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Introduction

Coastal and estuarine sediment transport is a complex, multidimensional, multiscale, dynamic pro-
cess. Modelling efforts need to describe both sediment and ambient fluid (water) motions and their
interactions. Many issues arise from the multiscale nature of the problems studied: coastal models are
usually developed at a scale (order of at least tens of meters) that is much larger than that on which
physical processes such as turbulence, sediment-sediment interactions and fluid sediment interactions
occur. Theses processes thus have to be implemented as sub-grid scale modelling, which is not specific
to sediment transport, but particularly crucial to coastal morphological change and sediment trans-
port given the importance of near-bed processes of different nature (sediment-sediment interactions
and near-bed hydrodynamics).

We will first review how the sediment motions and the different physical processes are commonly
described in coastal area and river models. We will show how the suspended sediment concentration
can be obtained and how interactions between the suspended sediment and the ambient fluid flow
are parameterized. We will also describe how near-bed processes are implemented as a sub-grid scale
modelling both in terms of sediment transport but also in terms of hydrodynamics. We will then
review in more details several existing coastal sediment transport models, and finally we will discuss
the implementation of such sediment parameterizations in POLCOMS.
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Suspended sediment transport and
morphological modelling

2.1 Suspended sediment transport

2.1.1 Suspended sediment concentration

The suspended sediment concentration (c(x, y, z, t) in Cartesian coordinates) is usually either pre-
scribed by a Rouse profile or calculated by solving a balance equation for the concentration, which
results from sediment mass conservation.

The Rouse profile was developed assuming a uniform equilibrium suspension and balance between
upward sediment transfer due to turbulent mixing and downward settling. It specifies the concentra-
tion in the water column following

c

Cref
=
(

z

zref

)(0.74Ws/κu?)

(2.1.1)

where c is the concentration at level z, Cref is the concentration at a reference level zref , Ws is the
sediment settling velocity, κ the von Karman constant, and u? the friction velocity. In this equation,
Cref , zref , Ws, κ, and u? still need to be determined. Cref and zref can be seen as a concentration
boundary condition at the bottom of the numerical domain. Specification of Ws will be discussed
in a further section. Even though reduction of the von Karman constant value has been repeatedly
observed (see Vanoni (1975) for example), κ is usually taken to be the clear fluid value of 0.4. u? is
given by the bottom boundary layer model associated.

The sediment mass conservation reduces to an advection-diffusion equation, and can be expressed
as

∂c

∂t
+

∂uic

∂xi
=

∂Wsc

∂x3
+

∂

∂xi

(
Ks,i

∂c

∂xi

)
+ Sc (2.1.2)

with ui the ith component of the flow velocity, x3 the vertical direction, Ks,i the ith component of
the sediment diffusivity and Sc is a source/sink term (e.g., Lesser et al., 2004; Warner et al., 2008).
The fall velocity Ws, the sediment diffusivities Ks,i (usually split in two, a vertical diffusivity and
a horizontal diffusivity) and the source/sink term all need to be explicitly prescribed. Boundary
conditions are also required to solve this balance equation.

2.1.2 Boundary conditions

Using a Rouse profile requires the appropriate specification of a bottom concentration boundary
condition (both Cref and zref ). When solving the advection-diffusion equation, boundary conditions
at lateral boundaries and at the top and bottom boundaries are all necessary, but we will focus here
on the top and bottom ones.
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At the top boundary, flux conditions are commonly used and are implemented in mainly two ways.
The first approach is to set that the total sediment flux must vanish at the top boundary (Zhang et al.,
1999; Harris and Wiberg , 2001), which can be written as follows:

−Wsc + Ks,z
∂c

∂z
= 0. (2.1.3)

The second approach is to only set the vertical diffusive flux to be zero (e.g., Lesser et al., 2000).
At the bottom boundary, the condition can either be of Dirichlet type (concentration condition),

which will specify the the concentration at a reference level in the near-bed region, or of Neumann
type (flux condition), which will specify the vertical sediment flux.

Concentration bottom boundary condition

This condition, also called reference concentration, usually provides a formula for the concentration
at some reference level (Cref at zref ) where both Cref and zref are functions of the flow and sediment
parameters (e.g., Shields parameter, specific gravity, ...). An issue with using such a boundary condi-
tion is that the bottom grid location may not coincide with the reference level, and the concentration
at the bottom grid location then needs to be extrapolated from the reference concentration, usually
using a Rouse profile, (Lesser et al., 2000).

There exist quite a few reference concentration relationships, eight of which were assessed in Garcia
and Parker (1991), and the most commonly used formulas in large scale models are that of Smith and
McLean (1977) and that of van Rijn (1984c).

The expression proposed by Smith and McLean (1977) is such that the reference concentration
Cref is

Cref = C0
γ0S0

1 + γ0S0
, (2.1.4)

where γ0 = 2.4 × 10−3 is a constant, C0 = 0.65 is the maximum permissible concentration and S0 is
the normalized excess bed shear stress,

S0 =
τb − τcr

τcr
, (2.1.5)

with τb the bed shear stress and τcr the critical bed shear stress for incipient motion of sediment. In
the Smith and McLean (1977) formulation, Cref is calculated at the level

zref = α0(τb − τcr)/[(ρs − ρw)g] + ks (2.1.6)

with (α0 = 26.3), ρs and ρw respectively the sediment and water densities, and ks the bed roughness.
The expression proposed by van Rijn (1984c) was developed for open channel flows and is such

that

Cref = 0.015
D50

zref

S0
1.5

D?
0.3 (2.1.7)

where

D? = D50

[
(s− 1)g

ν2

]
(2.1.8)

with D50 the median sediment grain diameter, s = ρs/ρf and ν the kinematic viscosity of water.
The reference level in this expression is taken to be half the bed-form height or the equivalent bed
roughness with a minimum value of 0.01 times the flow depth.

The main difference between the two formulas (equations 2.1.4 and 2.1.7) presented is the absence
of maximum concentration in the van Rijn (1984c) formula. Although the experimental data used
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to derive such formulas was usually collected for small to moderate Shields parameters, a limit on
the reference concentration should exist for large Shields parameter. In that sense, the Smith and
McLean (1977) presents a distinct theoretical advantage. Formulas similar in form to that of Smith
and McLean (1977) have since been introduced (e.g., Garcia and Parker , 1991; Zyserman and Fredsoe,
1994) and usually follow the form

cref =
AXn

1 + AXn

cm

(2.1.9)

where A, cm and n are constants, and X is a combination of the appropriate dimensionless variables
(such as the Shields parameter θ). Formulas following equation 2.1.9 give zero reference concentration
for X = 0 and tend to cm for large values of X, which is the expected behavior. The Smith and McLean
(1977) formula almost follows equation 2.1.9 with X = S0, A = γ0 and n = 1. Other uses include
Garcia and Parker (1991) with X = u?R

0.6
p /Ws and Rp = D50

√
(s− 1)gD50/ν, A = 1.3 × 10−7,

cm = 0.3, n = 5 and Zyserman and Fredsoe (1994) with X = θ − θcr where θcr is the critical Shields
parameter for initiation of motion, A = 0.331, cm = 0.46, n = 1.75.

Flux boundary conditions

Flux boundary conditions aim to provide some kind of information on the vertical sediment flux at the
bottom boundary. One then can either directly specify the net sediment flux at the bottom boundary
(e.g., Harris and Wiberg , 2001; Wai et al., 2004), or specify the erosional and depositional fluxes as
sources and sinks in the advection-diffusion equation and then set the diffusive (and advective) flux
of sediment through the bottom boundary to zero (e.g., Lesser et al., 2000; Warner et al., 2008).

The net bottom boundary sediment flux is commonly divided in an upward part (erosion, pick-
up, E) and a downward part (deposition, D). While deposition is usually calculated as the flux due
to particle settling, there exist several ways to calculate the erosion. Even though the objective is
always to calculate an erosion value from flow and sediment parameters, two main methods that have
historically been closely linked to the cohesiveness of the sediment can be discerned:

• Assuming that the disequilibrium introduced by the unsteadiness remains mild, the erosion flux
can be considered to be equal to the entrainment rate under equilibrium condition and related to
the reference concentration value through the settling velocity (Garcia and Parker , 1991). This
approach has been widely used in area 2D and 3D model but almost exclusively for non-cohesive
sediments (e.g., Harris and Wiberg , 2001; Wai et al., 2004).

