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42 Abstract 
 
43 Studies on exposure of non-targets to anticoagulant rodenticides have largely focussed 

 

44 on predatory birds and mammals; insectivores have rarely been studied. We investigated the 
 

45 exposure of 120 European hedgehogs (Erinaceus europaeus) from throughout Britain to first- 
 

46 and second-generation anticoagulant rodenticides (FGARs and SGARs) using high 
 

47 performance liquid chromatography coupled with fluorescence detection (HPLC) and liquid- 
 

48 chromatography mass spectrometry (LCMS). The proportion of hedgehogs with liver SGAR 
 

49 concentrations detected by HPLC was 3-13% per compound, 23% overall. LCMS identified 
 

50 much higher prevalence for difenacoum and bromadiolone, mainly because of greater ability 
 

51 to detect low level contamination. The overall proportion of hedgehogs with LCMS-detected 
 

52 residues was 57.5% (SGARs alone) and 66.7% (FGARs and SGARs combined); 27 (22.5%) 
 

53 hedgehogs contained >1 rodenticide. Exposure of insectivores and predators to 
 

54 anticoagulant rodenticides appears to be similar. The greater sensitivity of LCMS suggests 
 

55 that hitherto exposure of non-targets is likely to have been under-estimated using HPLC 
 

56 techniques. 
 

57 
 
58 

 
59 Keywords: first- and second-generation anticoagulant rodenticide, insectivore, 

 
60 brodifacoum, bromadiolone, difenacoum, flocoumafen, coumatetralyl, warfarin, non- 

 
61 target 

 
62 

 
63 Capsule: Exposure of insectivorous hedgehogs to anticoagulant rodenticides in 

 
64 Britain is similar to predatory birds and mammals that specialise in eating small 

 
65 mammals, and hitherto exposure levels have been underestimated using HPLC 

 
66 techniques. 

 
67 
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68 1. Introduction 

 
69 

 
70 Globally, rodents destroy or spoil substantial amounts of food intended for 

 
71 human or animal consumption (Singleton et al., 1999; Stenseth et al., 2003). 

 
72 Consequently, a range of methods is employed to reduce rodent density and 

 
73 associated damage. This is most commonly done in developed countries using 

 
74 anticoagulant rodenticides, vitamin K antagonists that prevent the synthesis of 

 
75 functional prothombrin and related blood-clotting factors. Extensive use of first- 

 
76 generation anticoagulant rodenticides (FGARs) during the 1950s, however, led to the 

 
77 evolution of genetic resistance in brown rats (Rattus norvegicus), with widespread 

 
78 cross-resistance to other compounds (Cowan et al., 1995; Thijssen, 1995). As a 

 
79 result, more potent second-generation anticoagulant rodenticides (SGARs) were 

 
80 developed which have a greater affinity to binding sites, resulting in greater 

 
81 accumulation, persistence and toxicity (Parmar et al., 1987; Huckle and Warburton, 

 
82 1986). 

 
83 Given their mode of action, both FGARs and SGARs are potentially harmful to all 

 
84 vertebrates, and so users are expected to adopt measures that limit direct exposure 

 
85 to non-target species. However, the degree to which these preventive measures are 

 
86 adhered to, particularly by non-professionals, is unknown. For example, in Britain 

 
87 some products are readily available to householders who may be less aware of the 

 
88 risks of non-target poisoning and/or less likely to follow manufacturer’s guidelines. 

 
89 Non-target species may also be deliberately poisoned (Barnett et al., 2006). 

 
90 Most studies investigating indirect exposure of non-target species to 

 
91 anticoagulant rodenticides have focussed on the consumption of poisoned rodents by 

 
92 predatory birds and mammals (Newton et al., 1990, 1999a; Berny et al., 1997; 
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McDonald et al., 1998; Shore et al., 1999, 2003a). However, invertebrates can be a 

route of contamination for insectivorous vertebrates (Spurr and Drew, 1999) and, 

although exposure of insectivorous birds has been reported (Borst and Counotte, 

2002; Dowding et al., 2006), exposure of insectivorous mammals has not been 

studied. Potential routes of uptake by invertebrates include: the consumption of 

rodent faeces (Laas et al., 1985; Craddock, 2002; Eason et al., 2002); the 

consumption of rodent carcasses; ingestion of soil-bound residues by e.g. 

earthworms; and direct consumption of poison baits (Spurr and Drew, 1999; Dunlevy 

et al., 2000; Craddock, 2002). Given that many ecological communities typically 

contain larger numbers of insectivorous vertebrates relative to predators, the 

contamination of invertebrates potentially poses the greater risk of non-target 

poisoning in terms of species and individuals. 

