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Abstract 8 

Data on environmental variables are subject to measurement error (ME), and it is 9 

important that this ME should be considered in any statistical analysis. Environmental 10 

datasets commonly consist of positive random variables that have skewed 11 

distributions. Measurements are then usually reported with a theoretical detection 12 

limit (DL); measurements less than this DL are deemed not to be statistically different 13 

from zero, and these data are then treated by setting them to an arbitrary value of half 14 

of the DL. The skew of the data is dealt with by taking logarithms, and the 15 

geostatistical analysis performed for the transformed variable. The DL approach, 16 

however, is somewhat ad hoc, and in this paper we investigate an alternative approach 17 

to incorporate such measurements in a geostatistical analysis, namely Bayesian 18 

hierarchical modelling. This approach incorporates ‘soft’ data (i.e. imprecise 19 

information), and we use soft data to represent the information that each measurement 20 

provides. We can use this approach to combine a lognormal model to describe the 21 

spatial variability with a Gaussian model for the measurement error. We apply the 22 

methods to a dataset on the selenium (Se) concentration in the topsoil throughout the 23 

East Anglia region of the UK. We compare the maps of predictions produced by the 24 
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approaches, and compare the methods based on their ability to predict the Se 25 

concentration and the associated uncertainty. We also consider how the geostatistical 26 

predictions might be used to aid the effective management of Se-deficient soils, and 27 

compare the methods based on the costs that might be incurred from the selected 28 

management strategies. We found that the Bayesian approach based on soft data 29 

resulted in smoother maps, reduced the errors of the predictions, and provided a better 30 

representation of the associated uncertainty. The cost resulting from Se-deficient soils 31 

was generally lower when we used the soft data approach, and we conclude that this 32 

provides a more effective and interpretable model for the data in this case study, and 33 

possibly for other environmental datasets with measurements close to a DL.  34 

Keywords - Geostatistics, Bayesian hierarchical modelling, measurement error, 35 

detection limits.36 
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1. Introduction 37 

 Any data collected on a variable are subject to measurement error (ME). In 38 

many cases this error is negligible relative to other sources of variation and may 39 

effectively be ignored when it comes to manipulating the data set and using it to make 40 

predictions of that variable at unsampled locations. However, in other cases, the 41 

measurement process can give rise to considerable errors — it is then imperative that 42 

this error is considered in any subsequent analysis.  43 

 Environmental datasets commonly consist of measurements of non-negative  44 

random variables. For example, the concentration of a substance in the soil can 45 

obviously not be negative. When taking measurements of such positive random 46 

variables, it is usual to report the measurements along with a theoretical detection 47 

limit. This detection limit (DL) is a property of the measurement process. It is 48 

calculated (from repeated measurements in a control experiment) so that any 49 

measurement that is less than this limit is deemed not to be statistically different from 50 

zero.  51 

 It is common practice in analysis of environmental data with a DL to treat 52 

large values as precise (without error) and to set values below the DL to an arbitrary 53 

value of half the DL (Woodside and Kocurek, 1997). This approach, however, is 54 

somewhat ad hoc, and in this paper, we investigate an alternative approach to 55 

represent and incorporate data on variables with a DL in a geostatistical analysis. 56 

 Classical geostatistics provides a number of approaches by which we may 57 

incorporate ME in the analysis of a Gaussian spatial random field (SRF). If the ME is 58 

Gaussian with an unknown (but constant) variance, then the nugget effect of the 59 

variogram accounts for the error, in which case the nugget effect, 0c , is the sum of 60 

two components, the microscale process, MSc , and the measurement error, MEc : 61 
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MEMS0 ccc  .     (1) 62 

In practice, we can only separate the nugget variance in this way if we have duplicate 63 

measurements at some locations, so that the measurement error can be estimated. As 64 

duplicate measurements are rarely undertaken, the two components are generally 65 

unresolved in practical studies. If the measurement error is Gaussian with a known 66 

(estimated) variance, then kriging with measurement error (Webster and Oliver, 2007) 67 

may be used to calculate predictions. If the measurement error variance, MEc , is 68 

unknown, but repeated measurements are available, then we can use the repeated 69 

measurements to estimate MEc  and incorporate this estimate in the kriging predictions 70 

(Laslett and McBratney, 1990).  71 

 These methods to incorporate measurement error are based on a Gaussian 72 

model for the spatial random field (SRF). However, in this paper, we are concerned 73 

with the analysis of positive random variables using data that are subject to ME. Such 74 

positive random variables often exhibit strong positive skewness (i.e. many 75 

measurements close to zero, and fewer larger measurements, as is often the case for 76 

numerous major and trace element concentrations in soils and sediments), in which 77 

case the Gaussian assumption for the SRF, Z, may not be justified. This skewness can 78 

often be removed by taking logarithms (Webster and Oliver, 2007), in which case, a 79 

variogram may be fitted for the log-transformed variable, ZY ln ; in this case, we 80 

refer to the original SRF, Z, as a lognormal SRF. In the absence of measurement error, 81 

kriging may then be used to predict the log-transformed variable, and the prediction 82 

transformed back to predict the original variable; if we require that the predictor be 83 

unbiased, then the method is called ordinary lognormal kriging (OLK).  84 

 If we consider that the nugget of the variogram for a log-transformed SRF, Y, 85 

incorporates measurement error, as in Eq. (1), then we essentially assume that the 86 



 5

measurement error model is Gaussian for the log-transformed variable, Y. Although 87 

the Gaussian assumption for the microscale variation of Y may be appropriate, it does 88 

not follow that the measurement process should also give rise to errors that follow the 89 

same pattern, since the generation and the measurement of the SRF are essentially 90 

independent processes. The classical measurement error model is Gaussian for the 91 

variable that is being measured (i.e. Z). For unbiased measurements with a constant 92 

measurement error variance, this choice may be justified by the maximum entropy 93 

principle (Kapur and Kesavan, 1992). As far as we know, a kriging system for 94 

incorporating Gaussian measurement error for Z for a lognormal SRF has not been 95 

described. The approach that has been commonly adopted to incorporate 96 

measurement error in the analysis of lognormal SRFs is the detection limit (DL) 97 

approach (Woodside and Kocurek, 1997).  98 

 Reimann and Filzmoser (2000) looked at a wide range of variables from 99 

environmental datasets, and found that most of these variables exhibited variation that 100 

could not be explained by either the normal or the lognormal distribution, but rather 101 

originated from more than one process. We can consider a Bayesian approach 102 

(Banerjee et al., 2004) to combine a Gaussian measurement error model with a 103 

lognormal SRF model, and by doing so, provide one possible approach to deal with 104 

such data. The Bayesian approach consists of a prior and a posterior stage. In the prior 105 

stage, we choose appropriate probability distributions that represent our beliefs about 106 

the values of the parameters (of the mean and covariance models) and variables (i.e. 107 

measurable quantities) in the system prior to collecting the data. In the posterior stage, 108 

we update these prior beliefs in the light of the data, through Bayesian conditioning; 109 

this results in a joint posterior distribution for the variables and parameters, which we 110 

may use to make our inferences about the quantities of interest. The Bayesian 111 
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approach allows for the inclusion of soft data in a spatial analysis; these soft data 112 

represent imprecise information, as opposed to the precise measurements that are 113 

represented by the hard data. Here, we consider how we might use these soft data to 114 

represent measurement error. The Bayesian approach also incorporates parameter 115 

uncertainty, which can be a considerable advantage in the analysis of lognormal 116 

SRFs, where predictions can be sensitive to the fitted variogram parameters. Previous 117 

studies that have investigated a Bayesian approach to incorporate imprecise 118 

measurements in a spatial analysis include De Oliveira (2005) and Fridley and Dixon 119 

(2007). In particular, these studies show how we might incorporate censored 120 

measurements; in this work, we aim to incorporate measurements that are subject to 121 

measurement error, but from which we can still extract information other than just 122 

some censoring limits.  123 

 In this paper, we begin by introducing a case study, on the concentration of 124 

selenium (Se) in the soil, and demonstrate how we might deal with measurement error 125 

in the analysis of a lognormal SRF. We review two approaches to spatial prediction 126 

— the classical kriging approach (ordinary and lognormal), and hierarchical Bayesian 127 

modelling — paying special attention to how ME is dealt with through these 128 

methodologies. We apply the prediction methods to the case study, and discuss the 129 

results.  130 

 131 

 132 

2. Introduction to the case study 133 

 Although Se is toxic in excess, it is also an essential element for human health. 134 