• The other main method is to provide a formula relating directly the erosion flux to flow and
sediment parameters (e.g. Lumborg and Windelin, 2003). Although this has typically been used
mainly for cohesive sediments, some empirical formulas also exist for non-cohesive sediments
(e.g., van Rijn, 1984b). In large scale models, this method is however almost exclusively used to
describe erosion of cohesive sediments, the notable exception being the recent parameterization
employed in the NOPP Community Sediment Transport Model, which introduces a ”universal”
direct formula (E = f(θ)) to be used for both cohesive and non-cohesive sediments.

Erosion and deposition fluxes

The erosion rate has been one of the most studied issue in fine sediment transport and theoretical,
laboratory studies and field observations have been used to investigate the rate of erosion. The general
consensus is that bottom shear stresses are the dominant forces causing erosion while the sediment
bed characteristics control the resistance to erosion. Mathematically, two formulations, a power law
and exponential erosion, have been introduced, defended and are still employed. Power laws relate
the erosion E to a power of the available excess shear stress:

E = M [τb − τce]
n (2.1.10)
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where M and n are empirical constants and τce is the critical stress for erosion. In particular, a linear
formula (n = 1) has been widely used (e.g., Ariathurai and Krone, 1976; Mehta et al., 1989; Sanford
and Halka, 1993; Mei et al., 1997). Exponential forms are usually written in the following form (e.g.,
Parchure and Mehta, 1985)

E = E0 exp
[
α (τb − τce)

β
]

(2.1.11)

where E0 is the empirical floc erosion rate and both α and β are empirical constants. The exponential
form has mostly been used for depth-limited erosion with τce = τce(z), while a linear erosion formula
(equation 2.1.10 with n = 1) has almost always been used for unlimited erosion. However, Sanford and
Maa (2001) recently showed that a linear erosion formula may be used to represent both depth-limited
and unlimited erosion, provided that the critical bottom shear stress increases with depth.

Deposition of fine particles is usually parameterized following Krone (1962):

D = Wsc

(
1− τb

τcd

)
, for τb < τcd (2.1.12)

where τcd is the critical shear stress for deposition. For larger and non-cohesive particles, this critical
stress is not used and the deposition is then simply

D = Wsc. (2.1.13)

This difference in deposition flux formulation also corresponds to the difference in method discussed in
the previous section. To the exception of the NOPP Community Sediment Transport Model, equation
2.1.12 is used in conjunction with E = f(θ), and equation 2.1.13 in conjunction with the reference
concentration.

Since τce is taken to be greater than τcd in equations 2.1.10, 2.1.11 and 2.1.12, erosion and deposition
are mutually exclusive. This defines three states (e.g., Li and Amos, 2001) depending on the value of
the bottom shear stress:

• When τb < τcd, there is no erosion and only deposition, this is the depositional state.

• When τcd < τb < τce, there is neither erosion nor deposition, and this is a stable state.

• When τce < τb, there is no deposition and only erosion, this is the erosional state.

It is worthwhile noting that such a concept of mutually exclusive deposition and erosion is foreign to
non-cohesive sediments, and somewhat counterintuitive to non-buoyant particles under the action of
gravity. In particular, the deposition representation has been challenged. Sanford and Halka (1993)
observed a decrease of the suspended sediment concentration in phase with the decceleration of the
flow, which can not be modelled with equation 2.1.12 since this formula predicts a continuous increase
of the suspended sediment concentration until the bed shear stress decreases below its critical value for
deposition. Instead, they were able to reproduce the observed concentrations by taking a continuous
deposition (equation 2.1.13). Winterwerp and van Kesteren (2004) argue that mutually exclusive
deposition and erosion is not supported by a sound explanation of the physical processes involved,
and also assume that the deposition is continuous (equation 2.1.13), thus allowing simultaneous erosion
and deposition.

2.1.3 Sediment diffusivities

Two different specifications are typically used for the sediment diffusivities: one for diffusion in the
horizontal plane with Kh being the horizontal diffusivity used both for x and y, one for vertical
diffusion with Kv the vertical diffusivity. It is common to relate the sediment diffusivity to the
turbulent eddy viscosity through a Schmidt-Prandtl number that can be taken to be unity (sediment
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turbulent diffusivity and eddy viscosity are then equal), a constant different than one, or that can be
specified as a function of flow and sediment parameters. The turbulent diffusivity is usually larger than
the eddy viscosity because of centrifugal forces in turbulent eddies ejecting particles to the outside of
the eddies, thus leading to Schmidt numbers less than one.

van Rijn (1984c) related the sediment turbulent diffusivity to the turbulent eddy viscosity through
two parameters, one of which is a function of the settling velocity and of the friction velocity, and as
such can be seen as expressing the relative importance of the particles’ gravitational inertia respect
to the flow turbulence

β = 1 + 2
(

Ws

u?

)2

for 0.1 <
Ws

u?
< 1. (2.1.14)

The other is a function of the concentration and represents the effect the presence of particles has on
the sediment diffusivity, which can then be written as:

Kv = β

[
1 +

(
c

C0

)0.8

− 2
(

c

C0

)0.4
]

νv (2.1.15)

where C0 = 0.65 is again the maximum permissible concentration and νv is the vertical eddy diffusivity.
More recently, Rose and Thorne (2001) only considered the β parameter and introduced another

formula relating it to the velocity ratio. Amoudry et al. (2005) only considered a concentration
dependence and provided an expression by an empirical fit of model’s results to experimental data.
Still, the vertical diffusivity in large scale model remains described in relatively simple ways (see
chapter 3 for more details) that often neglect the concentration dependence.

2.1.4 Sediment settling velocity

The settling velocity of sediment is an important parameter in the determination of the suspended
concentration profile as well as in the near bed conditions. In a rather obvious and expected way, it
depends on the sediment and flow parameters (sediment diameter, specific gravity, fluid viscosity).
The settling velocity of a single sphere of diameter d and specific gravity s in a semi-infinite fluid
domain gives

Ws0 =

√
4(s− 1)gd

3CD
(2.1.16)

where CD is the drag coefficient and is a function of the settling particle Reynolds number Res =
Wsd/ν. Common approaches are then to set the settling velocity either as a user-specified, sediment
specific parameter, or to employ formulas relating the drag coefficient or the settling velocity to the
sediment and flow parameters.

Furthermore, it has been observed that the settling of sediment also depends on the local concen-
tration. For non cohesive sediments, such dependence is commonly taken to follow the experimental
results of Richardson and Zaki (1954), for which

Ws

Ws0
= (1− c)n (2.1.17)

where Ws0 is the settling velocity of a single sediment particle, and n depends on Res:

n = 4.35Re−0.03
s 0.2 < Res < 1

n = 4.45Re−0.10
s 1 < Res < 500 (2.1.18)

n = 2.39 500 < Res
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For cohesive sediments, Mehta (1986) argued that the sediment settling velocity does not depend
on the concentration at very low concentrations. At moderate concentrations, the settling velocity is
found to follow (e.g., Burt , 1986; Mehta, 1986)

Ws = k1c
n (2.1.19)

where k1 depends on the sediment composition and n varies from 1 to 2 with a mean of about 1.3.
At higher concentrations, settling is hindered and the settling velocity is found to decrease with
concentration (e.g., Mehta, 1986)

Ws

Ws0
= (1− k2c)n (2.1.20)

which is similar to the experimental relationship of Richardson and Zaki (1954) and where Ws0 is
the settling velocity of a single sediment particle, k2 is a coefficient that depends on the sediment
composition and n ≈ 5 (again similar to the value found by Richardson and Zaki (1954) for small
Reynolds numbers). The limit between the two regimes is approximately for a mass concentration of
3 g/l, or a volumetric concentration of c ≈ 10−3. More recently, Winterwerp (2002) and Dankers and
Winterwerp (2007) introduced another formula for hindered settling of suspended cohesive sediments:

Ws

Ws0
=

(1− cf )m (1− c)
1 + 2.5cf

(2.1.21)

where cf is the volumetric concentration of flocs and the exponent m accounts for possible non-linear
effects.

