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Abstract 

Stable isotope compositions of quartz (δ18Oquartz) and fluid inclusion waters (δ18OFI and δDFI) 

were analysed from Profitis Ilias, a low-sulphidation epithermal gold mineralisation deposit 

on Milos island Greece, to establish if δ18OFI

The data show systematic variations with sample elevation.  Samples from the highest 

elevations (c. 650 m asl) have the lightest δ

 preserve a record of paleo-geothermal processes.  

Previous studies show that mineralisation at Profitis Ilias resulted from extreme boiling and 

vaporisation and a zone located at approximately 430 m asl represents the transition between a 

liquid- and vapour-dominated system [Mineral. Dep. 36 (2001) 43].  The deposit is also 

closely associated with an active geothermal system, whose waters have a well-characterised 

stable isotope geochemistry [Pagel and Leroy (1991) Source, transport and deposition of 

metals.  Balkema, Rotterdam, 107–112].  The samples were collected over an elevation 

interval of 440 m (210 to 650 m asl) to give information on the liquid- and vapour-segments 

of the paleo-system. 

18OFI (–7.3 ‰) and δDFI (–68.0 ‰) whilst the 

deepest (c. 210 m asl) are isotopically heavier (δ18OFI –3.7 ‰; δDFI –19.0 ‰).  Relative 

changes in δ18OFI closely parallel those in δDFI.  δ18Oquartz shows an opposite trend, from the 

lightest values (+13.9 ‰) at the lowest elevations to the heaviest (+15.1 ‰) at the highest.  

δ18OFI show correlations with other parameters.  For example, variable fluid inclusion 

homogenisation temperatures in the vapour-dominated part of the system, correlate with a 

rapid shift in δDFI (–33.3 to –50.5 ‰) and δ18OFI (–4.1 to –6.2 ‰) and gold contents also 

increase in the same zone (up to 50 ppm).  Comparable correlations in δ18Oquartz or 

δ18Ocalculated (estimated geothermal fluid from fluid inclusion homogenisation data) are absent.  

δ18Ocalculated are always 5 to 10 ‰ heavier than δ18OFI.  Comparison with the modern 



 

 

geothermal system shows that δDFI–δ18OFI are similar.  Isotope data for the modern system 

and fluid inclusion waters fall on linear trends sub-paralleling the meteoric water line and 

project towards seawater values.  Numerical modelling favours kinetically controlled 

fractionation to explain differences in δ18Ocalculated and δ18Ofluid rather than diffusive post-

trapping equilibration.  The evidence suggests, that in low-temperature epithermal systems, 

δ18OFI

Keywords:  Fluid inclusions; oxygen and hydrogen isotopes; active Aegean arc; epithermal 

mineralisation 

 may represent a better record of fluid process and the isotopic composition of the 

geothermal fluid than temperature-corrected quartz data. 
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1 Introduction 

Stable isotope analyses (δD and δ18O) of inclusion fluids and minerals provide valuable 

insights into fluid sources, hydrothermal processes and fluid-rock interaction in a wide range 

of geological environments (e.g. O’Reilly et al., 1997; Wilkinson et al., 1995).  One of the 

main methodologies for determining D/Η and 18O/16O, focuses on measuring δD on extracted 

inclusion fluids and calculating δ18O of the fluid by analysing the host quartz. Recently, 

procedures that analyse both δD and δ18

In this study, we present directly and indirectly measured δD and δ

O on inclusion fluids have been developed for quartz 

and carbonates (Kishima and Sakai, 1980; Kazahaya and Matsuo, 1984; Ohba and Matsuo, 

1988; Lecuyer and O’Neil, 1994).  However in quartz, scientific opinions as to which 

approach is the most appropriate are divided (Vityk et al., 1993; Ohba et al., 1995).  The 

indirect approach is not ideal as it relies on accurate determination of quartz precipitation 

temperatures, usually ascertained through fluid inclusion microthermometry.  Also there is 

evidence for isotopic disequilibrium between quartz and the fluid phase at low temperatures 

(<250 °C) (Zhang et al., 1995; Matsuhisa et al., 1978).  Direct measurements also have 

problems as isotopic re-equilibration can occur after trapping and during cooling of the host 

mineral (Rye and O’Neil, 1968; Ohba et al., 1995). 

18O data for adularia-

sericite epithermal-Au mineralisation at Profitis Ilias on Milos island (Aegean sea).  A deposit 

closely linked to a modern geothermal reservoir, and whose geology, mineralogy and fluid 

inclusions are well characterised (Kilias et al., 2001).  In addition, the modern system is well 

documented mineralogically, geochemically and isotopically (Liakopoulos, 1987; Liakopoulos 

et al., 1991; Pflumio et al., 1991; Christanis and St. Seymour, 1995) and provides an excellent 

analogue for the epithermal-Au mineralisation. 



 

2 

2 Geological setting and background information 

2.1 The geology of Milos island 

Milos is located on the active Aegean volcanic arc (Fig. 1).  Volcanism, on Milos is Pliocene–

Pleistocene in age and calc-alkaline in nature and resulted from the north-eastward subduction 

of Mediterranean sea floor (part of the African plate) below the Aegean microplate 

(Papazachos and Kiratzi, 1996 and references therein).  The geology, geochronology, 

geothermal activity and structure of the island are described in detail by Fytikas (1989, and 

references therein), Briqueu et al. (1986), Liakopoulos et al. (1991), and Tsokas (1996) and its 

main geological features are shown in Fig. 1.  Though the last recorded volcanism ceased 

100,000 years ago, Milos is currently an active geothermal field.  Present day activity is 

concentrated in the central and eastern portions of the island and is expressed by fumaroles, 

hot springs, hot ground, and submarine gas escapes (Fig. 1). 

2.2 Epithermal gold mineralisation at Profitis Ilias 

The geology, mineralogy and fluid inclusions of Profitis Ilias have been described in detail by 

Kilias et al. (2001), and only the salient features are reiterated here.  

The deposit is classified as a low-sulphidation epithermal gold-deposit and host rocks consist 

of strongly sericitised rhyolitic lapilli-tuffs and ignimbrites.  The mineralisation, comprising 

native gold, minor sphalerite, galena, chalcopyrite and pyrite, is developed in a series of 

interconnected N-S to NE-SW trending vein networks that occupy a fault network.  Vein 

widths are up to 3 m across and extend to depths of at least 300 m below the present-day 

surface.  Three broad paragenetic stages to the mineralisation are recognised: (i) barren pre-

ore comprising microcrystalline quartz and pyrite; (ii) fine-grained and vuggy quartz with base 



 

3 

metal sulphides and native gold and (iii) post-ore fine-grained quartz and barite with minor to 

trace sulphides. 