Low dietary intakes of Se are associated with health disorders, including oxidative 135 

stress-related conditions, reduced fertility and immune function, and an increased risk 136 
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of cancers (Fan et al., 2008). The amount of Se in the soil is therefore important 137 

because it can influence root uptake and crop Se concentration (Adams et al., 2002). 138 

The British Geological Survey collected soil samples at 5761 locations throughout the 139 

East Anglia region of the UK. The concentration of Se (as well as other elements) in 140 

each of these samples was determined using X-ray fluorescence spectrometry (XRF-141 

S) and reported in mg kg-1; see Lark et al. (2006) for a fuller discussion of the 142 

sampling and analytical procedures. The measurements ranged from a minimum of -143 

0.1 to a maximum of 9.5, and are plotted as a histogram in Fig. 1a, and on a classified 144 

map of the region in Fig. 2. Clearly, a negative concentration is impossible — 145 

readings such as this must be due to measurement errors. If a longer period had been 146 

devoted to the analysis of each sample, a lower DL would have been achieved; a 147 

decision was taken that the benefit of the lower DL was insufficient in comparison to 148 

the extra time required.  149 

 The geostatistical methods that we will use in this paper are based on a 150 

Gaussian model for the log-transformed variable, ZY ln . Fig. 1b shows the 151 

marginal distribution for Y, the log-transform of the Se data; since this shows Y to be 152 

roughly Gaussian, it supports the assumption. 153 

 The objective in this case study was to use the available measurements to 154 

predict the Se concentration at any location in the study region, and hence be able to 155 

identify more accurately those areas where there was a risk of Se deficiency in the 156 

soil. This information could be used to identify sites where an application of Se to the 157 

soil might be beneficial. 158 

 159 

 160 

3. Representing measurement error 161 
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 We begin by introducing some notation. In the following, we suppose that we 162 

have taken a single measurement of the original (i.e. untransformed) variable, Z, at 163 

each of the N data locations,  Nxxxx ,...,, 21D  . We write this vector of 164 

measurements as  T
21D ,...,, Nζ , and refer to the actual values at these 165 

locations (i.e. the values that would have been recorded had there been no imprecision 166 

in the measurement process) as  T
21D ,...,, Nzzzz . When we refer to a pdf-type soft 167 

datum (we will introduce this concept later in this section), we consider the pdf, 168 

 iii zf .s  — or simply  ii zf .s  for short — that represents the information that we 169 

obtain about the variable,  iZ x , when we are given the measurement of this variable, 170 

i . We consider independent measurement errors, and we therefore write 171 

   



N

i
ii zff

1
.ss z . 172 

 The magnitude of measurement error for Se was investigated by the repeated 173 

analyses of three soil certified reference materials (CRM). Each homogenized CRM 174 

was repeatedly subsampled and made into 22 pellets; each of these pellets underwent 175 

the XRF-S analysis to give a measurement of its Se concentration. Results from the 176 

repeated CRM measurements are shown in Table 1. 177 

 A common approach to deal with measurement error in such geochemical 178 

surveys is to adopt a detection limit (DL) approach (Woodside and Kocurek, 1997). 179 

The DL for a particular measurement method is defined as the smallest concentration 180 

that is statistically different from zero — here we consider the 5 % level for statistical 181 

difference. The measurements shown in Table 1, along with other calibration 182 

measurements, were used to determine a DL of 0.2 mg kg-1. When incorporating ME 183 

in geostatistical predictions via a DL approach, we assume that large measurements 184 
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can be considered as accurate. Since any measurements that are less than the DL 185 

cannot be considered as statistically different from zero, these data are assumed to 186 

take the value of half of this DL. All of these data are then assumed to be 187 

measurements of the variable of interest in the study, and the geostatistical predictions 188 

that result from this approach incorporate measurement error through the nugget 189 

variance.  190 

 Another approach that may be used to incorporate measurement error in a 191 

geostatistical analysis is to use soft data; the hierarchical Bayesian approach allows 192 

for the inclusion of this kind of data. A soft datum represents the information that we 193 

receive from a measurement at a location about the true underlying value at that same 194 

location. To derive the form of this soft datum, we assume a measurement error 195 

model. In each of the three cases shown in Table 1, the variance of the repeated 196 

measurements was approximately 0.01 ( 01.0ˆ 2
me  ), despite the mean of the 197 

measurements being different. It appears from these measurements that the classical 198 

measurement error model would be a reasonable assumption (i.e. measurements are 199 

independent and unbiased). Therefore, for a single measurement, i , at a location, ix , 200 

we write the measurement error model to give the probability (density) of taking this 201 

measurement, if the actual concentration being measured were iz : 202 

   2
meme. ˆ,;  iiiii zNzf  ,    (2) 203 

 (i.e. for each location, ix , Ni ,...,1 , i  has a Gaussian distribution with a mean of 204 

iz  and a variance of 2
me̂ ). From this measurement error model, we can use Bayes 205 

theorem, to write the n soft data pdfs: 206 

    


 


. otherwise                           ,0

0        ,ˆ,; 2
me

s.
iii

iii

zzN
zf


    (3) 207 
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This is based on a uniform prior for 0iz , which we can justify here because any 208 

other information that we have about iz  (prior to measurement) is accounted for 209 

through the geostatistical method that we will use to process these soft data (see the 210 

methods section below). 211 

 212 

 213 

4. Spatial prediction methods 214 

 We will consider three geostatistical approaches to estimate the Se 215 

concentration at unsampled locations in our case study: ordinary and ordinary 216 

lognormal kriging (OK and OLK), and Bayesian estimation. In this section, we briefly 217 

review OLK and Bayesian estimation, noting how they can be used to deal with ME. 218 

We pay special attention to the Bayesian estimation method, in which we combine 219 

ideas from hierarchical modelling (Banerjee et al., 2004) and the Bayesian maximum 220 

entropy method (BME; Christakos, 2000). 221 

 In the following, we seek a prediction of the variable, Z, at the single 222 

prediction location, 0x ; we refer to this variable as  0xZ  or 0Z , and the values that 223 

this variable can take as 0z . We use DΣ  to refer to the covariance matrix between the 224 

data locations, and D,0Σ  for the vector containing the covariances between the 225 

prediction and data locations.  226 

 227 

4.1 Ordinary lognormal kriging 228 

 If the data exhibit a strong positive skew, then any variogram that is fitted 229 

from the data is sensitive to small changes in the larger data values, because of the 230 

large contribution they make to the squared differences. This problem can often be 231 
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overcome by considering the logarithmic transform,  ZY ln , of the original 232 

variable, Z. If the transformed SRF, Y, is approximately Gaussian, then we can use 233 

ordinary lognormal kriging (OLK) to calculate our prediction. 234 

 Suppose that we have estimated the variogram from the transformed data, y , 235 

that the local mean for Y is constant but unknown, and that we seek a prediction of Z 236 

at the location 0x . The OLK estimate is calculated so that it is unbiased and it 237 

minimizes the mean squared logarithmic error,    
 

2

00OLK lnˆlnE ZZ x . Note that it 238 

is not guaranteed to also minimize the mean squared error (MSE) on the original 239 

scale. If we write  0OK
ˆ xY  and  0

2
OK x  for the ordinary kriging estimate and variance 240 

for the transformed variable,  0xY , then the OLK prediction for  0xZ  is given by 241 

(see Journel, 1980): 242 

     






   0

2
OK0OK0OLK 2

1ˆexpˆ xxx YZ .   (4) 243 

where 
 

1Σ1

1ΣΣ
1-

D
T

1-
DD,01

 . Note that   is often called the Lagrange multiplier — the 244 

Lagrange multiplier, however, depends on the precise form of the Lagrangian used in 245 

the constrained optimization (which is not unique), and as such we prefer to specify 246 

the equation for   here. 247 

 If we do not require that the predictor be unbiased, and require a predictor that 248 

minimizes the error on the logarithmic scale, we can use the median predictor: 249 

    0OK0OLK
ˆexp

~
xx YZ  ,    (5) 250 

where we use the tilde to denote the median predictor. Note that the back-transform 251 

does not depend on the kriging variance here, and so the predictor is not so sensitive 252 
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to small changes in the variogram parameters. As a result, this predictor is often 253 

preferred in the literature (e.g. Tolosana-Delgado and Pawlowsky-Glahn, 2007). 254 

