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Abstract

The neotropical pioneer species Vochysia ferruginea is
locally important for timber and is being increasingly
exploited. The sustainable utilisation of this species
would benefit from an understanding of the level and
partitioning of genetic diversity within remnant and sec-
ondary regrowth populations. We used data from total
genome (amplified fragment length polymorphism,
AFLP) and chloroplast genome markers to assay diver-
sity levels within seven Costa Rican populations. Signif-
icant chloroplast differentiation between Atlantic and
Pacific watersheds was observed, suggesting divergent
historical origins for these populations. Contemporary
gene flow, though extensive, is geographically con-
strained and a clear pattern of isolation by distance was
detectable when an inter-population distance represent-
ing gene flow around the central Costa Rican mountain
range was used. Overall population differentiation was
low (Fgr=0.15) and within-population diversity high,
though variable (Hs=0.16—0.32), which fits with the
overall pattern of population genetic structure expected
for a widespread, outcrossed tropical tree. However
genetic diversity was significantly lower and differentia-
tion higher for recently colonised and disturbed popula-
tions compared to that at more established sites. Such a
pattern seems indicative of a pioneer species undergoing
repeated cycles of colonisation and succession.
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Introduction

In many parts of the neotropics, primary forest is
being cleared or degraded (FAO, 2001). Central America
faces a particularly severe problem, with some countries
estimated to have little or no undisturbed forest remain-
ing outside protected areas (KLEINN et al., 2002;
SOLORZANO et al., 1991; CALvo, 1990). One major conse-
quence of this trend is that the area covered by sec-
ondary forest growth is expanding and assuming
increasing importance as a resource (HERRERA et al.,
1999; HAGGAR et al., 1997; FINEGAN, 1992; WADSWORTH,
1987). As a result, there is heightened interest in
exploiting secondary forest productivity (KAMMESHEIDT,
2002; FINEGAN, 1992), as well as the use of secondary
growth and plantation as a means of preserving and
restoring habitat diversity (HAGGAR et al., 1997; Luco,
1997). Secondary forest species are characteristically
abundant and fast-growing (HARTSHORN, 1983), and the
majority of late pioneer species are economically utilis-
able (FINEGAN, 1992). To promote sustainability of
exploitation, as secondary forest assumes greater eco-
nomic and biological importance, it is important to
understand examine how genetic variation is struc-
tured, moves and is maintained for key pioneer/early
successional species.
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Genetic structure in secondary forest species is likely
to be strongly influenced by characteristic pioneer
processes of rapid colonisation. Bottlenecks can be
expected to occur, as population size increases quickly
from a small founding source, and local factors (e.g. dis-
tribution and number of source trees, patterns of gene
flow) and successional stage influences population diver-
sity. However, theoretical studies have shown that
colonisation/extinction cycles have complex conse-
quences for genetic structure (McCAULEY, 1991,
AIVAREZ-BUYLLA and GARAY, 1994). For example, it has
been hypothesised that such cycles can result in strong
population substructuring (WRIGHT, 1940) or can cause
reduced interpopulation differentiation, due to raised
gene flow rates (SLATKIN, 1987; McCAULEY, 1991).
Genetic structure in such species may be further compli-
cated by the imprint of long term historical processes,
particularly in regions where strong topographic or envi-
ronmental boundaries exist. Therefore to gain an insight
into these processes, genetic data highlighting both con-
temporary and historical patterns of population struc-
ture are required.

Costa Rica has been significantly affected by defor-
estation during the past 50 years (deforestation rate
averaged 3.9% per year from 1950-1984, KLEINN et al.,
2002) and secondary forest forms a substantial resource.
Costa Rica is located in the Mesoamerican biodiversity
hotspot (MYERS et al., 2000) since it combines biotic
influences from both North and South American coloni-
sation and has a dramatic topography producing a wide
range of environmental regimes over a small spatial
scale. In particular, the steep mountain ranges between
the Pacific and Atlantic slopes of the country represent a
substantial physical barrier. Previous phylogeographic
studies (CAVERS et al., 2003; DICK et al., 2003; NOVICK et
al., 2003) have identified zones of strong intraspecific
differentiation, most likely the footprint of past colonisa-
tion events related to the rise of the Isthmus of Panama,
further emphasising the importance of the region for
biodiversity conservation.

