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ABSTRACT 

 
Body mass, fork length, RNA:DNA ratio, specific growth rate, and hepatic EROD activity and 

CYP1A expression, were measured in three-spined sticklebacks in the River Ray (south west 

England) at sites downstream of an urban waste water treatment works (WWTW) prior to, and 

following, remediation of the effluent with granular activated carbon (GAC) tertiary treatment. 

During the same two-year period fish were also sampled from a neighbouring reference river (R. 

Ock). The WWTW effluent elevated water temperatures and nutrient content in the R. Ray and 

rendered a direct comparison of fish populations in the two rivers untenable. Instead, the stability of 

population parameters within each river during matched pre- and post-remediation periods was 

compared. Stickleback populations in both rivers were annual but fish in the R. Ray spawned earlier 

and were larger than those in the R. Ock. In the R. Ray fish gained mass throughout the winter 

months whereas in the R. Ock growth was much reduced during this period. In fish from the R. Ray 

the somatic RNA:DNA ratio remained elevated during May-November after remediation, rather 

than declining as in the same period pre-remediation and as was the case for fish in the R. Ock 

during both periods. The specific growth rate of the first post-remediation generation of 

sticklebacks in the R. Ray was higher than that of the previous pre-remediation generation. 

Following remediation there was no decline in hepatic EROD activity or in the abundance of 

hepatic CYP1A transcripts in fish in the R. Ray suggesting that the primary route of exposure to 

contaminants for these fish was not via the water column, and that the change in performance of the 

fish post-remediation was not impeded by continued exposure to contaminants. Both EROD activity 

and CYP1A expression increased in fish in the R. Ock during the later stages of the study 

suggesting that the fish in this river were exposed to an unidentified contaminant episode. This may 

have been linked with the poorer performance of fish in the R. Ock during the post-remediation 

period. The improved performance of fish in the R. Ray suggest that there may be factors in good 

quality secondary treated sewage effluent which can adversely influence the performance of fish 

populations, directly or indirectly, and which can be removed by tertiary treatment. 
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1. Introduction 
 
 
 
 

In 2006 the Environment Agency of England and Wales and the Department for Environment Food 

and Rural Affairs established a National Demonstration Programme in the United Kingdom to 

evaluate the effectiveness of a range of water treatment options for the removal of endocrine 

disrupting chemicals (EDCs) from waste water effluent (Huo and Hickey, 2007). The demonstration 

programme involved the collaborative participation of ten water companies in England and Wales 

and was coordinated by UK Water Industry Research (UKWIR, 2009). As part of this programme, a 

granular activated carbon (GAC) system for the adsorption of EDCs was installed at Swindon waste 

water treatment works (WWTW; Rodbourne, Swindon, UK). The primary purpose of the upgrade 

was to eliminate from the effluent, or significantly reduce in concentration, steroid estrogens and 

other potential endocrine disrupters. The study described here was part of a project designed to 

evaluate some of the effects of the GAC upgrade on the fish populations downstream of the 

WWTW. 
 
 
 
 

The three-spined stickleback (Gasterosteus aculeatus L.) was selected as the target species for the 

study because of its local abundance, ease of capture, and status as a model species for ecological, 

behavioural and ecotoxicological studies (Katsiadaki et al., 2002; Pottinger et al., 2002; Sanchez et 

al., 2008a; Huntingford and Ruiz-Gomez, 2009). The stickleback populations in the R. Ray and in a 

nearby reference river unaffected by WWTW discharges, the R. Ock, were sampled at intervals 

during the study period. No evidence for disruption of the endocrine reproductive system or of 

gonadal structure, was detected in the stickleback population in the R. Ray prior to remediation 

(Katsiadaki et al., unpublished). However, because the GAC adsorption process is effective in 
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removing a high proportion of organic molecules from solution (Kim et al., 2007; Snyder et al., 

 
2007) the possibility that the remediation of the effluent affected targets other than the reproductive 

endocrine system was investigated. Indices of somatic status (weight, length, RNA:DNA ratio) 

were assessed for fish in both rivers, making the assumption that these high-level endpoints would 

collectively integrate the effects of any change in conditions in the R. Ray arising from effluent 

remediation and the R. Ock would in addition control for any influences on the fish populations of 

catchment-wide events. The activity of the monooxygenase cytochrome P4501A, as both 

ethoxyresorufin–O-deethylase (EROD) activity and as the relative abundance of cytochrome P450 

1A (CYP1A) transcription, was measured in order to determine whether exposure of the fish to one 

subset of organic contaminants (polyaromatic hydrocarbons) typical of urban WWTW effluent was 

reduced following installation of the GAC plant. 

 

 
 

2. Materials and methods 
 
 
 
 

2.1. Sampling sites 
 

 
 

Fish were sampled from four sites on each river (Fig. 1, Table 1). On the R. Ray the first of these was 

immediately adjacent to the WWTW outfall (mean dry weather WWTW discharge = 0.51 m
3
/sec, 

data courtesy Thames Water; mean annual river discharge 1.34 m
3
/sec, Water Eaton Gauging 

Station; Marsh and Hannaford, 2008) with additional sites 1.8 km, 5.9 km and 9.5 km downstream. 

Three reference sites were located on the R. Ock and one on the Childrey Brook, a major tributary of 

the R. Ock. These sites received very little waste water (maximum dry weather WWTW flow 

upstream of the sampling sites = 0.009 m
3
/sec, data courtesy Thames Water; mean annual river 

discharge 1.55 m
3
/sec, Abingdon Gauging Station; Marsh and Hannaford, 2008). Samples of fish 

were collected from both rivers on six occasions prior to the remediation of the effluent (April, May, 

July, September and November 2007 and January 2008) and on five occasions 
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following the commissioning of the GAC plant at the Rodbourne WWTW (in March, May, July, 

September and November 2008). 

 

 
 

2.2. Water chemistry 
 
 
 
 

Water temperature, dissolved oxygen (DO), pH, ammonium-N, conductivity and turbidity were 

recorded at 20 minute intervals using sondes (YSI 6920; Yellow Springs Instruments) sited 100m 

downstream of the Rodbourne WWTW effluent discharge point on the R. Ray (ROD), and at 

Charney Bassett (CB) on the R. Ock. 

 

 
 

2.3. Fish capture and processing 
 
 
 
 

Three-spined sticklebacks were captured with a large hand net (38 cm D-frame, 0.5 cm mesh, 1.5 m 

glassfibre handle). After capture, fish were held temporarily in buckets containing river water and 

then killed with a lethal dose of anaesthetic (2-phenoxyethanol, 1:1000). Fish were placed in 

individually labelled 12 ml polypropylene centrifuge tubes and frozen in a liquid N2 dry shipper 

(Taylor-Wharton CryoExpress CX500, Jencons plc) for transfer to the laboratory. On arrival the 

samples were transferred to a freezer (-80°C) for storage until required for analysis. Tubes containing 

fish were removed from the freezer in groups of six and placed on ice. While still frozen, each fish in 

turn was removed from its tube and weight (mg) and fork-length (mm) were recorded. 