2.1.5 Effect of sediment on density

All models following one of the approaches previously described to calculate the suspended concen-
tration profile actually implicitly assume a dilute mixture of fluid (water) and sediment. As such the
density in the momentum equations should be that of the mixture and thus should account for the
sediment concentration:

ρ = ρw +
∑

k

ck (ρs,k − ρw) (2.1.22)

where the sum is done on the different sediment classes and allows the the representation of different
sediments in the same model.

2.2 Near-bed and bed treatment

Capturing the details of near-bed sediment processes in coastal models would require prohibitively
expensive high vertical resolution and small time stepping. Instead, these processes are modelled by
specifying appropriate sub-grid scale relationships in order to relax the vertical length scale constraint.
In addition, wave-averaged parameterizations help relax the time scale constraints.

2.2.1 Bed load

Bed load is the part of sediment transport that is due to interparticle interactions and which occurs in
a near-bed region of high sediment concentration. It can not be resolved by typical multidimensional
models for which sediment is implicitly assumed to be dilute, and is instead described by relating
bed load transport rate to bottom shear stress. Such relationships have now been investigated both
empirically and theoretically for several decades. The bed load transport rate has been measured
directly in many experimental studies using bed load traps that lead to empirical formulas such as
that of Meyer-Peter and Mueller (1948); Wilson (1966); Ribberink (1998). Originally, such formulas

10



focused on open channel flows (steady, uniform flow), but have since evolved to account for wave and
current combined flows.

Several studies also proceeded to provide theoretical and semi-empirical relationships for the bed
load transport rate. Einstein (1950) used a statistical description of the near-bed sediment motions
and related the bed load transport rate to the probability of a particle being eroded from the bed, itself
relate to the flow intensity. Bagnold (1966) introduced equations giving the bed load, suspended load
and total load transport rates as functions of the stream power for steady flows using considerations
of energy balance and mechanical equilibrium. An extension of this approach was pursued later by
Bailard (1981) for unsteady flows and gave the transport rates as functions of powers of the time-
dependent free stream velocity. Engelund and Fredsøe (1976) assumed that bed load corresponds to
the ”transport of a certain fraction of the particles in a single layer”, and obtained a semi-empirical law
by considering the motion of individual particles and the most important forces of relevance. van Rijn
(1984a) computationally solved equations of motion of individual saltating particles and calculated
saltation characteristics, then used these results to deduce a semi-empirical bed load transport rate
formula.

Bed load formula for currents

For currents, bed load formulas generally follow the following form:

ΦB = m(θ − θcr)n (2.2.1)

where m and n are constants and θcr is the critical Shields parameter for initiation of motion. ΦB is
the dimensionless bed load transport

ΦB =
QB√

(s− 1)gD3
50

(2.2.2)

Meyer-Peter and Mueller (1948)’s formula specifies m = 8, n = 1.5, Wilson (1966)’s takes m = 12,
n = 1.5 for sheet flow, Ribberink (1998) found m = 10.4 and n = 1.67. More recently, Soulsby and
Damgaard (2005) introduced a slightly different formula

ΦB = 12θ1/2(θ − θcr) (2.2.3)

Bed load formula for waves and currents

Although numerous studies report bed load transport rates for currents, oscillatory flows or even co-
linear combinations of the two, relatively few studies deal with the more realistic case of waves and
currents superimposed at an angle. Some recent studies that deal with such situations include the
work of Ribberink (1998), Camenen and Larson (2005), and Soulsby and Damgaard (2005).

The formula given by Ribberink (1998) provides the bed load transport for an oscillatory flow
combined with a superimposed current under an arbitrary angle and under sheet flow conditions. It
is similar in form to the formulas used for currents only:

~ΦB(t) = m [|θ(t)| − θc]
n

~θ(t)
|θ(t)|

(2.2.4)

with m = 11, n = 1.65 and

|θ(t)| =
√

θx(t)2 + θy(t)2. (2.2.5)

The net sediment transport over a wave period is then the time average of equation 2.2.4. The
components of the bed shear stress are calculated using a quadratic friction formula and the intra-
wave near-bed velocity of the combined wave-current motion ub(t)

~τb(t) =
1
2
fcw|ub(t)|~ub(t) (2.2.6)
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with

~ub(t) = ~Uc + ~uw(t) (2.2.7)

|ub(t)| =
√

u2
b,x(t) + u2

b,y(t) (2.2.8)

where ~Uc is the time-averaged current velocity vector, and ~uw(t) the oscillatory flow vector of amplitude
Ũ . The friction coefficient fcw is calculated as a combination of the wave friction factor fw and of a
current friction factor fc

fcw =
Uc

Uc + Ũ
fc +

Ũ

Uc + Ũ
fw (2.2.9)

The formula given by Camenen and Larson (2005) is for the case of an asymmetric wave combined
with a current under an arbitrary angle φ. The instantaneous bed shear stress is defined by

τb(t) =
1
2
fcw|Uc cos φ + uw(t)| (Uc cos φ + uw(t)) (2.2.10)

where the wave-current friction coefficient is calculated the same way as for Ribberink (1998)’s formula.
The mean and maximum Shields parameters are respectively calculated following

θcw,m =
(
θ2
c + θ2

w,m + 2θcθw,m cos φ
)1/2 (2.2.11)

θcw =
(
θ2
c + θ2

w + 2θcθw cos φ
)1/2 (2.2.12)

The net sediment transport under waves and current is:

ΦB,w = aw

√
θcw,onshore + θcw,offshoreθcw,m exp

(
−b

θcr

θcw

)
(2.2.13)

ΦB,n = an

√
θcnθcw,m exp

(
−b

θcr

θcw

)
(2.2.14)

where w and n correspond to the wave direction and its normal, θcn = 0.5fc(Uc sinφ)2/[(s− 1)gD50].
aw, an, and b are coefficients such that b = 4.5, an = 12, and

aw = 6 + 6
θc

θc + θw
(2.2.15)

The formulas given by Soulsby and Damgaard (2005) can be applied to cases of asymmetric waves
combined with a current under an arbitrary angle φ. The asymmetry is added through the presence
of a second harmonic (Stokes 2nd order wave). The resulting oscillatory bed shear stress is then

θw(ωt) = θw [sin(ωt) + ∆ sin (2ωt− π/2)] (2.2.16)

in which ∆ is the ratio between the amplitudes of the first and second harmonics. Taking the x axis
to be the current direction, the net bed load transport rate is given by:

ΦB,x1 = A2θ
1/2
c (θc − θcr) (2.2.17)

ΦB,x2 = A2(0.9534 + 0.1907 cos 2φ)θ1/2
w θc + A2(0.229∆θ3/2

w cos φ) (2.2.18)
ΦB,x = max (Φx1,Φx2) (2.2.19)

ΦB,y = A2
0.1907θ2

w

θ
3/2
w + (3/2)θ3/2

c

(θc sin 2φ + 1.2∆θw sinφ) (2.2.20)
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with A2 = 12. Such a formula corresponds to an approximation of the integral over a wave period of
the time-dependent transport rate:

~ΦB(t) = A2|~θ|1/2
(
|~θ| − θcr

) ~θ

|~θ|
(2.2.21)

and where the vector Shields parameter can be written:

~θ = ~θc + ~θw [sin(ωt) + ∆ sin (2ωt− π/2)] . (2.2.22)

It also does reduce to the current only formula for θw = 0, and the symmetric wave with no current
(θc = 0 and ∆ = 0) gives no net bed load transport rate.

The Ribberink (1998) and Soulsby and Damgaard (2005) bed load approaches are relatively similar,
since both are based on the integration of the time-dependent transport rate over a wave period. Still,
the later is more practical in that it provides directly the wave-averaged net bed load transport rate.
In both cases, the time-dependent transport rate is assumed to follow a relationship similar to that
for uniform steady flows and thus both methods follow a quasi-steady approach. Ribberink (1998)
specified that quasi-steadiness only remains valid for fine sediments (D < 0.2 mm), light material or
small wave periods (T < 3 s). Sleath (1994) and Zala Flores and Sleath (1998) limited quasi-steadiness
to values of the parameter U0ω/(s− 1)g less than 0.3.

