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Executive summary

Disasters, natural or otherwise, are often The report takes a particular interest in rainfall
precipitated by extremes of an environmental extremes, for which discretization effects can
variable such as rainfall or wind speed. In order be marked. The results suggest that previously
to make provision for alleviating the effects of reported correction factors are too low. The
such events, rehable risk estimation is required. analysis of hourly rainfall data from various
This is usually obtained by measuring the locations has enabled correction factors for daily
relevant variable and analysing the data in an rainfall to be discemed according to climate
extreme value context. The data, however, regime. Wind speed and air temperature
inevitably contain some form of discretization extremes are also exarmined. A relationship
(such as averaging over discrete time steps) between correction factors and effective fractal
which can degrade the risk assessment. dimension is demonstrated, providing a means

for deriving correction factors for other
The report examines the effect of data . environmental variables.
discretization upon the estimation of period
maxima. A correction model is proposed for The report concludes by consolidating the
converting fixed maxima, derived from results into practical recommendations.
discretized data, to true maxima as would be
derived from continuous data. The model can
be applied over a range of event durations.
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1 Introduction

Extremes of natural processes may present risk dimate
to the public. For example, heavy rainfall can variable
cause flooding, strong winds may topple trees (imum
or buildings, and extreme air temperatures can (a) 
result in the death of the weak and elderly. fixe" 

Thousands, sometimes millions, of pounds are
invested in preventing or alleviating such
effects. To achieve this effectively and
efficiently, a good quantitative assessment of the
likelihood of occurrence is imperative: this is 1
normally obtained by systematically measuring
the environmental variable of interest and
statistically analysing the resulting data in an time
extreme value context.

However, the measurement and recording climate true
process inevitably involves some form of variable fixl maximum
discretization since continuous measurement, if (b) maximum
practicable, is costly to perform and difficult to
record. Instead, it is common to take
instantaneous measurements at regularly
spaced intervals or infer averages over discrete
time steps.

In the case of assessing extreme rainfall, it is
common to measure daily rainfall accumulations
and extract the annual maxima. Daily
accumulatons are conventionally collected
between the fixed hours of 0900 each day; if time
they were collected between the hours of, say,
2100 each day, a different value for the annual
maximum would result in many years. With flgure 1.1 ifue and frxed maxima as (a) part of the
respect to the flooding of a river, the clock same event and (b) arising from different events
timing of the rainfall is irrelevant - it is the
maximum accumulation that is important. In the
absence of continuous data, however, the true fixed maximum and the mean true maximum is
24-hour maximum is unavailable, and so the sought. Given hourly data, the fixed daily
annual maximum based upon the fixed time accumuLations are easily constructed and the
intervals is used; this is, in general, lower and maxima derived. The true 24-hour maxima stiLL
thus the extremes are under-estimated. escape calculation, however, since the data are

still discretized: rather than sliding continuously,
There are two distinct mechanisms which cause a 24-hour window 'shunts' along in increments
the true and fixed maxima to differ: firstly, of one hour. If 1-minute accumulations were
where the fixed maximum results from the same available then the shunting window would be
event as the true maximum but fails to capture it more nearly continuous and a better
fully (Figure 1. 1 a); secondly, where the fixed approximation of the true maximum would be
maximum results from a separate event which is obtained. The maxima derived from these
better synchronized with the timing of the fixed shunting windows are referred to as sliding
intervals (Figure 1. Ib). The same problem maxima (as opposed to the fixed and tmue
arises for any variable measured by averages maxima). The data resolution pertaining to a
or accumulations over discrete time intervals. sliding maximum is implied in the notation: for

example, 2-day sliding maxima are of duration
To correct for this under-estimation of the 2 days and obtained from daily data, whereas
extremes, a relationship between the mean 48-hour sliding maxima are also of duration 2
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days but obtained from hourly data, The in Chapter 4 to denve correction factors for
problem is generalized to maxima of vanous rainfall maxima of durations one to 32 hours. A
durations. comparison between these and similar

correction factors for wind speed and air
The ratios of the mean sliding to the mean fixed temperature is given in Chapter 5 where a link
maxima are calculated and modelled to infer to fractals is suggested. Chapter 6 compares the
multipliers or correction factors which convert results from hourly and non-hourly rainfall data
one type of maximum to another for a specified and Chapter 7 details some incidental
duration. As well as the mean of the maxima, investigations which proved to be of interest
discretization could affect the higher order during the course of the study, Chapter 8
moments which would also require correction. consolidates the results of the previous chapters
This is therefore investigated as part of the into recommendations for use. The Appendices
study. contain some technical expansions of the main

text. In particular, Appendix C contains details
A historical overview is presented in Chapter 2. of all the data records used in the study,
Chapter 3 details the theoretical aspects of the including summary statistics, principal results,
problem, the methodology used in the study climate details and other particulars such as
and the proposed correction model. A detailed missing data if applicable.
examination of hourly rainfall data is presented
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2 Historical overview

One of the earliest and most commonly cited A similar analysis was done by Harishara and
references to the discretization problem is that Tripathi (1973) for 67 sites across India. Ratios
of Hershfield and Wilson (1958). This wide- for the T-year 24-hour to 1 -day rainfalls were
ranging paper on extreme rainfall estimation is obtained at each site for T=2, 5, 10, 25 and 50.
rather concise, devoting just a single paragraph Averaging across T resulted in a mean value at
to discretization which neglects to give clear each site; averaging across sites then resulted in
details of the data and methods used. an overall mean correction factor of 1 .15.
Nevertheless, they report a multiplier of 1.13 for However, only five stations had 25 or more
converting "...observation-day rainfal for a years of record, which means that the ratios for
particular frequency to the maximum 1440- T=25 and T=50 are somewhat unreliable.
minute rainfall for the same frequency'. They Indeed, with some stations having less than ten
find the same multiplier for converting clock- years of record, some kind of pooling of the
hour to 60-minute extremes, which they data would have been beneficial. Nevertheless,
consider to be coincidental. comprehensive reporting of the data and results

at each station enabled the 2-year return period
Another frequently quoted paper on the topic is ratios from stations having 15 or more years of
that of Weiss (1964). He approached the record to be isolated. Averaging the resulting
problem theoretically using a simple 23 ratios (weighted according to the number of
probabilistic model to argue that the expected years of record at each site), gives a mean
ratio of true to fixed maxima is 8/7 ( 1 .143). correction factor of 1 .144.
Whilst this is reassuringly close to Hershfield's
result, the analysis is mathematically flawed: The Flood Studies Report (Natural Environment
improper statistical formulation has led to Research Council, 1975, Vol. II, Chapter 3),
incorrect heuristic arguments. Correction of concentrates on the 5-year return period (M5)
these errors results in an expected multiplier of rainfall. Using data from around the UK, MS
4/3 ( 1.33), which is disconcertingly higher than rainfall was estimated for observational-day, 24-
Hershfield's result. Close examination of the hour, clock-hour and 60-minute durations. A
model assumptions, however, reveals that this multiplier of 1 .11 was found for converting 1-
result is inevitably an over-estimate. A full day to 24-hour M5 rainfall, though the quantity
discussion of Weiss's paper can be found in and quality of the data used to obtain this result
Appendix A. are not clearly specified. A higher multiplier of

1.15 is reported for converting clock-hour to 60-
The study of Kerr et aL (1970) used extensive minute M5 rainfall; this figure is based upon 50
data to examine rainfall-frequency-duration stations with both hourly annual maxima data for
relationships in the State of Pennsylvania, USA. estimating the M5 clock-hour values, and annual
Some 45 stations were used to investigate the frequency data (frequencies of 60-minute
discretization problem, each with 17 or more exceedances of 5, 10, 15, and 25 mm) for
years of hourly and daily data (collected estimating the M5 60-minute values.
separately). For each station, the sliding 24-hour
and the fixed 1 -day annual maxima series were More recently, van Montfort (1991) examined
obtained and Gumbel distributions fited to the problem of estimating extreme value
each; the respective mean annual rainfalls (2.33- distribution parameters for sliding maxima,
year return period) were calculated thereof and given that only fixed maxima are available. A
their ratio obtained. The average of the 45 ratios common method of fitting distributions to data is
pertaining to each site came to 1.12, close to the maximum likelihood procedure which
Hershfield's figure. Shding 60-minute annual renders those parameter values which
maxima were available at six sites, enabling a maxirnize the chance of the observed data
similar calculation for the average ratio of 60- being reproduced by simulation. Denoting, for
minute to clock-hour maxima: this resulted in year i, the sliding 24-hour maximum by A, and
1.16 which does not agree so well with the fixed I -day and 2-day maxima by Fh and F2,
Hershfield's findings. Whilst the extent of the respectvely, van Montfort utihzes the inequality
data used to obtain these results is made clear, F,•SA,, •F 2, to estimate GEV parameters for the
the quality is not. sliding maxima using only the fixed maxima.