A ventral incision was made using dissecting scissors and the heart and kidney were removed and 

stored frozen for subsequent VTG and spiggin analysis (Katsiadaki et al., unpublished). For a sub- 

set of fish in January and March 2008 livers were processed as described in 2.5. For an additional 

sub-set of fish in September and November 2007 and 2008 the liver was removed and placed into 

1.0 ml RNAlater (Sigma-Aldrich) in a 1.5 ml capped polypropylene centrifuge tube on ice. The 

remainder of each fish was returned to the sample tube and placed in the freezer. Liver samples in 
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RNAlater were held at 4°C for 24h and then stored (-20°C) until required for RNA extraction. After 

dissections were completed, the remainder of the fish was homogenised to provide a substrate for the 

measurement of total RNA and DNA. Each fish was minced on a glass Petri dish with a single- 

edged razor blade. The minced tissue was returned to the sample tube and chilled homogenisation 

buffer was added (4:1; volume:weight; Tris-HCl buffer, pH 8.0 containing 0.1M NaCl, 0.01 M 

EDTA). The mixture was homogenised using an IKA Ultra-Turrax TP18/10 with an 8 mm 

dispersing tool (S25 N–8 G), with cooling on ice between bursts. The homogenate was stored 

frozen (-20
o
C) until required for assay. 

 
 
 
 

2.4. RNA:DNA ratio 
 
 
 
 

Nucleic acids were extracted from homogenised stickleback tissue using 1% sarcosyl (N- 

lauroylsarcosine sodium salt) in buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5) and quantified using 

a fluorescent dye-binding method (Quant-It RiboGreen reagent, RNA assay kit; Invitrogen) as 

described by Gorokhova and Kyle (2002). RiboGreen is a non-specific nucleic acid dye allowing 

estimation of total RNA + DNA fluorescence (excitation 485 nm, emission 535 nm; Fluoroskan 

Ascent FL; Thermo Scientific) and then, following RNAse treatment of the sample, quantification 

of fluorescence attributable to DNA alone and by difference between the two readings the RNA 

 
content. 

 
 
 
 

2.5. EROD 
 
 
 
 

Activity of the cytochrome P4501A monooxygenase, ethoxyresorufin–O-deethylase (EROD) was 

measured in liver tissue from fish collected in 2008 from the two rivers immediately prior to 

(January) and following (March) commissioning of the GAC plant. A microplate kinetic assay 

requiring small amounts of tissue was adopted, based on that described by Hodson et al. (1996). 
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Livers were homogenized in a constant volume of 400 μl phosphate buffer (pH 7.4, containing 20% 

glycerol; 1 mM EDTA; 1 mM dithiothreitol) in a 1.5 ml capped centrifuge tube, using a motor- 

driven pestle, then centrifuged at 4°C for 15 minutes. The assay was carried out in 96-well plates in a 

plate reader (Fluoroskan Ascent FL, Thermo Scientific) with excitation at 530 nm and emission at 

590 nm. For the unknowns, each well of the plate contained 50 μl liver homogenate supernatant and 

 
50 μl of 10.0 μM 7-ethoxyresorufin in homogenisation buffer. Protein concentrations in the liver 

homogenates were determined using the fluorescamine-based microplate method of Lorenzen and 

Kennedy (1993). 

 

 
 

2.6. CYP1A gene expression 
 
 
 
 

RNA was extracted from stickleback livers (RNeasy mini kit, Qiagen) and converted to cDNA using 

a high capacity cDNA reverse transcriptase kit (Applied Biosystems). The yield and purity of RNA 

extracts was assessed at 260 nm using the Nanodrop ND-1000 spectrophotometer (Labtech). 

Relative expression of CYP1A was determined using a StepOne real-time PCR machine (Applied 

Biosystems). The sequences for amplification primers and a minor groove binding (MGB) Taqman 

fluorogenic probe were derived from previous work (Geoghegan et al., 2008). Primers CYP1AFP 

(5’-GGAATTGTCAATGACCTGTTTGG–3’) and CYP1ARP (5’- 

CGGATGAGCCACCATGTACA-3’) and the MGB Taqman probe CYP1ATP (5’-6FAM- 

ACACCGTCAGCACGACATTGTCATGG-3’) were checked for specificity by using BLASTn 

(Altschul et al., 1997) within the NCBI suite of facilities (www.ncbi.nlm.nih.gov). All reagents and 

kits used in amplifications were obtained from Applied Biosystems. Optimum primer (300 nM) and 

MGB probe concentration (250 nM) were determined empirically using cDNA pooled from fish 

liver RNA extractions as template. Duplex relative gene expression real-time PCR assays were 

performed in 20 µl reaction volumes. All reactions received the following: 3 µl cDNA; 10 µl 

Taqman Gene Expression Master Mix (2x concentration); 2 µl of each primer (300 nM); 2 µl (250 
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nM) MGB and 1 µl Human 18S rRNA endogenous control mixture (containing limited 

concentration primers and VIC-labelled MGB Taqman probe specific to 18S rRNA). The cycling 

parameters of 1 cycle of 50°C for 2 min (activation of uracyl glycosylase) followed by 1 cycle of 

95°C for 10 min (activation of Amplitaq gold) and 45 cycles of 95°C for 15 secs and 60°C for 1 

min were maintained in all cases. In accordance with accepted guidelines for carrying out the 

comparative cycle threshold (Ct) method, the relative amplification efficiencies of template and 

endogenous control were tested and confirmed. Baselines and cycle threshold values were 

automatically calculated by the StepOne software. Expression of CYP1A in each sample was 

normalised to that of 18s rRNA using the equation R = 1000*[(2
Ct18s

) / (2
CtCYP1A

)] where R is 

relative expression level, and Ct is the cycle threshold for target and control genes. Amplification 

efficiencies were not adjusted for each sample. The overall mean Ct value of 9.0 obtained for the 

internal control gene (18s rRNA) was similar to the value previously reported for 18s in zebra fish 

liver (11.7; Filby and Tyler, 2007) and recent studies indicate that the expression of 18s remains 

constant in sticklebacks during exposure to chemical stressors (Williams et al., 2009). The overall 

mean Ct value for CYP1A was approximately 22.5. 

 

 
 

2.7. Statistical analysis 
 
 
 
 

Body mass, fork length, RNA:DNA ratios, EROD and CYP1A expression data were transformed 

(log10(data + 1)) where necessary and differences between means were evaluated with analysis of 

variance (ANOVA; Genstat for Windows V. 8, Lawes Agricultural Trust; Kruskal-Wallis ANOVA, 

SigmaStat 3.5, Systat Software Inc.). Multiple comparison post tests to assess significant 

differences between times or rivers were carried out using the estimated standard error of the 

differences between means (Genstat) or with pairwise multiple comparisons using Dunn’s method 

(SigmaStat). Water chemistry data were analysed with a two-way ANOVA followed by Tukey’s 

pairwise multiple comparison test (SigmaStat). For all analyses alpha was set at 0.05. The 
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Kolmogorov-Smirnov two-sample test (SYSTAT 11; Systat Software Inc.) was used to determine 

whether the length frequency distributions differed significantly between the two rivers. Specific 

growth rate (SGR) for fish in the R. Ray was calculated as percent day
-1 

for either mass or length: 

SGR = [100*(ln(Wt2/Wt1)/(t2-t1)] where Wt2 and Wt1 were the mean body mass or length for fish in 

November and July respectively and (t2-t1) was the number of days within this period. A paired t- 

test (SigmaStat) was used to compare SGR during the pre- and post-remediation periods. 