The formula introduced by Camenen and Larson (2005) is significantly different in its form. In
particular, the exponential form used implies that sediment transport is theoretically possible for
bottom shear stresses below the critical bed shear stress. Even though this formula does show good
agreement with data, and even though some data sets do give small sediment transport under the
critical bed shear stress, the exponential form contradicts the physical intuition and general consensus
that the driving forces due to shear first need to exceed the resisting forces such as friction in order
to induce motion.

2.2.2 Bed morphology evolution

The bed morphology evolution is treated by deriving an equation for the sediment bed location from
the sediment mass conservation. Such an equation is often called the Exner equation, which states in
its original form:

∂η

∂t
+ A

∂Q

∂x
= 0 (2.2.23)

where η is the bed elevation respect to a fixed datum, A is a coefficient and Q is the sediment flux.
Other terms are now commonly added, such as a term representing the temporal changes of the
sediment concentration profile. A more general form to the original Exner equation can be derived
by considering the sediment mass conservation for a layer contained between ηb(x, y, t) and ηt(x, y, t)
(e.g., Paola and Voller , 2005). Assuming that there is no mass source or sink in this layer and that
the bottom of the layer (ηb) is the sediment bed (no normal mass flux of sediment), the conservation
of sediment mass states that: ∫ ηt

ηb

∂

∂t
(ρsc) dz +∇H · ~Q + qvt = 0 (2.2.24)

where ηb and ηt are the bottom and top of the layer, ∇H is the horizontal gradient, ~Q is the horizontal
entire layer mass flux (sediment transport rate) vector given by:

~Q =
∫ ηt

ηb

ρsc ~usdz (2.2.25)
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with ~us the sediment velocity vector. Finally, qvt is the sediment mass flux per unit surface across the
top of the layer (positive if out of the layer). Equation 2.2.24 can also then be rewritten as

∂

∂t

∫ ηt

ηb

ρscdz − ρsct
∂ηt

∂t
+ ρscb

∂ηb

∂t
+∇H · ~Q + qvt = 0 (2.2.26)

which is the form most commonly used in morphological models, albeit simplified by making further
assumptions.

When the layer considered is the entire water column, the top of the layer is typically taken to be
the mean water level, which is assumed to be constant with time and across which there is no sediment
flux. Equation 2.2.26 then simplifies to the Exner equation with an added storage term (time rate of
change of the total mass of suspended sediment), which has commonly been used in morphological
models (e.g., Zhang et al., 1999; Wu et al., 2000; Harris and Wiberg , 2001)

∂

∂t

∫ MWL

ηb

ρscdz + ρscb
∂ηb

∂t
+∇H · ~Q = 0 (2.2.27)

with Q being the total sediment transport rate.
Equation 2.2.26 can also be applied to a near-bed layer. Many models that do so use the following

equation to determine the bed location

ρs(1− pc)
∂ηb

∂t
+∇H · ~QB + E −D = 0 (2.2.28)

where the vertical flux is split into an upwards portion (erosion, E) and a downwards portion (depo-
sition, D), ~QB is the bed load transport rate vector and pc the bed porosity. While the conservation
of mass (equation 2.2.26) can indeed lead to equation 2.2.28, and qV T can be split into upward
and downward fluxes, other additional assumptions are required, and appropriate discussion on such
assumptions is rarely done. Applying equation 2.2.26 to the bed load layer, the top of the layer,
ηT = ηB + δB where δB is the bed load layer thickness, is not necessarily constant with time and the
mass conservation then reads

∂

∂t

∫ ηt

ηb

ρscdz − ρsct
∂ηt

∂t
+ ρscb

∂ηb

∂t
+∇H · ~QB + E −D = 0 (2.2.29)

where E and D are estimated at the top of the bed load layer. Using equation 2.2.28 thus implicitly
assumes that the storage term in the bed load layer and the time dependence of the top of the bed
load layer are both negligible. While this may not be true if equation 2.2.29 is used in intrawave
modeling, the wave averaged version for a periodic forcing will indeed reduce to equation 2.2.28.

In addition to using Exner-like equations, layered structures are becoming more popular to describe
the sediment bed, especially when different sediments are considered in the model (e.g., Gessler et al.,
1999; Hydroqual , 2002; Warner et al., 2008). In general, such layered structure uses the concept of
an active layer from which sediment is eroded and deposited, and of underlying layer(s) of sediment.
In Gessler et al. (1999), the mass conservation is applied to a sediment class in the active layer but
the equation for the bed elevation still follows the form of equation 2.2.28 (the last three terms being
summed over all sediment classes). In Warner et al. (2008) the bed tracking process is a little more
complicated and can be summarized as follows. First, an active layer thickness is calculated. If the
top layer of sediment is less thick than the active layer, sediment is entrained from deeper layers until
the top layer has the same thickness as the active layer. Sediment is then transported, eroded and
deposited, limited by sediment availability (the mass of available sediment is the mass contained in
the active layer). If deposition results in a top layer thicker than a user defined value, a new layer
is created. Finally, the active layer thickness is recalculated and the bed layers adjusted accordingly.
The main concept of such layered structure consists of setting a limit to the amount of sediment that
can be eroded, which introduces the notion of availability of sediment and expresses that not all of
the sediment can be eroded at once.
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2.3 Bottom boundary layer model

In a way similar to the near-bed sediment processes, the vertical resolution of regional scale models
will not be sufficient to resolve the fluid flow gradients and algorithms that parameterize the bottom
boundary layer processes are thus required. The appropriate determination of the bottom boundary
layer is particularly important for sediment transport, which strongly depends on the bottom shear
stress. For our purposes, the bottom boundary layer model will seek to provide bottom shear stress
specification, which, again similar to the near-bed sediment processes, are aimed at wave-averaged
predictions, instead of intrawave predictions.

2.3.1 Pure current boundary layer

The bottom shear stress in the case of a pure current is commonly calculated using simple drag
coefficient expressions that, in turn rely on linear bottom drag, quadratic bottom drag, or a logarithmic
velocity profile.

The linear and quadratic drag-coefficient approaches relate the bottom shear stress to the near-bed
velocity (usually the velocity in the bottom grid, u) and can be written as:

τb = ρfc1u (2.3.1)

for the linear approach, where c1 is a drag coefficient and has the dimensions of a velocity. For the
quadratic approach, the bottom shear stress is given by

τb =
1
2
ρffcu

2 (2.3.2)

where fc is a non-dimensional coefficient.
The logarithmic approach assumes that the flow velocity follows the classic rough wall log-law

vertical profile close to the bed, for which the velocity at a given elevation is given by

u(z) =
u?

κ
ln
(

z

Ks

)
(2.3.3)

where u? =
√

τb/ρf is the friction velocity, Ks is the bed roughness and κ the von Karman constant.
This approach can be rewritten in the form of equation 2.3.2 and the bed shear stress in then given
by

τb = ρf

[
κ

ln (z/Ks)

]2

u(z)2 (2.3.4)

An important advantage of the log-law approach lies in the elevation dependence in equation 2.3.4.
Because of morphological changes, the elevation of the bottom numerical grid will also change. In
turn, such elevation changes can relate to different bed shear stresses, which is not accounted for by
the linear and quadratic approaches. An appropriate value for κ also has to be specified, and the clear
fluid value of 0.41 is usually implemented. We already mentioned that it has been observed that the
value of the von Karman constant should be lowered in presence of sediments (see for example Vanoni
(1975)). While this effect is neglected for the suspended sediment far from the bed, mainly based on
the diluteness of sediment, higher sediment concentration in the boundary layer could have a more
significant effect. Values as low as 0.3 have been reported in the literature from experiments (e.g.,
Vanoni , 1975; Bennett et al., 1998) and from numerical results (e.g., Longo, 2005; Amoudry et al.,
2008). The specification of the roughness will be discussed in a further section.