FINEGAN (1992) has identified the secondary pioneer,
Vochysia ferruginea, as having strong potential as a
commercially viable crop for degraded sites in the
neotropics. It is tolerant of low nutrient levels and high
concentrations of toxic elements such as Aluminium (Al)
and Iron (Fe), and has utility as a timber tree (for boxes,
furniture, panels, veneer; FLORES, 1993). Vochysia fer-
ruginea is a widespread, long-lived (CROAT, 1978) domi-
nant of secondary forest below 1000 m. It is found at low
density as as a canopy tree in old-growth forests, usual-
ly on slopes or less fertile soils (HERRERA and FINEGAN,
1997) and quickly colonises disturbed areas. In Costa
Rica V. ferruginea is limited to the Atlantic lowlands and
southern parts of the Pacific watershed, and does not
occur in the dry northwest (Guanacaste). Flowers are
hermaphrodite and the species has a reported mixed
mating system (FLORES, 1993; Bawa et al., 1985). Polli-
nation is primarily insect-mediated and seed are dis-
persed by gravity and wind (FLORES, 1993). V. ferruginea
is highly resilient to disturbance (BOUCHER and MALONA,
1997; BOUCHER et al., 1994), and recovers well following
extreme events, such as hurricane damage, fire or
human activities, such as clearance.



To identify the major components of genetic structure
and explore the dynamics of diversity within V. ferrug-
inea populations, a combination of chloroplast (PCR-
RFLP) and total (AFLP) genomic markers are applied
here to collections from across Costa Rica. The structure
of cpDNA variation, which is often applied to infer his-
torical colonisation patterns, is assessed for V. ferrug-
inea in relation to topography and known species biology
and history. Contemporary patterns of gene flow at a
regional-scale are inferred using an isolation by distance
test applied to pairwise population divergence estimates
derived from AFLP data. The partitioning of variation
identified by this combination of markers is discussed in
relation to patterns of evolutionary divergence previous-
ly found in the region for other species. Finally the level
and partitioning of AFLP diversity within and between
populations are discussed in relation to V. ferruginea’s
life history and population successional stage.

Methods

Samples were collected from 140 V. ferruginea individ-
uals in 7 populations from throughout Costa Rica (Fig-
ure 1, Table 1). Populations were defined as groups of
trees within a relatively coherent geographic area (i.e. in
the same block of forest, uninterrupted by major geo-
graphical features or habitat changes), such that they
were likely to be in reproductive contact. Individuals
were sampled at least 100 m apart, to avoid sampling
close relatives, and collected by taking leaf tissue, which
was immediately dried on silica gel. Genomic DNA was
extracted using a modified CTAB protocol (GILLIES et al.,
1997). Twenty individuals were sampled per population
however, due to amplification difficulties, final analysed
population numbers were variable (Figure 1, Table 2).

Screening for variation in the chloroplast DNA
(cpDNA) used the universal primers described in
DEMESURE et al. (1995), Dumolin-Lapegue et al. (1997b)
and HamiLroN (1999). The PCR protocol was as
described in DEMESURE et al. (1995). PCR fragments
were digested using combinations of several restriction
enzymes (4-base: Hinfl, Mspl, Alul, Haelll; 6-base:
EcoRV, Pstl, HindIIl) and RFLP fingerprints were visu-
alised on 8% non-denaturing acrylamide gel (Hoeffer
SE600). Once polymorphic markers had been detected,
the whole collection was characterised for cpDNA haplo-
type using these markers. The data set was analysed for
within-population (Hg) and total (Hy) diversity and for
the level of population subdivision (Ggp) using the pro-
gram HAPLONST (Pons and PETIT, 1995).