 
 
 

3. Results 
 
 
 
 

3.1. Water chemistry and physicochemical measurements 
 
 
 
 

Seasonal variation in water temperature for both rivers was evident from data collected at the 

continuous monitoring sites (R. Ray: Rodbourne; R. Ock: Charney Bassett; Fig 2a; Table 2) and 

from that collected at time of sampling (Table 3). The two rivers exhibited a markedly different 

temperature regime during the two-year monitoring period with the mean temperature in the R. Ray 

downstream of the Rodbourne WWTW in both years significantly higher than that in the R. Ock 

(P<0.001). There was a negligible decline in water temperature at sites downstream of the WWTW 

(Table 3) and a temperature difference between the two rivers of at least 2 – 3
o
C was sustained at all 

 
sites and in both years (Table 3). Mean DO concentration (as percent saturation) was higher in the 

R. Ock than in the R. Ray (P<0.01; Fig. 2b, Table 2) during 2007. Following the installation of the 

GAC plant in February 2008, DO concentrations in the R. Ray were significantly elevated 

compared to pre-remediation levels (P<0.01) but remained lower overall than those in the R. Ock 

(P<0.01). The pH was significantly lower in the R. Ray than in the R. Ock (P<0.001) and no 

changes in pH were evident in the R. Ray following the installation of the GAC plant (Table 2). 

Ammonium–N concentrations were significantly higher in the R. Ray than in the R. Ock in both 

2007 and 2008 and higher in 2008 than 2007 in both rivers (Table 2). Higher conductivity and 
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turbidity levels in the R. Ray indicated that the R. Ray contained higher concentrations of 

suspended and total dissolved solids than the R. Ock (Table 2). 

 

 
 

3.2. Body mass, fork length, sex ratio 
 
 
 
 

The data from Childrey Brook (Venn Mill; VM) were combined with those from sites on the R. Ock 

and the aggregate data are referred to as R. Ock throughout. Fish abundance data were unavailable 

because of practical constraints. Mark-recapture methods for abundance estimation were not 

adopted because of the unrestricted movement enjoyed by the resident fish and quantitative 

estimation of abundance by catch depletion and timed electric fishing was also unsuccessful 

because of the preferred habitat of the fish. The size selectivity of the mesh in the dip nets dictated 

that no fish smaller than 15 mm in length were caught. The distribution of three-spined sticklebacks 

at each sample site (comprising approx. 200m of river) was patchy with fish captured in areas 

characterised by low flow and the presence of submerged and emergent macrophytes. The 

stickleback populations in both rivers were annual, with few adult (1+) fish surviving beyond the 

spawning period into a second year, although the loss of adults post-spawning was most 

pronounced in the R. Ray. The shape and location of the length frequency distributions for the 

populations in the two rivers differed significantly (P<0.001). Fish in the R. Ock were smaller 

overall (mean ± SEM: mass, 663 ± 13 mg; length, 38.3 ± 0.2 mm; n = 782) than those in the R. Ray 

(mass, 841 ± 20 mg; length, 41.9 ± 0.3 mm; n = 663). No significant overall difference in body 

mass was evident between male and female fish during 2007 and 2008 (M: 749 ± 18 mg, n = 570; F: 

742 ± 16 mg, n = 875; P > 0.05) although there was a small but significant difference in length (M: 

40.3 ± 0.3 mm; F = 39.7 ± 0.3 mm; P<0.05). For clarity, data for both sexes were combined in order 

to compare the pre-remediation (2007) and post-remediation (2008) periods. During 2007 the sex 

ratio deviated from unity among both the fish caught from the R. Ray (M/F = 0.69) and those caught 

from the R. Ock (M/F = 0.63; P<0.001; Chi square test). However, during 2008, the sex 
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ratio in the R. Ray did not deviate significantly from unity (M/F = 0.79) whereas the R. Ock 

population remained biased in favour of females (M/F = 0.53). Direct observation of fish in 

spawning condition coupled with the results of the histological examination of gonadal tissue 

carried out during 2007 (C. Mungo, unpublished.) confirmed that fish in the R. Ray spawned earlier 

than those in the R. Ock (April/May and May onwards respectively). 

 

 
 

Length frequency plots for the bi-monthly matched samples collected from the R. Ray in May, July, 

September and November of 2007 and 2008 (Fig. 3a-d) show that during May 2007 (Fig. 3a) both 

adults (1+ years old) and juveniles (0+ years old) were present whereas the distribution was unimodal 

from July onwards (Fig. 4a,b). Clearly separated year classes were not present in the length 

frequency distributions for the R. Ock (Fig. 3e-h), with an overlap in size from July onwards between 

the juvenile fish and surviving adults evident in the extended upper tail of the distributions. For fish 

in the R. Ray, mean body mass (Fig. 4a) and mean fork length (Fig. 4b) increased significantly 

(P<0.001) from July 2007 to a maximum in May 2008, a period during which the majority of fish 

captured could confidently be assumed to be of the 07/08 year class. During this period mean body 

mass for fish in the R. Ray increased more than 200% and fork length increased by 40%. For fish in 

the R. Ock, the increase in mean body mass (Fig. 4a) and fork length (Fig. 4b) during the same 

period was significant (P<0.001) but proportionally less than that observed for fish in the R. Ray 

with mass increasing by 84% and length by 20%. The increase in both mean length and mass among 

fish in the R. Ock was interrupted by a significant (P<0.001) decline in both parameters between 

January and May 2008. A direct comparison of the matched pre- and post- remediation periods show 

that the pattern of growth for fish in the R. Ray was similar during both periods (Fig. 4a,b). The 

mean mass and length of the first post-remediation generation of fish in the R. Ray sampled in July 

and November 2008 were not significantly different from those of fish sampled at the corresponding 

times in 2007. For fish in the R. Ock a different pattern was evident. Whereas during 2007 a clear 

and significant increase in both mean mass (P<0.05; Fig. 4a) and 
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length (P<0.001; Fig. 4b) occurred between July and November, during 2008 mean mass and length 

of fish in the R. Ock both declined significantly during this period (P<0.05). When mass and length 

of fish at different sites in the R. Ray during the period July-November was examined (data not 

shown) no significant consistent difference was evident between pre- and post-remediation periods, 

with the exception of fish at the site immediately adjacent to the WWTW discharge which were 

significantly smaller in the post-remediation period (P<0.01). However, both length and mass 

showed a significant downward trend with distance downstream from the WWTW. Fish captured at 

the site farthest downstream on the R. Ray (7B) were significantly (P<0.001) smaller than those 

captured closer to the WWTW discharge (ROD, EB). No significant between-site differences were 

evident for either mass or length for fish in the R. Ock during the pre-remediation period (2007). 

However, during the post-remediation period in 2008 fish captured at Venn Mill (VM) and 

Marcham Mill (MM) were significantly larger than those at the other two sites (P<0.001). For fish 

in both the R. Ray and R. Ock  mass varied significantly across monitoring periods when length 

was included as covariate indicating variation in condition (ANCOVA, P<0.001). Overall, 

coefficients of condition were higher in both rivers in 2008 (R. Ray 1.06 ± 0.007; R. Ock 1.113 ± 

0.007) than 2007 (R. Ray 1.001 ± 0.01; R. Ock 1.04 ± 0.01). 
 