This is done by using the maximum likelihood
procedure to maximize the chance of the
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differences F2 1-F1, being reproduced in The Allowance for Discretization in Hydrological
simulation. The method is demonstrated on 58 and Environmental Risk Estimation (ADHERE)
years of data from Kelburn, New Zealand. It is project, funded by the Natural Environment
claimed that the resulting parameter values are Research Council, was set up as a
as reliable as those obtained directly from the comprehensive investigation into the
observed sliding maxima also available at the discretization effect. The work of Coyle et al.
site. In terms of correcting maxima, the mean (1991) is a precursor to that reported here.
annual rainfalls (2.33 return period) extracted Correction factors are calculated directly from
from the EVI distributions fitted to the observed maxima using good quality, high resolution
fixed and sliding maxima, result in a correction data, the details of which are fully reported. A
factor of 1 15. Van Montfort quotes 1.14 for range of environmental variables, event
correcting the 50-year rainfall, although durations, data resolutions and climate regimes
estimating this from a single record of 58 years are examined. A generalized correction model
is somewhat sample-dependent. is proposed.



3 Method and theory

3.1 Terminology and conventions accumulation of duration D (fixed or sliding) is
extracted for each. The values for n and m are

The discussion so far has concentrated upon 24- fixed at 16384 and 32 respectively; sensitivity of
hour versus 1-day annual maxima for rainfall. the results to these choices is investigated.
The study investigates discretization in a more
general context, however, as described below.

3.2 Calculating the fixed and sliding
Data resolution and event duration period maxima
Speaking of a 24-hour rainfall means that a
rainfall time series of hourly resolution has been Fixed maxima
used to calculate an accumulation of duration 24 Let the first period consist of data values x(l),
times that resolution. In general, durations of D x(2), x(3), ... etc. The first fixed accumulation of
times the data resolution are considered. Also, duration D is obtained by summing (or
the data resolution, denoted by T, may be averaging) the data values x(l), x(2), ... , x(D).
something other than 1 -hour. Thus, T= 1 day and The second fixed accumulation is obtained from
D=4 refer to 4-day accumulations calculated the values x(D+ 1), x(D+2), ... , x(2D), and so on.
from daily data. Note that T has dimensions of This is illustrated for D=4 in Fig. 3.1 a. The
time but D is dimensionless. maximum of all the resulting fixed

accumulations is the fixed maximum for that
Length of record period. Fixed maxima for other periods are
The length of a record is expressed in terms of calculated similarly.
the number of data values, n. To ensure
equitable comparison of results, n is fixed at (a)
16384 (2'4) unless stated otherwise. This climate
pertains to nearly two years of hourly data or 45 variable

years of daily data. The figure has been chosen
to reflect the lengths of record generally _ 1
available and constrained to a power of two for
methodological reasons.

Period length
Whilst 45 years of data enable a reasonable
calculation of mean annual maximum values,
two years of (hourly) data do not. Hence, each -. - -

record is divided not into years but into m=32 time
(25) periods of equal length (about 512 values).
A maximum is extracted for each period, the
average of which is termed the mean period (b)
maximum. Maxima are therefore extracted from climate
periods of approximately 21 days for hourly vwiable
data and 1.4 years for daily data.

A- - , _v,

Clirmate variables
Climate variables other than rainfall are also
examined, such as wind speed and air
temperature. For variables where the term -7-- | V.

accumulation' over some duration is
inappropriate, it is taken to mean the 'average
value' over the duration. :-

dime

Thus, the extremes of a climate variable are
examined by reference to a time series
consisting of n data values measured at a FIgure 3.1 The construction of (a) the fixed
resolution T. The record is divided into m accumulations f, f. .... and (b) the sliding accumulations
periods of equal length and the maximum v,, v7 ... demonstrated for duration D=4
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To obtain a whole number of fixed The sample correction factor for duration D is
accumulations, the period length is required to thus defined by
be an integer multiple of D. Dividing the whole
record into m equal penods results in a period R(D) = V(D)/F(D) 3.3
length of n/m=29 (512), which is exactly divisible
by D only when D is a power of two. Thus, so it is the multiplier required for converting the
that any duration D may be considered, the mean fixed into the mean sliding period
period length, p, is set to the greatest multiple of maximum of duration D. For example, if
D satisfying p• 5 12 . When pc<512, the t=1 hour then R(24) is the multplier required
construction of m=32 consecutive periods of for converting the 1-day to the 24-hour mean
equal length results in some unused data at the period maximum.
end of the record.

Sliding rnaxima In application it may be desirable to convert
Using the notation above for the first penod, the individual maxima rather than the mean
first sliding accumulation of duration D is maximum, in which case it is tempting to
likewise obtained from the data values x(l), calculate the sample correction factor not as
x(2), , x(D). The second sliding accumulation, above but as the mean (over i) of the individual
however, is obtained from x(2), x(3), .. , x(D+l) ratios R,(D)=V,(D)/F,(D) It turns out, however,
and thus overlaps with the first. The third is that this is not a very satisfactory estimator as it
obtained from x(3), x(4), ... , x(D+2) and so on can be seriously biased and have large mean
as illustrated in Fig. 3. lb. The maximum of the square error, and so R(D) is to be preferred
resulting accumulations is the sliding maximum (see Bamett, 1974). Furthermore, note that
for the period. The periods used for extracting
sliding maxima of duration D, are identical to E Vi(D)
those used for extracting fixed maxima of EF (D)
duration D.

When a large storm is split across two periods, E [V,(D).Fp(D)vF1 (D)3
its full significance may go unnoticed if the two EFi(D)
periods are analysed separately. Therefore,
rather than having the last sliding accumrulation £ [R1(D).F (D)]
coincide with the last fixed accumulation, the = _ i i
sliding 'window' is allowed to straddle across EF/(D)
the two periods. A convention is adopted
whereby an accumulation which straddles two
periods is neither lost nor 'counted twice' in the where the summations are all from i= 1 to m.
sense of it contributing to the sliding maximum That is, R(D) is equivalent to a weighted sum of
for both periods (see Appendix B). the individual ratios for each period, with

greater weight given to the larger events. This is
especially desirable in the analysis of hourly

3.3 Calculating sample correction data since the period length is only about 21
Ca lculating sample correction days and so many of the maxima will not be

factors particularly extreme.

The above describes how, for each duration D,
fixed and sliding maxima are extracted from Dropping the notation D, an estimate s(R) of the
each of the m periods of a given data record. standard error of R(D) is suggested by Barnett
Denoting these by F,(D) and V(D) (i= 1,...,m) as m
respectively, the fixed and sliding mean period S2(R) ( -pRF 3.
maxima (of duration D) are then m(m-V)Fli 3.5

F(D) = l Fi(D) 3.1 from which confidence intervals can be
and t=l calculated using Normal percentage points.