The European hedgehog (Erinaceus europaeus) is a medium-sized (0.8 - 1.2 kg) 

insectivorous mammal distributed throughout Britain and across Western Europe 

(Morris and Reeve, 2008). Hedgehogs are of particular interest in terms of exposure 

to anticoagulant rodenticides, as they are reputed to have declined significantly in the 

last few decades in Britain, and poisoning by industrial chemicals, including 

rodenticides, may have been a contributory factor (Battersby and Tracking Mammals 

Partnership, 2005). Our overall aim in this study was to investigate the scale and 

severity of exposure of hedgehogs throughout Britain to some of the first-generation 

(warfarin, coumatetralyl) and all of the second-generation (difenacoum, 

bromadiolone, brodifacoum, flocoumafen) anticoagulant rodenticides that are 

licensed for use in Britain; the indandione compounds were not determined using the 

analytical techniques available to us in this study. The current study is the first to 

assess anticoagulant rodenticide contamination in Britain of species at this trophic 
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level. Furthermore, we analysed tissue residues using both high performance liquid 

chromatography coupled with fluorescence detection (hereafter HPLC) and liquid- 

chromatography mass spectrometry (LCMS). To date, characterisation of exposure 

of non-target species has mostly used HPLC (for example, McDonald et al., 1998; 

Shore et al., 2003a, 2006a; Walker et al., 2008) but LCMS is potentially a more 

sensitive technique and, perhaps more importantly, enables compounds with similar 

chemical structure to be differentiated with greater confidence since identification is 

based upon mass rather than elution times. Our specific objectives were: to compare 

and contrast the (i) frequency of occurrence and (ii) average residue magnitude of 

FGARs and SGARs in hedgehogs by analysing liver concentrations using both HPLC 

and LCMS techniques; (iii) to determine whether there were differences in levels of 

contamination between males and females and between geographical regions; and 

(iv) on the basis of these results, compare the extent of sub-lethal exposure of 

hedgehogs in Britain with that of predatory birds and mammals, and assess whether 

hedgehogs are at risk of acute toxicity from their exposure. 

 

 
 

2. Materials and Methods 
 
 
 
 

During 2004-2006, 20 adult hedgehog carcasses were collected from wildlife 

rehabilitation hospitals from each of six (Scotland, Wales, Midlands and West, South- 

Western, South-Eastern, and Eastern) of the seven regions of Britain as defined by 

the Department for Environment, Food and Rural affairs when assessing rodenticide 

usage (Dawson et al., 2003); we were unable to obtain samples from the remaining 

region (Northern England). All 120 hedgehogs used in the study had either died 

following admission or were euthanased due to their injuries or illness. 
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Each carcass was weighed, sexed and stored at -20oC until dissection, when it 

was inspected for lesions, injuries or other abnormalities. These observations, along 

with information collected at admission, were used to determine the cause of death 

or reason for euthanasia. The whole liver, the primary organ for accumulation of 

rodenticides (Huckle and Warburton, 1986), was removed, weighed to two decimal 

places and stored in aluminium foil at -20oC until further analysis. 

 

 
 

2.1. Residue analyses 
 
 
 
 

Anticoagulant rodenticide residues were quantified using both HPLC and LCMS. 

The four main SGARs licensed for use in the UK (brodifacoum, bromadiolone, 

difenacoum and flocoumafen) were quantified using both techniques. The two most 

commonly applied FGARs in the UK, coumatetralyl and warfarin (Dawson and 

Garthwaite, 2004), were also analysed using LCMS only. All reagents were from 

Rathburn Chemical Co. Ltd, Walkerburn, Scotland and of a grade suitable for HPLC 

and LCMS analysis. 