The AFLP protocol was as described in Vos et al.
(1995), using four Eco+2 / Mse+4 selective primer combi-
nations: E-CG / M-TACT, E-GC / M-CTGC, E-GC / M-
CACA, E-CC / M-CACA. AFLP fingerprints were visu-
alised on a LICOR-IR sequencer, with only the EcoRI
selective primer labelled with an IR fluorescent tag (IRD
700 / 800, MWG Biotech). Reactions were denatured for
5 mins. at 95°C prior to loading, then 1 ul of reaction
was loaded onto a 6% denaturing polyacrylamide gel
(LongRanger™ Gel solution, BMA) prepared according
to manufacturers instructions and including treatment
with AG®501-X8 resin (Biorad), filtration and degassing
prior to polymerisation. Gels were scored for presence /
absence of bands and a binary matrix was prepared.
Population diversity level and structure were analysed



following the approach of LyNCH and MILLIGAN (1994)
with removal of all loci with band frequencies greater
than 0.95 or less than 0.05. Allele frequencies, estimated
by a Bayesian method with non-uniform prior distribu-
tion, were used to calculate expected heterozygosities
within populations (Hg) and for the dataset as a whole
(Hyp) using the program AFLP-SURV (VEKEMANS et al.,
2002). Standard errors were calculated for all diversity
estimates following the approach of LyNcH and MILLIGAN
(1994), i.e., the square root of the variance of the diversi-
ty estimate. Fy, was estimated between all populations
and between combinations of grouped populations (e.g.
according to cpDNA haplotype). All statistics quoted are
unbiased estimates. Significance levels for the fixation
indices were obtained by bootstrapping with 1000 per-
mutations.

The relationship between population differentiation
and geographic distance (isolation by distance) was
investigated using a Mantel test (using the program zt,
BONNET and VAN DE PEER, 2002). A matrix of pairwise
Fg; values between all populations was prepared. This
was tested for correlation with a matrix of pairwise geo-
graphic distances between all populations. A signifi-
cance level for the test statistic, r, was generated by
10000 random permutations of the Fg; matrix. Two geo-
graphic distance matrices were prepared: one using
Euclidean distances, and the other a “linearised” version
of the real distances (e.g. SORK et al., 1999; KuDOH and
WHIGHAM, 1997), representing the gene flow distance
between populations through suitable habitat — i.e.
around (north to south, below 1000m) rather than over
(east to west) the central mountain ranges of Costa
Rica. Using this approach, populations from the Atlantic
and Pacific watersheds are only ‘connected’ via the
mountain passes which dip below 1000 m in the north of
the country (Figure 1).

Results

Two cpDNA primer / enzyme combinations were found
to be polymorphic in V. ferruginea: both identified small
insertion / deletion mutations (Table 4). The mutations
segregated together and characterise two haplotypes
(Table 4). In all cases, populations were fixed for a single
haplotype (Ggr = 1.00). One haplotype was found exclu-
sively to the east of the mountain ranges (Atlantic) and
the other exclusively to the west (Pacific, Figure 1).

AFLP analysis obtained 61 loci from four primer com-
binations. Based on these markers, population-level
diversity was found to vary considerably (Table 2), in
particular the estimates for Penjamo and Tirimbina
were significantly lower (at 95% confidence level) than
those for the other populations, Hg = 0.19 (SE = 0.02)
and 0.16 (0.02), respectively. The remaining populations
had diversity estimates in the range Hg = 0.28-0.32. The
mean within-population diversity was Hy = 0.26 (0.02)
and that of the collection as a whole was H; = 0.30
(0.02). To examine hierarchical partitioning of variation,
populations were assigned to a Pacific or Atlantic group
(according to their geographic location relative to the
central mountain ranges) and fixation indices were esti-
mated. There was a moderately high level of differentia-
tion between all populations (ungrouped, Fg; = 0.15) and
between populations grouped according to chloroplast
haplotype, (Fg; = 0.09). However, including the low-



diversity populations (Penjamo and Tirimbina) resulted
in the highest values for estimates of Fg;. These two
populations make a large contribution to the overall
(ungrouped) differentiation estimate (Table 3); and the
Fy; estimate for the five high-diversity populations
alone was low (Fgp = 0.04). All Fg, values were signifi-
cant.