 To measure the uncertainty, we use a confidence interval; we calculate this 255 

confidence interval from the kriging prediction for the log-transformed variable, since 256 

we can directly transform the quantiles back to give a confidence interval for the 257 

original variable. 258 

 Ordinary lognormal kriging cannot be used to process pdf-type soft data. 259 

Measurement error is dealt with in OLK either through the variogram or by assuming 260 

that the data are subject to a detection limit (DL). If it is dealt with solely through the 261 

variogram, then the error is assumed to be Gaussian for the transformed variable, Y. In 262 

this case, the variogram should be fitted from all of the log-transformed data. A DL 263 

approach assumes that large measurements can be considered as precise, whilst any 264 

measurements less than the DL are imprecise, and given the value of half of this DL. 265 

If we use these values to fit the variogram, then we will underestimate the nugget 266 

variance, since we will have many identical values in our dataset. We therefore use 267 

just the larger values (i.e. those above the DL) to fit the variogram. 268 

 269 

4.2 Hierarchical Bayesian modelling approach 270 

 We split our description of the hierarchical Bayesian modelling approach into 271 

three sections: first we describe the model, second we state the prior distributions for 272 

the model parameters, and third we show how we can implement the hierarchical 273 

Bayesian modelling approach through Markov chain Monte Carlo (MCMC) methods. 274 

Banerjee et al. (2004) provide a useful textbook, introducing the theory and 275 

application of Bayesian modelling for the analysis of spatial data. 276 

 277 
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1. Model – The hierarchical Bayesian model that we use for our data here can perhaps 278 

best be pictured through a directed graph model, as shown in Fig. 3. This essentially 279 

consists of four components: the trend and covariance models, the SRF model, the 280 

transformation of this SRF, and the measurement error model. The trend and 281 

covariance models and transformation of the SRF are deterministic (i.e. given the 282 

inputs, the outputs are defined uniquely by the model or transformation). The SRF 283 

and measurement error models are stochastic (i.e. given the inputs to these models, 284 

the output is a random sample from some probability distribution that is 285 

parameterized by the model inputs). We now describe each of these components in 286 

turn, starting with the trend and covariance models. 287 

 We denote the trend and covariance parameters as the vector, θ . In our case 288 

study, we will consider a constant mean,  , and an exponential covariance model, so 289 

that  as,,, 2θ , where 2  is the total variance, s is the proportion of this 290 

variance with a spatial structure, and a is the effective range of correlation. In Fig. 3, 291 

we include the trend parameters, p10 ,...,,  , which can be used to model a non-292 

constant mean function, although in this work we will consider a constant mean only, 293 

so that we have 1μ 0 , and we write   in place of 0 . For the covariance matrix, 294 

Σ , we use the exponential model with a nugget effect. We can write the covariance 295 

matrix as AΣ 2 , where A is the correlation matrix for the data and prediction 296 

locations. 297 

 Given the mean vector, μ , and covariance matrix, Σ , the model for the SRF, 298 

Y, is Gaussian with these parameters. This constitutes the second section of the graph 299 

model in Fig. 3. The SRF, Y, is for some transform of our original variable, Z, and we 300 

will come to this transform next.  301 
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 Since the data in our case study exhibit strong positive skewness, the Gaussian 302 

SRF model for the original variable, Z, is inappropriate. In such circumstances, a 303 

common approach is to assume that some transform of the data,  ZY  , gives a 304 

variable, Y, for which the Gaussian assumption is appropriate. The logarithmic 305 

transform is commonly used in geostatistics to perform this task (as in OLK) for 306 

positively skewed data. This transformation is shown as the third section in Fig. 3. If 307 

we assume that the transformed variable takes a Gaussian distribution, and if we are 308 

given the mean and covariance parameters, θ , then we can write the SRF model for 309 

the values of Z (at the prediction and data locations) as: 310 

      asMVNJf ,,,; 2
0D0DSRF  Σμyθz  ,   (7) 311 

where 



N

i
izJ

0

1  (the Jacobian determinant of the transformation) is the product of 312 

the inverses of the elements in the vector, 









D

0
0D z

z
z

, and 313 

    asMVN ,,,; 2
0D  Σμy  is the multivariate Gaussian model for the transformed 314 

variable, 0Dy , parameterized by the mean vector,  μ , and covariance matrix, 315 

 as,,2Σ . Essentially, this represents the assumption that the transformed SRF, Y, is 316 

Gaussian, and that Y is the log-transform of the variable, Z. Eq. (7) then effectively 317 

models the first three sections in the graphical model, Fig. 3.  318 

 We can include measurement error in a Bayesian hierarchical modelling 319 

approach using the measurement error model,  
DDme zζf , (as described in Section 3). 320 

This measurement error model comprises the bottom section of Fig. 3, which 321 

completes the Bayesian hierarchical model that we consider for our case study. 322 
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 The graphical model helps us to picture the relationships between the 323 

parameters and variables in the system. We must now write our joint statistical model 324 

for these parameters and variables: 325 

       DDme0DSRF0D0D   ,, zζθzθζzθ ffff  .   (8) 326 

This is simply an application of the fundamental rule of probability (i.e. for two 327 

events, A and B,      ABABA Pr Pr,Pr  ), and the assumption that the measurements, 328 

Dζ , and the parameters, θ , are conditionally independent given the actual values of 329 

the SRF, 0Dz . Eq. (8) gives the joint probability of observing any combination of 330 

values, D0D ,, ζzθ ; we are interested in the probabilities for the values of 0Z , given the 331 

measurements, Dζ . We can calculate these probabilities by integrating out the 332 

unknowns here (i.e. the parameters, θ , and the actual values, Dz , of the SRF at the 333 

data locations — not the measurements). This gives us our prediction distribution: 334 

   
      . d d 

d d ,,

DDDme0DSRF0

DD0DD0

θzzζθzθ

θzζzθζ








fff

fz
  (9) 335 

 We now define the soft data as the information provided about the SRF, Dz , 336 

by the measurements, Dζ , and we can use Bayes’s theorem to write: 337 

      

    DDzDDme

DzDDme
DDs

d zzzζ

zzζ
ζz

0



ff

ff
f ,   (10) 338 

where  Dz zf  is a ‘prior’ distribution for Dz . The hierarchical Bayesian approach is 339 

based on the assumption that the measurements are conditionally independent of the 340 

parameters, θ , given the values of the SRF, 0Dz ; we do not have to account for the 341 

spatial correlation in 0Dz  through  Dz zf  here (and therefore choose a uniform prior 342 

for  Dz zf  over the positive numbers), because their spatial correlation is already 343 
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accounted for through the SRF model,  θz0DSRFf . The normalization constant in the 344 

denominator of Eq. (10) does not depend on Dz , and we can therefore write Eq. (9) in 345 

terms of the soft data (for which we write  Ds zf  as shorthand): 346 

         . d d DDs0DSRF0Ds0 θzzθzθz  ffffz   (11) 347 

By writing the prediction distribution in this way, we may note the similarities 348 

between this Bayesian hierarchical approach and the way in which the Bayesian 349 

maximum entropy (BME; Christakos, 2000) method incorporates soft data in a spatial 350 

analysis; the predictive distribution for both methods is obtained by integrating the 351 

product of the soft data and the SRF — or in the BME terminology, the general 352 

knowledge based — model. Orton and Lark (2009) showed how the BME approach 353 

could be used to give predictions for lognormal variables using soft data; this work, 354 

and indeed the general BME methodology, is based on knowledge of the covariance 355 

and mean trend parameters. In the hierarchical approach, however, we also integrate 356 

over the trend, covariance and transformation parameters, to incorporate the 357 

uncertainty about these values.  358 

 359 

2. Priors – The task of specifying appropriate prior distributions for the parameters is 360 

an issue of considerable interest in Bayesian statistics. The subjective Bayesian 361 

approach (e.g. Banerjee et al., 2004) consists of choosing prior distributions to 362 

represent our a priori belief about the values of the system parameters (perhaps based 363 

on the opinions of experts, or on the results of previous experiments). The objective 364 

Bayesian approach (e.g. Berger et al., 2001) is to determine appropriate prior 365 

distributions to use for these parameters in circumstances where such prior 366 

information is unavailable.   367 



 17

 In this work, we use a combination of the subjective and objective approaches 368 

for our parameter priors. We make the assumption that the parameters are a priori 369 

independent. For the (constant) mean and total variance parameters, we adopt the 370 

commonly used improper uninformative prior (Jeffrey’s independence prior; Jeffreys, 371 

1961): 372 

 
2

2
0

1
,


 f .     (12) 373 

Since this prior is improper (i.e. its integral is infinite), we must ensure that it gives 374 

rise to proper posterior distributions. Note that this prior for 2  is equivalent to a 375 

uniform prior for 2ln . Berger et al. (2001) showed that the improper prior, Eq. (12), 376 

for the mean and variance parameters gives rise to proper posterior distributions in a 377 

spatial analysis if the priors for the spatial correlation parameters, s and a, are proper. 378 

