SPATIALLY EXPLICIT RIVER CATCHMENT MODELLING OF DECAMETHYLCYCLOPENTASILOXANE

Oliver R. Price[†], Richard J. Williams[‡], Zhong Zhang[‡], Roger van Egmond[†] [†]SEAC, Unilever Colworth Laboratory, Sharnbrook, Bedfordshire, MK44 1LQ, UK [‡]Centre of Ecology and Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK

INTRODUCTION

- Decamethylcyclopentasiloxane (D $_5$) belongs to a group of chemicals known as cyclic volatile methyl siloxanes (cVMS).

• It is used in a wide range of applications including personal care products, such as skin creams, antiperspirants and hair care products.

Table 1: Summary of physico-chemical properties of D₅

Log K _{OW}	8.03	. /
Log K _{OA}	5.06	si-o, /
Hydrolysis half-life	64 d (pH 8)	o si—
(days at 9 °C)	449 d (pH 7)	Si o
Log K _{OC}	4.4 to 6.6	o si—
Water Solubility (µg L ⁻¹ at 23 °C)	17	si—o
Vapour Pressure (Pa at 25 °C)	33.2	

 Properties of D₅ suggest it is both highly volatile, hydrophobic and persistent in water/sediment environments.

• Regulatory assessments using EUSES indicate concentrations in surface waters ($PEC_{local} = 330 \text{ ng } \text{L}^{-1}$; $PEC_{regional} = 100 \text{ ng } \text{L}^{-1}$) that exceed measured concentrations in surface water (30 ng L^{-1}) and Sewage Treatment Plant (STP) effluent (30 to 400 ng L^{-1}).

• The discrepancy between modelling and measured concentrations of D_5 in two river catchments (Great Ouse and Nene) in the UK is further investigated using LF2000-WQX, a GIS water quality model.

MATERIALS & METHODS

• LF2000-WQX provides spatial and temporal variations in chemical concentrations of downthe-drain chemicals.

• It combines a GIS hydrological model with information on STP locations, populations feeding STPs, dry weather flow.

• Distributions describing chemical usage (*PCC*), removal efficiency in STP (*F*) are combined to estimate concentration of chemical in STP effluent (*C_{eff}*).

• The concentration in the river (C_{sim}) are calculated as C_{eff} diluted by volume of river.

• Concentrations downstream of discharges are calculated assuming a single first order (SFO) dissipation rate.

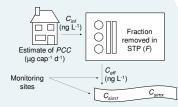


Figure 1: Schematic of chemical entry

Figure 2: Great Ouse simulated region

- Estimates of PCC for D_5 based on the assumption that 10% of total tonnage used in personal care products enters wastewater (11.6 mg capita^1 day^1).

• STP removal fraction predicted to be 0.952 using SimpleTreat; three rates used in this study (0.92, 0.95 and 0.98).

• Estimated volatilisation rate (0.41 d⁻¹), sedimentation rate (0.0067 d⁻¹) and hydrolysis rate (0.0015 d⁻¹) were used to guide the selection of five SFO dissipation rates (0.1, 0.2, 0.4, 0.6 and 0.8) for use in LF2000-WQX simulations.

RESULTS & DISCUSSION

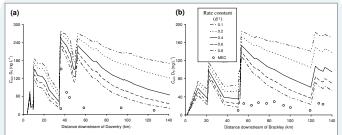


Figure 3: Concentrations of $\rm D_5\,in$ (a) the river Nene and (b) the river Great Ouse assuming 98% removal in STP

• LF2000-WQX simulations conducted using estimates of $C_{\rm eff}$ (based on *PCC* and *F*) resulted in average $C_{\rm sim}$ values an order of magnitude greater than measured concentrations.

• LF2000-WQX simulations assuming 0.98 removal and using average river flow volumes resulted in *C*_{sim} values downstream of STPs that over predicted in-river concentrations, but were similar to EUSES predictions (Figure 3).

- LF2000-WQX simulations using measured effluent concentrations resulted in more accurate estimates of $C_{\rm sim}$ (Figure 4).

• Slower dissipation rates for D_5 fit the observed data better in the Great Ouse, however the dissipation of D_5 is more rapid in the river Nene.

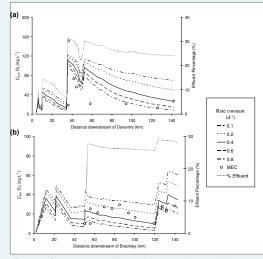


Figure 4: Concentrations of D_5 in (a) the river Nene and (b) the river Great Ouse using measured effluent concentrations

CONCLUSIONS

• Estimates of *PCC* and removal rates in STP for D₅ used in exposure assessments made by EUSES and LF2000-WQX (*PEC*_{local} and *PEC*_{initial}) resulted in predicted in-river concentrations that exceeded measured concentrations;

• *PEC*_{regional} predicted by EUSES significantly overestimate D₅ exposure in surface waters;

• LF2000-WQX was able to give good estimates of the spatial and temporal distribution of D5 concentrations in two UK catchments using measured effluent concentrations from two STPs;

• The dissipation rate of $\rm D_5$ in the water column of rivers is variable and a function of a rivers morphology, which may influence observed volatilisation and sedimentation rates.