Fluid inclusion homogenisation temperatures show either show narrow (25–50°C) or large 

ranges (>150°C) that are not evenly distributed throughout the depth profile.  In the lower 

levels of the hydrothermal system (below 430 m above-sea-level [asl]) only the narrow range 

is observed, whilst above this level samples exhibiting a widely varying temperatures 

predominate (Tab. 1).  In terms of Th

1. A high–salinity trend, where rapidly increasing salinity (3 to 15 wt % NaCl eq) is 

associated with gradual decreases in homogenisation temperature.  This trend is seen 

throughout hydrothermal system. 

–salinity relationships, the data fall into two distinct 

trends: 

2. High–Th

In addition to the above, the lowest homogenisation temperatures, at each sample depth, 

closely follow a depth-to-boiling curve.  This feature is seen in modern geothermal systems 

(e.g. Hedenquist et al., 1992; Lüders et al., 2001) and provides a reference curve for 

estimating quartz precipitation temperatures (Tab. 1) 

 trend, where a diffuse tendency of decreasing salinity is associated with 

increasing temperature.  This trend only occurs in the upper parts of the hydrothermal 

system (> 430 m asl). 

Kilias et al. (2001) concluded that the fluid inclusion data coupled with geochemical data 

strongly imply that extreme boiling and vaporisation played a major role in mineralisation.  In 

addition, they noted that a zone, located at approximately 430 m asl marks the transition 

between a liquid- and vapour-dominated system.  These results show that the studied samples, 
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at the deposit scale, can be treated as being temporally and compositionally consistent and 

provide a coherent framework to interpret the stable isotope data. 

2.3 The modern geothermal system: chemical and isotopic characteristics 

In the active geothermal system, the reservoir liquid, before phase separation is moderately 

saline (~9 wt % dissolved salts) and after phase separation the condensed vapour has a salinity 

of 0.12 wt % NaCl.  Geochemically, the residual liquid phase is dominated by sodium 

chloride (up to 14.3 wt % NaCl) with significant potassium (1.1 wt %) and calcium (0.5 wt 

%).  In addition, magnesium (1.36x10-4 mol/l) and sulphate (1.04x10-5 mol/l) are strongly 

depleted compared to seawater.  During its ascent to the surface, the hydrothermal fluid 

separates into liquid and vapour phases (Liakopoulos, 1987; Liakopoulos et al., 1991).  In 

terms of stable (δ18

3 Mater ials and methods 

O, δD) isotope systematics, the deep reservoir comprises a fluid that 

resulted from a Rayleigh-type distillation of seawater accompanied by partial re-equilibration 

with volcanic rocks as the seawater percolated down through the system (Pflumio et al., 

1991). 

3.1 Sample selection and preparation 

Sample selection for isotopic analysis was based on fluid inclusion microthermometry and 

elevation data.  The criteria were that quartz samples contained only a single inclusion type 

with an inclusion population dominated by primary/pseudosecondary inclusions and that they 

covered most of the vertical range of the deposit.  In total, eleven quartz samples were 

selected for analysis (Tab. 1).  Approximately 10 g of quartz from each sample were crushed 

and sieved to –1000µm +500µm.  The quartz concentrates were then washed in hot (c. 90 °C) 
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6M HCl several times with a final rinse in hot (c. 90 °C) Milli Q water to remove “soluble” 

impurities adhering to the surface of the quartz grains (e.g. iron oxides).  This was followed 

by ultrasonic cleaning in cold Milli Q water for 5 minutes to removed “insoluble” surface 

impurities (e.g. clay minerals).  Any contaminants left were then removed by careful hand 

picking under a binocular microscope to give a pure quartz concentrate weighing between 0.5 

and 1.0 g.  Immediately prior to analysis, the sample was briefly ultrasonically cleaned in 

dichloromethane to remove any remaining organic material. 

3.2 δ18

δ

O and δD from fluid inclusions 

18O and δD in fluid inclusions were determined using a modified methodology based on 

Kishima and Sakai (1980), Kazahaya and Matsuo (1984), and Lecuyer and O’Neil (1994).  

Between 0.5 and 1g of hand picked quartz grains were degassed at ~20 °C overnight under 

vacuum. Samples were then decrepitated at 600 °C for 30 minutes and the fluid inclusion 

water collected cryogenically.  This water was then transferred to a micro-equilibration quartz 

tube sealed at one end, to which 2cm3 of a standard CO2 gas was added, and the tube 

completely sealed. The tube was then weighed and the H2O and standard CO2 gases were left 

to exchange oxygen isotopes at 25 °C for 7 days.  After equilibration, H2O and CO2 were 

separated cryogenically.  The water was converted to hydrogen by reduction over hot zinc and 

ratios measured on a SIRA 10 mass spectrometer.  CO2 was collected and ratios determined 

on an Optima mass spectrometer along with a sample of the standard gas used for the 

equilibration.  The δ18O values of the water samples were calculated using the mass balance 

equation of Kishima and Sakai (1980) and the CO2-H2O fractionation factor at 25 °C 

determined by O’Neil et al. (1975). The δ18O value of standard CO2 used for equilibration 

was 31.85 ‰ (SMOW), a value close to that expected for the CO2 after equilibration.  Since 
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the oxygen isotope ratio of the CO2 only changes slightly during the equilibration, the 

precision was not compromised. The weight of fluid inclusion water released from the quartz 

was calculated from the weights of the collection tubes before and after the H2O-CO2 

collection.  The water content of each sample was variable, but in most cases 0.5 to 1 g of 

quartz yielded between 0.5 and 4 micro-litres of water (Tab. 1).  At each stage in the 

extraction procedure the line pressure was monitored to check for residual gas.  Precisions 

obtained for the laboratory standard water, extracted and measured at the same time, were 0.1 

‰ for δ18

3.3 δ

O and 3 ‰ for δD (2σ) for samples between 1–2 micro-litre quantities of water.  The 

data are presented as permil (‰) deviations from VSMOW. 

18

Silicate ratios were obtained from the quartz after fluid inclusion extraction, using the 

procedure outlined by Clayton and Mayeda (1963).  Oxygen yields were monitored and 

considered acceptable within the range 99–103% of the theoretical yield.  Isotope ratios were 

measured on a CJS Sciences mass spectrometer (phoenix 390, rebuilt VG MM903).  δ

O from quartz 

18

4 Stable isotope results 

O 

values were normalised through laboratory standards and NBS28, and corrected according to 

Craig (1957) and Deines (1970). The data are presented as permil (‰) deviations from 

VSMOW.  Overall analytical reproducibility was of the order of ± 0.10 ‰ (2σ).  