 
 
 

3.3 RNA:DNA ratios and specific growth rates 
 
 
 
 

There was a significant overall difference in mean RNA:DNA ratios between male and female fish 

in both rivers (P<0.001; female: 1.862 ± 0.02; male: 1.415 ± 0.03) but both sexes exhibited the same 

pattern of change with time and so the data have been combined for clarity (Fig. 5). The RNA:DNA 

ratio showed a seasonal periodicity for fish in both rivers with higher ratios coinciding with higher 

water temperatures but the pattern of change within each year was different. In both rivers, the 

RNA:DNA ratio declined significantly between May and November 2007 (P<0.001; Fig 

6) across a broadly similar range (~2.0 - ~ 1.0). Between November 2007 and March 2008, there 
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was a significant increase in RNA:DNA ratio in fish from the R. Ray (P<0.001; Fig. 5a) whereas in 

fish from the R. Ock no significant change in RNA:DNA ratio occurred during this period (Fig. 5b). 

In both rivers the RNA:DNA ratio showed significant increases between March and May 2008 with 

fish in the R. Ock increasing by 200%. Thereafter ratios in fish from the R. Ray remained at the 

levels achieved during May whereas in fish from the R. Ock the ratio declined significantly by more 

than half between May and November 2008 (P<0.001; Fig. 5b). In order to assess whether the 

difference in the RNA:DNA ratios in fish in the R. Ray between the pre-and post-remediation periods 

was reflected in performance of the fish, the specific growth rates (SGR) for fish in the R. Ray were 

examined. SGRs were calculated for the period when the population was composed of juvenile fish 

only (July-November). In the R. Ock, the length frequency distributions (Fig. 3e-h) 

and declining mean mass and length for this period (Fig. 4a,b) strongly suggested that the previous 

years adult fish survived longer than was the case in the R. Ray, resulting in a mixed year class 

population and rendering the calculation of SGR via population means inappropriate. To compare 

the SGR of fish in the R. Ray between 2007 and 2008, values were calculated for fish at each of the 

sample sites on the R. Ray. At three sites the SGRs for both length (Fig. 6a) and mass (Fig. 6b) 

during the period July-November in 2008 were greater than those in the corresponding period in 

2007 and collectively this difference was significant (P<0.05). The clear exception to this pattern 

was Tadpole Bridge (TB) at which there was a marked decline in SGR for both length and mass of 

the fish between 2007 and 2008. 

 

 
 

3.4 EROD 
 
 
 
 

In the samples collected during January 2008 (pre-remediation; Fig. 7a) EROD activity was 

significantly greater in fish collected from sites in the R. Ray compared to those from sites on the R. 

Ock. However, in March 2008 (post-remediation; Fig. 7b) there was no difference in EROD activity 

evident between fish from the two rivers. In March 2008 EROD activity within samples from the R. 
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Ray was similar to that observed in January (range 6 – 13 pmol min
-1 

mg protein
-1

) whereas EROD 

activity in fish from the Ock was increased in March compared to that in January (< 3 pmol min
-1 

mg protein
-1

) to levels statistically indistinguishable from those in the Ray (7 – 13 pmol min
-1 

mg 

protein
-1

). No significant differences between the sexes were evident during January 2008 (male: 

4.2 ± 0.8, n = 52; female = 5.2 ± 1.1, n = 61) but in March 2008 EROD activity in males was 

slightly but significantly greater than that in females (male: 11.0 ± 0.7, n = 41; female = 9.0 ± 0.7, n 

= 59; P<0.05). 
 
 
 
 

3.5 CYP1A gene expression levels 
 
 
 
 

In 2007, there was no significant difference between rivers overall in relative expression levels of 

CYP1A (Fig. 8a) although significant differences between sites both within and between rivers 

were evident. For fish from the R. Ray there was a significant increase in CYP1A expression 

between Rodbourne WWTW and Tadpole Bridge (P<0.05). On the R. Ock, CYP1A expression was 

lowest in fish from Charney Bassett and significantly higher in fish from Venn Mill and Marcham 

Mill (P<0.05). There was a significant increase in expression of CYP1A in fish from the R. Ock 

between 2007 and 2008 (P<0.05), but not in fish from the R. Ray and in 2008 (Fig. 8b) CYP1A 

expression was overall significantly greater in fish from the R. Ock than in fish from the R. Ray. 

For fish from the R. Ray in 2008 a similar spatial trend to that observed in 2007 was evident with 

CYP1A expression levels significantly higher in fish from Tadpole Bridge compared to those 

captured at Rodbourne (P<0.05; Fig. 8b). No significant difference in CYP1A expression was 

evident between the sexes. 

 

 
 

4. Discussion 
 
 
 
 

The Rodbourne WWTW, which serves a population of approximately 135,000 in the south west of 
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England, is a modern activated sludge plant with biological nutrient removal. The effluent discharged 

is consequently of a relatively high standard. However, the R. Ray, into which the WWTW 

discharges, is a small river with limited dilution capacity. Water temperatures upstream of the 

effluent discharge point on the Ray were similar to those in the R. Ock (D. Grover, pers comm.) 

whereas downstream of the discharge the water temperature in the R. Ray was consistently 2-3°C 

higher than that in the R. Ock. The mean DO concentration in the R. Ray was lower than that in the 

R. Ock and dissolved nutrients and suspended and dissolved solids (indicated by higher NH3-N 

concentrations, greater turbidity and higher conductance values) were higher in the R. Ray. The 

physicochemical conditions in the R. Ray attributable to the WWTW discharge rendered direct 

comparisons of the fish population in the R. Ray with that in the R. Ock inappropriate. Therefore, in 

order to detect effects that might be linked with effluent remediation following installation of the 

GAC plant, four samples of fish collected during each of two matched periods (May, July, 

September, November) before (2007) and after (2008) the upgrade were compared between years 

within rivers. It was assumed that variation in local environmental conditions that might affect the 

fish populations (e.g. extreme weather events) would affect both rivers similarly. 

 

A modelling exercise and chemical analysis of the receiving water (Balaam et al., 2010) indicated 

that prior to remediation the mean annual total estradiol-equivalent concentrations downstream of the 

discharge were in excess of 1 ng l
-1 

which is the predicted no-effect concentration for endocrine 

disruptive effects in fish (Young et al., 2004). However, no evidence of such effects was detected in 

measurements of vitellogenin or spiggin, or in gonadal structure, in sticklebacks sampled from sites 

downstream of the WWTW discharge (Katsiadaki et al., unpublished; Mungo, unpublished). 

Operation of the GAC plant was found to significantly reduce or completely eliminate steroid 

estrogens (estrone, 17β-estradiol, 17α-ethinylestradiol) and total estrogenic activity in the effluent 

(Balaam et al., 2010). Granular activated carbon treatment is reported to remove up to 99% of 

dissolved organic contaminants from waste water (Ternes et al., 2002; Kim et al., 2007; Snyder et 
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al., 2007) and it can therefore be assumed that the decline in steroid estrogens was matched by a 

decline in the total organic chemical load delivered by the pre-remediation effluent. 

 

 
 

4.1. Population structure 
 
 
 
 

Interpretation of the somatic data for sticklebacks in the R. Ray and R. Ock was constrained by 

having only a single year of matched pre- and post-remediation observations. The abundance and 

mean size of sticklebacks in a single population can vary markedly across years (Wootton and Smith, 

2000) and the original study design allowed for a 2-year monitoring period both before and after 

effluent remediation but the GAC plant was installed and commissioned ahead of schedule. Taken 

collectively, the somatic data indicate that the pre-remediation Ray, despite receiving a significant 

volume of WWTW effluent, was not a hostile environment for the resident stickleback population. 