Extraction procedures for second-generation compounds followed Hunter (1985) 

and Jones (1996). Samples were analysed in randomised batches of 15. Each liver 

was defrosted at room temperature and a subsample of approximately 1g (mean wet 

weight±SE=0.98±0.01g) ground to a homogenous paste using acid-washed furnace- 

cleaned sand and anhydrous sodium sulphate. A 30ml aliquot of extraction solvent 

(50:50 acetone/chloroform) was mixed thoroughly with the ground tissue, stood for 1 

hour, then decanted and collected in a 100ml measuring cylinder through a funnel 

containing glass wool and anhydrous sodium sulphate. The ground tissue was 

subsequently washed with 30ml aliquots of extraction solvent and washings were 
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added to the original extraction aliquot until a total volume of 100ml was collected. 

The mixture was mixed by inversion and left to stand at room temperature for a 

minimum of 12 hours. Subsequently the extract was divided into 50ml for analysis by 

HPLC and 30ml was archived at 4ºC in the dark for later analysis by LCMS. Both 

samples were reduced to zero volume by evaporation of solvent in a fume cupboard 

and the remaining 20ml was poured to waste. 

The reduced extract was re-dissolved in 1ml of extract solvent and 4ml 

acetronitrile and cleaned using an SPE Isolute C18 (EC) 1g column (Internation 

Sorbent Technology, Mid-Glamorgan, UK) connected to an SPE 500-mg NH2 column 

solvated with methanol. Columns were conditioned with 5ml methanol followed by 

5ml acetronitrile. The re-dissolved extract was loaded onto the C18 column and 

washed with three 5ml aliquots of acetronitrile at <4ml/minute. The C18 column was 

then removed and 4ml ammoniacal methanol was washed through the NH2 column 

(flow <4ml/min). The resulting eluant was combined with 5ml methanol, reduced to 

near dryness (to remove ammonia) and re-dissolved in 0.5ml methanol. Samples 

were finally transferred to a chromatography vial via a 4mm syringe filter (Whatman 

International Ltd, Kent, UK). 

 
 
 

2.2. High performance liquid chromatography 
 
 
 
 

High performance liquid chromatography (HP Series 1100, Agilent Technologies, 

Bracknell, Berkshire, UK) was performed using a ODS Hypersil 200mm x 4.6mm 

5µm column (Thermo electron corporation, Runcorn, Cheshire, UK) at 30oC. A 15µl 

 
aliquot of cleaned-up extract was injected onto the column using 76:24 

methanol:water (v/v) supplemented with 0.25% (v/v) acetic acid and 40mM 
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ammonium acetate, as the mobile phase pumped at 1.0ml/min isocratically. SGARs 

were detected by fluorescence spectronomy (HP 1100 series fluorescence detector) 

using three excitation wavelengths (313nm, 320nm and 350nm) simultaneously to 

allow for correction of co-eluting peaks that interfered with the fluorescence of the 

rodenticides. The emission for each excitation wavelength was measured at 380nm. 

The excitation wavelength of 313nm gave the greatest emission signal at 380nm and 

was thus used for quantification. The ratio the emission response elicited by the 

320nm wavelength to that elicited by 313nm and the ratio elicited by 350nm to that 

elicited by 313nm were both used to aid identification. A chromatographic peak was 

identified as a specific SGAR if the ratios of the signals for each excitation 

wavelength matched the ratios in the standards and if the absolute retention time of 

the peak fell within the retention time window of the calibration standards. 

 

 
 

2.3. Liquid chromatography mass spectrometry 
 
 
 
 

The archived extraction samples were cleaned using methods previously outlined 

and analysed by liquid-chromatography tandem mass spectrometry conducted on a 

Zorbax Eclipse C18 3µm column (150 x 2mm). The analysis was conducted using an 

isocratic mobile phase consisting of acetronitrile:water containing 

0.1% formic acid in the ratio 75:25 and at a flow rate of 200µl/min. The column was 

maintained at 35oC; injection volume was set at 15µl. A Surveyor HPLC system 

(Thermo Corporation, Hemel Hempstead, Hertfordshire, UK) was used to separate 

the sample and deliver it to an LCQ Duo, API ion trap mass spectrometer (Thermo 

Corporation, Hemel Hempstead, Hertfordshire, UK). 
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Analyses were performed using electrospray ionisation in the negative mode. 

The capillary temperature was set at 270oC with an ionisation voltage of -36.0V. The 

sheath and auxiliary gasses used were helium and nitrogen maintained at 80psi and 

20psi respectively. Sensitivity was increased using single ion monitoring, scanning 

for the molecular ion of each of the rodenticides. Selectivity and conformational 

analysis was undertaken using tandem mass spectrometry. 