4.1 Oxygen data 

The oxygen isotope data show correlations between sample-elevation and δ18O in both fluid 

inclusion waters (δ18OFI) and quartz (δ18Oquartz) (Tab. 1 and Fig. 2).  With the exception of the 

sample from the highest elevation, δ18OFI decreases from -3.7 ‰ at 210 m asl to -7.3 ‰ at 
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613 m asl.  δ18Oquartz shows an opposite trend, increasing from +13.9 to +15.1 ‰.  However, 

to directly compare the quartz and fluid inclusion water data, δ18Oquartz needs to be corrected 

for temperature dependent fractionation effects between quartz and the hydrothermal fluid 

(δ18Ocorrected).  However, in low to moderate temperature epithermal systems (<250 °C), 

correct estimation of quartz precipitation temperatures from fluid inclusion temperatures can 

be difficult and errors in temperature estimate can result in significant uncertainties in isotopic 

compositions – at 200 °C, an uncertainty of +/– 20 °C in the fluid inclusion homogenisation 

temperature corresponds to a 2.5 ‰ uncertainty in δ18Ofluid

Fig. 2 compares δ

.  Furthermore, at Profitis Ilias, 

where there is with a temperature difference of approximately 100 °C between the lowest and 

highest elevations, uncertainties of this magnitude are greater than the total range in the 

measured quartz oxygen isotopic composition (1.2 ‰).  Several choices of temperature 

estimate are available to us.  First there is a single value, e.g. 225 °C, that corresponds to 

estimated boiling temperatures, but there is a clear variation in temperature over the 

investigated elevation interval (see Tab. 1).  Second, average sample homogenisation 

temperatures (Tab. 2) could also be appropriate.  However in this case, there is good evidence 

for heterogeneous trapping (Kilias et al. 2001), which will make this choice an overestimate.  

Third, minimum homogenisation temperature of each sample (Tab. 1), which represents fluid 

inclusions that have trapped the least vapour, are also valid estimate (see Pichavant et al. 

1982; Ramboz et al. 1982 and Bodnar et al., 1985, for discussions that relate homogenisation 

temperatures, boiling and heterogeneous trapping).  Last, we have depth-to-boiling 

relationships to estimate fluid temperatures (Tab. 1). 

18Ocorrected, δ18OFI and δ18Oquartz with sample elevation, using the above 

methods for estimating temperature.  First, it is clear that trends in the data, alluded to earlier, 

are systematically related to sample elevation.  Second, there is a difference of about +8 to 
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+12 ‰ between δ18OFI and δ18Ocorrected

1. Use of a single temperature value preserves the δ

.  Closer examination of the corrected data raises a 

number of further points: 

18

2. Employing Mean homogenisation temperature results in significant scatter, and makes it 

difficult to differentiate any data trends. 

O-depth trend seen in the quartz data, 

which is still in the opposite sense to the inclusion water data. 

3. Minimum homogenisation temperature, again results in scatter, but trends in the data are 

now discernible and the δ18

4. Applying temperature estimates calculated from the boiling curve, with the exception of 

the sample from the highest elevation, results in a trend with little scatter that closely 

parallels the inclusion water. 

O-depth trend is in a similar sense to that of the inclusion 

water. 

4.2 Hydrogen data 

δD of inclusion waters (δDFI) varies between –68.0 and –19.0 ‰.  δDFI

4.3 Correlations between stable isotope, fluid inclusion and geochemical data 

 shows a reasonable 

correlation with sample-elevation (Fig. 3), with eight of the eleven samples analysed falling 

on a linear trend varying from the light values (–47.8 ‰) at high elevations (613 m asl) to 

heavier data (–19 ‰) at lower altitudes (210 m asl). 

In addition to isotope–elevation data, it is also possible to examine the relationships between 

stable isotope, fluid inclusion and geochemical data (Au and Ag).  It is clear that 430 m asl 

marks a distinct transition (Fig. 5).  First, δD and δ18OFI water show a significant decrease to 
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lighter values and relative changes in δD closely parallel those in δ18OFI water.  Second, fluid 

inclusion homogenisation temperatures start to show a high degree of variability above 430 m 

asl.  Here, individual samples commonly record Th ranges in excess of 100°C, whilst below 

the transition temperature ranges are generally less than 20 °C.  This variation correlates with 

the shift in δ18OFI and δDFI to lighter values.  Third, at 430 m asl metal contents start to 

increase and gold contents are commonly greater than 20 ppm. In comparison the variation in 

δ18Oquartz

5 Discussion 

 shows a gradual change along the entire depth profile and there is no clearly marked 

change at 430 m asl.   

5.1 Combined δD and δ18

Comparison of the paleo and modern systems show that δ

O and comparisons with the modern geothermal system. 

18OFI has a number of features in 

common with the modern system.  It has a similar range in oxygen isotope composition, and 

combined δDFI–δ18OFI is close to the vaporisation–mixing trend described by Pflumio et al. 

(1991) (Fig. 5).  In addition, the variation in the isotopic composition of the fluid inclusion 

waters is modelled by boiling processes.  Fig. 5 shows two steam separation trends that match 

the δ18OFI data.  Here, the heavier samples, in both δD and δ18O, are located at the lowest 

elevations and are within the liquid-dominated portion of the hydrothermal system (below 

~430 m asl) and correspond to the highest temperatures in the system.  Conversely, the 

lightest samples are located in the vapour-rich part (above ~430 m asl) and have highly 

variable fluid inclusion temperatures indicative of heterogeneous trapping of liquid and 

vapour (Figs 4 and 5).  The observed depth–temperature–isotopic variation in δ18OFI can be 

explained by the trapping of varying physical mixtures (as fluid inclusions) of residual liquid 

and steam, with each “quartz extraction” recording an “averaged” isotopic composition.  In 
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this manner, samples from the higher elevations will contain more steam and record the 

lightest δD and δ18O values, whilst those in the deeper portions will be more representative of 

the reservoir and residual fluid compositions.  However in terms of δ18Oquartz compositions, 

irrespective of the temperature used to calculate quartz–water fractionation, the δ18Ocalculated 

5.2 The quartz–inclusion water δ

data plot well to the right of the meteoric water line, in a scattered manner that cannot be 

related to the modern geothermal system and have no obvious trends.   