Datum
V(D) MI mit should be noted that there is some

V(D) = -1 V*(D) 3-2 arbitrariness in the value of R in that it is relative
1=1 to the datum (zero level) of the units of

measurement. For example, the ratio of the air
temperatures 10C and 5C is 10/5 = 2, but
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expressed in degrees Kelvin the ratio becomes approximation since it does not slide
283/278 = 1.02. Once a datum has been chosen, continuously but rather in steps of lID. As D
however, the ratio is independent of the scale of increases, the sliding maximum becomes more
the units. Thus, using a datum of 0'C for air nearly 'continuous' relative to the fixed
temperature, it makes no difference whether maximum, and so an increasingly belier
degrees Celsius or tenths of Celsius are used. approximation. Thus, as D increases, the ratio

R(D) approaches a limiting value R which
Rainfall and wind speed offer natural datum represents the correction of fixed maxima to
levels corresponding to 'no rain' and 'no wind'. true maxima.
The equivalent for temperature is that of no
energy, namely O0K (-273'C). This datum, being This behaviour is modelled as exponentially
far below the level at which air temperatures diminishing growth to a limiting constant, with
are observed, renders very low correction the constraint R(l)= l. Denoting the model
factors. Later it is desirable to compare function by p(D), this gives
correction factors for different variables,
whereupon a common datum type is required, p(D) = 1 +a[ 1 -expf -b(D-1)I] 3.6
which reflects the level at which the variable is
observed. The minimum of the data record which can be fitted to the data R(D) by nonlinear
would suffice but is somewhat sample- regression, resulting in estimates of the
dependent. Thus, the lower 1% quantile is used, parameters a and b. For the graph of Fig. 3.2,
which has the desired properties and in practice the regression renders estimates a=0.089 and
still renders datum levels of zero for rainfall and b=0.096, the curve for which is depicted in
for wind speed (for daily and sub-daily data at Figure 3.3. Parameter a relates to the limiting
least). value of p(D):

p* = lim p(D) = 1+a

3.4 Modelling R(D)
whence R' is modelled by p*. Parameter b

The model relates to the growth rate of p(D): its numerical
Associated with each data record, therefore, are value is not very enlightening, however, and so
the sample ratios R(D) for each D. A graph of D is defined as the duration at which the curve
R(D) against D can be constructed as in Fig. 3.2 attains p% of its final growth above 1, that is
for wind speed data at Eskdalemuir, Scotland.

The behaviour exhibited by this example is = 1 +a 3.8
typical in that R(D) is increasing over small D
(though not monotonically) and then levels off to giving

D = 11- bn(l -p/100) 3.9
p b

In particular, D% is used as the duration by
n 1.10I which most (95%) of the growth has occurred.

py WVWV4\I Thus, for the wind speed example above,
p'=l1.089 and D95=32. The maximum duration

* 00- _ 1~~~~~~~~~~~~~~20-

0 0 16 24 32 40 4 SS 04

Duration. D 9.1 s-

ngure3.2 R(D) againstDforEskdalemuirwind A -° A
speed record F (r=1 hour)

fluctuate about a constant value. This can be '' °40 a 16 324 2 l 4

explained by considering both the fixed and Duration, 0

sliding maxima (of duration D) as
approximations to the true maximum; the Fgure33 CorrectionrnodelfittedtoEskdaiemuir
measured sliding maximum is only an wud speed rec tod F
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used in modelling R(D) by p(D) is denoted by results help to discern any systematic higher-
Dm.: it must be large enough for the limiting order differences between the fixed and sliding
value to be properly estimated but not so large maxima. The graphs obtained show no such
that is becomes a significant fraction of the differences, however, as illustrated by some
period length. Dm. equal to 32 or 64 was found typical examples contained in Appendix D.
to be appropriate for most records. Thus, it is reasonable to analyse the

discretization effect with respect to the mean of
Regression details animual maxima alone, without having to make
Non-linear least-squares regression is used corrections to the higher-order moments.
which seeks to minimize the sum (over D) of the
squared differences, [p(D) - R(D)19. Standard
subroutines from the NAG computer library 3.5 Applying the correction model
(NAG, 1991) are used which also estimate the
variances of the estimated parameters. The above model can be used in four distinct
Symnmetric 95% confidence intervals for the ways as detailed below. An example of each is
estimated parameters are then calculated using presented at the end of the section using the
the Student's t 2.5 percentage point. For wind speed data pertaining to Figures 3.2 and
example, the confidence interval for parameter 3.3.
a is given by

Converting fixed to sliding mnaxima
[d-s d ~ 3.10 The multiplier p(D) may be used to convert theSat a +St0] 3.10 mean fixed maximum of duration D to the mean

sliding maximum of duration D as measured at
resolution t

where a is the least-squares estimate for a, Sa is
the square root of the estimated variance for a Converting fixed to true maxima
and tc0 25 indicates the Student's t 2.5 percentage The multiplier p may be used to convert the
point at d=Dm.-2 degrees of freedom. There is mean fixed maximum of duration D, to the mean
a 0.95 probability that the true value of true maximum of duration D. In doing so,
parameter a lies in this interval. The confidence however, it is assumed that fixing t and letting D
interval for b is constructed similarly. The end- tend to infinity produces the same correction
points of these intervals are substituted into ratio as fixing D and letting z tend to zero. That
equations 3.7 and 3.9 to obtain the 95% is, the correction factor for converting fixed to
confidence intervals for p' and D95 respectively. true maxima is assumed to be independent of

the event duration D and data resolution t. The
It is assumed that the variation about the latter is reasonable since both fixed and true
regression curve is due to sample error. This is maxima are independent of data resolution by
corroborated by an examination of a number of definition. Both assumptions are examined for a
the data records which indicates that, for most range of durations and resolutions as part of this
D, the regression curve p(D) falls within the investigation.
sample 95% confidence interval for R(D) (as
calculated using equation 3.5). This also makes Converting sliding to true naxima
reasonable the assumption that R(D) converges It may occur that the mean sliding maximum of
for large D. duration D, as measured at resolution x, is

available but, nevertheless, the mean true
Higher-order rnoments maximum is required. The former can be
It is possible that discretization affects not just converted to the latter using the correction
the mean of the period maxima but also the factor
variance and higher-order moments. The use of
L-moment ratios (Hosking, 1990) is becoming a(D) - P 3.11
popular as a measure of higher-order variation; p (D)
they are more robust to outliers and sample
variability than are conventional moment ratios, This can be seen by considering the conversion
and are bounded in [-1, 1 ] (simplifying in two stages: first, convert the mean sliding
comparisons), maximum into the mean fixed maximumn by

dividing by p(D); second, convert this mean
For each data record, the L,CV and L-skewness fixed maximnum into the mean true maximum
were calculated for the set of fixed maxima using the multiplier p'.
{F1(D): i= 1, ... m} and shding maxima {V,(D):
i= 1, ,m} at each duration D. Graphs of the
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Converting sliding to sliding naxirma Suppose that the mean sliding 3-hour maximum,
The mean sliding maximum of duration D, as VI, has been calculated from the hourly data.
measured at resolution t, may be converted into Although it is sliding, there is still a considerable
the mean sliding maximum of the same duration discretization effect at such a short duration
but measured at a finer resolution t'='/X (X> l) (D=3). To calculate the mean sliding 3-hour
using the multiplier maximum as if it were extracted from, say, 15-

minute data, denoted by V2, use equation 3.12
p(D) = p(QD) 3.12 to obtain

p(D) V2 = p (3)VI

This can be seen by considering the conversion
in three stages: first convert the mean sliding = p(3X) Vl
maximum of duration D, measured at resolution p(3)
t, into the mean true maximum of the same
duration by multiplying by a(D) (equation 3.11); p(12)
second, use the assumption that p* is p(3) 3.16
independent of data resolution to obtain the
mean fixed maximum for the same duration but 1.058
expressed in terms of the resolution r' (namely, 1.V0
XD) by dividing by p*; lastly, convert this mean 1.016
fixed maximum of duration XLD into the mean
sliding maximum, as measured at resolution ', 1.041 Vl
using the multiplier p(XD).