The stickleback populations in both the R. Ray and R. Ock were found to be annual, with few adults 

surviving beyond the spawning period and into a second year, and with the sex ratio in both rivers  

biased towards females. These observations are consistent with previous reports of 

the age structure (Mann, 1971; Allen and Wootton, 1982; O’Hara and Penczak, 1987; Wootton and 

 
Smith, 2000; Poizat et al., 2002; Wootton, 2007) and sex ratio (Kynard, 1978; Wootton, 1984; 

 
Mori, 1993; Arnold et al., 2003) of three-spined stickleback populations. Disproportionate mortality 

among males due to the energetic demands and risks associated with male parental investment has 

been suggested to account for the female bias (Chellappa et al., 1989; Arnold et al., 2003). 

However, in the present data set, the bias in sex ratio was not associated specifically with the post- 

spawning period. The ratios for the July, September and November samples, during which the bulk 

of the population would have been 0+ fish with no prior reproductive experience, were similar to 

those that were obtained from the sample period in its entirety. The observed sex ratio may have 

arisen in part from sustained differences in the relative “catchability” of male and female fish due 

either to differences in net evasion or to different patterns of dispersion. No histological evidence of 
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gonadal abnormalities, in particular intersexuality, was detected among fish from the R. Ray (Mungo, 

unpublished) but the possibility that the sex ratio of fish in both rivers was influenced by exogenous 

factors cannot be excluded. The phenotypic sex of fish can be modified by exogenous steroids and 

other contaminants (Devlin and Nagahama, 2002) and the EROD and CYP1A data suggest that the 

R. Ock, contrary to expectations, was not a chemically pristine environment. Fish in the R. Ock were 

subject to intermittent exposure to inducers of this enzyme system, and therefore possibly other 

classes of chemicals as well, although the source, identity and concentration of contaminants is 

unknown. It therefore remains a possibility that the imbalance in sex ratio that was evident among 

fish from both rivers arose from exposure to chemicals during a critical developmental window of 

sensitivity (Hahlbeck et al., 2004). In this respect it is interesting that the sex ratio among fish in the 

R. Ock remained significantly biased in favour of females in 2008 whereas following remediation in 

the R. Ray, the ratio was not significantly different from unity. 

 

 
 

4.2. Body mass, fork length and specific growth rate 
 
 
 
 

Sticklebacks in the R. Ray were larger overall than those from the R. Ock. Inter-population 

differences in the growth of sticklebacks may be in part attributable to heritable traits (Wright et al., 

2004) but in this case effects of the WWTW effluent on physicochemical characteristics of the R. 

Ray are likely to have been the primary cause of overall differences in size of the fish in the two 

rivers. Both abiotic (temperature, oxygen availability) and biotic (food abundance, predation) factors 

are likely drivers of variation in individuals size between stickleback populations (Poulin and 

Fitzgerald, 1989; Wootton and Smith, 2000) with water temperature and food availability the two 

most important factors determining growth rate in fish (see Graham and Harrod, 2009, for 

references). Higher temperatures in themselves promote metabolic activity in poikilotherms and the 

warmer water coupled with the nutrient content of the effluent (exemplified by higher ammonium- N 

concentrations in the R. Ray) is likely to have resulted in a more abundant food supply in the R. 
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Ray (Friberg et al., 2009), typical of rivers downstream of modern WWTW discharges (e.g. Gücker 

et al., 2006). There was a consistent trend for fish to decline in size with increasing distance 

downstream from the WWTW but the water temperature changed little downstream of the WWTW 

discharge, suggesting that a direct effect of temperature on the fish themselves was not the primary 

driver for the size difference between the fish from the R. Ray and R. Ock.. 

 

 
 

In the R. Ray, fish exhibited a pattern of growth similar to that reported for stickleback populations 

in Mediterranean streams (Clavero et al., 2009) with growth continuing through the winter months 

This resulted in fish with mean lengths in May in excess of those reported for one-year old 

sticklebacks in other UK populations (Mann, 1971; Allen and Wootton, 1982; O’Hara and Penczak, 

1987) and with clear separation between the current (0+, 2008) and previous (1+, 2007) 

year classes. In July very few fish that could be apportioned to the preceding year class were caught 

in the R. Ray. The disappearance of post-spawning adult sticklebacks in early summer has been 

reported by others (Mann, 1971; Clavero et al., 2009) and it is only possible to speculate that the 

larger adults evident in the May sample from the R. Ray in both years either evaded capture in 

subsequent months, or succumbed to disease or size-selective predation. There was no statistically 

significant difference in the mean body mass and fork length of juvenile (0+) sticklebacks in the R. 

Ray during July-November 2008 (post-remediation) and 2007 (pre-remediation). However, 

differences in growth rate were evident between these periods, with specific growth rates of fish at 

three out of four sites on the R. Ray significantly greater following remediation than during the pre- 

remediation period. Interestingly, growth rate did not increase but actually declined between 2007 

and 2008 at Tadpole Bridge, the site at which the highest CYP1A expression levels for fish in the R. 

Ray were recorded. 

 

 
 

In the R. Ock, the annual growth profile for sticklebacks resembled that reported for other 

populations in the UK (Allen and Wootton, 1982) with little growth evident between November and 
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March, contrasting with the continued growth of fish in the R. Ray during this period. 

 
Clear allocation of the fish in the R. Ock to either the 0+ or 1+ year classes was not possible, with 

overlap in the length frequency distributions evident during both years. The length frequency 

distributions for fish in the R. Ock suggested that 1+ adults were present throughout the summer 

months as is the case in some other UK stickleback populations (Allen and Wootton, 1982; O’Hara 

and Penczak, 1987). The presence of two overlapped year classes, with recruitment of 0+ fish and 

loss of 1+ individuals through the summer of 2008, presumably accounted for the apparent decline 

in both mean mass and length of the R. Ock population during this period, a trend that was not 

evident in 2007 during which mean length and mass increased consistently during the summer 

months. Inspection of the length frequency distributions for 2008 suggests that 1+ fish may have 

been present in the R. Ock as late as November. This contrasting profile suggests that some aspect 

of the population dynamics of fish in the R. Ock (recruitment, adult survival) differed between 

years. It is tempting to speculate that the different growth profile for fish in the R. Ock during 2008 

compared to 2007 was related to the higher levels of chemical exposure during 2008 evidenced by 

the EROD and CYP1A data for fish in this river. 

 

 
 

4.3. RNA:DNA ratio 
 
 
 
 

The difference in size of the fish between rivers was consistent with the time-course of changes in 

the RNA:DNA ratio data. Whole-body and white muscle RNA:DNA ratios have been widely used 

to assess the condition and growth of fishes (Richard et al., 1991; Buckley et al., 1999; Zhou et al., 

2001) exploiting the fact that the concentration of DNA in somatic tissues is relatively constant 

whereas the concentration of RNA is proportional to the amount of protein synthesis taking place 

(Clemmesen, 1994; Chícharo and Chícharo, 2008). In three-spined sticklebacks the somatic 

RNA:DNA ratio has been shown to be correlated with growth rate (Ali and Wootton, 1998, 2003) 

and to decline markedly during fasting (Pottinger et al., 2002). The RNA:DNA ratio provides a 
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useful adjunct to other somatic data by providing information on growth status related to conditions 

pertaining at the time of capture of the individual. In the present study the RNA:DNA ratios of the 

two populations tended to vary with the annual temperature cycle and confirmed that fish in the R. 