We follow De Oliveira (2005) by subjectively assigning vague proper priors for these 379 

parameters (i.e. priors that represent very little knowledge about the parameters), 380 

using an inverse Gamma distribution for the effective range parameter, a, and a 381 

uniform prior for the proportion, s. With parameters of 2  and â , the prior 382 

distribution for a has a mean of â  and an infinite variance, where we choose 15ˆ a  383 

km to represent our a priori guess of the range (evaluated through inspection of the 384 

experimental variogram). This gives: 385 
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 We note here that the posterior distribution for the range, a, is influenced by 387 

the choice of prior distribution here (see results in Section 5.1). De Oliveira (2005) 388 

found similar results, and suggested that this was because the likelihood for a is quite 389 

flat. However, in terms of the resulting predictions, the prior does not have much 390 
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influence, because we have sufficient data in this case study that the posterior 391 

distribution for 0Z  is dominated by the likelihood. 392 

 393 

3. Approximating via MCMC – The multivariate integral in Eq. (11) is not analytically 394 

tractable. However, some of the components of the parameter vector, θ , may be 395 

integrated out analytically, leading to a simplification of any numerical technique that 396 

we use to approximate the predictive distribution; we can integrate Eq. (11) with 397 

respect to the parameters,   and 2 , to yield: 398 

           , d d d ,,,, DD0ISRFDISRF0DsDs0 asaszfasfasfffz zzzzz   (14) 399 

where we refer to  asf ,DISRF z  as the integrated SRF model, and  aszf ,,D0ISRF z  as 400 

the related predictive distribution. We noted in Eq. (7) the relationship between the 401 

distribution for z and that for y; the pdf for z is defined by the product of the pdf for y 402 

and the Jacobian of the transformation, J . If we assume that 0Dy  has a multivariate 403 

Gaussian distribution, then we have:  404 
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and: 406 
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where DA  is the correlation matrix for the data locations, and 408 
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D 


  . Here we write OKŶ  for the ordinary kriging estimate and 409 

OK
ˆvarY  for the ordinary kriging variance for 0Y  (where the total variance parameter, 410 
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or sill, 2 , has been estimated by maximum likelihood, given the values of s and a). 411 

The predictive distribution, Eq. (16), is equivalent to a t-distribution with 1N  412 

degrees of freedom for the standardized variable, 

1
ˆvar

ˆ

OK

OK0





N
YN

Yy
. This predictive 413 

distribution has a mean of OKŶ , and a variance of: 414 

 3 
ˆvar OK

2
ISRF 


N

N
Y .    (17) 415 

We note here that although the mean and variance of this distribution do exist for the 416 

log-transformed (i.e. Gaussian) variable, Y, the back-transformed pdf for the original 417 

variable, Z, does not have a defined mean or variance. It is, however, a proper 418 

probability distribution, and all quantiles of this pdf can be calculated.  419 

 Eq. (14) thus gives the prediction distribution in a form that we may make use 420 

of in its numerical approximation. This integral may be approximated by the 421 

summation: 422 
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where 1B  is a normalization constant, and    ias  
D ,,z  is the ith of M independent 424 

samples drawn from the probability distribution described by: 425 

       asfasffasf ,,,, DISRF0DsD zzz  .   (19) 426 

We may draw samples from this probability distribution using a Markov chain Monte 427 

Carlo (MCMC) method, in particular the Metropolis-Hastings algorithm — see Gilks 428 

et al. (1996) for a good introduction to the general theory and some applications of 429 

MCMC. In any MCMC algorithm, we begin with a set of samples (one sample for 430 

each of the variables in the system). A new set of samples is then drawn, which is 431 

conditional on the previous set, and that set only; hence the name Markov chain 432 
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Monte Carlo. There are several classes of algorithm for performing MCMC, based on 433 

different methods of drawing the samples. In Metropolis-Hastings, new values for the 434 

set of variables (or alternatively for an individual variable) are proposed, and this set 435 

of values (or value) is accepted with a probability that depends on the joint 436 

probability, Eq. (19). For instance, the probability of accepting a proposed sample, Y, 437 

when the previous sample is X, is given by: 438 
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where  Yf  is the joint probability density, Eq. (19), for the proposed sample Y and 440 

the current state of all other system variables, and  XYq  is the probability density 441 

for the proposed sample, Y, from the proposal distribution. The proposal distributions 442 

can have any form, but they should be chosen so that the resulting samples explore the 443 

posterior distribution effectively. The acceptance probabilities ensure that if a sample, 444 

   ias  
D ,,z , is a sample from the posterior distribution, then    1 

D ,, iasz  is also a 445 

sample from this distribution. If we run the algorithm for long enough, then the chain 446 

will ‘forget’ its initial state, and thereafter, the samples may be considered as 447 

(dependent) samples from the posterior distribution. Consecutive samples may be 448 

highly correlated, and to reduce this correlation, we can save the samples from every 449 

kth iteration only.  450 

 We used five independent chains, started from five different sets of initial 451 

values. After tuning (for which we followed De Oliveira (2005) by tuning the 452 

proposal distributions to produce an acceptance rate of around 0.35) and burning in 453 

(forgetting the initial state) these chains, we saved every fifth sample from each chain, 454 

saving a total of 5000 samples from each chain. We compared the estimates and 455 
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predictions from each chain, and concluded that we could be confident that our results 456 

were accurate to the levels given in this paper.  457 

 We used MATLAB (2004) to perform the calculations. For practitioners that 458 

are interested, we can provide the MATLAB code at request. It is also possible to use 459 

the freely available WinBUGS software package (Spiegelhalter et al., 2005) to draw 460 

samples from the posterior distributions in a geostatistical case study. However, we 461 

found this to be considerably slower than MATLAB in this example.   462 

 463 

Other issues 464 

 Some statistic of the posterior pdf for  0xZ , Eq. (18), may be used as the 465 

prediction. Often, the mean is chosen so as to minimize the mean squared error 466 

(MSE). However, we cannot use the mean in our case, since — as we noted earlier — 467 

the mean of the predictive distribution,  aszf ,,D0ISRF z , does not exist. In this study, 468 

we therefore consider the median of the posterior distribution as our predictor. For 469 

heavily skewed distributions, the mean is sensitive to the variance of the transformed 470 

variable; the median predictor has often been preferred for this reason. Tolosana-471 

Delgado and Pawlowsky-Glahn (2007) justify the use of the median predictor for 472 

lognormal variables through its property as the optimal predictor on the multiplicative 473 

scale, the scale on which the lognormal distribution is built. Some measure of the 474 

uncertainty about  0xZ  can be calculated from the posterior distribution; we will use 475 

the standard 90 % confidence interval, since the variance does not provide a good 476 

measure of uncertainty for heavily skewed distributions.  477 

 Ordinary lognormal kriging deals with non-stationarity in the mean by 478 

considering that this mean is constant within a local neighbourhood of the prediction 479 

location only. In this work, we deal with non-stationarity in the total variance 480 
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parameter (through Bayesian prediction) in the same manner; if we use MCMC to 481 

draw samples from the posterior distribution for  as,,Dz  given the global data, then 482 

we can use Eq. (16) within the local neighbourhood to give the conditional prediction 483 

distribution (we use Eq. (18) to compute the average of such probability densities to 484 

integrate over Dz , s and a). By doing this, we address non-stationarity in the total 485 

variance, 2 . 486 

 We consider Bayesian hierarchical modelling using three different approaches 487 

to represent the measurement error:  488 

1). For comparison with OLK, we considered the detection limit approach to represent 489 

the measurement error, whereby the small measurements were set to a value of half of 490 

the DL. We used just the measurements greater than the DL to sample the covariance 491 

model parameters. (LBH) 492 

2). We represented the small measurements by interval type soft (censored) data on 493 

 DL,0 . Here, we used these censored data (as well as the larger measurements) to 494 

sample the covariance model parameters, since treating them as soft data allows them 495 

to vary and hence not contribute unduly to the nugget effect. (LBC) 496 

3). We represented each measurement by a soft datum through Eq. (3). (LBS) 497 

 498 

 499 

5. Results 500 

 We focussed here on one particular part of the study area that roughly 501 

corresponds to the Fens region of East Anglia (the area outlined in the north-west of 502 

the region in Fig. 2); we did so for two reasons. Firstly, this region was of particular 503 

interest to us, since it contained more of the lower measurements of Se, where our 504 

treatments of the measurement error were most different. Secondly, as can be seen 505 
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from the plot of the data in Fig. 2, the data over the entire study region  cannot be 506 

assumed to provide a realization of a stationary random function, a requirement of 507 

many standard geostatistical techniques; the measurements in the Fens region show a 508 

high degree of spatial smoothness (the variogram that is fitted to these data only have 509 

a proportion of the total variance with a spatial structure of 59.0s ), whilst the 510 

measurements over the remainder of the study area showed less spatial correlation 511 