It was possible to identify an isolation by distance
effect when local topography was taken into account.
Using Euclidean distance between populations, no sig-
nificant relationship was identified between genetic
(Fgp) and geographic distance (r = 0.10; p = 0.48). How-
ever, the relationship was significant and positive when
the distance matrix used was transformed by linearisa-
tion to represent expected gene flow pathways (r = 0.59;
p <0.01).

Discussion

Costa Rican populations of V. ferruginea show strong
spatial genetic structuring at a regional scale. In partic-
ular, Atlantic and Pacific watershed samples were com-
pletely differentiated for cpDNA markers (Ggp = 1.00).
At the same time, significant isolation by distance was
detected when the inter-population spatial distance took
account of the central Costa Rican mountain range (i.e.
represented a gene flow distance). Clearly, differentia-
tion is being maintained by landscape features and fur-
thermore, it seems likely that, given the fixation of
cpDNA haplotypes in these populations, the divergence
has a historical origin. One explanation for such a com-
bination of patterns is that total gene flow (probably pri-
marily mediated by pollen) has recently been extensive
and geographically constrained, but that Atlantic and
Pacific populations may have been derived from histori-
cally separated sources. In studies of European Oaks
(PETIT et al., 1997, 2002), cpDNA structure laid down
during colonisation was temporally robust due to the
low probability of immigration of foreign seed once a
population was established (DAVIES et al., 2004). Mean-
while, the high relative vagility of pollen (approx migra-
tion ratio of 1:250 compared to seed) meant that, for
nuclear markers, the imprint of colonisation was erased
much more rapidly and a graded pattern of isolation by
distance was evident (KREMER and ZANETTO, 1997; KRE-
MER et al., 2002). A similar process may be operating
within V. ferruginea.

Biogeographic studies indicate that many species have
migrated northward from South America into Central
America following the formation of the Panamanian
Isthmus (ca 3 MYA; RAVEN and AXELROD, 1974; BURN-
HAM and GRAHAM, 1999). In a number of recent, indepen-
dent studies, strong phylogeographic structure has been
identified in the region of the Panamanian Isthmus (e.g.
Cedrela odorata, CAVERS et al., 2003; pseudoscorpions,
Zeh et al. 2003; freshwater fish, Bermingham & Martin
1998). For V. ferruginea, the differentiation within Costa
Rica may represent an imprint of similar past colonisa-
tion processes and potentially a zone of secondary con-
tact between differentiated sources. However, based on
the current data it is not possible to identify patterns of
migration or potential source populations in V. ferrug-
inea and a wider phylogeographic survey would be of
value.



Long-lived, outcrossed tropical tree species are pre-
dicted to exhibit high levels of within-population diversi-
ty and low population differentiation (HAMRICK and
Goprt, 1989, 1996). In addition, species with extensive
pollen and seed dispersal maintain greater genetic con-
nectivity between populations. For example, the out-
crossing tropical tree species Swietenia macrophylla
(GILLIES et al., 1999, RAPDs), Ilex paraguarensis (GAUER
and CAvALLI-MoLINA, 2000, RAPDs) and Calycophyllum
spruceanum (RUSSELL et al., 1999, AFLPs) have within-
population diversity levels of 0.36, 0.16, 0.28 and popu-
lation differentiation components of 0.12, 0.15 and 0.09,
respectively. For V. ferruginea, overall estimates of pop-
ulation-level diversity (H = 0.16—0.32) and subdivision
(Fgr = 0.15) are within this range. Therefore, in general,
the scale of diversity and population differentiation in
V. ferruginea fits predictions.