Examples
Examples of the above applications are
presented below, based upon the hourly wind
speed data at Eskdalemuir for which model
parameters of a=0.089 and b=0.096 were
estimated (as detailed earlier).

Let the mean fixed 1-day maximum be denoted
by F. The mean sliding 24-hour maximum, V, is
obtained from equation 3.6 as

V = p(24)F
3.13

= 1.079F

The mean true maximum of duration 24-hours,
T, can be obtained from equation 3.7, namely

T = p-F

= (1+a)F 3.14

= 1.089F

If the sliding 24-hour maximum, V, is available,
then T can be obtained from V using equation
3.11 as follows:

T = a(24) V

P V 3.15
p(24)

= 1.089 V

1.079

= 1.009V
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4 Rainfall durations one to 32 hours

4.1 Introduction convective storms in the sunmmer, however,
which swings the seasonality of heavy rainfall

This chapter uses rainfall measured at an hourly accordingly. Two of the three Australian sites,
resolution to examine the correction of rainfall Melbourne and Sydney, represent warm
maxima of durations one to 32 hours, and in temperate climates, whereas Brisbane veers
particular the correction of daily rainfall. This towards the tropical. Melbourne, on the
reflects, historically at least, where most of the southern tip of mainland Australia, experiences
applied hydrological interest lies. The aim is to moderate rainfall, evenly distributed throughout
compare and contrast the modelled forms, p(D), the year. Sydney, situated on the south-east
for different sites with varying climate regimes. coast, experiences mainly frontal rainfall,
Six sites have been examined: Table 4.1 shows highest in autumn (May to June) and lower
the number of standard data records (that is, of during spring (September to November).
length n= 16384) available at each. For example, Brisbane, halfway down the east coast, is subject
eight records were extracted for Eskdalemuir to heavy monsoon rains in its tropical summer
and labelled A to H accordingly. For the UK sites and lighter frontal systems in the winter.
the extracted records run consecutively,
whereas data quality requirements prevented Recall that a storm split (at 0900) between two
this for the Australian sites. Summary statistics observation days is under-recorded by the
and other details for each record can be found fixed interval measurements. If a typical storm at
in Appendix C under the appropriate headings. a site arises from relatively few hours of mtense

rainfall then, by simple probability, there is less
chance of this happening than for a site

Table 4.1 The number of hourly rainfal records experiencing longer duration events,
available at each site whereupon correction factors are likely to be

lower. In studying correction factors for daily
rainfall, it is therefore helpful to compare rainfall

Site Number of records profiles for each site. Figure 4.1 shows average

Eskdalemuir 8 (A-H) profiles derived for each site: that is, for any one
site, the rainfall values forming each fixed 24-

Leeming 5 (A-E) hour maximum are obtained and averaged by
calculating the mean first hour value, the mean

Ringway 8 (A-H) second hour value, etc. The result is converted

Brisbane 5 (A-E) into a percentage profile and plotted as
residuals about the mean percentage, 4.17. This

Melboume 5 (A-E) method of averaging preserves time-of-day

Sydney 6 (A-F) features (the first hour corresponding to 0900 -
1000 hours) and weights each maximum

according to its total volume. It is apparent that
Brisbane has a more concentrated average
profile than the other sites.

4.2 Rainfall regime
In order to compare profiles with correction

All the UK sites represent cool temperate factors quantitatively, it is convenient to
oceanic climates. Eskdalemuir, in the southern construct a simple numerical index of profile
uplands of Scotland and Ringway (Manchester concentration: for each site, the mean number of
Airport), being west of the Pennines, are subject wet hours (Nw,e) for the 1 -day maxima is used.
mainly to frontal rainfall carried in from the Table 4.2 shows the results for each site, with a
Atlantic Ocean. Although it rains all year round, 'wet' hour being one with a depth greater than
October to January is the rainiest season. The 0.2mm.
high altitude of Eskdalemuir ensures that a
significant amount of precipitaton faDls as snow
in the winter months. Leeming, in North 4.3 Correction factors
Yorkshire, lies east of the Pennines and is
therefore more sheltered from the westerly Figure 4.2 shows examples (one record from
fronts; it is subject to a greater nurnber of each site) of graphs of R(D) against D complete
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1ge 4.2 Correction model fitted to hourly rainfall: Eskdalemuir record C, Leeming D, Ringway C, Brisbane B,
Melbourne D and Sydney F
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Table 4.2 The value ofNl, for each site sample variability in R(D) about the fitted model,
resulting in large confidence intervals for the

Site N, parameters a and b. The example for
(hours) Melbourne shows the case, unusual for rainfall,

where a D. value of 64 was deemed
Eskdalemuir 11.7 necessary to estimate the limiting value p

Sydney 8.8 satisfactorily. For completeness, Figure 4.3
shows some of the less well-fitted plots: in (a),

Ringway 8.4 the limit p' is reached before the first

Melbourne 8.2 observation at D=2 and therefore parameter b
cannot be properly estimated in the regression

Leeming 8.1 and so is effectively undefined; in (b), a great
deal of sample variability leads to particularly

Brisbane 7.2 large uncertainty in the regression curve.

with the fitted model. Together they illustrate the No obvious inter-site differences are discernible
main features for rainfall (as compared to other from visual examination of the various plots and
environmental variables): convergence of p(D) so close inspection of the parameter values, a
to p is rapid (rendering low D9s values); p is and b, is required. Table 4.3 details the
typically in the range 1.14 to 1.18; there is large parameter values for each record at each site;

(a) 125 (b) 1 25l

1.20- 1 20-

,.15 · ~ ._S

# ,,0- 0ii

1.05 1.0

1 - I 1.00 1 i 00,
0 8 16 24 32 0 a 16 24 32

Duration, D Duration, D

Ilgure 4.3 Correction model fitted to hourly rainfall: (a) Melbourne record D. (b) Sydney F

