94 \quad 19 / 01$
$\begin{array}{llr}11.55 & 01 / 02 & 10.72\end{array}$
$131.31 \quad 26 / 01 \quad 130.43$
$84.59 \quad 18 / 01$

Borehole Brick House Farm Llanfair DC Heathlanes Weeford Flats Bussels No.7a Alstonfield
-203.47 09/01 198.49
Level Date Jan. av.

| 80.05 | $15 / 01$ | 79.96 |
| :--- | :--- | :--- | $60.71 \quad 28 / 01 \quad 61.94$ $89.39 \quad$ 03/01 89.65 24.17 24/01

84.28 Levels in metres above Ordnance Datum

Groundwater...Groundwater

Groundwater levels - January 2007

The rankings are based on a comparison between the average level in the featured month (but often only single readings are available) and the average level in each corresponding month on record. They need to be interpreted with caution especially when groundwater levels are changing rapidly or when comparing wells with very different periods of record. Rankings may be omitted where they are considered misleading.
Notes: i. The outcrop areas are coloured according to British Geological Survey conventions.
ii. Yew Tree Farm levels are now received quarterly.
iii. Data for Nuttalls Farm are currently under review.

Reservoirs . . . Reservoirs

Guide to the variation in overall reservoir stocks for England and Wales

Comparison between overall reservoir stocks for England and Wales in recent years

These plots are based on the England and Wales figures listed below.
Percentage live capacity of selected reservoirs at start of month

Area	Reservoir	Capacity (MI)	2006		2007	Feb	Min.	Year*	2006	Diff
			Dec	Jan	Feb	Anom.	Feb	of min.	Feb	07-06
North West	N Command Zone	- 124929	97	99	96	4	63	1996	89	7
	Vyrnwy	55146	95	99	93	2	45	1996	91	2
Northumbrian	Teesdale	- 87936	100	89	86	-6	51	1996	94	-8
	Kielder	(199175)	(94)	(92)	(91)	-3	(85)	1989	(93)	-2
Severn Trent	Clywedog	44922	82	83	90	3	62	1996	87	3
	Derwent Valley	- 39525	91	87	100	7	15	1996	93	7
Yorkshire	Washburn	- 22035	94	96	96	8	34	1996	85	11
	Bradford supply	- 41407	97	100	98	6	33	1996	82	16
Anglian	Grafham	(55490)	(88)	(93)	(93)	7	(67)	1998	(85)	8
	Rutland	(116580)	(75)	(88)	(94)	9	(68)	1997	(80)	14
Thames	London	- 202406	95	92	95	6	70	1997	92	3
	Farmoor	- 13822	84	100	95	3	72	2001	93	2
Southern	Bewl	28170	62	83	100	20	37	2006	37	63
	Ardingly	4685	88	100	100	8	65	2006	65	35
Wessex	Clatworthy	5364	70	100	100	5	62	1989	100	0
	BristolWW	- (38666)	(69)	(87)	(97)	13	(58)	1992	(76)	21
South West	Colliford	28540	46	53	61	-21	52	1997	60	1
	Roadford	34500	61	70	78	-2	30	1996	69	9
	Wimbleball	21320	73	84	100	11	59	1997	84	16
	Stithians	5205	43	67	85	-2	38	1992	83	2
Welsh	Celyn and Brenig	- 131155	96	98	98	4	61	1996	96	2
	Brianne	62140	100	100	97	-I	84	1997	95	2
	Big Five	- 69762	89	96	97	4	67	1997	97	0
	Elan Valley	- 99106	100	100	97	0	73	1996	98	-I
Scotland(E)	Edinburgh/Mid Lothian	- 97639	93	100	100	7	72	1999	95	5
	East Lothian	- 10206	78	93	100	3	68	1990	100	0
Scotland(W)	Loch Katrine	- 111363	100	100	94	I	85	2000	94	0
	Daer	22412	100	98	98	-I	91	1997	100	-2
	Loch Thom	- 11840	97	97	94	-4	90	2004	100	-6
Northern	Total ${ }^{+}$	- 67270	90	90	89	0	75	2002	90	-I
Ireland	Silent Valley	- 20634	93	93	91	8	46	2002	94	-3
() figures in parentheses relate to gross storage		- denotes reservoir	groups	+excludes Lough Neagh				*last occurrence - see footnote		

[^1]
Location map . . . Location map

National Hydrological Monitoring Programme

The National Hydrological Monitoring Programme (NHMP) was instigated in 1988 and is undertaken jointly by the Centre for Ecology and Hydrology Wallingford (formerly the Institute of Hydrology - IH) and the British Geological Survey (BGS). Financial support for the production of the monthly Hydrological Summaries is provided by the Department for Environment, Food and Rural Affairs (Defra), the Environment Agency (EA), the Scottish Environment Protection Agency (SEPA), the Rivers Agency (RA) in Northern Ireland, and the Office of Water Services (OFWAT).