18

Table 2 compares δ

O shift 

18OFI and δ18Ocorrected 

First, Rye and O’Neil (1968) analysed δ

and clearly shows calculated fluid compositions do 

not equate with those measured in the fluid inclusions.  In most cases, irrespective of the 

choice of temperature, calculated compositions are generally 5–10 ‰ heavier than the 

measured fluid inclusion waters.  To address the reasons for this, let us examine the limited 

number of cases in the literature where both quartz and inclusion water have been analysed 

(Tab. 3). 

18O in inclusion waters hosted in calcite, sphalerite 

and quartz and concluded that δ18OFI undergoes post-trapping exchange with quartz.  

However, these conclusions are based on limited data and large samples (Tab. 3).  Thus, it is 

possible that they did not sample a single generation of quartz or fluid.  This is important as 

Hyashi et al. (2001) have shown that in epithermal quartz δ18Oquartz can vary by up to 7 ‰ in 

on a millimetric scale.  Thus, without knowing the homogeneity of the material and 

considering the small number of quartz samples analysed it is difficult to assess the effects of 

post-trapping re-equilibration from this data alone.  
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Second, Vityk et al. (1993) and Ohba et al. (1995) analysed both δ18OFI and δ18Oquartz from the 

Beregovo epithermal and Kaneuchi tungsten deposits and had significantly different results.  

Vityk et al. (1993) record two distinct types of quartz and fluid inclusion.  In the first, isotope 

and fluid inclusion temperatures agree and microthermometry indicates a compositionally and 

thermally homogeneous hydrothermal fluid (salinity: 1–2 wt % NaCl eq.; Th: 190–215 ºC).  In 

the second, isotope and fluid inclusion temperatures disagree and microthermometric data 

vary considerably (wt % NaCl eq: 0–16 wt % Th: 170–260 ºC).  Also, fluid inclusion waters 

extracted from sulphides (sphalerite and galena) and co-existing quartz have very similar 

δ18OFI and δ18DFI (Tab. 3).  These data lead to their conclusion that in epithermal systems 

inclusion fluids can preserve δ18

In contrast Ohba et al. (1995), for relatively high temperature (300–400 ºC) and old (c. 91 Ma) 

hydrothermal quartz, show that positive ∆

O over geologic time. It is also important to note that 

Beregovo is a relatively young deposit (c. 15 Ma). 

18Ocorrected–FI is due to post-trapping diffusional 

exchange.  However, it is important to note that in both Rye and O’Neil (1968) and Ohba et 

al. (1995), formation temperatures for hydrothermal quartz were in excess of 300 ºC.  It is 

known from experimental work (Matsuhisa et al. 1978; Zhang et al., 1989), that at 

temperatures in excess of 300 ºC equilibration between quartz and water is relatively rapid 

(circa 30–100 hours) whilst at temperatures lower than 250 ºC isotopic equilibrium is not 

achieved.  Thus, for both of these studies, due to the high precipitation temperature of the 

hydrothermal quartz and the time elapsed since mineralisation some post-trapping exchange 

by diffusion can be expected.  But in lower temperature (<250 ºC) young (<15 Ma) epithermal 

deposits, such as Profitis Ilias and Beregovo, re-equilibration by diffusion may not occur.  

Here, as the quartz cools rapidly from hydrothermal to ambient temperatures, slow δ18O 

diffusion rates may prevent significant post-trapping exchange.  This is indicated qualitatively 
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at Beregovo, where one type of quartz has clearly not undergone any significant post-trapping 

exchange (Tab. 3). 

5.3 Modelling of post-trapping exchange by diffusion 

We can examine post-trapping exchange by diffusion by looking at Dodson closure 

temperatures (Dodson, 1973 and 1979) for δ18O in quartz.  This approach is particularly 

successful in systems dominated by volume diffusion (Valley 2001) and δ18

( )
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between the wall of a fluid inclusion and bulk quartz is one example of this. 

 (1) 

The Dodson equation (eqn. 1) defines the closure temperature ( cT [K]) in terms of a 

dimensionless diffusional anisotropy parameter ( A ), the gas constant ( R [Jmol-1K-1

0D

]), the pre-

exponential diffusion coefficient ( [m2s-1 E]), activation energy ( [J]), distance over which 

diffusion takes place ( a [m]) and cooling rate ( tT δδ [Ks-1]).  As individual fluid inclusions 

generally have small volumes (<0.125 µl), then diffusion and exchange of δ18O between host 

quartz and inclusion water over short distances will significantly effect the composition of 

inclusion water.  For example, a 1 µm thick shell of quartz surrounding a 10 µm spherical 

fluid inclusion represents over 70% of the inclusion volume (Fig. 6A).  Thus, it is necessary to 

examine closure temperatures for diffusion distances at the micron and sub-micron scale.  Fig. 

6B shows quartz closure temperatures at a variety of diffusion distances and cooling rates.  

From this is clear that the closure temperature of δ18O in quartz, even for very short distances 

(c. 0.01 µm), is higher than most epithermal mineralisation (c. 250 ºC) for cooling rates in 
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excess of c. 100 ºC/Ma.  This means that in low to moderate temperature epithermal deposits, 

the δ18O of inclusion water will not be significantly modified by post-trapping exchange with 

quartz.  However, in higher temperature (300–400 ºC) hydrothermal systems, Fig. 6B shows 

that quartz is not closed to δ18O diffusion.  Hence, post-trapping diffusion will take place and 

the δ18O composition of the inclusion water will be modified.  Also, in higher temperature 

systems, the degree of exchange will be dependent on inclusion size, as for a given distance 

and cooling rate smaller inclusions will have proportionally more quartz to exchange with 

than larger inclusions (see Fig. 6A).  This relationship between inclusion size and degree of 

post-trapping exchange has been recorded by Ohba et al. (1995).  Thus, for high temperature 

(>300 ºC) hydrothermal systems, δ18Oquartz data coupled with accurate knowledge of quartz 

precipitation temperatures are better estimators of δ18Ofluid than δ18OFI

5.4 Kinetically controlled fluid–mineral exchange during quartz formation 

.  However, in lower 

temperature systems (<250 ºC), quartz closure temperatures indicate that fluid inclusions do 

not re-equilibrate with quartz during cooling, and to this Vityk et al (1993) show that quartz–

fluid inclusion isotope temperatures associated with a specific quartz type are in good 

agreement with fluid inclusion microthermometry.  However, for the Profitis Ilias samples and 

other quartz types at Beregovo, isotope temperatures do not agree (see Tabs. 2 & 3).  Thus, in 

the epithermal examples, the fact that some isotope temperatures agree and others suggests 

that another process must be responsible for the differences. 