2.0-
~~~~2.0-~~~ .1~ .·~* Eskdalemuir

* Leeming
* Ringway

I~~~~~~~~~~~~1.5- 0o Brisbane
* Melbourne-
* Sydney

b 1.0-

0%. *

0.5- . -

4} C
. 0 0 ·

0.0. 

0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20

a

Fgure 4.4 Parameterspace(a,b) forthecorrection modelfittedtoeachhourly
rainfall record
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Table4.3 Values of a, band a' for each hourly rainfall record at each site, plus respective site-means
('am" denotes ant hmet icmean and 'gmnstands for geometricmean)

Site Record a ba

EskdaIemuir A 0.169 0.388 0.170

B 0.160 0.563 0 159

c 0.162 0.841 0.163

D 0.180 0.402 0.180

E 0.161 0 700 0.161

F 0.177 0.330 0.175

G 0.170 0.343 0.168

H 0.158 1.564 0.158

a: 0.167 gin 0.556 am 0.167

L=mning A 0.171 0.717 0.170

B 0.168 0.796 0.168

c 0.126 0.865 0.126

D 0.155 1.038 0.165

E 0.151 0.387 0.152

a: 0.154 gmn: 0.734 ti: 0.154

Ring.ay A 0.159 0.432 0.160

B 0.153 0.643 0.150

c 0.154 0.620 0.156

D 0.144 1.198 0.150

E 0.166 0.631 0.168

F 0.169 0.512 0.170

G 0.162 0.285 0.160

H 0.144 0.269 0.148

a: 0.157 gmn: 0.517 an: 0.158

Byi,bane A 0.139 0.723 0.138

B 0.151 0.657 0.152

c 0.124 - 0.128

D3 0.147 .0,154

E 0.162 0.208 0.162

a: 0.144 gin: 0.462 ELM: 0.147

MeI1bounme A 0.175 - 0.172

B 0.157 0.510 0.156

c 0.164 0.198 0.162

D 0.135 0.135

E 0.150 0 973 0.152

a: 0.156 gin: 0.486 ti: .0.156

Sydney A 0.144 01771 0.145

B 0.160 0-501 0.161

c 0.158 0.612 0.158

D 0.176 01261 01)78

E 0.164 03529 0.164

F 0.169 0.479 0.169

n: 0.162 gi: 0.500 am: 0.162

Overall avenges am 0.158 gWn: 0.571 ali: 0.158
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site averages, as well as overall averages, are Thus, the estimation of a is generally insensitive
given (the arithmetic mean is used for the to the value of b for hourly rainfall data. The
parameter a whilst the geometric mean, being values of 1 +a' for each record (that is the
less sensitive to outliers, is used for the more correction factors) are represented in Figure
variable parameter b). Figure 4.4 displays these 4.6, grouped by site to enable inter-site
results for all records except those which have comparisons. A first inspection of the results
an undefined value for b. Whilst a slight might suggest that Eskdalemuir and Ringway
negative correlation between a and b is seen, have significantly different site means. More
there is no discernible distinction between the scatter is observed at the other sites, however,
various sites. Although considerable scatter is making comparisons more difficult. It is
observed, the site averages (denoted by constructive to compare these results with those
crosses) are reasonably well grouped. A for N 1.it
separate examination of the b values indicates
that they do not vary systematically with cimate
regime (as indicated by site in Figure 4.5) or 4.4 Comparing correction factors
sequentially (as indicated by the letters A to H in with Nf
Table 4.3). Thus, it seems reasonable to fix the 
parameter b to the overall geometric mean It has been stated that sites subject to longer
(0.57 1) and refit p(D), for each record, as a one events, which are more likely to be divided
parameter model p'(D). A new estimate of a, between observational days, are expected to
denoted by a', is obtained. If, however, this render higher correction factors. Figure 4,7
fixed value of b is inappropriate for a particular shows the mean correction factor for each site
record, then the regression fit of p'(D) will be plotted on a linear scale and a similar plot for
poor at small D and compensated for at higher N., (from Table 4.2). The latter plot
D, causing erroneous estimation of a'. However, distinguishes Eskdalemuir as subject to
the estimation of a depends mostly on those relatively long events, Brisbane subject to
R(D) for which D>D 95 and so the problem can relatively short events and the other sites as in-
be circumvented by fitting p'(D) to R(D) for D> between and similar to one another. It is striking
max{D95, 6.2}, where D9. is estimated from the that the order of the sites in the two plots is
original regression of the two parameter model preserved, in keeping with the above
and 6.2 is the D0 value corresponding to expectation.
b=0.571.

The results can be used to construct particular
The resulting values of a'for each record hypotheses about the required correction
appear in the right-hand column of Table 4.3. factors for daily rainfall: in particular, that
They are similar to the values of a, with the site Eskdalemuir requires a higher correction factor
and overall averages differing only slightly. than other sites, that Brisbane requires a lower

2.0 2.0

1.5 1.5

1.0 1.0

0.5 -I 0.5

0.0 0.0
Eskdalemuir Leeming Ringway Brisbane Melboume Sydney

Ilgure 4.5 Values of parameterb for each hourly rainfall record, grouped by site



1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16. 1.18 1.20

Eskdalemuir

Leeming

Ringway

.... - *-gBrisbane

Melbourne

Sydney

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

lgure 4.6 Values of parameter I +a 'for each hourly rainfa record, grouped by site

B -L M R S E

i+a' I l l l l l

1.147 1.167

B LM R S E

N.. i l i l

7.2 11.7

7gure 4.7 Site-mean correction factors represented alongside site values forN (each site is denoted by its
first letter)

correction factor than other sites and that the and Melbourne. Two-sided tests result in no
rest are not significantly different from one significant differences between mean correction
another. Based on the correction factors foumd factors at the other sites. This is schematically
for each record at each site, paired Student's t represented in Figure 4.8 whereby sites circled
tests can be used to discem differences together are not significantly different.
between the site means. A test statistic which
assumes unknown but equal variances is used Thus, there is evidence to support the
(Mood et al., 1974). At the 95% significance conjecture that Eskdalemuir, being subject
level, one-sided tests indicate that Eskdalemuir mainly to long-duration frontal events, generally
has a significantly greater mean correction requires high correction factors for daily rainfall
factor than all sites except Sydney. Similarly, (with a site mean of 1. 167) and Brisbane, being
Brisbane has a significantly lower mean more prone to relatively short-lived monsoonal
correction factor than all sites except Leeming storms, generally requires lower correction

lgure 4.8 Results of tests forsignificant differences between site-mean correction factors
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factors (site mean of 1. 147). The other sites, and D, complete with the model fits, are shown in
in particular Ringway, experiencing more Figure 4.9 (only the R(D) which are used to fit
middling duration events, generally require the one-parameter model are shown).
more moderate correction factors (overall mean
of 1.158). Much less variation about the fitted model is

observed than for the individual records. This
Before drawing conclusions and making demonstrates that much of the variation is due to
recommendations, it is necessary to examine sample variability rather than a poor model, and
whether the above results are sensitive to provides evidence for convergence to a lmit.
certain aspects of the methodology. Not surprisingly, the new correction factors

obtained show good agreement with those

4.5 Sensitivity of results
(a) , 25-

Timing of fixed intervals
The rainfall records, to which the above results 120

pertain, are constructed so as to begin at 0900
on the first day. This is particularly relevant to a 1.15

the case D=24 because the observation day /
(0900 to 0900) then coincides with field ,.10
practice. Nevertheless, it is interesting to l
examine the effect of starting the records at o-l
some other time.

00-

The data records were reconstructed to begin 0 a is 24 t2

at midnight. Very little difference is observed in Duration. D

the results for Nf. Whilst changes are observed
in the correction factors for individual records,
the site means remain stable with no significant (b) 125

differences occurring. The overall mean
correction factors are 1.158 (for 0900 starn) and
1 .160 (for midnight start).

It is concluded that, for the climates considered /
here, maxima extracted by either convention c °0
would suffice. In more tropical climates, where
heavy rainfall is typically triggered by solar 1os
heating, the timing of the fixed intervals mnight
be expected to be more influential. 6 

0 6 16 24 3

Duration. D

Averaging across sites
Table 4.3 showed site-means for a'. The
calculation of these means, however, does not c ,2
take into account the (sometimes large) (c)
confidence intervals for the individual a'. In the
case of UK sites, for which the separate records
run consecutively, an altemative method for S
calculating the site-mean is obtained by c
concatenating the records for a given site to
form a single large one. By maintaining the
same period length, a greater number of
periods is available from which to estimate the
ratios R(D). In this way a single value of a', as
well as its confidence interval, is obtained for 0 e 16 24 2

each site. For Eskdalemuir and Ringway, eight Duration, D