(this variogram had a spatial variation parameter, 15.0s ). This difference may be 512 

explained by the history of the low-lying Fens region, which was liable to flooding — 513 

in some cases, permanently flooded — before being drained. This drainage was 514 

essentially started in the 17th century to provide farmland, although once drained, the 515 

peat that covered much of the region shrank leaving the land lower than the 516 

surrounding rivers, and by the end of the 17th century the land was once again under 517 

water (Godwin, 1978).  Drainage was again attempted in the late 18th and early 19th 518 

century, and completed when the dawn of the steam age in the 1820s provided more 519 

powerful pumps to replace the windmills. The concentration of Se in the topsoil is 520 

strongly related to the quantity of soil organic carbon (SOC); the smoothness of Se 521 

concentration in the Fens and high variability in the remainder of the region is due to 522 

the different spatial distributions of SOC in these two parts of East Anglia.  523 

 For the purposes of validation, we split the Fens dataset into two parts, one for 524 

estimation and one for validation. The estimation dataset contained the measurements 525 

at 564 locations across the region, whilst the validation dataset consisted of the 526 

measurements at the remaining 1127 locations. We also used these estimation data to 527 

produce maps using the different spatial prediction methods. 528 

 529 

5.1 Spatial correlation models 530 
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 For ordinary lognormal kriging, we must fit a variogram to the log-531 

transformed data. In our OLK approach, we use a value of half of the detection limit 532 

to represent the measurements that were not statistically different from zero. We 533 

therefore only used the measurements that were greater than the DL for fitting the 534 

variogram, since the repetition of the value, 2
DL , contributes nothing to many of the 535 

squared differences and reduces the nugget of the variogram. The experimental and 536 

fitted model variogram are plotted in Fig. 4; the parameters for the fitted exponential 537 

model were 44.02  , 59.0s  and km 19a . 538 

 The Bayesian approach does not require that a single variogram be fitted to the 539 

data. Instead, the method integrates over all possible variogram parameters using the 540 

integrated prediction formula, Eq. (18). We can use the samples from the posterior 541 

distributions for the correlation parameters to calculate the mean, and 5 and 95 542 

percentiles of our estimated correlation at various lag distances. In Fig. 5, we plot 543 

these statistics for the associated normalized variogram (i.e. the variogram normalized 544 

to unit variance, since the variance parameter is integrated analytically); the three 545 

plots show the posterior statistics for the normalized variograms for the LBH, LBC 546 

and LBS approaches. Table 2 gives the posterior statistics for the variogram 547 

parameters. From these, we can see that the soft data approach gave a larger value for 548 

the spatial correlation parameter, s.  549 

 The results shown in Table 2 were obtained using the inverse gamma prior for 550 

the effective range parameter, a, (with the prior guess of 15ˆ a  km) and uniform 551 

priors for  , s and 2ln . We tested the sensitivity of the results (with the LBS 552 

approach) to the parameters of this inverse gamma prior: with a prior guess of 30ˆ a  553 

km, the posterior statistics for s were unchanged, whilst the posterior mean for a was 554 

increased to 30 km, and the 90 % CI became  52,17 . These differences did not affect 555 
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the spatial predictions or the estimates of uncertainty that we consider in the following 556 

sections. This was because in this case study we have enough data so that they 557 

dominate the posterior through the likelihood; if we had fewer data, then the prior 558 

distribution may have been of more importance. We tested the sensitivity of the 559 

results to the prior guess for the effective range parameter with 100 estimation data. 560 

With the LBS approach, and with prior guesses of 8ˆ a  km, 15ˆ a  km and 30ˆ a  561 

km, the posterior means for a were 37 km, 39 km and 44 km, respectively. The 562 

resulting LBS predictions were similar, with a maximum absolute difference between 563 

predictions from the three different priors of 0.05, and identical (to three significant 564 

figures) validation results for the bias, MSE and GMSE from all three priors.  565 

 566 

5.2 Maps of geostatistical predictions 567 

 We used the methods to estimate the Se concentration at the nodes of a grid 568 

that covered the area of interest in our case study. For OLK, we compared the maps 569 

produced using the mean and the median predictors, whilst for the remaining maps, 570 

we used the median predictor only. We found that for the Bayesian methods, 1000 571 

samples from the posterior distributions for the model parameters were enough to give 572 

sufficient accuracy for these maps (i.e. there were no visual differences between maps 573 

produced using 1000 samples). The maps are shown in Fig. 6.  574 

Fig. 6a shows maps for the OK predictor, and for the mean and median OLK 575 

predictors. The OK map shows the largest area of dark (i.e. the high predicted Se 576 

concentrations). This is because the skew of the data is not taken into account by OK, 577 

and therefore the large data values have a strong influence on the predictions. When 578 

the data are transformed (i.e. by taking logarithms) the largest measurements do not 579 

have such a great influence on the predictions. By comparing the maps for the mean 580 
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and median OLK predictors, we can see that the mean gives larger predictions, as 581 

should be expected. 582 

 If we look at the maps produced using the lognormal Bayesian method (i.e. 583 

LBH, LBC and LBS, Fig. 6b), then we can compare our different treatments of 584 

measurement error. The features of these maps all appear very similar; the dark (i.e. 585 

the soil with a predicted Se concentration of more than 0.5 mg kg -1) in each of the 586 

maps covers roughly the same parts of the region. However, we can notice small 587 

differences. The map produced using the soft data shows generally slightly larger 588 

predictions (compare the sizes of the dark regions, and also the areas of lighter shades 589 

of grey), and is also smoother than the maps produced using the censored or hard 590 

data. This is because of the effect that the hard (and censored) data have on the 591 

predictions. When we impute a value of half of the DL for the smaller measurements 592 

in the LBH approach, this datum is allowed to have a larger influence on the 593 

predictions than it should really have, since the uncertainty about this imputed value is 594 

not accounted for. This causes the predictions around the imputed values to be 595 

smaller. Similarly, the censored data approach gives lower predictions than the soft 596 

data approach; the representation of a measurement of 0.2 mg kg -1 by the interval 597 

[0,0.2] does not allow for the measurement error to give a true concentration of Se 598 

greater than 0.2 mg kg -1. The soft data approach, on the other hand, aims to represent 599 

exactly the information that each single measurement provides (about the 600 

concentration at that measurement location) through the soft data pdfs. For example, 601 

even though measurements of 0.2 mg kg -1 and 0 mg kg -1 are not statistically different 602 

from each other, the soft data pdfs can be used to represent these measurements 603 

differently, by taking into account the uncertainty about each different measurement. 604 

In our opinion, the smoother transition between the larger and smaller predictions — 605 
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as modelled by the soft data approach — provides a better representation of the 606 

uncertainty in the predictions surrounding the lower measurements. 607 

We can investigate the effects of parameter uncertainty on the predictions by 608 

comparing the map produced using OLK (the median predictor) to that produced 609 

using the lognormal Bayesian method with the same hard data (i.e. LBH). These two 610 

maps, shown in Fig. 6c, appear very similar. Both approaches are based on the same 611 

model for the SRF; the only difference between these approaches is that the Bayesian 612 

approach accounts for the uncertainty about the variogram parameters, and thus it 613 

would appear that this parameter uncertainty is not of great importance for the 614 

predictions in this case study.  615 

 616 

5.3 Prediction assessment 617 

 We have compared the methods in terms of the maps of the resulting 618 

geostatistical predictions. We can also use validation to compare the predictions. We 619 

estimated the Se concentration at the 1127 validation locations using the geostatistical 620 

approaches described in this paper. We then compared the predicted values to the 621 

actual measurements at these sites in terms of the bias, mean squared error (MSE), 622 

and geometric MSE (GMSE). We used both the arithmetic and geometric means of 623 

the squared errors because the MSE for lognormal predictions is dominated by errors 624 

at just a few locations (i.e. when we under-predict the concentration by a large 625 

amount), whilst the GMSE is effectively a measure of the errors on the log-626 

transformed scale; since our data are roughly Gaussian on the logarithmic scale, the 627 