 

 
 

2.4. Quality assurance 
 
 
 
 

Quantification of residues was carried out by comparison with rodenticide 

standards (Chemservice, Greyhound Chromatography, Merseyside, UK) for all the 

FGARS and SGARS that were quantified. For HPLC analysis, the linear calibration 

range was 50-500ng/ml and the limit of detection (LoD) for peaks identified as 

SGARs was determined from the linear regression of the multilevel calibration using 

the equation Y=Y0+3Sy/x, where Y is the LoD response, Y0 is the intercept and Sy/x is 

the standard error of the regression line. The HPLC LoDs for bromadiolone, 

difenacoum, flocoumafen and brodifacoum based on the standards were 0.03, 0.01, 

0.01 and 0.02µg respectively, which were analogous to previous analyses of polecat 

(Mustela putorius) livers (Shore et al., 2003a). The LoDs for LCMS were obtained 

using a similar method and were 0.002µg for all compounds. 

For LCMS analysis, three concentrations (100, 50 and 10ng/ml) of the standards 

for all the FGARs and SGARS were run alongside procedural blanks after every eight 

samples to determine day-to-day quantitation. Calibration curves were obtained 

using a range of concentrations (500, 400, 200, 100, 50, 20, 10, 5, 1 and 0.1ng/ml) of 
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these standards; the average areas of ten determinations of each standard 

concentration were used to produce these curves. 

For both HPLC and LCMS analysis, procedural blanks (reagents only) were 

analysed alongside samples to detect possible contamination during sample 

preparation. Chicken liver samples were each spiked with known concentrations of 

each SGAR and were prepared, stored and analysed in the same way as unknown 

samples to determine sample matrix recovery and percent recovery data. For HPLC 

the mean (±SE%) recovery, determined from analyses of eight spiked samples, were 

108±11.5%, 81.6±5.0%, 95.2±9.8% and 93.3±9.0% for difenacoum, bromadiolone, 

flocoumafen and brodifacoum respectively. Corresponding figures for LCMS recovery 

were 59.2±9.9%, 27.3±12.0%, 59.2±9.9% and 65.9±7.3%, determined from analyses 

of four samples spiked for each SGAR. The apparently lower recovery associated 

with LCMS than HPLC may have been an artefact reflecting poor stability of spiked 

samples when archived. The bromadiolone and difenacoum concentrations in the 

actual samples of hedgehog livers were not significantly lower when quantified by 

LCMS than when measured by HPLC (see Results). Concentration data in tissue 

samples were not recovery-corrected. 

 

 
 

2.5. Statistical analysis 
 
 
 
 

The numbers of samples with detectable and non-detectable rodenticide 

residues as determined by HPLC and LCMS were compared using Fisher’s exact 

tests. Liver concentrations were not normally distributed and average residue 

concentrations are given as medians. Median liver concentrations in animals with 

detectable residues were compared using Mann-Whitney U tests. Wilcoxon matched 
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pairs tests were used to compare residue concentrations detected by the two 

techniques within the same individual. Binary logistic regression was used to 

examine the effect of region, batch number and sex on the presence/absence of 

contamination; batch was included as a factor to confirm that batching samples for 

analysis did not introduce any analytical biases. All analyses were conducting using 

SPSS, Release 15.0 (Field, 2005). 

 

 
 

3. Results 
 
 
 
 

Reasons cited by wildlife hospitals for admission of the hedgehogs used in this 

study were: injury (n=55); unknown (n=46); natural causes (n=18); and suspected 

poisoning (n=1), although this diagnosis was not confirmed clinically or chemically. 

No obvious signs of haemorrhage other than that associated with trauma were found 

during post-mortem examinations (n=120). 

Using HPLC, detectable liver concentrations of brodifacoum, bromadiolone, 

difenacoum and flocoumafen were found in four, 13, 16 and zero animals 

respectively (Table 1); in total, SGARs were detected in 27 individuals (23% of the 

animals analysed: Table 2). In contrast, SGARs were detected in 69 (57.5%) 

hedgehogs when the analysis was conducted by LCMS (Table 2). FGARs (only 

determined by LCMS) were detected in 27 (22.5%) animals (Table 2). Overall, 

residues of at least one FGAR or SGAR were detected in two thirds of hedgehogs 

when samples were analysed by LCMS. Fifty-three (44%) individuals had liver 

residues of one compound; 21 (18%), five (4%) and one (1%) animal contained 

residues of two, three and four compounds respectively. 
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The greater frequency of detection of SGARs by LCMS than HPLC was largely 

because more instances of difenacoum and bromadiolone contamination were 

detected by LCMS (Table 2); the difference in frequency of detection between the 

analytical methods was significant for difenacoum (Fisher’s Exact test, P<0.001) and 

approached significance for bromadiolone (two-tailed Fisher’s Exact test, P=0.10). 