Dubinina and Lakshtanov (1997) provide a different perspective into reasons for the quartz–

inclusion water δ18O shift. They show that providing no other isotopic equilibration 

mechanism operates (e.g. diffusion) complete isotopic equilibrium between a mineral and a 

fluid phase cannot be achieved through kinetically controlled solution–precipitation processes.  
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Dubinina and Lakshtanov (1997) expressed the degree of isotopic exchange (F) between 

quartz and fluid, where the quartz has a silica gel precursor, as 

e0

i0

∆−∆
∆−∆

=F  (2) 

Where 0∆ , i∆ and e∆  are differences in δ-values between fluid and (i) silica gel ( 0∆ ), (ii) 

freshly precipitating quartz ( i∆ ) and (iii) quartz at equilibrium ( e∆ ). Additionally, they 

described the degree of exchange (F) in terms of total mass of water (w) total mass of mineral 

(M) and mass of dissolved and re-precipitated mineral (m) as 







 +














−−=

M
w

w
mF 1exp1  (3) 

Equation (3) means that during solution–precipitation, isotopic fractionation between mineral 

and fluid can exceed the predicted equilibrium value of ∆mineral-fluid.  This has been recorded 

experimentally by  Zhang et al. (1989), who document ∆i - ∆e

The modelling predicts changes in isotopic composition as an unstable mineral is transformed 

isochemically into a stable one and is particularly relevant to epithermal systems where 

crystalline quartz can have amorphous precursors (e.g. Dong et al., 1995).  The following 

equation describes variations in the bulk isotopic composition of quartz (

 values of +8.3 ‰ during the 

early stages of a 250 ºC silica gel–water isotope equilibration experiment. 

s
Bδ ) formed during 

solution–precipitation processes (for a detailed discussion of its derivation see Dubinina and 

Lakshtanov, 1997): 















−−∆−∆−=

w
m

m
w i

A
s
B exp1)( 00δδ  (4) 
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Where 0
Aδ  is the initial isotopic composition of the amorphous (unstable) phase, 0∆  is 

derived from the initial isotopic compositions of the fluid ( 0
wδ ) and the unstable silica phase 

( 000
wA δδ −=∆ ), i∆  is calculated from the initial fluid composition and quartz–water 

fractionation at the temperature at which the solution–precipitation process take place 

( αδ Lnw
i 10000 +=∆ ) and 

w
m  represents the re-precipitated mineral–fluid ratio as the amount 

of quartz formed ( m ) changes from 0 to M .  To model how kinetic processes relate to our 

measured quartz compositions we need to estimate the initial isotopic compositions of the 

fluid, the unstable silica phase and temperature.  A first approximation of solution–

precipitation temperatures can be estimated from fluid inclusion data (c. 225 ºC).  For the 

initial fluid, the composition of the modern reservoir (+3 ‰ – Pflumio et al., 1991) provides a 

good analogue for the paleo-system at Profitis Ilias.  Kita and Taguchi (1986) measured 

isotopic fractionation factors between colloidal silica and a geothermal fluid at 76 and 88 ºC 

where silica was allowed to precipitate by evaporation of the geothermal fluid (this is broadly 

analogous to Profitis Ilias, where mineralisation is associated with extreme boiling and 

vaporisation — Kilias et al., 2001).  Fig. 7 reproduces their data and compares it with 

fractionation factors for various equilibrium silica–water pairs.  From this it is clear that 

silica–water oxygen isotope fractionation, under evaporative conditions, is non-equilibrium. 

Moreover, ∆18Osilica–water

0∆

  appears to increase with temperature, though it would be difficult to 

extrapolate these data to higher temperatures it would be reasonable to use the higher 

temperature value (+14 ‰) as a minimum estimate for .  Using the above information and 

equation 4 we can model the bulk isotopic composition of quartz formed from a “colloidal” 

precursor at 225 ºC.  Fig. 8A illustrates this and three features are evident: (i) the final 

composition of transformed quartz is dependent on fluid–mineral ratios, (ii) compositions are 
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approximately 3 ‰ heavier at low mineral–fluid ratios 





 = 05.0

M
w  than at isotopic 

equilibrium and (iii) with 10>
M
w  kinetic processes start to approximate equilibrium quartz–

water fractionation.  In terms of our δ18Oquartz data, if we take the deepest and hottest sample 

(PD9380 in Table 1) to be most representative of the reservoir composition, δ18Oquartz and 

δ18OFI can be modelled by solution–precipitation processes, using equation 4 the measured 

δ18Oquartz 05.0=
M
w (+14.5 ‰) predicts an initial fluid composition of 0.7 ‰ (T = 225 ºC, , 

140 +=Aδ  ‰), which is very close to the measured δ18OFI

At Profitis Ilias the fluids were boiling and temperatures of quartz formation vary 

systematically with depth (Tab. 1).  Fig. 8B models this variation and depicts a number of 

scenarios where δ

 (–0.3 ‰), whereas equilibrium 

fractionation predicts a fluid composition of +3.9 ‰.   

18Oquartz M
wvaries with temperature,  and initial fluid composition ( 0

wδ ) and 

from this a number of controls on δ18Oquartz 

1. where quartz precipitates in equilibrium with a hydrothermal fluid (

can be seen: 

0
wδ  = 1 ‰), which 

varies in temperature from 250–100 ºC, δ18Oquartz 

2. Where quartz results from a dissolution–precipitation process at low water to solid 

ratios (

shows a relatively large systematic 

antipathetic variation from 9.9–22.0 ‰. 

M
w  = 0.01, 0

wδ  = 1 ‰) δ18Oquartz 
0
wδis relatively constant and approximates  + 

0∆ (15 ‰). 
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3. Going from equilibrium to low 
M
w  and at constant 0

wδ  + 0∆ , δ18Oquartz 

0018 ∆+= wquartzO δδ

varies as family 

of curves of increasing radius of arc that pivot in an anticlockwise fashion about the 

intersection between the quartz equilibrium curve and . 

4. Changes in 0
wδ  + 0∆ at constant 

M
w  simply shift the curve in the direction of changing 

0
wδ  + 0∆ without changing the shape of the curve 

In terms of actual δ18Oquartz compositions, we can compare the predictive curves with the 

measured values through the boiling curve data (Table 1).  These provide a reasonable 

estimate of temperature–depth variation within the Profitis Ilias hydrothermal system and 

locate the quartz samples in temperature–δ18O space. The data show a steep antipathetic 

relationship between δ18Oquartz and temperature that is modelled by solution–precipitation 

processes with a solid mass ratio of 0.25 and, with the exception of the lowest and highest 

temperature samples, an initial fluid varying in composition by about 1 permil, (Fig. 8B).  