records are concatenated, whereupon the ratios
R(D) are obtained by averaging across 256 flgat 4.9 R(D) against D, with fitted model, for
periods; for Leeming, five concatenated records concatenated hourly rainfall records (a) Eskdalemuir
result in 160 periods. The graphs of R(D) against (b) Leeming and (c) Ringway

17



Table 4.4 Site-means for I +a '; values of 1 +a 'for concatenated records
including 95% confidence intervals from the regression fit

Site Mean of individual Concatenated record 95% confidence interval
records for concatenated record

Eskdalemuir 1.167 1.166 1.160- 1.172

Ringway 1.156 1.156 1.149 - 1.163

Leeming 1.160 1.160 1.152 - 1.167

obtained by averaging across individual In summary, these results provide no evidence
records (see Table 4.4). that correction factors vary systematically with

period length. Visual inspection of the graphs
Period length for R(D) against D for the various period lengths
Each maximum was extracted from a period of at each site corroborate this conclusion.
about 21 days; these represent less extreme
events than do annual maxima which are more
usually analysed. It is therefore necessary to 4.6 Summary and conclusions
investigate the sensitivity of the correction
factors to changes in the period length. This is Hourly rainfall data were studied from three UK
achieved by concatenating the individual and three Australian sites and divided into
records to form one long record for each UK site records of fixed length. The discretization effect
as described above. The ratios R(D) are then was investigated for each record at each site
obtained for various period lengths. Table 4.5 according to the methods described in Chapter
details the results: four period lengths are 3. Thus, values for the model parameters a and
considered and the resulting values of p* (= 1 +a) b were obtained for each record and grouped
and R(24) shown for each site. The number of by site to enable inter-site comparisons.
periods pertaining to each period length is also Although there is a lot of variation in the values
shown for each site. for a and b, the site means are in relative close

proxirity.
No systematic variation with period length is
observed: at Eskdalemuir, p' decreases as the A separate analysis of the results for parameter
perod lengthens, whilst R(24) increases; at b (which models the initial growth of R(D)) found
Leeming, p* also decreases but R(24) merely no discernible inter-site differences. The value
fluctuates slightly; and at Ringway, p^increases of b was thus fixed at the overall geometric
while R(24) is seen to decrease. Also, it should mean (0.57 1) and the model re-fitted for each
be noted that there is greater sample variability record to obtain comparable estimates, a, of the
in the results for the longer period lengths due a parameter.
to the fewer number of periods available to
estimate the ratios. An analysis of the a 'values showed evidence of

inter-site differences. Site mean values for the

Table 4.5 Values of R(24) and p for concatenated hourly rainfall records using various period lengths

Period length Eskdalemuir Ringway Leerning

periods R(24) p periods R(24) p periods R(24) p

21 days 256 1.163 1.165 256 1.152 1.158 160 1.161 1.148

43 days 128 1.154 1.160 128 1.143 1.158 80 1.157 1.144

85 days 64 1.171 1.152 64 1.154 1.165 40 1.164 1.145

171 days 32 1.182 1.149 32 1.171 1.162 20 1.157 1.140
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correction factor, 1 +a', were found in the tiring of the fixed intervals or the period length.
approximate range 1.147 to 1.167 with an In particular, for each UK site, it was possible to
overall mean value of 1. 158. Concentrating on obtain a site value for a' by analysing a single
the correction of daily rainfall maxima (D=24), long record (by the concatenation of the
the results for 1+ a 'were compared to the standard records). This resulted in very similar
number of wet hours (NWe,) at each site. A values for a' and a much better fit (in terms of
positive correlation between them, as deviation about the model), thus increasing
anticipated by theoretical arguments, was confidence in the model as well as in the site
observed. Values of N.t were then used to means obtained.
construct hypotheses concerning the correction
factors 1 +a', at each site: namely, that In conclusion, the results suggest that the
Eskdalemuir requires a higher correction factor correction factors commonly used are
than the other sites, Brisbane a lower correction somewhat low. Instead of 1.13 and 1.14 for
factor than the other sites, and the others example, a range of 1. 15 to 1.17 is indicated.
require broadly similar correction factors. For the correction of fixed 24-hour (daily)
Student's t tests were used at the 95% maxima, the lower end of this range is
significance level to test differences in the site suggested for climates prone to short-lived
means: the resulting groupings lent support to convective/monsoonal rainfall, the upper end for
the hypotheses. climates prone to frontal systems producing

events of longer duration, and 1.16 for middling
Further analysis showed no evidence that the climates and as a general guideline.
correction factors found are dependent upon the
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5 Comparison of variables

5. 1 Introduction where E[ ] denotes statistical expectation and h
is known as the (time) lag. Estimation of y(h),

This chapter concerns the comparison of defined by the sample semi-variance
correction factors for different climate variables.
In particular, the temporal variability of a n-h

process is investigated for its influence upon the s2(h) = 1 S (x(i+h) -x(i)) 5.2
magnitude of required correction factors. 2(n-h) j=1

Consider the discretization effect by imagining
the time interval, corresponding to a fixed
maximum, being free to slide to and fro in is unbiased if X(t) is stationary in the mean and
search of the true maximum. As the interval y(h) is time-invariant. If the variance is constant
slides, so the accumulations found will differ. For and finite, however, then the autocorrelation,
gradually changing processes, such as that of C(h), and semi-variance are related by
air temperature, these differences are likely to
be relatively small compared to those for y(h) = 02(1 - C(h)) 5.3
erratic, intermittent processes, such as that of
rainfall, for which plenty of opportunity exists for
sudden and sharp changes to occur. More The graph of y(h) against h is called the
precisely, the slower the decay in temporal vanogram, fil discussion of which can be found
autocorrelation, the lower the expected in, for example, Webster and Oliver (1990). To
correction factor for the data. enable comparisons between variograms for

different data records, a non-dimensionalized
This conjecture is examined by comparing version of semi-variance is defined by
three climate variables - rainfall, wind speed
and air temperature. The data, all taken from 2
Eskdalemuir in the southem uplands of S(h) 2(h) 5.4
Scotland, are at the hourly resolution and span s1 s2
the years 1970 to 1989. Thus, there are ten
possible data records for each variable,
labelled A to J accordingly, although data quality where s, and s2 are the standard deviations of
requirements prevented analysis of some the first n-h and last n-h data points,
records. As a result, eight rainfall, six wind respectively.
speed and seven air temperature records are
examined. The rainfall records (A-H) In the context of simply-scaling Gaussian
correspond to those used for Eskdalemuir in the processes, erraticness can be quantified by the
previous chapter. More details of the data can Hausdorff fractal dimension, d,,, which is related
be found in Appendix C. to the gradient, a, of the log-log variogram at

small h, by
The correction factors, p', as defined in Chapter
3, are calculated for each record and compared dH = 2-a/2 5.5
to the measure of erraticness defined below.

Simple scaling renders the log-log variogram
5.2 Variograms and erraticness linear for small h, whereupon the gradient a is

well defined (see examples in Coyle et al.,
Let a data record, of length n=2 14 values, be 1991). Whilst rainfall and wind speed are non-
represented by X(t)={x(l), x(2), ... x(n)}. The Gaussian, this study follows in the same spirit as
calculation of autocorrelation assumes not only Constantine and Hall (1994) by defining the
stationarity in the mean of X(t) but also constant effective fractal dunension, dE, as
and finite variance, al. An altemative is the semi-
vaniance,fy(h), defined by dE = dH = 2-a/2 5.6

y(h) = 112E[(x(t+h) -x(t))21 5.1where at is the gradient of log(S(h)) with respect
to log(h) for small h in the range over which
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linearity appears to hold. Note that 1 < dE S 2. A data points to become uncorrelated. For some
more detailed discussion of effective fractal records a very rapid approach to the sill makes
dimension, as defined above, can be found in linearity at small h difficult to discern. For
Dwyer and Reed (1994). consistency, regression lines are fitted between

h= 1 and h=5 for all data records. For rainfall,
these regression lines are of shallow gradient,

5.3 Results whereupon the effective fractal dimensions are
