nerc.ac.uk

Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland

Neilson, J.C.; Kokelaar, B.P.; Crowley, Q.G.. 2009 Timing, relations and cause of plutonic and volcanic activity of the Siluro-Devonian post-collision magmatic episode in the Grampian Terrane, Scotland. Journal of the Geological Society, 166 (3). 545-561. 10.1144/0016-76492008-069

Before downloading, please read NORA policies.
[img]
Preview
Text
Neilson_Kokelaar_Crowley_2009_final_version.pdf

Download (3MB)

Abstract/Summary

Calc-alkaline magmatism in the Grampian Terrane started at c. 430 Ma, after subduction of the edge of continental Avalonia beneath Laurentia, and it then persisted for at least 22 Ma. Isotope dilution thermal ionization mass spectrometry U–Pb zircon dating yields 425.0 ± 0.7 Ma for the Lorn Lava Pile, 422.5 ± 0.5 Ma for Rannoch Moor Pluton, 419.6 ± 5.4 Ma for a fault-intrusion at Glencoe volcano, 417.9 ± 0.9 Ma for Clach Leathad Pluton in Glencoe, and, in the Etive Pluton, 414.9 ± 0.7 Ma for the Cruachan Intrusion and 408.0 ± 0.5 Ma for the Inner Starav Intrusion. The Etive Dyke Swarm was mostly emplaced during 418–414 Ma, forming part of the plumbing of a large volcano (2000 km3) that became intruded by the Etive Pluton and was subsequently removed by erosion. During the magmatism large volumes (thousands of km3) of high Ba–Sr andesite and dacite were erupted repeatedly, but were mostly removed by contemporaneous uplift and erosion. This volcanic counterpart to the ’Newer Granite' plutons has not previously been fully recognized. The intermediate magmas forming both plutons and volcanoes originated mainly by partial melting of heterogeneous mafic to intermediate lowermost crust that had high Ba–Sr derived from previous melting of large ion lithophile element (LILE)-enriched mantle, possibly at c. 1.8 Ga. This crustal recycling was induced by heat and volatiles from underplated small-degree melts of LILE- and light REE-enriched lithospheric mantle (appinite–lamprophyre magmas). The post-collision magmatism and uplift resulted from breakoff of subducted oceanic lithosphere and consequent rise of asthenosphere.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1144/0016-76492008-069
Programmes: BGS Programmes 2009 > NERC Isotope Geoscience Laboratory
ISSN: 0016-7649
Additional Keywords: Grampian Region, Scotland
NORA Subject Terms: Earth Sciences
Date made live: 04 Jun 2009 10:43
URI: http://nora.nerc.ac.uk/id/eprint/7377

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...