Moreover, the data do not conform to an equilibrium model of quartz precipitation.  Though 

kinetic processes can explain variation in δ18Oquartz with respect to estimated paleo-

temperatures, relating δ18Oquartz to δ18Ofluid through solution–precipitation is more challenging 

as this requires knowledge of ∆18Osilica–water for the quartz precursor.  In our case a value of 

+14 ‰, taken from Kita and Taguchi (1986), predicts a fluid composition in the region of 0–1 

‰ (Fig. 8B).  This is in approximate agreement with the sample that best reflects the reservoir 

composition of the hydrothermal fluid (PD9380 – Tab. 1) and the estimated composition of 

the modern geothermal reservoir, but samples from higher levels record lighter values (to –7.8 

‰) that are not predicted by solution–precipitation processes.  However, these can be 
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explained by heterogeneous trapping of liquid (δ18

In addition when we consider Vityk et al. (1993), kinetically controlled isotopic exchange is a 

much better process than post-trapping diffusion for explaining variations in ∆

O ~ 0–1 ‰) and varying proportions of 

isotopically light vapour during boiling events (Fig. 5) 

18Ocorrected-FI  

Here, variation in ∆18Ocorrected-FI is systematically related to different quartz types (Tab. 3).  For 

samples where isotope and fluid inclusion temperatures agree, quartz precipitated in 

equilibrium with the hydrothermal fluid or if it formed from a precursor silica phase then fluid 

to solid ratios were high.  That is conditions of open flow.  For samples where isotope and 

fluid inclusions record different temperatures (∆18Ocalculated–FI: 2.2–8.5 ‰), ∆18Ocalculated–FI can 

be explained by quartz forming through solution–precipitation processes at low fluid to solid 

ratios (Fig 9A).  That is when fluid-flow was restricted and/or it underwent extensive boiling.  

This feature has been observed at lower temperatures by Kita and Taguchi (1986).  When we 

consider the alternative of post-trapping diffusional exchange as a mechanism for the δ18O 

quartz–inclusion water shift in Vityk et al. (1993), it is difficult to explain the variation.  First, 

it would be expected to affect all samples equally.  That is for a given size of fluid inclusion, 

quartz age and mineralisation temperature, ∆18Ocorrected-FI should be constant in all samples.  It 

is not, some show no shift, whilst others show ∆18Ocorrected-FI

5.5 What does fluid inclusion δ

 to +8 ‰ (Tab. 3).  In terms, of a 

diffusion mechanism this can only be explained by significantly different quartz ages or that 

fluid inclusions that are significantly larger in one type of quartz.  Vityk et al. (1993) do not 

indicate that either of these are applicable to the Beregovo quartzes. 

18

The modelling of Dodson closure temperatures for quartz show, theoretically, that for 

inclusions larger than about 5 µm and at temperatures less than 250 ºC, quartz does not 

O represent? 
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significantly exchange δ18

1. the epithermal mineralisation at Profitis Ilias shows a consistency between δ

O with fluid inclusion water.  A number of lines of independent 

evidence support this: 

18OFI, δDFI, 

and fluid inclusion and geochemical data that is not seen the δ18Ocalculated

2. On Milos, there is close isotopic and chemical similarity between the composition of the 

fluid inclusion waters and that of the modern geothermal system (see Fig. 5) and there 

are sound geological reasons that a continuum exists between the ancient and modern 

systems (Kilias et al. 2001). 

 data (see Fig. 

5). 

3. The data of Vityk et al. (1993) record quartz–fluid inclusion isotope temperatures that 

agree with fluid inclusion data and cannot be explained by diffusion alone.  Also quartz 

and co-existing sulphides have similar δDFI and δ18OFI

4. The modelling of solution–precipitation processes show that kinetic factors are a valid 

alternative to post-trapping re-equilibration for explaining differences between 

δ

 (see Tab. 3) 

18Ocalculated and δ18O

Thus the above, lend support that, in epithermal systems, δ

FI 

18O determined on fluid inclusion 

waters may be a better guide to the original isotopic composition of the hydrothermal fluid 

than temperature-corrected quartz data (Fig. 5).  This is because δ18Oquartz in solution–

precipitation processes can be significantly different from δ18Oquartz at equilibrium for a given 

temperature and δ18Ofluid.  However, in higher temperature (>300 ºC) hydrothermal systems, 

such as porphyry-Cu, Sn-W and orogenic-Au deposits, Dodson closure temperatures show 
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that quartz and fluid inclusion water undergo post-trapping exchange.  Thus in these cases, the 

indirect method will always provide the best estimate of fluid δ18

Also, at Profitis Ilias, δ

O 

18OFI contains a record of fluid processes not seen in δ18Ocalculated (Fig. 

5 and section 5.1).  First, this is probably because temperature estimates within paleo-

hydrothermal systems are not precise enough to allow accurate reconstruction of variations in 

δ18O of the hydrothermal fluid.  For example, in a boiling epithermal system fluid 

temperatures can vary by up to 50 to 70 °C over a vertical interval of only 100–200 m (Tab. 

1).  This can represent differences of nearly ten permil in fluid δ18O (i.e., the difference in 

boiling-curve estimated δ18O between 457 and 657 m elevations — Tab. 1).  Second, 

formation of quartz via an amorphous precursor (e.g. Dong et al., 1995) is a non-equilibrium 

process and can result in estimates of δ18Ofluid

5.6 Implications for δ

 that are too heavy.  

18

At Profitis Ilias combined δD–δ

O analysis of quartz 

18Oquartz and δD–δ18OFI and comparison with the modern 

geothermal system coupled with kinetic modelling of the data (Figs. 6 and 9) show that the 

differences in δ18Oquartz and δ18OFI can be related though a combination of extensive boiling 

and quartz formation via an amorphous precursor.  Whereas calculation of equilibrium fluid 

compositions appears to over-estimate the fluid composition by + 8 to +10 ‰. If the Kinetic 

model is valid, this places limitations on the use of δ18Oquartz in low-temperature epithermal 

systems to estimate δ18Ofluid where solution–precipitation processes operate.  This is because 

failure to recognise them can result in significant errors in the estimation of δ18Ofluid.  

Observations that indicate that δ18Oquartz is kinetically controlled and mitigate against the use 

of quartz to calculate fluid compositions are: 
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1. Textural information that indicates that it formed from an amorphous precursor (e.g. 