15



2.3.2 Wave and wave-current boundary layers

Most of the wave bottom boundary layer models use the concept of a wave friction factor fw to describe
the bottom shear stress through a quadratic friction law:

τb =
1
2
ρffwu2

b (2.3.5)

where ub is the wave orbital velocity. Similarly, the bed shear stress in a wave-current boundary layer
is commonly defined using a wave-current friction factor

τb,x =
1
2
ρfcw

(
u2 + v2

)1/2
u (2.3.6)

τb,y =
1
2
ρfcw

(
u2 + v2

)1/2
v (2.3.7)

where u and v are the components of the horizontal velocity (
(
u2 + v2

)1/2 = |ucw|). The bottom
boundary layer models then mainly differ through the determination of the friction factor (fw for pure
waves or fcw for wave-current flows). Many different expressions for the friction factor are available in
the literature both explicit (e.g., Swart , 1974; Kamphuis, 1975; Fredsøe, 1984; Justesen, 1988; Nielsen,
1992; Madsen, 1994) and implicit (Jonsson, 1966; Grant and Madsen, 1979, 1986).

The wave friction factor usually depends on the wave Reynolds number A2ω/ν with A the wave
orbital amplitude and on the relative bed roughness (Jonsson, 1966). One of the most used explicit
wave-friction formula is the Swart (1974) formula, which is an approximation of the implicit semi-
empirical formula of Jonsson (1966) and gives the wave friction factor as a function of the relative
bed roughness only:

fw = exp

[
5.213

(
A

Ks

)−0.194

− 5.977

]
(2.3.8)

Madsen (1994) presented an application of a spectral wave-current boundary layer model and derived
friction factor formulas of the same type as Swart (1974) for wave-current combinations

fcw = Cµ exp
[
7.02X−0.078

w − 8.82
]

for 0.2 < Xw < 102 (2.3.9)
fcw = Cµ exp

[
5.61X−0.109

w − 7.30
]

for 102 < Xw < 104 (2.3.10)

where
Xw =

Cµub

Ksω
(2.3.11)

and
Cµ = (1 + 2µ| cos φ|+ µ2)

1/2 (2.3.12)

with ub the representative wave orbital velocity amplitude, µ the ratio of current and wave bed shear
stress (usually much smaller than one), and φ the angle between the current and the wave propagation
direction.

Another approach to the parameterization of the wave-current interactions has been provided by
Mellor (2002) and is based on the approximating the results of an intra-wave model. A two-equation
turbulence model (Mellor and Yamada, 1982) is used in combination with the law of the wall as an
intrawave boundary layer model and is tested and validated using the laboratory results of Jensen
et al. (1989). The wave effects on the mean flow are then approximated through an increase of the
turbulent kinetic energy production:

P = Ps + PA (2.3.13)

16



where Ps is the ”traditional” (mean) shear production and PA is an apparent production due to waves.
This extra production is obtained from the numerical results of the intrawave model with a modified
law of the wall. It is found not to depend on u?/ub and is represented by the following form:(

PA

ωu2
b

)1/3

= Fφ(φ)Fz

(
zω

ub
,
Ksω

ub

)
(2.3.14)

where φ is the angle between the oscillation amplitude vector and the mean current vector. Fz is
obtained from the shear production from pure oscillatory cases, and the functional relationship is
found by a curve fit to numerical results for different roughness and mean shear stress values

Fz = −0.0488 + 0.02917Lz + 0.01703Lz2

+
[
1.125 (LKs + 5) + 0.125 (LKs + 5)4

]
×
(
−0.0102− 0.00253Lz + 0.00273Lz2

)
(2.3.15)

where

Lz = ln
(

zω

ub

)
LKs = log10

(
Ksω

ub

)
A best fit between calculations resolving the oscillations and parameterized calculations for a given
angle φ provide values for Fφ and a curve fit leads to

Fφ = 1.22 + 0.22 cos 2φ (2.3.16)

2.3.3 Bed roughness

Bed roughnesses are commonly associated with the grain roughness, bed load sediment transport and
with the presence of ripples. Roughness lengths are generally considered to be additive and the total
bed roughness has traditionally been the sum of the three roughnesses just introduced (e.g., Grant
and Madsen, 1982; Xu and Wright , 1995; Li and Amos, 2001). Still Harris and Wiberg (2001) argued
that the total roughness should only be the larger of the bed load and bed form roughnesses. The
grain roughness is taken to be proportional to the sediment grain diameter, and Ksg = 2.5D50 is
commonly used. The bed load roughness is related to the value of the excess Shields parameter and
several expressions have been introduced (e.g., Grant and Madsen, 1982; Wiberg and Rubin, 1989; Xu
and Wright , 1995; Li and Amos, 2001). Interestingly, such a dependence on the Shields parameter
also means that methods for the determination of the bed shear stress will be implicit, which in turn
justifies the use of iterative techniques. The bed form roughness is estimated as

Ksr = ar
η2

r

λr
(2.3.17)

where ar is a constant. Grant and Madsen (1982) proposed ar = 27.7, Nielsen (1992) ar = 8. The
geometric characteristics of the bed forms, ηr and λr, are calculated using ”ripple predictors” that
aim to prescribe ripple length and height empirically.

Nielsen (1981) argued that the ripple length depends on the mobility number Ψ = (aω)2/(s−1)gd,
while the ripple steepness depends on the Shields parameter. He also introduced different formulas
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for laboratory and field data. Under irregular field waves, the ripple length and height are given by:

λr

a
= exp

(
693− 0.37 ln7 Ψ
1000 + 0.75 ln8 Ψ

)
(2.3.18)

ηr

λr
= 0.342− 0.34θ1/4 (2.3.19)

ηr

a
= 21Ψ−1.85 (2.3.20)

Wiberg and Harris (1994) differentiated orbital, suborbital and anorbital ripples based on increas-
ing values of the wave orbital diameter. For anorbital ripples, the ripple length is approximated by a
constant λr = 535D and the ripple steepness is given by

ηr

λr
= exp

[
−0.095

(
ln

do

ηr

)2

+ 0.442 ln
do

ηr
− 2.28

]
. (2.3.21)

where do is the diameter of the orbital motions.
However, both roughness predictors presented were developed for wave dominated cases and might

not be appropriate in all wave-current situations. Based on observations on the Scotian shelf Li and
Amos (1998) distinguish between five categories: no transport, ripples in weak transport, ripple in
equilibrium range, ripples in break-off range and plane bed (sheet flow). These five regimes are
defined based on the values of the skin-friction shear velocity (u?s found by only considering the grain
roughness) and of the bed load shear velocity (u?b found by considering the grain roughness and the
bed load roughness). In the no transport regime, preexisting ripples will increase the bed shear stress
at the crests, which determines sediment transport, and a ripple-enhanced shear velocity is calculated
following:

u?e =
u?s

1− πηr/λr
(2.3.22)

where the ripple dimensions are that of the preexisting ripples and u?s is the skin-friction velocity.
If the enhanced shear stress is still less than the critical shear stress for motion, the ripple geometry
remains unchanged. In the case for which u?s < u?cr < u?e, weak localized transport occurs and the
ripple geometry is then predicted by

ηr

D
= 19.6

u?s

u?cr
+ 20.9 (2.3.23)

ηr

λr
= 0.12 (2.3.24)

The equilibrium regime happens for u?s > u?cr and u?b < u?bf where u?b is the bed load shear velocity
and u?bf the break-off criterion such that u?bf = 1.34S0.3

? u?cr with S0.3
? = (D/4ν)[(s−1)dD]1/2 (Grant

and Madsen, 1982). The ripples are then predicted using

ηr

D
= 22.15

u?b

u?cr
+ 6.38 (2.3.25)

ηr

λr
= 0.12 (2.3.26)

for current dominated ripples and using

ηr

D
= 27.14

u?b

u?cr
+ 16.36 (2.3.27)

ηr

λr
= 0.15 (2.3.28)
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for wave dominated ripples. Break off ripples are described by

λr = 535D (2.3.29)
ηr

λr
= 0.15

u?p − u?b

u?p − u?bf
(2.3.30)

where u?p is the threshold for plane bed.

2.4 Cohesive sediments

For cohesive sediments, the suspended sediment concentration profile is determined by a combination
of processes more complicated than those accounted for in the typical advection-diffusion equation
(equation 2.1.2):

• flocculation, which is the formation and break-up of flocs of cohesive sediment and is a key
process in differentiating cohesive and non-cohesive sediments.

• consolidation and liquefaction, processes by which the bed is either strengthened or weakened.