GMSE is not dominated by these errors. 628 

 We note here that when we use the Bayesian method based on the pdf-type 629 

soft data (i.e. LBS), the variable that we are actually predicting is  0xZ . However, 630 
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the values that we are validating against are measurements of this variable. We can 631 

put the measurement error back into the predictions from LBS through:  632 

        000meDs0Ds0 d  zzffzf   zz .   (21) 633 

We therefore use this prediction pdf to calculate the predictions for validation with the 634 

LBS approach. Since the approaches built on the detection limit (i.e. the hard and 635 

censored data approaches) do not explicitly distinguish between the measured and 636 

actual values of the variable, we could not consider such an approach with these 637 

methods. We therefore use our original predictions with these methods.  638 

Table 3 summarizes the results for the estimators in terms of the bias, MSE, 639 

and GMSE. This shows the results for the validation against the actual measurements, 640 

and the GMSE for validation against the DL-imputed values; the results for validation 641 

against the soft data means showed similar patterns to the validation against the actual 642 

measurements, and are not shown.  643 

 The OK predictor gave the best predictions of all of the methods in terms of 644 

the MSE and bias of the predictions. However, as noted previously, the MSE is 645 

dominated by the errors at the few locations where the measured concentration is in 646 

the tail of the distribution. At these locations, there is no danger of us over-predicting 647 

and so the larger the prediction, the better. Generally, OK performs well (in terms of 648 

the MSE and bias) because when we krige with the original (untransformed) data, the 649 

larger measurements have a big effect on the predictions (since in this model they are 650 

essentially outliers). When we use the log-transformed data to predict, the larger 651 

measurements do not act as outliers, and do not affect the prediction as much, 652 

resulting in a lower prediction. Hence, we get a larger error at these locations — and 653 

therefore also a larger MSE — from a method built on this transformation. Because of 654 

this domination of the MSE (and bias) by the errors at just a few locations, the GMSE 655 
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provides a more appropriate measure of the accuracy of the geostatistical predictions 656 

in this case study. We therefore focus on this measure from here on. We can see that 657 

despite giving the best predictions in terms of the MSE, OK gave the worst in terms 658 

of the GMSE.  659 

 Tolosana-Delgado and Pawlowsky-Glahn (2007) justify the use of the median 660 

predictor (for lognormal data) based on its property as the optimal predictor on the 661 

multiplicative scale; the GMSE is essentially a measure of the errors on this scale. As 662 

should be expected, we see that the median OLK predictor gives a smaller GMSE (but 663 

larger MSE) than the mean OLK predictor (whatever the choice of validation values). 664 

The OLK mean predictor has often been disregarded because of its sensitivity to the 665 

fitted variogram parameters. The predictor aims to achieve unbiased predictions (and 666 

minimize the MSE on the logarithmic scale) through a balance between many small 667 

over-predictions and a few large under-predictions; this balance is sensitive to the 668 

fitted variogram parameters and to the lognormal assumption, from which any 669 

departure can result in poor predictions (Roth, 1998). The median predictor 670 

overcomes this sensitivity somewhat, because the back-transform does not depend 671 

directly on the fitted variogram parameters.  672 

 The validation results for the Bayesian approach suggest that the pdf-type soft 673 

data improves the accuracy and precision of the estimates. The LBS approach gave a 674 

GMSE of 0.012, compared to 0.014 for the LBH and LBS approaches. It also gave a 675 

lower bias than these other two approaches. The Bayesian approach offers the 676 

advantage over the OLK approach of incorporating parameter uncertainty in the 677 

predictions. The validation results, however, did not show significant differences 678 

between these approaches in terms of the bias, MSE and GMSE (compare the results 679 

from the median OLK predictor with those from LBH). 680 
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 We note that the choice of prior did not affect the accuracy of the predictions; 681 

we compared the results from LBS with the inverse Gamma prior for a and with prior 682 

guesses of 15ˆ a  km and 50ˆ a  km, and found all of the measures of prediction 683 

performance to be identical to the precision shown here. 684 

 685 

5.4 Uncertainty assessment 686 

 We also used the validation dataset to determine how well each of the methods 687 

represented the uncertainty about the estimated Se concentration. Consider a 688 

validation location, vx , where we have a measurement, v , and suppose that we have 689 

used our estimation dataset to calculate a prediction pdf for this measurement, from 690 

which we can calculate any quantile. If the prediction pdf provides a good 691 

representation of the uncertainty, then we should expect that the proportion of 692 

locations for which the validation measurement is less than the q-quantile from the 693 

prediction pdf be q; we denote this actual proportion qp . If we assume that the 694 

validation sites are independent for 1127k n  validation locations, then the 90 % CI 695 

for qp  is   k1645.1 nqqq  . We note that the assumption of independent 696 

validation data results in a somewhat crude estimate of the confidence intervals for 697 

qp . In reality, these intervals should be wider, because of the correlation between the 698 

data at the validation locations. We use the independence assumption here to provide 699 

a rough idea of plausible values for qp , rather than to accept or reject a particular 700 

approach based on these bounds. We display the results as plots of the quantile of the 701 

prediction distribution, q, on the x-axis, against the proportion of validation 702 

measurements less than this quantile, qp , on the y-axis. These plots are shown in Fig. 703 

7. 704 
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 We also calculate the percentage of the validation locations for which the 90 705 

% confidence interval contained the validation data for each prediction method, CIP , 706 

and the average widths of these confidence intervals, CIW . These are shown in Table 707 

4. A method that gives a small average width is precise, whilst one that gives a 708 

percentage in the confidence interval close to 90 % is accurate (in terms of the 709 

uncertainty estimate).  710 

 Again, when we use the pdf-type soft data to calculate the prediction 711 

distributions (i.e. LBS), we can put the measurement error back into the prediction 712 

pdfs through Eq. (21) and use this pdf for validation; Table 4 shows the results from 713 

these pdfs, and in brackets the mean width of the 90 % CIs for the actual 714 

concentration, without the measurement error added back. We could not consider 715 

such an approach to separate out the measurement error and micro-scale variation 716 

with the hard data or censored data approaches.  717 

 From Fig. 7a, we can see that OK did not represent the uncertainty well. The 718 

lower quantiles of the prediction distribution were too low, and therefore very few 719 

validation measurements fell below these lower quantiles. The upper quantiles were 720 

too high, and very few validation measurements were greater than these upper 721 

quantiles. Also, from Table 4, we can see that the 90 % CI captured the validation 722 

measurements too often. This is because the OK estimate is symmetric (i.e. based on a 723 

Gaussian SRF) and does not take account of the highly skewed nature of the data. 724 

Note also the average width of the CIs from OK, which was much larger than that 725 

from any other method, showing that the approach overestimated the uncertainty of 726 

the predictions. 727 

 Ordinary lognormal kriging (OLK) does account for the skew of the data, but 728 

does not account for any uncertainty in the variogram. We therefore expected it to 729 
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improve on the OK estimates, but to underestimate the uncertainty of the predictions. 730 

We expected that this underestimation of uncertainty would be a result of the lower 731 

quantiles being too high, and the upper quantiles being too low. Indeed, from Fig. 7a, 732 

we can see that the upper quantiles of the OLK prediction distribution were generally 733 

too low. However, the lowest quantiles ( 1.0q ) gave good representations of the 734 

uncertainty. This happened because the value imputed for the lower measurements by 735 

the DL approach (i.e. 0.1) generally underestimated the actual measurement at these 736 

locations (the mean of the actual estimation measurements at these locations was 737 

0.15). When OLK is used to calculate the prediction distribution with these data, the 738 

variogram uncertainty is not taken into account (meaning that the lower quantiles are 739 

higher than they should be). The overestimation of the lower quantiles by OLK and 740 

underestimation of the lower quantiles by the DL approach balances out, and results 741 

in good estimates for these lower quantiles by OLK with the DL approach in this case 742 

study.  743 

 When we look at the 90 % CI for OLK, we see that this failed to capture the 744 

validation value in enough cases ( 8.80CI P  %). Generally, this was because the 745 

estimated CIs were too narrow; the average width of the CIs from OLK was the 746 

smallest out of all of the approaches. This was because OLK does not account for the 747 

uncertainty in the estimated variogram, which can play a significant part in the 748 

uncertainty of lognormal predictions.  749 

 The Bayesian approach incorporates variogram uncertainty. When we used the 750 

DL approach to give hard data (i.e. LBH), this gave better results for the upper 751 

quantiles (where the effect of the DL imputed data was less) than OLK, but worse 752 

results for the lower quantiles. This was because the underestimation of the lower 753 

quantiles by the DL approach was not balanced out by an overestimation from the 754 
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geostatistical approach here. The uncertainty of the variogram is accounted for by the 755 