Dong 1995).  This can be documented through careful petrography and 

cathodoluminescence studies. 

2. Fluid inclusion data that indicate that mineralisation is associated with extensive boiling 

and vaporisation (e.g. Simmons and Browne 1997, Scott and Watanabe, 1998; Kilias et 

al., 2001). 

3. Where mineralisation temperatures are less than 250 ºC, and data are available, 

systematic differences between δ18Oquartz and δ18OFI

6 Summary and conclusions 

 can also indicate a kinetic control. 

In summary, δD and δ18O in extracted fluid inclusion waters from the Profitis Ilias epithermal 

mineralisation were found to show a linear correlation that closely parallels the stable isotope 

systematics in the active Milos geothermal system, with δD varying from –23.8 to –68.0 and 

δ18O from –3.7 to –7.8.  δ18O analysis of the quartz, using the same samples, showed a 

restricted variation of 13.4–15.9 ‰ and correction of this data, employing a variety fluid 

inclusion temperature estimates, does not match δ18O in the corresponding fluid inclusion 

waters. ∆18Ocorrected–FI ranges from + 8 to +12 ‰ and calculated Dodson closure temperatures 

for quartz, at scales appropriate to fluid inclusions and at cooling rates compatible with the 

lifetime of a geothermal systems, indicate that at temperatures below 250 ºC these differences 

cannot be accounted for by post-trapping diffusional exchange of 18O between inclusion water 

and host quartz.  Thus, for the Profitis Ilias mineralisation, post-trapping re-equilibration is 

not thought to be an appropriate process for explaining the observed ∆18Ocorrected–FI.  In our 

case, solution–precipitation processes are preferred as modelling shows that differences, in 
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relative terms, between δ18OFI and δ18Oquartz can be explained by kinetic processes.  However, 

insufficient data and knowledge concerning the δ18

The results of diffusion and kinetic modelling coupled with independent lines of evidence, 

such as the consistency of δD

O composition of possible silica precursors 

at temperatures above 150 ºC and fluid to solid ratios preclude a generalised reconstruction of 

fluid compositions using this method. 

FI and δ18OFI with other geochemical data and their similarity to 

the isotope systematics of the modern systems, lead us to believe that fluid inclusion δ18O has 

the potential to be a better estimator of oxygen isotope systematics in low-temperature 

hydrothermal systems than δ18Oquartz and fluid inclusion temperatures.  However, as there are 

only two fluid inclusion δ18O studies in the epithermal environment, further data from other 

systems are required to extend the applicability our findings.  In the first instance, these should 

concentrate on boiling systems as these provide the best temperature constraints.  In addition, 

good petrographic and geologic control is a pre-requisite for reliable interpretations. In our 

case, this was achieved through detailed petrography and fluid inclusion microthermometry 

within a well-constrained spatial and geological framework (Kilias et al., 2001) that enabled 

comparisons between a mineralised system and its modern analogue.  At a smaller scale, or in 

the absence of a modern analogue for comparison careful cathodoluminescence petrography 

coupled with localised isotopic analysis of the quartz will also fulfil the requirement.  Finally, 

recent analytical developments for the rapid determination of δD and δ18O in small (0.1 µl) 

amounts of water (Sharp et al., 2001) indicate it should be possible to routinely analyse 

inclusion waters without the need for the lengthy sample preparation and analytical procedures 

that have to date hindered systematic investigations into the applicability of oxygen isotope 

determination of fluid inclusion water. 
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Fig. 1. Geological map of Milos Island showing its position on the Aegean arc plus the 

locations of mineralisation and the geothermal manifestations (modified after Fytikas 1989). 

Fig. 2. Plot of sample depth versus δ18O comparing values obtained from inclusion water, 

quartz and δ18

Fig. 3. Graph of δD versus sample elevation, showing a general trend of increasing δD with 

increasing sample depth. 

O calculated from fluid inclusion temperatures (see text for discussion) 

Fig. 4. Combined stable isotope, fluid inclusion and assay graphs, showing how δ18O, δD, 

fluid inclusion Th and gold content vary with depth and how they are related to each other.  

Each parameter shows a distinct change at approximately 430 m asl.  Both δ18

Fig. 5. Combined D/H–δ

O and δD 

decrease rapidly, fluid inclusion homogenisation-temperatures change from showing only a 

narrow range to being highly variable and gold contents in quartz start to increase and are 

locally over 30 ppm. 

18

Fig. 6. Inset diagram shows a cross-section through a hypothetical spherical fluid inclusion 

(diameter r) with a halo of quartz (thickness a) that inclusion water can exchange δ

O graph comparing directly measured and calculated data with the 

stable isotope systematics of the modern geothermal system.  Included for reference purposes 

are: (i) Two single stage steam separation trends for fluid with 5 wt% dissolved NaCl 

(calculated using the methodology of Truesdell et al., 1984; the steam tables of Haas 1977a,b; 

and the fractionation data of Horita et al., 1995).  (ii) The top left part of the magmatic water 

box (Sheppard, 1986). (iii) The Mediterranean meteoric water line and Mediterranean 

seawater (see text for discussion of the data). 

18O 

through diffusion.  At distances > a the inclusion does not exchange with the quartz. A:  
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Graph of the volume ratio of a spherical quartz shell and fluid inclusion at different inclusion 

sizes and quartz shell thicknesses — inset graph shows volume ratio variation at low (<0.1) 

thicknesses.  At low volume ratios (< 0.05) any post trapping diffusive exchange will not 

significantly affect the isotopic composition of the fluid inclusion as the volume of the 

inclusion is significantly larger than the amount of quartz available for diffusive exchange.  

Thus, for inclusions not to be affected by post-trapping exchange effective diffusion distance 

must not be greater than ~0.01 µm.  B: Graph of Dodson closure temperatures of quartz as a 

function of effective diffusion distance (a in inset).  Line I is a cooling rate reflecting the 

maximum age and temperature (225 ºC) of the Profitis Ilias mineralisation and present day 

ambient temperature (25 ºC) — this represents the lowest possible cooling rate.  Line II 

reflects a typical lifespan of a hydrothermal system (100 ka) and a temperature drop of 200 ºC 

(calculations use data of Farver and Yund, 1991 and an infinite cylinder diffusion model).  

From A and B it is clear that for diffusion distances in the region of 0.01 µm the closure 

temperature for cooling rates applicable to Profitis Ilias (between Line I and II) is greater than 

the temperature of mineralisation (225 ºC). 

Fig. 7. Silica–water fractionation factors for quartz, amorphous silica and colloidal silica. 