Ray experienced a longer growing season than those in the R. Ock. The RNA:DNA ratio for fish in 

the R. Ray showed a progressive increase between November 2007 until the summer of 2008 

whereas for fish from the R. Ock during this period the RNA:DNA ratio did not increase until 

between March and May 2008. This 4 month period of stasis in anabolic activity in the R. Ock 

probably reflected a combination of limited food supply in the R. Ock during the winter, and low 

water temperature, which ranged between daily means of 2.9 – 10.5
o
C during November – March in 

 

the R. Ock in contrast to higher temperatures in the R. Ray of 7.5 – 14.1
o
C during the same period. 

The range of mean RNA:DNA ratios observed in this study (~1.0 - ~3.0) was similar to those 

observed in laboratory studies in which sticklebacks were provided with maintenance rations (Ali 

and Wootton, 1998) but were lower than those reported for studies in which ration size was larger 

(Ali and Wootton, 1998, 2003). In the R. Ock, the broad pattern of change in RNA:DNA ratio was 

similar in both 2007 and 2008, with maximum activity occurring in April/May followed by a steady 

decline through to November and this pattern was also observed in fish from the R. Ray in 2007. 

However, during the post-remediation period RNA:DNA ratios did not decline after May in fish in 

the R. Ray but instead remained at a similar level until November. This observation may be tied 

closely with the higher specific growth rates exhibited by juvenile fish in the R. Ray during this 

period in 2008 compared to the same period in 2007. 

 

 
 

In this context it should be noted that DO concentrations in the R. Ray prior to the GAC plant 

coming online, were lower than those in the R. Ock, but markedly improved after installation of the 

GAC system, possibly due to a reduced biological oxygen demand. The extent to which the DO 

concentrations at Rodbourne WWTW were representative of those further downstream of the 

WWTW was not documented but the effluent-induced temperature differential between the R. Ock 
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and R. Ray was sustained throughout all sample sites. The net effect on the fish population in the R. 

Ray of increasing DO concentrations is likely to have been beneficial. Hypoxia has been reported to 

adversely affect reproductive processes in fish (Wu et al., 2003) and although a DO concentration in 

the order of 70% saturation (~ 6.5 mg / litre O2 at 20°C) is unlikely to be directly harmful to 

sticklebacks, the interactive effects of concurrent exposure to chemical contaminants, elevated 

water temperature and reduced oxygen availability may be of functional significance. The possibility 

that increased DO had a positive effect on factors indirectly affecting performance of the 

sticklebacks (e.g. the food supply) must also be considered. 

 

 
 

4.4. Biomarkers of chemical exposure 
 
 
 
 

Alterations in the chemical composition of the WWTW effluent may have affected the fish in the R. 

Ray indirectly, via effects on the abundance of food items. However, direct adverse effects on 

growth in fish are reported for exposure to sub-lethal concentrations of a wide range of aquatic 

contaminants (e.g. Alvarez and Fuiman, 2005; Amara et al., 2009) including sewage effluent (Ma et 

al., 2005) so this cause cannot be excluded. Prior to 2008 the Rodbourne effluent contained a mixture 

of organic chemicals including steroid estrogens (estrone, estradiol-17β, 17α- ethinylestradiol), anti-

androgens, personal care products (triclosan), pharmaceuticals (ibuprofen, naproxen, ketoprofen), 

phenols (octylphenol, bisphenol-A) and polycyclic aromatic hydrocarbons (PAHs) (Readman et al., 

unpublished data). No evidence of endocrine disruption or anomalous gonadal structure attributable 

to estrogenic or androgenic influence was detected among fish in the R. Ray (Katsiadaki et al., 

unpublished). However, the broader functional consequences for fish of exposure to a complex 

mixture of chemicals, particularly where most individual components of the mixture are present at 

levels below those recognised as harmful, is uncertain. 

 

 
 

4.4.1. EROD activity 
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Measurement of the activity of cytochrome P450 isoform CYP1A is widely employed to evaluate the 

exposure of fish to planar organic contaminants (Whyte et al, 2000). This isoform is induced by 

dioxins, dibenzofurans, polychlorinated biphenyls (PCBs), PAHs, and other compounds that bind to 

the aryl hydrocarbon receptor (AhR). Measurement of the activity of the monooxygenase 7- 

ethoxyresorufin-O-deethylase (EROD) provides a surrogate for direct quantification of CYP1A 

expression. In the present investigation, assessment of both EROD activity and CYP1A gene 

expression was conducted to evaluate the status of CYP1A-inducing chemicals in the WWTW 

effluent after remediation. 

 

EROD activity was quantified in fish from the two rivers immediately prior to and following 

commissioning of the GAC plant (January and March 2008 respectively). The mean EROD activity 

levels reported here (1-13 pmol min
-1 

mg protein
-1

) are comparable with the lower range of EROD 

activities, of between 2.6 and 43.3 pmol min
-1 

mg protein
-1

, that have been reported for sticklebacks 

 
exposed to varying degrees of chemical contamination (Sanchez et al., 2007; Wartman et al., 2009). 

Activity in the range 0.5 - 10 pmol min
-1 

mg protein
-1 

has been reported for laboratory controls and 

sticklebacks from ostensibly unpolluted sites (Geoghegan et al., 2008; Sanchez et al., 2008a). 

Although low in comparison to these reported ranges of activity, during January 2008 EROD activity 

in fish from the R. Ray was nonetheless markedly higher than that in fish from the R. Ock, 

suggesting a difference in chemical loading between the rivers. Approximately one month 

following the GAC upgrade on the R. Ray no decline in EROD activity in sampled fish was 

 
evident. This may reflect the relatively short period elapsed since commissioning of the GAC plant, 

or that the WWTW effluent was not the primary cause of the EROD response. If the WWTW was 

the major source of EROD-inducing chemicals in the R. Ray, and WWTW effluent is certainly 

documented as an inducer of CYP1A activity in fish (e.g. McArdle et al., 2000), a sustained 

response might also have arisen if the exposure route of the fish was not primarily via the water 

column but instead via ingestion of contaminated food items and thus more closely linked to the 
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chemicals associated with the sediments and detritus (O’Hara and Penczak, 1987; Gewurtz et al., 

 
2000; Rice et al., 2000; Meriläinen and Oikari, 2008). During the period in which fish populations 

were monitored, sediment PAH concentrations were highest at Elborough Bridge (EB; the first site 

downstream of the WWTW) lower at Seven Bridges (7B; the site most distant from the WWTW on 

the Ray) and were lower than both these at Charney Bassett (CB) on the R. Ock (Readman et al, 

unpublished data). EROD activity in fish from the R. Ock matched or exceeded that observed in 

fish from the R. Ray during March 2008. This represented an approximately 12-fold increase over 

values in January 2008. It is unlikely that seasonal variation in enzyme activity alone could account 

for this change. In an earlier study no substantial seasonal variation in EROD activity was observed 

in sticklebacks between April and October (Sanchez et al., 2008b). Instead it is more probable that 

fish in the R. Ock were exposed to a chemical challenge of unknown origin between January and 

March 2008. This supposition is supported by consideration of the CYP1A expression data. 