Bayesian approach, and thus, because the DL imputed data underestimate the 756 

measurements, this results in lower quantiles that are lower than should be expected. 757 

We note that the results from the Bayesian approach with censored data, LBC, were 758 

very similar to those from LBH. 759 

 In terms of the 90 % CI, we can see that LBH performed better than OLK, 760 

with 90.1 % of the validation measurements contained in the intervals. These intervals 761 

were larger than those from OLK, because they take into account the uncertainty 762 

about the variogram. 763 

 The Bayesian approach gave better results when we used soft data. We can see 764 

that the line for LBS on Fig. 7b lies closer to the diagonal, qpq  , than the line for 765 

LBH. This is because the soft data better represent the information that we receive 766 

from the measurements than the DL approach does through hard data. However, we 767 

again see that the Bayesian approach resulted in the lower quantiles of the prediction 768 

distributions being too low. Although the soft data improves on the hard data 769 

approach, it could perhaps be improved further by considering an alternative 770 

measurement error model; this would generally be a more complicated model, which 771 

we would only be able to consider if we had more repeated measurements.  772 

 When we look at the 90 % CIs, the soft data approach, LBS, resulted in the 773 

validation measurements being captured in these intervals more often than should be 774 

expected. This was because only 2.5 % of the validation measurements fell below the 775 

0.05-quantiles of the prediction distributions (94.9 % of the validation measurements 776 

fell below the 0.95-quantiles). With LBH, although 90.1 % of the measurements were 777 

in the 90 % CI, this was made up of 3.5 % below the 0.05-quantiles, and 93.7 % 778 

below the 0.95-quantiles; since both of these are less than should be expected, the 779 
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resulting 90 % CIs contain the validation measurements for an acceptable number of 780 

validation locations.  781 

 An interesting point here is that the average width of the CIs from LBS was 782 

smaller than those from LBH and LBC. This was because the hard or censored data 783 

caused the prediction pdfs to favour lower values than the soft data approach (because 784 

the average of the replaced measurements in the LBH and LBC approaches was 785 

greater than 0.1); the lognormal assumption then leads to narrower CIs from the LBS 786 

approach. Further, the average width of the CIs from LBS without the measurement 787 

error added back in (i.e. predictions for the actual underlying concentration, and not 788 

the measurement of this quantity, shown in brackets in Table 4) is considerably 789 

smaller again. This provides a good benefit of using the soft data approach — we can 790 

separate out the micro-scale and measurement error components of the variation, and 791 

use this information to reduce the uncertainty about our predictions.  792 

 We note that the choice of prior again did not affect the predictions; we 793 

compared the results from LBS with the inverse Gamma prior for a and with prior 794 

guesses of 15ˆ a  km and 50ˆ a  km, and found the plot of qp  against q to be 795 

identical. 796 

 797 

5.5 Geostatistics for the effective management of selenium deficient soils  798 

 The management of the soil can be made more efficient by using the 799 

information provided by geostatistical predictions. In many case studies concerning 800 

the concentration of some element in the soil, the task is to determine areas where the 801 

soil may be considered as contaminated, and some clean-up operation may be deemed 802 

necessary in these areas. In this case study, however, we concern ourselves with the 803 

problem of determining areas where the soil may be considered as Se deficient; Se 804 
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may be added to the soil in these areas to increase the amount available for uptake by 805 

plant roots. 806 

 We note that the variable in this case study, the total Se in the soil, is a poor 807 

indicator of the total Se available to plants. Other factors, such as the Se speciation in 808 

soil, the soil pH, and the sulphate concentration can have a much greater influence on 809 

Se uptake. However, a limit of 0.5 mg kg -1 is used in New Zealand, below which the 810 

Se content of the grass may be insufficient for grazing sheep (Hawkesford and Zhao, 811 

2007). Tan (1989) defines the level of Se in soil for human nutrition as being deficient 812 

for less than 0.125 mg kg -1, and marginal for 0.125–0.175 mg kg -1. In this work, we 813 

consider three limits (which we refer to as the limit of deficiency, or Dz ); the first of 814 

0.55 mg kg -1, a second of 0.35 mg kg -1, and a third of 0.15 mg kg -1, so these limits 815 

were chosen to demonstrate the differences between the geostatistical approaches in 816 

this case study. 817 

 In order to decide whether a site has sufficient Se, we should take into account 818 

the relative cost of wrongly declaring a site as Se deficient, 1 , the relative cost of 819 

wrongly declaring a site as not deficient, 2 , and the (estimated) probabilities of these 820 

events occurring. If we used the perfect strategy (i.e. correctly classified the soil at 821 

each location in the validation dataset), then we would incur some minimum cost; we 822 

suppose (without loss of generality) that this minimum cost is zero. When we base our 823 

strategy on the probabilities of deficiency, Dp , estimated using our geostatistical 824 

method, we incur a greater cost than this minimum due to misclassification. At any 825 

single location, the expected extra cost if we apply Se is  D1 1 p , and the expected 826 

extra cost if we do not apply is D2 p . We choose our strategy at each location to give 827 

the smaller expected cost.  828 
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 We can use our validation data to calculate the costs that result from the 829 

decision about where to apply Se to the soil. We present the resulting costs in Fig. 8 830 

as a percentage of a default ‘maximum’ cost. This default is the cost that would be 831 

incurred if we simply used the percentage of deficient data in the estimation dataset to 832 

give Dp  and hence determine the appropriate strategy — this default tells us to apply 833 

everywhere if the cost ratio, 21R   , is less than 
D

D

1 p

p


, and to apply nowhere 834 

otherwise. Percentages of this default below 100 % indicate the potential saving (i.e. 835 

90 % equates to a 10 % saving) that could be made by using the geostatistical 836 

technique to decide where to apply. The resulting validated percentage depends only 837 

on the ratio of the costs, 21R   . We can rearrange the cost inequality that we 838 

use to choose our strategy to show that we are essentially using the 
R

R

1 



-quantiles 839 

from the prediction distributions to classify the soil as deficient or otherwise. We 840 

therefore plot this variable on the x-axis in Fig. 8. Quantiles below 5.0q  are used 841 

when the cost of wrongly declaring the soil as deficient, 1 , is small (and hence, this 842 

favours the application of Se to the soil), and the upper quantiles are used when this 843 

cost is large.  844 

 In Fig. 8a, we compare the methods for using hard data to calculate the 845 

geostatistical estimates (via the DL approach). The results here seem to agree with the 846 

results from the previous section — for the low quantiles, OLK performs well, but for 847 

the higher quantiles performs poorly compared to LBH.  This was particularly the 848 

case for ppm 55.0D z  and for ppm 35.0D z . 849 

 In Fig. 8b, we compare the treatments of the measurement error through the 850 

lognormal Bayesian methods, LBH, LBC and LBS. We saw in the previous section 851 
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that LBS generally gave better estimates of the uncertainty about the predictions; we 852 

should therefore expect this to lead to better decisions regarding the management of 853 

the soil. From Fig. 8b, we can see that the costs resulting from the three geostatistical 854 

approaches were similar for many values of the cost ratio, particularly for the limits of 855 

deficiency of ppm 35.0D z  and ppm 55.0D z . For these limits of deficiency, LBS 856 

resulted in a cost that was less than the default strategy (i.e. percentages were less 857 

than 100 %) for most quantiles from the prediction distribution (apart from the 858 

extreme upper quantiles); LBH and LBC, on the other hand, both resulted in costs 859 

greater than this default strategy for some of the upper quantiles (i.e. by using these 860 

approaches to choose the appropriate strategy, we actually increase the cost over the 861 

default strategy). In the previous section, we saw that the upper quantiles from the 862 

LBS approach represented the uncertainty better than those from the LBH and LBC 863 

approaches, and the reduction in cost from LBS when these upper quantiles are used 864 

to classify the soil is a result of this improvement. For ppm 15.0D z , LBS generally 865 

performed better than LBH and LBC, although in this case, for quantiles, q, between 866 

0.31 and 0.63 (i.e. values of the cost ratio, 21  , between 0.44 and 1.7), LBS gave a 867 

greater cost than the default strategy. However, this increased cost was small 868 

compared to those from LBH and LBC, and these methods increased the cost over a 869 

larger range of values for q (for LBH, this increase was for values of q between 0.28 870 

and 0.76).  871 

 872 

6. Discussion and conclusions 873 

 In this paper, we have compared several geostatistical approaches for 874 

predicting the Se concentration in the soil using data that are subject to measurement 875 

error. Environmetric datasets that consist of measurements subject to a detection limit 876 