A wide range of within-population diversity levels was
found (Hg = 0.16-0.32) suggesting local history may also
be important to population structuring in V. ferruginea.
Populations of pioneer species at early successional
stages should exhibit low levels of diversity due to foun-
dation bottlenecks. New site colonisation and associated
bottlenecking is also likely to increase differentiation
between populations, although with time (and subse-
quent gene flow) this should decrease. Hence much
higher levels of diversity within, and lower differentia-
tion between, more established populations are expect-
ed. There is some support for these expectations for
V. ferruginea. For example, populations Penjamo and
Tirimbina maintain significantly lower levels of diversi-
ty and exhibited the highest differentiation estimates
relative to all other populations (Table 2). Penjamo is
known to have been clear-felled in the recent past
(approximately 30 years ago, Table 1) and has regener-
ated naturally from neighbouring forest (FINEGAN and
DELGADO, 2000). The stand is dense, monospecific and
even-aged and detailed spatial analysis indicates that it
probably represents the progeny of a small number of
mature trees (LOWE et al., in prep). The history of the
population sampled at Tirimbina is not as well known
as that at Penjamo, but it is on farmland with recently
cleared and regenerated patches. Although this popula-
tion is much less dense than Penjamo, and the regenera-
tion pattern is not as clear, it is likely that all trees have
established subsequent to land clearance. In contrast,
the five high-diversity populations have lower density
and generally have a more diverse age structure (from
analysis of diameter and height measurements; data not
presented). Genetic and historical data therefore sug-
gest the occurrence of a population bottleneck at Pen-
jamo and probably also Tirimbina. The clear evidence of
a genetic bottleneck at Penjamo, caused by site clear-
ance and recolonisation, demonstrates the substantial
effect that pioneer life history can have on diversity of
individual populations. However, although the link
between colonisation and diversity is strong for the
population at Penjamo (FINEGAN and DELGADO, 2000),
we cannot demonstrate a general link between diversity
level and successional status. Our principal conclusion
is therefore that within-population diversity is highly
variable in V. ferruginea and that the low levels of differ-
entiation match those observed in other studies of early
to mid-successional species (e.g. Fgp = 0.03, C. obtusi-
folia, ALVAREZ-BUYLLA and Garay, 1994; Fg, = 0.12,
C. alliodora, CHASE et al., 1995).



An extension of these results is that the maintenance
of nearby, established ‘source’ populations, which are
likely to exhibit higher diversity, will be important for
landscape re-colonisation and genetic resource conserva-
tion. To enable long-term sustainable management of
V. ferruginea, it will also be important to determine in
detail the mechanisms by which diversity is maintained
in the species. By identifying these pathways, diversity
‘reserves’ can be pinpointed, the mechanism by which
diversity flows from mature to pioneer populations can
be revealed and, by incorporating this data into man-
agement strategies, the genetic resources of this species
can be maintained.

A number of new areas for further work have been
identified by this study. Additional sampling of paired
populations of established and regenerated stands from
locations across the range of the species would help dis-
sociate the influence of successional stage from gene
flow on the magnitude of differentiation between popu-
lations. Also, it will be important, for management strat-
egy, to examine actual pollen and seed dispersal dis-
tances and their impact on gene flow between
neighbouring populations, particularly from established
to recently colonised sites. To allow development of spe-
cific recommendations for forestry practice, the popula-
tion level dynamics of regeneration and the breeding
system should be examined in more detail, using
nuclear codominant markers e.g. microsatellites (LOWE
et al., 2002). Finally, a wide ranging phylogeographic
survey and seed dispersal / establishment studies (par-
ticularly close to the cpDNA disjunction) are required to
explore the origin and significance of the cpDNA dis-
junction in the evolutionary history of V. ferruginea.
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Table 1. — Names and locations of populations used to determine levels and distribution of genetic diversity in V. ferrug-
inea. Density scale is as follows: 1 — dense, approaching monospecific, 2 — large numbers in patchy distribution, 3 — large
numbers in natural forest, 4 — disturbed, only remainder trees and forest fragments, 5 — sparse, approaching natural pri-
mary forest distribution.