large (d. = 1.77 for the example shown).

Some typical graphs are presented and
discussed before the complete set of results is Linearity in the log-log variogram is observed
examined and comparisons made. over a wider range of lags for hourly mean wind

speed data (e.g. Figure 5.lb). Nevertheless the
Variograms regression line is fitted between h=l 1 and h=5
The log-log dimensionless variogram for rainfall (as for rainfall) because increasing this range
(Figure 5.1 a) reveals a limited range of linearity only increases the error in estimating dE
over which simple scaling holds. The graph (Constantine and Hall, 1994). The values of dE
quickly approaches the sill (S(h)=2) which is are smaller than for rainfall (dE = 1.49 for the
reached when the lag is large enough for the example), representing less erraticness.

(a) 202 ........--- ·--- (a)'5
o · 1.0

2? ~ 01 , a Y 24'32

'0
2 1 ~~~~~~~~10 '1u0' '0L'g. h 0 $ 16 24 3 42
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Iirr0 DI1 1.15-ga i gei is g 5 I an 

2 7 10 20 4 70 0 Io0- I. ..... Y.
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(a) hourly ra record B, hourly wind speed hourly rainfa record , (b) hourly wd speed record 

record F and (c) hourly air temperature recorndl r r B (c) hourly air temperature record G, all at
Eskdalemuir Esldalemuir

I20= 1.10-



The air temperature records render the lowest R(D) over D, and a lower limiting value (p =
values of dE, indicating the relative smoothness 1. 105). The model p(D) appears particularly
of the variable. The example in Figure 5.1 c (for suitable for wind speed data.
which dE - 1.32) clearly shows the presence of
the diurnal cycle. For consistency, the The graph of R(D) against D for the air
regression line is again fitted between h= 1 and temperature example (Figure 5.2c) results in a
h=5. much lower correction factor (p* = 1.031). For

air temperature data, the increase in R(D) with D
Correction factors is not especially well described by the model.
An example of a graph of R(D) against D for Note that, when analysing air temperature
rainfall, complete with the fitted model, is shown minima, the upper (rather than the lower) 1%
in Figure 5.2a. Generally, a rapid increase in quantile is used for the datum.
R(D) with D, and a good deal of residual
variation about the fined model were observed Comparisons
for rainfall. Values of p were in the range 1.16 to The complete results for d4 and p' are
1.18 for the Eskdalemuir site. summarized in Figure 5.3. There is pronounced

segregation of dE between the three variables.
The example graph of R(D) against D for wind Although more scatter is observed in the values
speed (Figure 5.2b) demonstrates less variation of p, there is also clear segregation, with rainfall
about the regression line, a slower increase in requiring the highest correction factors and air

temperature the lowest (with maxima requiring
120 slightly higher correction than minima in the

* flainfall samples studied). Table 5.1 shows the mean
Wind speed . values of p* and d4 for each variable, their

A tiremp (max) standard deviations and suggested ranges
1'Ai temp Imr) (given as two standard deviations each side of

1 15 the mean). Note that the outlier for wind speed
is due to a poor fit of the model; whilst shown in
Figure 5.3 for completeness, it was not iincluded -

when calculating the statistics for Table 5. 1.

o .20 . The relation that emerges between p* and d. in
*_ : terms of the different climate variables affirms

the expected association between erraticness
0 and correction factors. It should be stressed,

however, that the correction factors are datum
dependent; here, the lower 1% quantile is used

1.05 ,(upper 1% quantile for air temperature minima)
which corresponds to the natural datums of zero

' ̂  for hourly rainfall and hourly wind speed.

The relationship between p* and dE does not
1,0 -- , - appear to persist zithin the individual variables,

1.0 1.1 1.2 1.3 1.4 I.S 1 S 1.7 15 81.9 20 however. It is interesting to examine this further
Effective fractal dimension , dE using the rainfall data from the various locations

taken from Chapter 4. The effective fractal
lgure 5.3 p against d for different climate varables dimension, d=, is computed for each record at

each site and plotted against the correction
Tab,e, 3 Meansandstandarddev ations(s.d.)ofp' factors, l +a', already calculated. The result is
adble 5.1 Meancsianmdstandabrddeviations (s.d) ofp shown in Figure 5.4. Clearly, the relationship

Variable Mean of s.d. of Suggested range Mean of s.d. of Range
p p (to 2 d.p.) d, dE

Air temperature:
maxima 1.036 0.004 1.03- 1.04 1.26 0.032 1.19- 1.32
minima 1.041 0.002 1.04- 1.05 1.26 0.032 1.19- 1.32

Wind speed 1.099 0.008 1.08 - 1.11 1.50 0.009 1.48 - 1.52

Rainfall 1.167 0.008 1.15- 1.18 1.76 0.016 1.73- 1.79
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1.20 5.4 Sunznary and conclusions

Using hourly data for Eskdalemuir in southem
Scotland, correction factors for rainfall, wind

1; 'speed and air temperature were determined
based upon a lower 1% quantile datum. Air

&L 1. S R temperature minima as well as maxima were
O L R examined, for which the upper 1% quantile was

EE MR B used as the datum. The results clearly
l E M s R discrmninate between the three climate

%1.15 L MR B variables. Note, however, that these results are
O R B specific to the Eskdalemuir site: thus, for hourly

R S rainfall, the more comprehensive results of the
B previous chapter are to be preferred; for wind

o M speed and air temperature the results are
necessarily more tentative. Nevertheless, the

B results highlight the differences between the
variables and can be used as a guideline.

Investigation of the temporal erraticness and
internittency of the hourly data, via estimation of

1.101 I . the effective fractal dimension, clearly
17 1.8 1.9 2.0 discriminates between the three variables.

Effective fractal dimension, d Furthermore, the dimension is independent of
the datum. This quantity, and similar dimension

Figure 5.4 14+a' against dg for hourly rainfall records estimates, therefore have potential as
of risbane, Eskdalemuir, Leemntg, Melbourne, meaningful measures of the temporal character
fmgway and Sydney of environmental variables. In the case of

rainfall, however, linearity in the log-log
does break down at this intra-variable scale: the variograrns is relatively weak and a multifractal
reasons for high or low correction factors cannot formalism may be appropriate (see for example
be distinguished by a single index of overall Rajagopalan and Tarboton, 1993).
erraticness. Nevertheless, some grouping by
location is observed, indicating a slight negative In practice, correction factors are required
correlation between site average erraticness when finer resolution data are not available to
and correction factor. It is interesting that the estimate sliding maxima, whence they are not
Eskdalemuir and Brisbane sites stand out as available to estimate effective fractal dimension
producing the most extreme values of dE, as either. Nevertheless, dE so clearly distinguishes
they do for the correction factors 1 +a' and the between different variables that it may be
values of N, (see Chapter 4). Rainfall is kiown estimated from hourly data collected at a
to be multifractal (characterized by multiple different time and/or location. A broad indication
scaling and a spectrum of fractal dimensions) of the expected correction factors for that
and explicit recognition of this would be particular variable can then be obtained using
warranted in a more detailed investigation. Fig. 5.3.
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Figure 5.5 Log-log vanogram mth regresson line
for hourly mean tide residual at Walton-on-the-Naze
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Flgure 5.6 R(D) against D, with fitted model, for (a)
period maximrna and (b) period mnmma of hourly tide
residual at Walton-on-the-Naze

The approach is illustrated using a single record 1.06. This compares reasonably well with the
of mean tide residual measured at the hourly actual correction factors obtained by analysing
resolution at Walton-on-the-Naze in Essex. The the data (p-=1.061 for period maxima and
effective fractal dimension is calculated as dE = p*= 1.047 for period minima). The relevant
1.371 (Figure 5.5) which, according to Figure graphs are shown in Figure 5.6.
5.3, indicates a correction factor in the region of
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6 Rainfall durations two to 32 days

6.1 Introduction

The correction of rainfall maxima of durations Eskdalemuir and Brisbane were at opposite
two to 32 days is investigated by reference to extremes with the other sites grouped in-
daily rainfall records. The first approach is to between. Eskdalemuir, Brisbane and
examine evidence for such correction factors Melbourne are thus chosen as representatve of
being any different to those found so far for the the range of results and climate regimes
shorter durations. This is done by comparing studied. Daily data for each of the three sites are
the results from hourly and daily data at the subjected to the same analysis as the hourly
same sites (Section 6.2), and deliberately data, rendering correction factors, p*, for each