 38

are commonplace, and we have investigated a method to represent these 877 

measurements through soft data that provides more information than the approaches 878 

built on hard or censored data.  879 

 We have focussed on the median predictor throughout this paper because it is 880 

the optimal predictor (for lognormal variables) on the log-transformed (i.e. 881 

multiplicative) scale. This follows other work (e.g. Tolosana-Delgado and 882 

Pawlowsky-Glahn, 2007) that has suggested that this predictor be used for positive 883 

variables. Further, we assessed the accuracy of the predictors in this paper by the 884 

geometric mean of the squared errors for similar reasons (the arithmetic mean of the 885 

squared errors is dominated by the errors at just a few locations for heavily skewed 886 

positive variables).  887 

 We have compared the detection limit approach that has previously been used 888 

(Woodside and Kocurek, 1997) with a soft data approach based on a Gaussian 889 

measurement error model. Each soft datum represents the information that a 890 

measurement is providing us with about the actual Se concentration at that location; 891 

the uncertainty about this value is taken into account, and thus measurements that are 892 

not statistically different can give rise to different soft data.  893 

 We found that the soft data approach generally resulted in slightly larger 894 

predictions, and also smoother maps of these predictions. In our opinion, these 895 

smoother predictions provide a better representation of the measurement error and the 896 

resulting uncertainty. From the validation exercise, we found that the soft data 897 

approach to incorporate measurement error improved the precision and accuracy of 898 

the predictions compared to the classically used approach of using a detection limit. 899 

When we used Bayesian modelling to calculate the prediction distributions, the soft 900 

data gave a better representation of the prediction uncertainty, as shown in the qp -901 
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plots in Fig. 7. Although the hard and censored data approaches gave better results in 902 

terms of the proportion of validation measurements captured by the 90 % CIs, this 903 

was because of a balancing act between the overestimation of both the lower and 904 

upper quantiles by LBH and LBC. We also showed the soft data approach to 905 

generally result in better management of Se deficient soils; by taking into account the 906 

cost of Se deficient soil, we found that the LBS approach generally resulted in a lower 907 

validated total cost. 908 

 One particular benefit of the soft data approach is that it allows us to separate 909 

out the measurement error from the ‘micro-scale’ variance. We can use this 910 

information to calculate predictions for the underlying variable, and also (if required 911 

for validation), predictions for the measurements of this variable.  912 

 The soft data based on the classical measurement error model that we have 913 

used in this work effectively represents the simplest choice of model, given that the 914 

measurements are unbiased with a constant measurement error variance. However, if 915 

more repeated measurements were available from other samples, then it may be 916 

possible to consider a more complex model for the measurement error. For instance, it 917 

may be that when the actual concentration in a sample is low, the measurements have 918 

a low variance, whilst the measurements of higher concentrations may be more 919 

variable. With more repeated measurements, it may be possible to fit such a model 920 

and use it to give soft data; however, with the limited number of repeated 921 

measurements that we had, we could only consider the simplest choice, using the 922 

classical measurement error model.  923 

 We compared the Bayesian and ‘plug-in’ kriging approaches in order to assess 924 

whether parameter uncertainty had an effect on the predictions. We found that both 925 

approaches (when using the hard data only) resulted in maps that were apparently 926 
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identical. Furthermore, the validation results from the OLK median predictor were 927 

very similar to those from the LBH median predictor (i.e. the Bayesian approach 928 

using hard data), and we conclude that the parameter uncertainty did not affect the 929 

geostatistical predictions much. However, in terms of the assessment of the prediction 930 

uncertainty, the parameter uncertainty did have an effect. The 90 % confidence 931 

intervals from the Bayesian methods captured the validation measurement in close to 932 

90 % of the validation cases, whilst the OLK CIs captured the validation values in 933 

only around 80 % of the cases. The improvement may be attributed to the sensitivity 934 

of lognormal kriging estimates to the fitted variogram parameters. The Bayesian 935 

confidence intervals were on average larger than those from OLK (1.16 for LBH 936 

compared to 0.76 for OLK), because of the effect that parameter uncertainty has on 937 

the uncertainty of geostatistical predictions. Although OLK poorly represented the 90 938 

% CIs, it did represent the lower quantiles well. The hard data imputed for the low 939 

measurements (i.e. half of the DL) provide underestimates of the actual values here; 940 

also, OLK does not incorporate variogram uncertainty, and hence overestimates these 941 

lower quantiles of the prediction distribution. We hypothesized that these two poorly 942 

represented quantities could balance out in this case study to give good 943 

representations of the lower quantiles. We note that the upper quantiles were poorly 944 

represented by OLK. 945 

 In this paper, we have used the Bayesian hierarchical approach to deal with 946 

measurement error in lognormal variables. The measurement error model describes 947 

how the measurements are related to the SRF; we have referred to these 948 

measurements as soft data, because they are related to the SRF by a stochastic 949 

relationship. In fact, any information of this form may be viewed as soft data, and 950 

would fit in with the hierarchical approach. For instance, it might be that a process 951 
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model gives us information about the SRF at some locations; this will generally be 952 

uncertain information, and if its relationship to the underlying SRF can be modelled, 953 

then we can incorporate this through soft data in the hierarchical approach. We note 954 

that there are other approaches for including information from process models in 955 

geostatistical analyses (e.g. Stacey et al., 2006); the soft data approach provides 956 

another means of incorporating this information.  957 

It is also important that we consider a hierarchical approach for the covariance 958 

parameters when we have soft data in order to ensure that the covariance parameters 959 

that we estimate are for the same variable that the soft data provides information 960 

about. For instance, if we used the mean of each soft datum to estimate the variogram, 961 

then the estimated parameters would not incorporate the measurement error properly; 962 

the nugget effect for the variogram of the SRF should not include the measurement 963 

error here, because this is accounted for in the soft data, and an estimate of the 964 

parameters based on the means of the soft data would therefore be an overestimate. 965 

 According to Deutsch and Journel (1992, p. 58), “… it is subjective 966 

interpretation … that makes a good model; the data by themselves, are rarely 967 

enough”. This would seem to provide a good argument in favour of using soft data to 968 

model measurement error; all of the measurements can be interpreted through the 969 

classical measurement error model. This approach enables us to separate out the 970 

nugget variation into components for the micro-scale variation and the measurement 971 

error, which can improve the accuracy of predictions and provide the modeller with 972 

more useful information about the variability of the spatial random field. 973 
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Figure captions 1072 

 1073 

Fig. 1 – The marginal distribution of a) Se concentrations and b) the log-transformed 1074 

Se concentrations from the entire East Anglia region 1075 

 1076 

Fig. 2 – A map showing the measured concentrations of Se across the East Anglia 1077 

region, and the outline of the Fens (the area in the north-west of the region) studied in 1078 

this work 1079 

 1080 

Fig. 3 – A graphical representation of the Bayesian spatial prediction approach 1081 

 1082 

Fig. 4 – The experimental and model (exponential) variogram  fitted to the log-1083 

transformed data using only the measurements greater than the DL 1084 

 1085 

Fig. 5 – The posterior means, 5 and 95 percentiles from the standardized variogram 1086 

using the three Bayesian approaches, LBH, LBC and LBS. In a) we only use the 1087 

measurements greater than the DL to calculate the posterior variogram, in b) we also 1088 

use the censored data representation for the low measurements, and in c) we use the 1089 

soft data representation for all of the measurements  1090 

 1091 

Fig. 6 – Maps of the geostatistical predictions of Se concentration across the Fens. In 1092 

plot a), we compare OK, and the OLK mean and median predictors, in plot b), we 1093 

compare the representations of measurement error by the LBH, LBC and LBS 1094 

approaches, and in plot c) we investigate the effects of parameter uncertainty by 1095 

comparing OLK and LBH 1096 
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 1097 

Fig. 7 – The proportion, qp , of validation data less than the q-quantiles from the 1098 

prediction distributions. Plot a) compares OK, OLK and LBH, and plot b) compares 1099 

LBH, LBC and LBS. The dots show the expected value for qp  and the crosses the 90 1100 

% CIs for qp  1101 

 1102 

Fig. 8 – The cost of Se deficient soils calculated for the validation locations. The costs 1103 

are presented here as a percentage of the ‘default’ cost, which is the cost that would 1104 

be incurred if we did not use geostatistics to classify the soil. The variable on the 1105 

abscissa is the quantile of the prediction distribution that is used to classify the soil. 1106 

Plot a) compares OK, OLK and LBH, and plot b) compares LBH, LBC and LBS 1107 