Population Lat. Long. Alt.  Adjacent landuse  Disturbance Density ~ Diameter (cm)
(°N) (°W) (m) mean (min-max)
Penjamo 10°33° 84°48° 400  Farm: sugarcane Cleared 15-20 ya, regenerating 1 33.2 (18-60)
Tirimbina 10°40°  84°10° 200  Farm Secondary, disturbed 4 47.3 (12-83)
Coto Brus 8°88”  83°08” 250  Farm Logged / disturbed 4 38.0 (15-68)
Volcan 9°20"  83°45> 400  Farm: pineapple Isolated forest fragment 2 41.3 (17-66)
Brasillea 11°03>  85°3¢’ 300 Crop farming Secondary disturbed 4 40.3 (19-77)
Osa 8°75>  83°34> 100  Forest Selective extraction has occurred 2 34.1(18-49)
Puriscal 9°66° 84°37 330  Forest Secondary - some original trees 4 31.5 (10-54)

Table 2. — Levels of genetic diversity for seven populations of V. ferruginea
from Costa Rica from AFLP data (represented by expected heterozygosity,
H) with allele frequencies estimated using the approach of LyNcH and
MILLIGAN (1994). The data set consisted of 61 loci from four AFLP primer
combinations. Standard errors on diversity values (calculated following
LyNCH and MILLIGAN, 1994) given in brackets.

Population Sample No. of % of
size polymorphic  polymorphic

loci loci
Penjamo 20 40 65.6 0.19(0.02)
Tirimbina 19 21 344 0.16 (0.02)
Coto Brus 6 47 77.0 0.32 (0.02)
Volcan 20 44 72.1 0.30(0.03)
Brasillea 20 44 72.1 0.28 (0.02)
Osa 16 44 72.1 0.28 (0.02)
Puriscal 19 44 72.1 0.28 (0.03)
Total 120 43 70.5 0.26 (0.02)

Table 3. — Pairwise F, estimates between all populations. The data set consisted of
61 loci from four AFLP primer combinations.

Penjamo  Tirimbina Coto Volcan Brasillea Osa  Puriscal
Brus
Penjamo 0
Tirimbina  0.21 0
Coto Brus  0.19 0.23 0
Volcan 0.28 0.35 0.05 0
Brasillea 0.16 0.26 0.05 0.06 0
Osa 0.23 0.31 0.04 0.04 0.02 0

Puriscal 0.20 0.25 0.04 0.07 0.04 001 O




Table 4. — Description of the two cpDNA haplotypes identified.
Numbers 1 and 2 indicate character state of fragment present,
in decreasing order of size (bp). For distribution of cpDNA hap-
lotypes see Figure 1. Full details of primers / enzymes available
from authors.

Polymorphic fragments (bp)

VF1 VF2

1-300 1-750

2-290 2-730
Haplotypes indel indel
Pacific 1 |
Atlantic 2 2

Brasillea

C Coto Brus

Figure 1. — Relief map of Costa Rica showing distribution of
chloroplast DNA haplotypes in V. ferruginea. Inset shows loca-
tion of Costa Rica on a global scale. The distribution of the two
cpDNA haplotypes identified is shown, black = Atlantic haplo-
type, white = Pacific haplotype. Size of circle indicates sample
size of population (numbers were Penjamo, N=9; Tirimbina,
N=13; Coto Brus, N=20; Volcan, N=19; Brasillea, N=10; Osa,
N=11; Puriscal, N=19). Dashed white line indicates limit of
V. ferruginea distribution in Costa Rica — the species is not
found in the dry northwest of the country. Areas above the
1000m contour line (upper altitudinal limit of the species) are
shaded dark grey.