Much of this higher frequency of detection was due to the greater sensitivity of the 

LCMS. Liver difenacoum and bromadiolone concentrations below 0.025μg/g wet 

weight (ww) and 0.05μg/g ww, respectively, were not detected by HPLC, whereas 

these concentrations comprised 25-50% of the LCMS detections for these 

compounds (Fig. 1). Overall, detection of these low level difenacoum and 

bromadiolone residues by LCMS accounted for an extra 30 hedgehogs (25% of the 

sample) being identified as containing rodenticide. 

The average magnitude of residues (Table 3), not just the frequency of 

occurrence, also varied with analytical technique. When only hedgehogs with HPLC 

and/or LCMS detectable residues were included in the statistical analysis, the 

median liver bromadiolone concentration was lower when determined by LCMS than 

by HPLC (Mann Whitney U test: U=61.0, n1=23, n2=13, P<0.01; Fig. 2). This reflected 

the presence of low-level bromadiolone concentrations (typically < 0.1 µg/g ww; Fig. 

1) that were detected by LCMS but not by HPLC (and so were not included in the 

HPLC dataset of animals with detected residues). When the statistical analysis was 

further restricted to a matched pair comparison of just animals with bromadiolone 

residues detected by both analytical methods, there was no significant difference 

between LCMS and HPLC measurements (Wilcoxon matched pairs test: n=10, Z=- 

0.663, P>0.05). This again suggested that differences between HPLC- and LCMS- 

determined measurements were solely due to detection of low-level concentrations 
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by LCMS. However, this was not true for difenacoum. Median liver concentrations of 

difenacoum in animals with detectable residues did not differ with the method of 

determination (U=427.5, n1=16, n2=57, P>0.05), despite the presence of a relatively 

large number of low-level difenacoum residues in the LCMS sample (Fig. 1). This 

may reflect differential responses (involving enhancement or quenching of response) 

of the two techniques, as matched-pair analysis indicated that residues were higher 

in animals when measured by LCMS (n=9, Z=-2.429, P<0.05). 

Analyses of potential differences in residue magnitude with sex and region were 

based on LCMS data. Geographical region was not significantly associated with the 

presence/absence of (i) FGARs (coumatetralyl and warfarin), (ii) bromadiolone and 

difenacoum combined (the most commonly found SGARs), (iii) all four SGARs, or (iv) 

all FGARs and SGARs combined (Table 4). Sex did, however, approach significance 

in two of the four models (bromadiolone and difenacoum combined, P=0.052; all 

SGARs, P=0.072; Table 4), with a greater frequency of occurrence of contamination 

in males than females. 

 

 
 

4. Discussion 
 
 
 
 

The major proportion of hedgehog diet consists of invertebrates, particularly 

molluscs, beetles and earthworms (Wroot, 1984). Invertebrates have different blood- 

clotting mechanisms to vertebrates and so are less susceptible to anticoagulant 

rodenticides than birds and mammals (Shirer, 1992; Pain et al., 2000; Craddock, 

2002; Johnston et al., 2005). However, ground-dwelling invertebrates can access 

and feed on rodenticides, including those placed in bait stations (Spurr and Drew, 

1999; Dunlevy et al., 2000; Craddock, 2002), and retain ingested compound in their 
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bodies for four weeks or longer (Booth et al., 2001; Craddock, 2002). Additional 

exposure of invertebrates to rodenticides may also arise through ingesting 

contaminated soil (where baits have not been protected or have been displaced or 

removed from bait stations), rodent food caches and rodent carcasses. Thus, 

predation of contaminated invertebrates is likely to be a major pathway by which 

hedgehogs are exposed to anticoagulant rodenticides. However, hedgehogs will 

consume small mammal carcasses if they are available (Yalden, 1976) and may also 

access spilt, cached or unprotected baits directly, and these may be alternative 

secondary and primary exposure routes. 