 

 
 

4.4.2. CYP1A expression 

 
Levels of CYP1A expression showed little change in fish from the R. Ray between the pre- and 

post-remediation periods, consistent with the pattern of EROD activity. Expression of CYP1A in 

fish from the R. Ock was higher during 2008 than 2007 and significantly higher overall than that in 

fish from the R. Ray during 2008 which was again consistent with the EROD results. Expression of 

CYP1A varied significantly between sites on the R. Ray, exhibiting a similar pattern in 2007 and 

2008. If the variation apparent in CYP1A expression was primarily a function of  exposure of the 

fish to chemical contaminants then the higher CYP1A expression levels in fish captured at sites 

downstream of the WWTW suggests that the primary route of exposure was not to chemicals 

dissolved in the water column, or that the WWTW was not the only source of CYP1A-inducing 

chemicals on the R. Ray. Concentrations of chemicals in the water column tended to be highest at the 

point of discharge but were sustained downstream with relatively little decline as far as the Seven 

Bridges site 9.5 km from the point of discharge (e.g. bisphenol-A, estradiol-17β; Readman et 
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al., unpublished data; Grover et al., unpublished data; Balaam et al., 2010). However, the 

concentrations of most chemicals detected in sediment samples were higher at Elborough Bridge and 

Seven Bridges, the second and fourth sites downstream of the WWTW, than in samples collected 

immediately downstream of the WWTW (e.g. PAHs; Readman et al., unpublished data) matching 

more closely the pattern of CYP1A expression. Persistence of contaminants in the sediment might 

explain why no decline in EROD and CYP1A activity was detected in fish from the R. Ray after the 

GAC plant was commissioned, if the primary route of exposure for the fish was via ingestion of 

contaminated benthic invertebrates (Logan, 2007). It also suggests that exposure of the resident fish 

populations to contaminants may continue for some time after remediation of the WWTW effluent as 

the sediment-associated contamination depurates. However, CYP1A induction is a specific response 

to only a sub-set of the chemical contaminants present in the pre-remediation 

WWTW effluent and a positive response post-remediation does not mean that exposure to the entire 

suite of contaminants continued after installation of the GAC plant. 

 

 
 

The higher CYP1A expression levels in fish taken from the R. Ock in 2008 compared to 2007 

together with the elevated EROD activity detected in fish from the R. Ock during 2008 suggest fish 

in the R. Ock during this period were exposed to an increased level of chemical contamination. The 

Charney Bassett (CB), Garford (GAR) and Marcham Mill (MM) sites were on the R. Ock, whereas 

the Venn Mill (VM) site was on the conjoining Childrey Brook so a localised upstream point source 

of contamination seems unlikely. It may be the case that sufficient road run-off entered both rivers 

during periods of high rainfall to raise the levels of PAHs and other chemicals. In sediments collected 

during 2007 three PAHs identified with road run-off (pyrene, fluoranthene, phenanthrene; Boxall 

and Maltby, 1997) were quantitatively dominant at sites on the R. Ray (urban) but were present at 

very much lower concentrations in the R. Ock (Readman et al., unpublished data). 



25  

5.  Conclusion 
 
 
 
 

Two indicators of performance in the resident stickleback population in the R. Ray, specific growth 

rate and RNA:DNA ratio, were higher in fish downstream of a municipal WWTW in the period 

following the installation of a tertiary GAC process than during the equivalent period prior to 

remediation of the effluent. This improvement in performance may have been related to the 

elimination of direct effects on the fish of a complex effluent-derived chemical challenge, or may 

have arisen due to indirect factors such as the increase in dissolved oxygen concentrations following 

remediation, or effects of effluent remediation on food abundance. The changes in performance 

detected in fish from the R. Ray were apparent despite evidence from specific biomarkers that 

exposure to some chemical contaminants, possibly via the ingestion of sediment-associated food 

items, was sustained into the post-remediation period. It was not possible to directly compare the 

stickleback population in the R. Ray with that in the R. Ock, a river in close proximity to the study 

site but unaffected by WWTW discharges, because of the higher water temperature and nutrient 

loading in the R. Ray brought about by the effluent which resulted in very different population 

structures and growth profiles for the two rivers. In the R. Ock the population growth profile 

differed between years and both biomarkers of chemical exposure that were measured indicated that 

during the second year fish in the R. Ock were exposed to a chemical challenge of a similar 

magnitude to that experienced by fish in the R. Ray. The findings suggest that remediation of the 

WWTW effluent had a positive effect on growth in the first post-remediation generation, implying 

that the pre-remediation effluent was exerting a constraint on performance. This was offset by the 

broadly positive effects on growth of higher temperatures and nutrient loading. The results suggest 

that the accurate assessment and attribution of subtle effects of anthropogenic activities on a 

riverine fish population may be compromised by the complexity and number of interacting factors 

that must be taken into consideration. 
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Figure captions 
 
 
 
 

Fig. 1 The location of the River Ray and River Ock, and the relative positions of the sampling sites 

on each river. R. Ray: ROD – Rodbourne WWTW; EB – Elborough Bridge; TB – Tadpole Bridge; 

7B – Seven Bridges; R. Ock: CB – Charney Bassett; GAR – Garford; VM – Venn Mill; MM – 

Marcham Mill. 

 

 
 

Fig. 2 (a) Daily mean water temperature and (b) daily mean dissolved oxygen (percent saturation) 

 
in the River Ray at Rodbourne WWTW (black lines) and in the River Ock at Charney Bassett (grey 

lines) during the period January 2007 to November 2008. Interruptions in the plots represent 

periods during which the equipment was removed for servicing. The black bars denotes the period 

during which the GAC plant was operational on the R. Ray. 

 

 
 

Fig. 3. Length frequency distributions for fish in the R. Ray captured during (a) May, (b) July, (c) 

September, (d) November and for fish in the R. Ock in (e) May, (f) July, (g) September, (h) 

November during 2007 (pre-remediation; dark bars) and 2008 (post-remediation; light bars). 

 

 
 

Fig. 4. Mean body mass (a) and fork length (b) for fish from the R. Ray (solid circles) and R. Ock 

 
(open circles) during 2007 and 2008. Each point is the mean ± SEM (n = 8, 19, 80, 90, 89, 73, 58, 

 
38, 83, 98, 100, R. Ray; n = 66, 59, 59, 84, 84, 49, 92, 102, 79, 62, 95, R. Ock). The matched pre- 

and post-remediation periods are denoted by the grey shaded areas. The period during which the 

GAC plant was operational on the R. Ray is indicated by the black bars. Water temperature in the 

R. Ray (solid line) and R. Ock (dashed line) is shown in (a). 

 

 
 

Fig. 5. RNA:DNA ratios in fish from (a) the R. Ray (open symbols) and (b) the R. Ock (solid 

symbols) during 2007 and 2008. Each point is the mean ± SEM (n = 4, 9, 110, 88, 87, 73, 58, 38, 
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86, 94, 100, R. Ray; n = 44, 59, 43, 89, 85, 46, 94, 102, 80, 62, 75, R. Ock). The matched pre- and 

post-remediation periods are denoted by the grey shaded areas. The period during which the GAC 

plant was operational on the R. Ray is indicated by the black bars. Water temperature is shown for 

(a) the R. Ray (solid line) and (b) the R. Ock (dashed line). 