Settling, deposition, the interaction between particles and flow turbulence, erosion and entrainment
are all processes that are not specific to cohesive sediments, even though they will usually be mod-
elled differently for cohesive and non-cohesive sediments. So far, most models that account for the
cohesive nature of sediment by including processes such as flocculation and consolidation are imple-
mented in one-dimension (e.g., Winterwerp, 2002; Neumeier et al., 2008; Sanford , 2008). In most
multidimensional models, cohesive sediments are modelled in simpler ways that do not fully account
for all cohesive processes: in particular, only settling, deposition and erosion are considered while both
flocculation and consolidation are neglected.

2.4.1 Flocculation

In flocculation models, mud flocs are commonly treated as self-similar fractal entities (Kranenburg ,
1994; Winterwerp and van Kesteren, 2004) and fractal theory is employed to derive equations for the
floc’s properties (size, settling velocity, density). The density of the flocs is given by (Kranenburg ,
1994)

∆ρa = ρa − ρw = (ρs − ρw)
(

Dp

Da

)3−na

(2.4.1)

where ρa, ρs, and ρw are the floc, sediment particles, water densities, and Da and Dp are the floc and
sediment particle diameters. na is the fractal dimension and typically in the range 1.7 < na < 2.2
with a mean value of na = 2 (Kranenburg , 1994). The volumetric concentration of the flocs ca is then
such that

ca =
(

ρs − ρw

ρa − ρw

)
c = c

(
Df

D

)3−na

= fsND3
f (2.4.2)

where fs is a shape factor (equal to pi/6 for spherical particles) and N the number concentration of flocs
(number of flocs per unit volume). More recently, Winterwerp (2002) presented a model developed in
three dimensions but only implemented in one by striping all horizontal gradients. This turbulence-
induced flocculation model is based on a mass balance and on considering the flocs as fractal entities.
Winterwerp (2002) then derives balance equations for both the floc size Da and for the number of
mud flocs in the turbulent fluid, both of which can be viewed as advection diffusion equations with
an extra non-linear term due to the aggregation and floc break-up processes (Winterwerp and van
Kesteren, 2004).
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However, the main issue for multidimensional models is really how to parameterize the effect of
flocculation on the particle size, floc density, floc settling velocity without resolving the flocculation
processes per se. For example, Neumeier et al. (2008) use a set of equations directly relating the floc
length-scale, effective diameter and median settling velocity to the suspended sediment concentration
following Whitehouse et al. (2000). This issue is similar to that encountered in bedload modelling and
the importance of empirical studies should be relatively evident. These usually seek to relate the floc’s
properties to some parameterization of the turbulent cohesive suspension and common quantities used
are the suspended sediment concentration c and the Kolmogorov time scale τη (e.g., Lick et al., 1993;
Dyere and Manning , 1999; Manning and Dyer , 1999). The derived empirical expressions usually relate
the floc diameter Da to both c and τη, while the floc settling velocity Ws is a function of both its size
and density. Lick et al. (1993) derived

Da = k

(
c

τη

)−q

(2.4.3)

where k and q are dimensional empirical constants and then related the floc settling velocity to the
floc diameter via a power function. van Leussen (1994) introduced a formula modifying the settling
velocity in still water depending on the turbulence:

Ws = Ws0
1 + a (τη)

−1

1 + b (τη)
−2 (2.4.4)

where Ws0 is a concentration dependent settling velocity, a and b are empirical dimensional constants.
Manning and Dyer (1999) and Dyere and Manning (1999) found an expression of the type

Da = kwWs + kη (τη)
−1 + kcc + k0 (2.4.5)

for the floc diameter where kw, kη, kc and k0 are dimensional constants, which can also be rewritten
for the settling velocity. A noticeable drawback from these empirical studies is that the relationships
derived are not expressed in non-dimensional form.

2.4.2 Consolidation

Self-weight consolidation is the consolidation of cohesive sediment deposits under the influence of their
own weight. When flocs settle and accumulate on the bed, they are squeezed by the flocs settling on
top of them. Pore water is then driven out of the intra-floc and inter-floc spaces. This process can
result in large vertical deformations of the bed.

Consolidation is commonly described by the Gibson equation (Gibson et al., 1967), which is a
one-dimensional equation for the void ratio e and can be expressed in Eulerian coordinates or, in the
classic form, in a material coordinate system:

∂e

∂t
+ (s− 1)

d
de

(
k(e)
1 + e

)
+

∂

∂ζ

(
k(e)

gρw(1 + e)
dσzz(e)

de

∂e

∂ζ

)
(2.4.6)

where k(e) is the permeability of the soil and σzz(e) is the vertical effective stress. ζ is a vertical
material coordinate that represents the volume of solids. In Eulerian coordinates the Gibson equation
can be rewritten in terms of the volumetric concentration

∂c

∂t
=

∂

∂z

[
(s− 1)kc2 +

kc

gρw

dσzz

dc

∂c

∂z

]
(2.4.7)

which can be seen as an advection-diffusion equation of some form. While empirical function for the
effective stress and the permeability are commonly used, Kranenburg (1994) proposed to treat the bed
as a self-similar structure and obtained relationships for both of them.
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Sanford (2008) assumes that the effects of consolidation can be approximated as a first-order
relaxation to an equilibrium state. Both the critical stress for erosion τc and the solids volume
concentration φs are then given by:

∂τc

∂t
= rc (τceq − τc) H (τceq − τc)− rs (τceq − τc) H (τc − τceq) (2.4.8)

∂φs

∂t
= rc (φseq − φs) H (φseq − φs)− rs (φseq − φs) H (φs − φseq) (2.4.9)

where H is the Heavyside step function, rc is the first order consolidation rate and rs is the first order
swelling rate, which is much smaller than rc. Both rc and rs are determined empirically.

2.4.3 Viscosity

In addition to specific erosion, deposition, and settling velocity relationships, models for cohesive parti-
cle can include a dependence of the mixture viscosity on the sediment concentration (e.g., Winterwerp,
2002)

µeff = µ(1 + 2.5cf ) (2.4.10)
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Intercomparison of existing models

A dozen existing multidimensional models, both two dimensional and three-dimensional, are hereafter
briefly described, then summarized and compared in tables 3.1, 3.2, 3.3 and 3.4. The eight three
dimensional models reviewed are:

• the NOPP community sediment transport model incorporated in ROMS (Warner et al., 2005;
Blaas et al., 2007; Warner et al., 2008)

• the sediment transport module included in DELFT3D (Lesser et al., 2000; van Rijn and Walstra,
2003; Lesser et al., 2004)

• ECOM-SED, which is a model commercialized by Hydroqual (Hydroqual , 2002)

• the sediment transport module included in the MIKE models commercialized by DHI (Zyserman
and Ronberg , 2001; Lumborg and Windelin, 2003; Lumborg , 2005)

• a quasi three-dimensional sediment transport model introduced by Rakha (1998)

• the coastal sediment transport model developed by Wai et al. (2004)

• the 3D open channel flow hydrodynamic and sediment transport model CH3D, used by the US
Army Corps of Engineers and described in Gessler et al. (1999)

• the 3D model for sediment transport in open channels developed at the University of Karlsruhe,
Germany (Wu et al., 2000; Fang and Rodi , 2003)

Three two-dimensional models are also included in the comparison

• STORMSED (Cookman and Flemings, 2001)

• the continental shelves model of Harris and Wiberg (2001)

• the model described in Zhang et al. (1999)

The SEDTRANS model (Li and Amos, 1995, 2001; Neumeier et al., 2008), which is only a one
dimensional (vertical) model but could be seen as a 1DV sub-module in a three-dimensional coastal
model and has recently been linked to a 3D hydrodynamic model (Neumeier et al., 2008), is also
included.

3.1 NOPP Community Sediment Transport Model (ROMS)

This three-dimensional model implements algorithms for an unlimited number of user-defined sediment
classes and for the evolution of the bed morphology. It is incorporated in a coastal-circulation model
with a two-way coupling between a wave model and the sediment transport module. Each sediment
class is described by a grain diameter, grain density, settling velocity, critical stress for erosion and
erodibility constant.
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3.1.1 Suspended sediment transport

The model solves an advection and diffusion equation (equation 2.1.2) in which horizontal diffusion is
neglected. A source or sink term is added to the computations for the bottom computational cells and
represents deposition and erosion (see table 3.1 for the exact equations). The boundary conditions
specify a zero vertical diffusive flux both at the top and bottom boundary. As mentioned previously,
the settling velocity is a user-defined constant. The effect of the suspended sediment on the mixture
density is considered. The sediment diffusivity is calculated in the same way as the diffusivity of other
tracers and following one of the five turbulence closure models implemented in ROMS (see Warner
et al. (2008) for more details).