Whatever the route of exposure, it is clear from our results that contamination of 

hedgehogs with anticoagulant rodenticides is commonplace. These compounds may 

therefore similarly pose a risk to other species at the same trophic level, such as 

insectivorous birds (Rammell et al., 1984; Empson and Miskelly, 1999; Robertson 

and Colbourne, 2001). The frequencies with which we detected SGAR residues by 

HPLC were towards the mid (brodifacoum, bromadiolone) or low (difenacoum) end of 

the spectrum documented for predatory birds and mammals in Britain (Table 1), but 

were comparable in some instances to prevalence rates in species considered to be 

specialist predators of small mammals, such as the polecat (Shore et al., 2003a), 

barn owl (Tyto alba) (Newton et al., 1999b) and tawny owl (Strix aluco) (Walker et al., 
 
2008). Likewise, the magnitudes of residues were also broadly similar to those 

measured in predatory birds and mammals in Britain (Table 3). Thus, hedgehogs in 

Britain appear to be at similar risk of exposure and effects from anticoagulant 

rodenticides as non-target predatory birds and mammals. 

Our data also suggest that exposure of hedgehogs is geographically widespread. 

The absence of any significant difference between the proportion of individuals with 
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residues and region indicates that the scale of exposure of hedgehogs does not vary 

markedly across Britain, consistent with studies of polecats (Shore et al., 2003a), 

even though the apparent use of rodenticides in arable regions varies geographically 

(Dawson et al., 2003). In part, however, the likelihood of detecting correlated patterns 

between prevalence rates in animals and regional patterns of use will be affected by 

exactly which specific compounds are used. This is because compounds, and 

particularly FGARs and SGARs, differ in their biological half-life and toxicity (Eason 

et al., 2002). Furthermore, geographical variation in arable use of rodenticides is 

unlikely to be of relevance to those animals that were from urban areas. There are no 

published data for rodenticide use in urban areas in Britain and so it is not possible to 

assess how urban use may relate to exposure of hedgehogs. Finally, our finding that 

male hedgehogs tended to be more likely to accumulate rodenticides than females 

may also have a spatial, albeit small scale, explanation. Males have a greater 

ranging behaviour than females (Reeve, 1994) and this is likely to increase the 

likelihood of individuals finding baits and contaminated forage. 

The overall similarity between hedgehogs and specialist avian and mammalian 

predators of small mammals was unexpected. This may simply indicate that 

secondary exposure is more common than previously anticipated for food chains in 

which small mammals are not a major component. However, this similarity may mask 

other factors, such as differences in the likely exposure of non-target species in 

urban and rural areas. We had no information on the exact location in which our 

hedgehogs were found. Our reliance on analysing the carcasses of animals admitted 

to wildlife hospitals may have biased the sample towards urban areas because their 

relatively high human population density may mean that sick/injured hedgehogs are 

more likely to be found. In contrast, most UK studies on secondary exposure in 
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predatory birds and mammals have analysed animals that are predominantly from 

rural areas. It is not clear whether an urban-biased sample would tend to increase or 

decrease the likelihood of detecting exposure. Rodenticides are widely used on 

farms in rural Britain but are also commonly used throughout urban and suburban 

landscapes by both professional practitioners and the general public. The density of 

baits and contaminated prey relative to population numbers of non-target species in 

rural and urban areas is completely unknown. Furthermore, it is possible that 

hedgehogs may be particularly susceptible to exposure in urban areas where 

untrained domestic users may be prone to unintentional misuse. Animals may also 

be more likely to suffer traumatic injuries in human-dominated habitats through 

collisions with motor vehicles or injuries arising from misadventure (Reeve and 

Huijser, 1999). If such injuries occur independently of levels of rodenticide uptake, 

such a sample would give a reliable indication of levels of sub-lethal contamination in 

those areas, but if rodenticide uptake increases the likelihood of injury (Fournier- 

Chambrillon et al., 2004), then urban samples in particular may over-estimate 

exposure rates. Comparison of exposure rates of hedgehogs or other species from 

known urban and rural locations is merited. 