Data Sources

River flow and groundwater level data are provided by the Environment Agency, the Environment Agency Wales, the Scottish Environment Protection Agency and, for Northern Ireland, the Rivers Agency and the Department of the Environment (NI). In all cases the data are subject to revision following validation (flood and drought data in particular may be subject to significant revision).
Reservoir level information is provided by the Water Service Companies, the EA, Scottish Water and the Northern Ireland Water Service.

The National River Flow Archive (maintained by CEH Wallingford) and the National Groundwater Level Archive (maintained by BGS) provide the historical perspective within which to examine contemporary hydrological conditions.

Rainfall

Most rainfall data are provided by the Met Office (see opposite). To allow better spatial differentiation the rainfall data for Britain are presented for the regional divisions of the precursor organisations of the EA and SEPA. Following the discontinuation of the Met Office's CARP system in July 1998, the areal rainfall figures have been derived using several procedures, including initial estimates based on MORECS*. Recent figures have been produced by the Met Office, National Climate Information Centre (NCIC), using a technique similar to CARP. A significant number of additional monthly raingauge totals are provided by the EA and SEPA to help derive the contemporary regional rainfalls. Revised monthly national and regional rainfall totals for the post-1960 period (together with revised 1961-90 averages) were made available by the Met Office in 2004; these have been adopted by the NHMP. As with all regional figures based on limited raingauge networks the monthly tables and accumulations (and the return periods associated with them) should be regarded as a guide only.

The monthly rainfall figures are provided by the Met Office (National Climate Information Centre) and are Crown Copyright and may not be passed on to, or published by, any unauthorised person or organisation.
*MORECS is the generic name for the Met Office services involving the routine calculation of evaporation and soil moisture throughout Great Britain.
The Met Office
FitzRoy Road
Exeter
Devon
EX1 3PB

Tel.: 08709000100
Fax: 08709005050
E-mail: enquiries@metoffice.com

The National Hydrological Monitoring Programme depends on the active cooperation of many data suppliers. This cooperation is gratefully acknowledged.

Subscription

Subscription to the Hydrological Summaries costs $£ 48$ per year. Orders should be addressed to:

Hydrological Summaries
National Water Archive
CEH Wallingford
Maclean Building
Crowmarsh Gifford
Wallingford
Oxfordshire
OX10 8BB

Tel.: 01491838800
Fax: 01491692424
E-mail: nwamail@ceh.ac.uk

Selected text and maps are available on the WWW at http://www.nerc-wallingford.ac.uk/ih/nrfa/index.htm Navigate via Water Watch

Some of the features displayed in the maps contained in this report are based on the Ordnance Survey BaseData GB and 1:50,000 digital data (Licence no. GD03012G/ $01 / 97$) and are included with the permission of Her Majesty's Stationery Office. © Crown Copyright.

Rainfall data supplied by the Met Office are also Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution.
© This document is copyright and may not be reproduced without the prior permission of the Natural Environment Research Council.

[^0]: Important note: Figures in the above table may be quoted provided that their source is acknowledged. See page 12. Where appropriate, specific reference must be made to the uncertainties associated with the return period estimates. Generally, the return period estimates are based on tables provided by the Met Office but those for Northern Ireland are based on the estimates for north-west England. The estimates relate to the specified region and span of months only (RPs may be an order of magnitude less if n-month periods beginning in any month are considered), they reflect rainfall variability over the period 1911-70 only, and assume a stable climate. (For further details see Tabony, R. C., 1977, The variability of long duration rainfall over Great Britain, Scientific Paper No. 37). The timespans featured do not purport to represent the critical periods for any particular water resource management zone and, normally, for hydrological or water resources assessments of drought severity, river flows and groundwater levels provide a better guide than return periods based on rainfall totals.

[^1]: Details of the individual reservoirs in each of the groupings listed above are available on request. The percentages given in the Average and Minimum storage columns relate to the 1988-2006 period except for West of Scotland and Northern Ireland where data commence in the mid-1990's. In some gravity-fed reservoirs (e.g. Clywedog) stocks are kept below capacity during the winter to provide scope for flood attenuation purposes.