3.1.2 Morphology and near bed treatment

The sediment bed is represented by a user-defined constant number of layers, each of which has a
thickness, sediment-class distribution, porosity and age. The method used to track the location of the
sediment bed has already been briefly described in section 2.2.2:

1. First, an active layer thickness is calculated.

2. If the top layer of sediment is less thick than the active layer, sediment is entrained from deeper
layers until the top layer has the same thickness as the active layer.

3. Sediment is then transported, eroded and deposited. Transport and erosion are limited by the
available sediment mass, which is the mass contained in the active layer.

4. The sea floor elevation is updated accordingly to the convergence or divergence of the near-bed
sediment fluxes, to which a morphological factor is applied.

5. If deposition results in a top layer thicker than a user defined value, a new layer is created.

6. Finally, the active layer thickness in recalculated and the bed layers adjusted accordingly.

The bed load transport rate can be calculated following the Meyer-Peter and Mueller (1948) formula
for unidirectional flow or following the Soulsby and Damgaard (2005) formulation for combined waves
and currents, both of which are modified to account for bed slope effects.

3.1.3 Bottom boundary layer modelling

Simple drag coefficient expressions (linear, quadratic, logarithmic profile) or formulations representing
waves and currents effects can be used. Three different methods are implemented to calculate the bed
shear stress in wave-current boundary layers:

• the wave-current boundary layer algorithm and the bed roughness of Styles and Glenn (2000,
2002).

• the wave-current boundary layer model of Soulsby (1995) and the bed roughness predictors of
Grant and Madsen (1982); Nielsen (1986) and Li and Amos (2001).

• the wave-current bottom boundary layer model of Madsen (1994) or Styles and Glenn (2000)
and the bed roughness predictor of Wiberg and Harris (1994).

3.1.4 Cohesive sediment modelling

Cohesive sediment transport is not modeled in ROMS, even though the erosion is specified using a
flux equation commonly used to describe erosion of cohesive sediment.
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3.2 DELFT3D

The sediment module in DELFT3D implements algorithms for up to five different classes, which have
to be specified as either ”mud” or ”sand”.

3.2.1 Suspended sediment transport

The suspended sediment concentration is obtained by solving equation 2.1.2. Again a source/sink
term that represents sediment exchange between the water column and the bed is added. This term
is specified differently depending on the type of sediment (”mud” or ”sand”). For sands, a reference
height is calculated, and the sediment source/sink term is located in the first cell entirely above the
reference elevation (reference cell). The sediment concentration at the reference height is given by a
formula adapted from that of van Rijn (1984c). The source/sink term is then calculated assuming
a linear gradient between the reference concentration and the concentration in the reference cell (see
equations in table 3.1). For muds, the source/sink term is always added to the bottom grids and is
computed using a linear equation for erosion (equation 2.1.10 with n = 1) and the Krone deposition
formula (Krone, 1962). The boundary conditions state that the diffusive sediment flux is zero both at
the top and bottom boundaries and that the advective flux is zero at the top boundary. The settling
velocity is prescribed as a function of the fluid and the sediment grain properties, of the sediment
concentration and of the salinity. The sediment diffusivity is related to the eddy viscosity using the β
factor introduced by van Rijn (1984c) modified to account for wave and currents:

βeff = 1 + (β − 1)
τc

τw + τc
(3.2.1)

The density also accounts for the presence of sediment in the flow.

3.2.2 Morphology and near bed treatment

Morphological changes are obtained by

• Calculating the change of bottom sediment mass from the near-bed fluxes and a correction for
the suspended load transport under the reference level

• Translate such change of mass into a thickness change using the dry bed density. A morphological
factor allows to accelerate morphological changes.

• Update the bed elevation

The bed load transport rate is calculated following expressions that are based on the van Rijn (1984a)
formula and the effects of the bed slope are included. A particularity of the approach used in DELFT3D
is that, contrary to many other bed load models such as Ribberink (1998) and Soulsby and Damgaard
(2005) for example, the bed load transport rate is related directly to the flow velocities instead of the
bed shear stress.

3.2.3 Bottom boundary layer modelling

The bed shear stress is given by:
τb = µcτb,c + µwτb,w (3.2.2)

where the bed shear stress due to waves is calculated using the Swart (1974) formula for the wave
friction factor and µc and µw are efficiency factors for the current and the waves and are calculated
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from the water depth, the roughness and the wave parameters. The current efficiency factor is the
ratio of the grain related friction factor and the total current-relate friction factor

µc =
0.24

[
ln10

(
12h
3D90

)]−2

0.24
[
ln10

(
12h
kc

)]−2 (3.2.3)

and the wave efficiency factor is

µw = max

(
0.063,

1
8

(
1.5− Hs

h

)2
)

(3.2.4)

3.2.4 Cohesive sediment modelling

Even though different formulae are used for sands and muds at several instances, cohesive processes
such as flocculation, consolidation and fluidization are not modelled.

3.3 ECOM-SED

Although ECOM-SED aims to model sediment transport for both cohesive and non-cohesive sediments,
only two size classes (one of each) are allowed.

3.3.1 Suspended sediment transport

The suspended sediment concentration is calculated by solving the advection diffusion equation (equa-
tion 2.1.2). The top boundary condition specifies that the diffusive sediment flux is zero while at the
bottom the diffusive sediment is taken to consist of erosion and deposition. Different formulae are
used for the erosion and the deposition depending whether the sediment considered is cohesive or
non-cohesive. For cohesive sediment, the erosion is modelled as a power of the excess bed shear stress
(similar to equation 2.1.10) and the deposition is modelled following the formula of Krone (1962). For
cohesive sediments, the erosion is modelled following a reference concentration approach with the van
Rijn (1984c) formula to which a coefficient representing bed armoring is applied, while deposition is
due to the self weight of the grains. The settling velocity is taken to be a function of the concentration
for cohesive sediments and only a function of the particle parameters for non-cohesive sediments. The
sediment diffusivities are calculated in the same way as for other tracers, that is: 1) the horizontal dif-
fusivities are held constants and 2) the vertical diffusivities are calculated following a Mellor-Yamada
turbulence closure.

3.3.2 Morphology and near bed treatment

The bed is segmented into seven layers. The layers’ thickness is calculated by considering sediment
mass conservation, while erosion and deposition only occur for the topmost layer. Bed load is not
considered.

3.3.3 Bottom boundary layer modelling

The bottom shear stress is calculated using a logarithmic profile approach for currents and using the
Grant and Madsen (1979) wave-current model otherwise.

25



3.3.4 Cohesive sediment modelling

Different formulae for cohesive and non-cohesive sediment are implemented for erosion, deposition and
settling velocity. However, processes specific to cohesive sediments such as flocculation and consolida-
tion are not considered.

3.4 SEDTRANS

SEDTRANS has been developed more than 20 years ago and the latest versions are SEDTRANS92 (Li
and Amos, 1995), SEDTRANS96 (Li and Amos, 2001), and SEDTRANS05 (Neumeier et al., 2008).
SEDTRANS05 differs from SEDTRANS96 by

• including a new cohesive sediment algorithm that provides variations of sediment properties with
depth, represents the suspended sediment as a spectrum of different settling velocities, includes
the flocculation process and provides simulations of multiple erosion-deposition cycles

• implementing the van Rijn (1993) method for non-cohesive sediments

• calculating the still water settling velocity following Soulsby (1997)

• finding the density and viscosity of water from temperature and salinity data

One of the particularities of SEDTRANS is the presence of a bed form predictor that will provide
the type of bed form present as a function of the bed shear stress and uses the same thresholds as
the ripple geometry predictor. For current ripples, if u?cs < u?cr there is no transport and the input
ripple geometry will be used, if u?cs > u?p current induced upper-plane bed occurs, in between active
current ripples are present. For wave ripples, if u?ws < u?cr there is no transport and the input ripple
geometry will be used, if u?ws > u?p wave induced upper-plane bed occurs, in between active wave
ripples are present. For combined flows,

• if u?e < u?cr there is no transport and the input ripple geometry will be used

• if u?e > u?cr and u?s < u?cr weak transport ripples occur

• if u?s > u?cr and u?b < u?bf equilibrium ripples are present and can be further divided in
current-dominated rippled for u?ws/u?cs < 0.75, wave-dominated ripples for u?ws/u?cs < 1.25
and combined wave current ripples in between

• if u?b > u?bf , break-off ripples (wave dominated) are present

• if u?s > u?p upper-plane bed occurs under combined flows.