The analysis of our sample of hedgehog tissues using LCMS as well as HPLC 

has shown that exposure, particularly low-level exposure, is markedly 

underestimated by HPLC. The proportion of hedgehogs exposed to SGARs 

increased by two- to three-fold when the analysis was conducted by LCMS. We 

postulate that current estimates of the exposure of predatory birds and mammals to 

SGARs have been similarly under-estimated where they have been determined using 
 
HPLC measurements. 
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Although exposure of hedgehogs to anticoagulants may be widespread, there is 

no evidence from our study that this commonly causes lethal poisoning. The post 

mortem examination of the animals in our study did not identify any instances of 

haemorrhage that appeared consistent with rodenticide poisoning. Although there is 

no precise liver concentration in hedgehogs or other species that is diagnostic of 

lethal poisoning, SGAR residues in excess of 0.2μg/g ww are considered to be of 

concern in barn owls (Newton et al., 1999a) and residues of >1μg/g ww are generally 

considered to be very high. Irrespective of the measurement technique in our study, 

the percentage of hedgehogs with summed SGAR residues above 0.2μg/g ww and 

1μg/g ww was <11% and <5% respectively. The detection of liver residues exceeding 
 
1μg/g ww suggests that lethal poisoning by rodenticides is likely to occur in some 

hedgehogs, but the lack of haemorrhaging and relatively low magnitude of most 

residues suggests that, for animals in our study, contamination with rodenticides was 

generally not a contributory factor in their admission to wildlife hospitals. Overall, 

however, poisoning of non-target wild animals by anticoagulant rodenticides is 

difficult to monitor and studies such as ours may underestimate poisoning events 

because animals with fatal doses may become lethargic some hours before death 

and die in cryptic locations (Newton et al., 1999a). Furthermore, there is a general 

lack of knowledge about whether sub-lethal exposure, as appears to be common in 

hedgehogs, may be associated with any sub-lethal impacts or an increased 

susceptibility to toxicity following repeated exposures. 

 

 
 

5. Conclusion 
 

This study has shown that the European hedgehog, an insectivorous species, 

has similar rates of exposure (judged from the proportion of animals with HPLC- 
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detected liver concentrations and the size of those residues) to those of specialist 

predators of small mammals. Given that hedgehogs only rarely eat rodents, these 

results indicate that anticoagulant rodenticides are finding their way into ecosystems 

via transfer pathways other than through consumption of contaminated rodents. 

Furthermore, our data indicate that analysis of samples using LCMS can increase the 

estimate of exposure by two- to three-fold, largely through the detection of low-level 

residues, and that the use of HPLC may have markedly under-estimated the true 

scale of exposure of other non-target species to anticoagulant rodenticides. 
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Figure legends 
 
 
 
 

Fig. 1. Frequency distribution of bromadiolone and difenacoum liver concentrations in 

hedgehogs detected by HPLC and LCMS. 

 

 
 

Fig. 2. Median and interquartile ranges of liver concentrations of first- and second- 

generation anticoagulant rodenticides in hedgehogs with detectable residues as 

quantified using HPLC and LCMS. Sample sizes are given in Table 2. 
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Species n Coum Brod Brom Difen Floc Totala Refb 
Hedgehog (Erinaceus 120 - 3.3 10.8 13.3 ND 22.5 1 
europaeus) 
Polecat (Mustela putorius) 100 - 3.0 12.0 22.0 ND 36.0 2 
Stoat (Mustela erminea) 40 15.0 2.5 6.7 - - 22.5 3 
Weasel (Mustela nivalis) 10 30.0 - 10.0 - - 30.0 3 
Red fox (Vulpes vulpes) 92 7.6 5.4 26.1 16.3 - 45.7 4 
Barn owl (Tyto alba) 717 - 3.9 11.0 16.7 1.1 26.1 5 
Barn owl (Tyto alba) 52 - 5.8 28.8 30.8 ND 42.3 6 
Buzzard (Buteo buteo) 40 - 2.5 5.0 32.5 2.5 37.5 6 
Tawny owl (Strix aluco) 172 - 4.7 11.6 5.8 ND 19.2 7 
Red kite (Milvus milvus) 20 - - - - - 70.0 8 
Kestrel (Falco tinnunculus) 36 - - - - - 67.0 8 

Kestrel (Falco tinnunculus) 40 - 15.0 40.0 72.5 ND 84.6 9 
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Table 1 
 