 

 
 

Fig. 6. Specific growth rates for (a) length and (b) mass of fish in the R. Ray between July and 

November in the pre-remediation (2007; black bars) and post-remediation (2008; grey bars) 

periods. ROD, Rodbourne WWTW; EB, Elborough Bridge; TB, Tadpole Bridge; 7B, Seven 

Bridges. 

 

 
 

Fig. 7. EROD activity in sticklebacks collected during (a) January 2008 (pre-remediation), and (b) 

March 2008 (post-remediation). Each bar is the mean + SEM. Sample sizes are indicated by 

numbers above each bar. R. Ray (solid bars): EB - Elborough Bridge; TB - Tadpole Bridge; 7B - 

Seven Bridges; R. Ock (open bars): CB - Charney Basset; GAR - Garford; VM - Venn Mill; MM - 

Marcham Mill. Within each plot, bars sharing the same letter are not significantly different 

(P>0.05). 

 

 
 

Fig. 8. Relative expression of Cytochrome P4501A in liver tissue of sticklebacks collected during 

(a) September and November 2007, (b) September and November 2008. Each bar is the mean + 

SEM. Sample sizes are indicated by numbers above each bar. R. Ray (solid bars): ROD – 

Rodbourne WWTW; EB - Elborough Bridge; TB - Tadpole Bridge; 7B - Seven Bridges; R. Ock 

(open bars): CB - Charney Basset; GAR – Garford; VM - Venn Mill; MM - Marcham Mill. For 

each plot, bars sharing the same letter are not significantly different (P>0.05). 
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Table 1. Locations of sample sites on each river. 
 
 
 
 
 
 
 

 
 

 
River Site name 

 
Abbreviated 

name 

 

 
Grid ref. 

 
Latitude and 

longitude 

Distance from 

 
Rodbourne 

 
WWTW [km] 

 

Ray Rodbourne WWTW ROD SU128865 51.577 N, -1.817 W 0.2 
 

Ray                        Elborough Bridge                     EB                  SU121872        51.584 N, -1.827 W               1.8 

 
Ray                        Tadpole Bridge                         TB                  SU111896        51.605 N, -1.841 W               5.9 

 
Ray                        Seven Bridges                           7B                  SU119925        51.631 N, -1.829 W               9.5 

 
 

 
Ock                       Charney Basset                         CB                  SU381944        51.647 N, -1.451 W                 - 

Ock                       Garford                                    GAR                SU438962        51.663 N, -1.368 W                 - 

Childrey Brook     Venn Mill                                 VM                 SU434948        51.650 N, -1.374 W                 - 

Ock                       Marcham Mill                          MM                 SU448954        51.656 N, -1.354 W                 - 
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Table 2. Water chemistry summary for the periods March-November 2007 (pre-remediation) and 

March-November 2008 (post-remediation) for the R. Ray and R. Ock. Data were collected by 

sondes sited at Rodbourne WWTW (R. Ray) and Charney Basset (R. Ock). Each value is the mean 

± SEM of daily average measurements (n = 214 –256 ).  * significant differences between rivers 

within years; superscript a: significant differences between years within rivers. 

 
 
 
 
 
 
 

 
R. Ray R. Ock 

 
Analyte 2007 2008 2007 2008 

Temperature (
o
C) 

 
Dissolved Oxygen (% sat) 

16.2 ± 0.15 

 
63.7 ± 0.9 

15.6 ± 0.2 
 

89.5 ± 1.2
a
 

12.1 ± 0.16* 

 
112.6 ± 1.5* 

12.6 ± 0.2* 
 

99.3 ± 0.9*
a
 

 

pH 

 
Ammonium-N (mg/l) 

 

7.17 ± 0.01 

 
0.40 ± 0.2 

 

7.23 ± 0.01 
 

1.76 ± 0.15
a
 

 

7.92 ± 0.01* 

 
0.15 ± 0.03* 

 

7.86 ± 0.01* 
 

0.40 ± 0.01*
a
 

 

Conductivity (µS/cm) 

Turbidity (NTU
1
) 

 

802.6 ± 20.7 

 
131.1 ± 15.1 

 

781.3 ± 9.0 

 
109.1 ± 13.2 

 

530.5 ± 15.5* 

 
48.6 ± 4.6 

 

568.5 ± 6.7* 

 
37.6 ± 3.8* 

 

 
1 

Nephelometric turbidity units 
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Table 3. Water temperature recorded at the time of sampling during 2007 and 2008. 
 

 
 
 
 
 
 
 
 
 

2007 2008 

 
River Site Mar Jul Sep Nov Mar May Jul Sep Nov 

ROD 11.2 18.8 19.0 18.7 9.8 16.5 18.5 17.2 10.8 

 

EB 
 

16.6 
 

17.8 
 

18.8 
 

17.1 
 

8.8 
 

14.6 
 

17.3 
 

16.4 
 

9.8 

Ray  
TB - - - - 9.5 15.6 17.8 17.2 10.1 

 
7B 19.1 18.8 17.9 18.7 9.3 14.9 17.8 15.9 9.7 

 

 
 
 

CB 15.2 15.7 14.9 13.9 6.2 10.1 16.8 14.4 - 

 

GAR 
 

- 
 

- 
 

- 
 

- 
 

6.3 
 

10.6 
 

16.0 
 

14.3 
 

6.4 

Ock  
MM - - - - 6.7 12.7 16.6 14.5 8.2 

 
VM - - - - 7.1 12.1 16.9 14.7 8.1 
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Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

River  Ray 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CB 

 
0- --;..2..._....:5 

kilometers 



41  

W
a
te

r 
te

m
p
e

ra
tu

re
 (

o
C

) 
D

is
s
o
lv

e
d

 o
x
y
g

e
n

 (
%

 s
a
tu

ra
ti
o

n
) 

Fig. 2. 
 
 
 
 

 
20 

(a) 
 
 
 

15 
 

 
 
 
 

10 
 

 
 
 
 

5 
 

 
 
 
 

0 

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov 
 

160  
(b) 

 

140 
 
 

120 
 
 

100 
 
 

80 
 
 

60 
 
 

40 
 
 

20 

Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov 
 

2007 2008 

Date 



42  

F
re

q
u

e
n
c
y
 

Fig. 3. 
 
 
 
 
 

20 
(a) 

15 

 

 
2007 

2008 

 

(e) 

 

10 
 

5 
 

0 
 

30   (b) 
25 

20 

15 

10 

5 

0 
 

20   (c) 
 

15 

 

 
(f) 
 
 
 
 
 
 
 
 

 
(g) 

 

10 
 

5 
 

0 
 

15 (d) 

 

 
(h) 

 
10 

 

 

5 
 

 

0 

16  20  24  28  32  36  40  44  48  52  56  60  64 

 
16  20  24  28  32  36  40  44  48  52  56  60  64 

 

R. Ray R. Ock 

Length interval (mm) 



43  

B
o

d
y
 m

a
s
s
 (

m
g

) 

F
o
rk

 l
e

n
g

th
 (

m
m

) 

W
a
te

r 
te

m
p

e
ra

tu
re

 (
o
C

) 

Fig. 4. 
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Fig. 6. 
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Fig. 7. 
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