Fig. 8. Calculated variations in the bulk isotopic composition of quartz formed from the 

progressive dissolution–precipitation of a “colloidal” precursor. A:  Variation in δ18Oquartz as 

the water to solid ratio changes from 0.05 to 10 at constant temperature (225 ºC), fluid 

composition (+3 ‰) and ∆0 (+14 ‰). B: Variation in δ18Oquartz as a function of temperature, 

water to solid ratio and initial fluid composition at constant ∆0 (+14 ‰).  Numbers on the 

curves refer to initial composition of the fluid (‰).  Filled circles are quartz compositions and 

their corresponding boiling curve temperatures given in Tab. 1.  See text for discussion. 



29 

Table 1. Sample information and stable isotope results. Also shown are summary microthermometric dataa, gold-silver concentrationsa and 

boiling curve temperaturesa

 

 for each sample elevation. 

Sample 
no. 

Elevation  
 

(m asl) 

Sample 
wt. 
(g) 

FI water 
weight 
(mg) 

δ18Oquartz δ
(‰) 

18OFI  δD
(‰) (‰) 

FI Salinity 
 

(wt % NaCl 
eq.) 

Th Boiling 
curve T 

(°C) 

 range 
 

(°C) 

G2185 657 1.4 0.5 15.4 –4.5 –28.7 6.1–6.8 150–160 89 
G1746 621 0.5 2.5 15.5 –7.8 –51.0 5.0–5.5 213–243 149 
G1810 613 0.5 0.3 15.1 –7.3 –47.8 4.5–4.5 161–284 156 
G2374 551 1.5 1.2 14.2 –7.8 –68.0 3.4–5.6 190–234 188 
G2245 499 0.5 3.7 14.6 –6.9 –41.5 3.3–4.9 205–215 204 
G2255 457 0.5 1.6 13.9 –6.1 –39.8 3.1–4.7 190–219 213 
G2424 421 0.7 1.2 14.2 –6.2 –50.5 0.0–7.5 215–253 220 
G2267 405 1.4 3.7 14.3 –4.1 –33.3 6.5–7.8 223–249 223 
G2268 403 1.2 2.5 13.7 –4.5 –34.9 4.4–9.2 208–231 223 
G2283 365 1.2 0.3 13.4 –3.7 –23.8 3.1–6.2 219–251 230 

PD3980 210 0.5 1.2 14.5 –0.3 –19.0 5.6–5.6 233–269 250 

aData from Kilias et al. 2001 
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Table 2 Comparison of fluid inclusion water δ18

 

O with calculated fluid compositions for Profitis Ilias.  Calculated fluids use Zhang et al. 
(1989). 

Sample no. Elevation 
(m asl) 

δ18OFI δ 
(‰) 

18Oquartz δ 
(‰) 

18Ocalculated δ
(‰) 

(T = boiling 
curve) 

18O
(‰) 

(T = 225°C) 

calculated δ18O
(‰) 

(T = Mean 
T

calculated 

h

boiling 
curve T 

(°C) 
) 

Mean 
Th

G2185 

 
(°C) 

657 –4.5 15.4 –7.1 4.8 0.0 89 155 
G1746 621 –7.8 15.5 –0.3 4.9 5.2 149 230 
G1810 613 –7.3 15.1 –0.1 4.5 4.4 156 223 
G2374 551 –7.8 14.2 1.4 3.6 3.0 188 214 
G2245 499 –6.9 14.6 2.8 4.0 3.2 204 211 
G2255 457 –6.1 13.9 2.6 3.3 2.3 213 207 
G2424 421 –6.2 14.2 3.3 3.6 4.4 220 241 
G2267 405 –4.1 14.3 3.6 3.7 4.2 223 234 
G2268 403 –4.5 13.7 3.0 3.1 2.5 223 215 
G2283 365 –3.7 13.4 3.0 2.7 3.4 230 238 

PD3890 210 –0.3 14.5 5.1 3.9 5.8 250 264 
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Table 3. Data from previous inclusion-water–quartz δ18

 

O studies.  Calculated fluid compositions use Zhang et al. (1989). 

Data source Sample 
no. 

Sample 
wt. (g) 

FI water 
wt. (mg) 

δ18OFI δ
(‰) 

18Oquartz δ
(‰) 

18Ocalculate

d 

∆

(‰) 

18Ocalculated–FI Temperature 
(ºC) (‰) 

δDFI 

Rye and O'Neil (1968) 

(‰) 

63-R-4 60.6 6.0 –3.7 n.a. — — — n.a. 
 63-R-23 29.5 6.2 –4.5 15.8 8.4 12.9 300 n.a. 
 63-R-23 29.5 6.2 –4.5 15.8 9.0 13.5 315 n.a. 
Ohba et al. (1995) G-1 n.g. n.g. –0.3 n.a. — — — n.a. 
 G-2 n.g. n.g. –1.1 14.5 7.1 8.2 300 n.a. 
 G-2 n.g. n.g. –1.1 14.5 9.9 11.0 400 n.a. 
 G-3 n.g. n.g. –5.8 14.5 7.1 12.9 300 n.a. 
 G-3 n.g. n.g. –5.8 14.5 9.9 15.7 400 n.a. 
 Y-1 n.g. n.g. –11.2 14.2 6.8 18.0 300 n.a. 
 Y-1 n.g. n.g. –11.2 14.2 9.6 20.8 400 n.a. 
Vityk et al. (1993) 486 QI 3–5 n.g. –5.6 9.2 –2.9 2.7 200 –72 
 1308 QI 3–5 n.g. –5.0 7.5 –2.8 2.2 230 –80 
 1522 QI 3–5 n.g. –5.9 9.7 0.3 6.2 250 –79 
 496 QII 3–5 n.g. –7.1 8.7 –2.8 4.3 210 –56 
 523 QII 3–5 n.g. –1.9 9.4 –2.7 –0.8 200 –66 
 515 QII 3–5 n.g. –2.4 8.7 –2.8 –0.4 210 –79 
 483 QII 3–5 n.g. –2.8 9.1 –3.0 –0.2 200 –84 
 A n.g. n.g. –3.5 — — — — –82 
 B n.g. n.g. –2.5 — — — — –79 
 477 QII 3–5 n.g. –4.0 8.7 –3.4 0.6 200 –94 
 100 QIII 3–5 n.g. –2.1 15.1 4.8 6.9 230 –55 
 331 QIII 3–5 n.g. –0.9 17.9 7.6 8.5 230 –52 
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n.a. = not analysed; n.g. = not given; A = co-existing sphalerite; B = co-existing galena 
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