Percentage occurrence of the residues of the first-generation anticoagulant 

rodenticide coumatetralyl (coum) and the second-generation anticoagulant 

rodenticides brodifacoum (brod), bromadiolone (brom), difenacoum (difen) and 

flocoumafen (floc) in the livers of predatory birds and mammals in British wildlife as 

identified using high performance liquid chromatography. ND indicates residue not 

detected; - indicates chemical was not investigated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

605 
606 
607 

a 
Total percentage of individuals positive for one or more chemicals. 

b 
Reference: 1 - present study; 2 - Shore et 

al. (2003a); 3- McDonald et al. (1998); 4 - Shore et al. (2003b); 5 - Newton et al. (1999b); 6 - Shore et al. (2006a); 
7 - Walker et al. (2008), 8 - Shore et al. (2000); 9 - Shore et al. (2006b). 
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Table 2 
 

Number and percentage (out of sample of 120) of hedgehogs with first- (FGAR) and 

second-generation anticoagulant rodenticides (SGAR) detected using high 

performance liquid chromatography (HPLC) and liquid-chromatography mass 

spectrometry (LCMS) 

 

 
Hedgehogs with residues detected by 

HPLC LCMS 
 

 % n  % n 

Coumatetralyl (FGAR)    14.2 17 
Warfarin (FGAR)    8.3 10 

Brodifacoum (SGAR) 3.3 4  5.0 6 

Bromadiolone (SGAR) 10.8 13  19.2 23 

Difenacoum (SGAR) 13.3 16  47.5 57 

Flocoumafen (SGAR) 0 0  0.8 1 

Total SGARs only 22.5 27  57.5 69 

Total FGARs and SGARs -   66.7 80 
614 

615 
 

616 

Coumatetralyl and warfarin only determined using LCMS 
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Speciesa n Brodifacoum Bromadiolone Difenacoum Refb 
Hedgehog 120 0.05±<0.01 (4) 0.59±0.24 (13) 0.10±0.03 (16) 1 
Polecat 50 0.06±0.01 (3) 0.12±0.03 (12) 0.30±0.07 (22) 2 
Stoat 9 0.12 0.20±0.10 (3) - 3 
Weasel 3 - 0.25 (1) - 3 
Barn owl 88 0.02±<0.01 (9) 0.09±0.02 (23) 0.03±0.01 (35) 4 
Kestrel 40 0.08±0.03 (6) 0.18±0.04 (16) 0.08±0.02 (29) 4 
Red kite 8 0.35±0.22 (5) 0.11±0.01 (3) 0.20 (1) 5 
Tawny owl 172 0.25±0.14 (8) 0.21±0.05 (20) 0.06±0.02 (10) 6 
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Table 3 
 

Mean ± SE (n) concentration (µg/g ww) of second-generation anticoagulant 

rodenticide residues in British wildlife identified using high performance liquid 

chromatography. Figures are the concentrations only for those animals where 

residue was detected 
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a 
For Latin names, see Table 1; 

b 
reference: 1 present study; 2 - Shore et al. (2003a); 3 - McDonald et al. (1998); 

4 - Shore et al. (2006b); 5 - Carter and Burn (2000), 6 - RF Shore (unpubl. data). 
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Model Variable B S.E. Wald d.f. P 

a Batch 3.426 8 0.9 

Region 6.885 5 0.2 

Sex 0.154 0.506 0.092 1 0.7 

Constant -1.997 1.255 2.531 1 0.1 

b Batch 5.494 8 0.7 

Region 4.353 5 0.5 

Sex 0.831 0.428 3.775 1 0.0 

Constant -1.130 0.951 1.412 1 0.2 

c Batch 2.821 8 0.9 
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Table 4 
 

Binary logistic regression models examining the relationship between region, batch 

and sex and the presence/absence of (a) first-generation anticoagulant rodenticides 

(coumatetralyl and warfarin), (b) the second-generation anticoagulant rodenticides 

bromadiolone and difenacoum, (c) all second-generation anticoagulant rodenticides 

(brodifacoum, bromadiolone, difenacoum and flocoumafen) and (d) all first- and 

second-generation anticoagulant rodenticides in hedgehogs from across Britain 

(n=120) 
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27 
72 
47 
97 
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05 
93 

Male:female ratio for hedgehogs from different regions were: South-Eastern 12:8; South-Western 
15:5; Eastern 11:9; Midlands and West 8:12; Wales 12:8; Scotland 7:13 
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Fig. 2 
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