3.4.1 Suspended sediment transport

Contrary to most other models, the suspended sediment concentration is prescribed by a Rouse profile
and the boundary condition at the bottom sets the concentration to be the reference concentration as
given by the Smith and McLean (1977) formula. The settling velocity was considered to be a function
of only the sediment and fluid properties in SEDTRANS96, but more complex description has been
incorporated in SEDTRANS05 (Neumeier et al., 2008). The effect of the sediment on the mixture
density is always neglected.
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3.4.2 Morphology and near bed treatment

SEDTRANS does not calculate the morphology evolutions and bed load transport is not specifically
computed either. The reason is that SEDTRANS is a 1DV model primarily aimed at cohesive sediment
transport. Still, some formulae used to obtain the sediment transport do calculate the bed load, in
particular the van Rijn (1993) method has been included in SEDTRANS05.

3.4.3 Bottom boundary layer modelling

A quadratic drag coefficient law is used to determine the bed shear stress. Different coefficients and
roughnesses are used depending on the flow situation. For waves only, the wave friction coefficient of
Jonsson (1966) as modified by Nielsen (1979) is used while, for waves and currents, the coefficient is
found following Grant and Madsen (1986). The roughness predictor gives three components for the
bed roughness:

Ks = 2.5D + 27.7
η2

λ
+ 180(2.9D(θ − θc)0.75) (3.4.1)

3.4.4 Cohesive sediment modelling

In SEDTRANS96 (Li and Amos, 2001), cohesive sediments are modeled by treating the transport in
three states (depositional, erosional, stable). The depositional state occurs when the bed shear stress
is less than the critical shear stress for deposition and the deposition rate is then given by the Krone
(1962) formula. The stable state happens when the bed shear stress is more than the critical value
for deposition but less than the critical value for erosion, and there is no change. The erosional state
corresponds to bed shear stress higher than the critical value for erosion and the erosion rate is then
calculated following an exponential relationship (equation 2.1.11 with β = 0.5)

E = E0 exp
[
α (τb − τce(z))1/2

]
(3.4.2)

with
τce(z) = τce(0) + A (ρb − ρ) gzs tanφi (3.4.3)

where A is an empirical coefficient, ρb is the bulk sediment density, φi is the internal friction angle of
cohesive sediment.

In SEDTRANS05 (Neumeier et al., 2008), the cohesive sediment algorithm calculates, in order,
for each time step:

1. the effective bed shear stress taking into account the drag reduction due to high sediment con-
centration and the drag enhancement due to sediment-transmitted stress

2. the mass of eroded sediment and erosion of the bed

3. the deposition rate for each sediment class including the flocculation process (flocculation hin-
dered settling is modelled following Whitehouse et al. (2000)) and the corresponding mass re-
moved from the suspended load and added to the bed

4. the mass of eroded sediment is added to the suspended load

5. the consolidation of the bed
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3.5 Summary of different models.

Several characteristics of the different models reviewed are summarized in tables 3.1 for the method
used to obtain the suspended sediment concentration and the required boundary conditions, in table
3.2 for some sediment and flow parameters, in table 3.3 for the morphodynamic and bed load modelling
and in table 3.4 for the bottom boundary layer model.
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Sediment transport in POLCOMS

4.1 Existing sediment transport model in POLCOMS

Suspended sediment modelling is already included in POLCOMS and has been discussed in Holt and
James (1999) and Souza et al. (2007) for example. The SPM concentration is calculated by solving
an advection diffusion equation similar to equation 2.1.2 in which horizontal diffusion is not included.
The advection terms are treated in the same manner as for other scalars. The bottom boundary
condition transfers suspended matter between the lowest level of the ocean model and the bed by
mutually exclusive deposition and erosion

∂c

∂t
=

E0

∆z

(
τb

τce
− 1
)(

B∑
B

)
, τb > τce, B > 0 (4.1.1)

∂c

∂t
= −Wsc

∆z

(
1− τb

τcd

)
, τ < τcd (4.1.2)

The bed mass B is such that both erosion and deposition are allowed for positive values, but only
deposition is allowed for no bed mass. It is updated following the conservation of sediment mass:

∂B

∂t
= −∂c

∂t
∆z (4.1.3)

The near-bed boundary layer is modeled following the approach described in Souza and Friedrichs
(2005), in which the bed shear stress is given by the sum of the current stress τb,c and the wave stress
τb,w:

τb = τb,c + τb,w. (4.1.4)

The current stress is calculated using a rough-wall log law approach. The wave stress is given by

τb,w =
1
2
ρfwU0 (4.1.5)

with U0 the near-bed wave orbital velocity and fw the wave friction factor, calculated using the
empirical expression from Grant and Madsen (1982).

The settling velocity is taken to be a constant and the influence of sediment concentration on
the flow density is neglected. The vertical sediment diffusivity is calculated along with the vertical
eddy diffusivity based on a Mellor-Yamada 2.5 turbulence scheme. No near-bed and bed treatment
(morphological changes and bed load transport) are included, neither is a wave-current boundary layer
model to calculate the bed shear stress.

4.2 Sediment transport modelling to be implemented in POLCOMS

Several aspects of a sediment transport and bed morphology model, as discussed in previous chapters,
are still lacking in POLCOMS and thus have to be implemented. Within the suspended sediment
module, all of the following four issues need to be addressed or refined:
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• the settling velocity specification and the influence of the sediment concentration on it.

• the influence of the sediment concentration on the density

• the horizontal diffusivity

• the boundary conditions (erosion and deposition at the bottom).

No near-bed and bed morphology is implemented so far. The layered approach to describe the bed
offers several important advantages in that it is better suited to represent beds of mixed sediments,
modelled with several sediment classes and also in that it implicitly includes the concept of sediment
availability. We will thus implement a bed morphology model that follows that of the Community
Sediment Transport Model in ROMS. To apply sediment conservation near the bed in a satisfactory
manner, a bed load transport rate model is also required and will have to be able to simulate appro-
priately the cases of non-collinear asymmetric waves and currents (e.g., Soulsby and Damgaard , 2005).
Both a wave-current bottom boundary layer model and a bed roughness predictor (e.g., Wiberg and
Harris, 1994; Li and Amos, 2001) also have to be implemented. A bed form predictor such as that of
SEDTRANS (Li and Amos, 2001) could also be implemented in combination with the bed roughness
predictor.

Finally, while cohesive sediment will eventually need to be included in the model, it would be
wise to first focus on non-cohesive sediments. Most current ”state-of-the-art” models only deal with
cohesive sediment by implementing modified relationships for erosion, deposition and settling velocity,
which can all be easily added to a non-cohesive model.

4.3 Test cases

All models need to be tested and validated, and several sediment transport problems can be simulated
to that end.

• Open channel flows can be simulated and the sediment transport model should then be able to
reproduce appropriate suspended sediment concentration profiles (e.g., the Rouse profile).

• Lesser et al. (2004) tested their model with the work of Hjelmfelt and Lenau (1970) on the
development of suspended sediment transport. However, such a situation equivalent to sedi-
ment transport downstream an apron with a fixed sediment bed is unrealistic: in natural and
laboratory environments scour would occur and the sediment bed would not be fixed.

• The equilibrium slope of a straight flume can also be numerically simulated and compared to
the theoretical values given the specified upstream discharge and bed roughness.

• The evolution of the bed can also be followed in a settling basin (domain where particles can only
settle, or in other words no ambient flow). Again the numerical simulations can be compared to
a theoretical solution.

• the trench migration of van Rijn (1987) can be reproduced numerically

• the wave and current flume experiment of Dekker and Jacobs (2000) can also be reproduced
numerically

However, all these sediment transport problems represent simplified situations and the validation of the
model for realistic natural application will require the simulation of cases for which field measurements
are available.
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