coarsening hourly data to observe the effect on record. Details for the daily data are contained
the resulting correction factors (Section 6.3). in Appendix C.
Secondly, a number of daily raifall records are
analysed and mean values for the parameters a Examples of the graphs of R(D) against D, with
and b obtained (Section 6.4). The effect of data the fitted model, are shown in Figure 6.1. The
resolution upon the variogram is also . complete set of results is detailed in Table 6.1.
investigated. Figure 6.2 ilustrates that the range of correction

factors for the daily data is similar to that for the
hourly data. At Eskdalemuir, the single result for

6.2 Comparing results from hourlY daily data is notably lower than those for the
6.a Comparing results yrom doura hourly data; this is not repeated at the other two
and daily data sites, however, and is thought to be a peculiarity
Six sites were examined in Chapter 4 with of the particular daily record.
respect to hourly data. The results for

(a) 1.25-

1 20-

X H A : X X D.,ly
1.15-

1 12 1 14 1 16 1 1t 120

Fngure 6.2 Comparison of correction factors derived
1 0O- ' , , , S . from hourly and daily rainfaDl data at the same mtes

0 8 16 24 32

Duration 0 6.3 Coarsening hourly data

(b) 125- The eight consecutive hourly records available

at Eskdalemuir and Ringway enable deliberate
120- iAA coarsening of the data to obtain four 2-hourly,

two 4-hourly and one 8-hourly record at each
u 15- Axv li l 11 v Vsite. Extracting the values of p for each allows

6 l X / 1l possible sensitivity of the correction factor to
rrio 113~ 1resolution to be explored.

105 The results are detailed in Table 6.2 and
ilustrated in Fig. 6.3. Details of the 2, 4 and 8-

I.00- hourly records can be found in Appendix C. For
0 8 ,1 24 al 0 48 58 Eskdalemuir, the correction factors appear to

Duration, D be decreasing up to the 4-hourly resolution,
although the pattem does not extend to the 8-

ngure 6.1 R(D) against D, with fitted model, for daily hourly record. No pattern emerges for the
rainfaD: (a) Eskdalemnir and (b) Brisbane record I Ringway data. The two sites considered
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together portray the same range of correction 6.5 V
factors at each resolution. . arograms

Clear systematic changes with data resolution
are observed with respect to the variograms

Table 6.1 Values of p* for rainfal records of vaiying and effective fractal dimension, d., as defined in
resolutions Chapter 5. This is illustrated for the Eskdalemuir

site in Figure 6.4 in which log-log variograrns at
each resolution are shown. As the resolution

Site Hourly data Daily data coarsens, the variograms become flatter, giving
record P' reord P rise to higher values for dE. At resolutions of onererord p record p- _______________ hour and shorter (not shown), approximate

Eskdalemuir: A 1.169 1 1.129 linearity over small lags enables a reasonable
B 1.160 estimate of the gradient (and thus d). At coarser

resolutions, however, the sill (S(h)=2) is
C 1.162 reached sooner and the behaviour at small lags
D 1.180 becomes indiscemnible; for this reason, no
E 1.161 attempt was made to extract and compare

values for dE in the examples. Analysis of other
F 1.177 data shows the same systematic behaviour.

G 1.170
Table 6.2 Values of p* for rainfal records of vaying

H 1.158 resolutions

Melbourne: A 1.175 i 1.161 Resolution Record Eskdaiemuir Ringway

B 1.157 2 1.165 p p

C 1.164 3 1.165 1 hour A 1.169 1.159

D 1.135 B 1.160 1.153

E 1.150 C 1.162 1.154

D 1.180 1.148
Brisbane: A 1.139 1 1.186

E 1.161 1.166
B 1.151 2 1.148

F 1.177 1.169
C 1.124

G 1.170 1.162
D 1.147
E 1.162 H 1.158 1.144

2 hours K 1.165 1.158

L 1.163 1.181

M 1.166 1.172
6.4 Results for other daily records N 1.158 1.152

Table 6.3 shows the values of parameters a and
b for the 21 daily rainfall records available to the
study (which includes those discussed in 4 hours X 1.155 1.162
Section-6.2 above). The arithmetic mean for Y 1.160 1.152
parameter a is 0.165 as compared to 0.158 for
the set of hourly rainfall records. The geometric
mean for parameter b of 0.357, as compared to 8 hours 2 1.172 1.166
0.571 for the hourly records, represents a
slower growth rate to the limiting value. As with
the hourly data, however, the values for b are In the theory (Constantine and Hall, 1994; Dwyer
rather variable and so the geometric mean and Reed, 1994), the fractal properties are
obtained is used as a broad guideline in the defined by the behaviour of the variogram as
implementation of the full correction model. the lag, h, tends to zero. Since it is not possible
Note that whilst the hourly data are from sites in to measure at an infiiiitesimal resolution, the
the UK and Australia, the daily data also include estimates of fractal dimension obtained using
some South African sites. finite resolution data assume that the observed
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linearity continues with the same gradient as h 0 o5
decreases to zero. Hence, the systematic
changes, observed in the rainfall variograms, 0o01
merely indicate that the limiting linear behaviour 0 005

is poorly estimated at the coarser resolutions.
Indeed, analysis of sub-hourly rainfall data ' .' ' .' o '''
suggests that a resolution of one hour is not fine lag,h
enough to reveal the limiting fractal behaviour,
whereupon the estimates of dE for rainfall in(e)
Chapter 5 are particular to the one hour
resolution. 1.0
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Table 6.3 Values of parameters a and b for various 6.6 Conclusions
daily rainfall records

Over the range of scales studied (one hour to 32
Site Record a b days), there is no indication of systematic
UK: changes in rainfall correction factors. Thus,

correction factors for maxima of several hours
Alwen Reerwoir . 0.148 0.648 duration, are, on average, similar to those for
Creech Gange . 0.179 0.349 maxima of several days duration. The qualifier
Edinburgh 0.167 0.512 "on average" should be stressed, however, for
Eskdalemtuir 0.129 0.730 correction factors may change systematically

with time scale at a particular site if, for
Econ on the Wellaud . 0.174 0.190 example, the typical rainfall profile changes

systematically (see Chapter 4). The analysis of
Australs: several daily rainfall records suggested that the

Brisbane 1 0.186 0.251 growth rate, as measured by parameter b, is
2 0-148 0.157 generally lower than for hourly records but still

rather variable.
Hobart I 0.142 0.757

2 0.164 0.159 In contrast, the variograms for rainfall do change
Melbourne 1 0.161 0.404 systematically with time scale: as the resolution

2 0.165 0.175 becomes finer, a better appreciation of the
fractal behaviour is obtained.

3 0.165 2.039

Perth I 0.167 0.451

2 0.175 0.315

Sydney I 0.167 0.456

2 0.166 0.323

South Africt:

Cape Town . 0.185 0.353

Durban . 0.176 0.106

Johannesburg . 0.174 0.292

Richmond . 0.154 0.303

Upington . 0.163 0.527

means: am: 0.165 gin: 0.357
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7 Additional investigations

7.1 Catchmnent average rainfall
The calculation of catchment rainfall necessarily

The rainfall results presented so far relate to has a smoothing effect: catchment rainfall
point (single gauge) rainfall data. In order to events tend to start and stop less abruptly and
investigate differences between point and have more uniform profiles than point rainfall
catchment rainfall, the Alwen at Druid catchment events. Evidence for this can be found in the
was selected for study, covering an area of summary statistics for the two records
1851an2 in north Wales. Catchment rainfall is (Appendix C) and the values for Nt (with the
calculated by averaging across 22 gauges, each catchment value being the larger). Perhaps the
weighted according to its estimated long-term most convincing support, however, is found by
average annual ramifall. A standard record of 15- simply companng graphs of the time series
minute catchment rainfall is then compared with (Figure 7.1). According to the reasoning
a 15-minute point rainfall record, covering the outlined in Chapter 4, longer event durations
same period, for a gauge centrally located imply larger correction factors, as do more
within the catchment. uniform hyetographs (Appendix A), whereupon

(a) 20

15
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0 so 100 150 200 250 300 350 400 450 500

Time (15 minutes units)

() 20 -

o 10-

_
.=

Co-
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0 so 100 150 200 250 300 350 400 450 500

Tlme (15 minutes units)

n1g~7.1 7irnesenes ofl15-namute rauinfaDaccurulations atAjswen atDOruid (a) pointrainfalland o) catchrnent
rainfaDl
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catchment rainfall might be expected to require such things as cost, the accuracy and resolution
hugher correction factors than point rainfall. demanded by the application, and the
Subjecting the two records to the usual analysis, climatology of the region.
catchment rainfall renders a correction factor
p'=l 1. 90 as compared to p*= 1.169 for point The hourly rainfall data analysed in Chapter 4
rainfall. The latter is outside the former's 9S% are derived from tilting syphon raingauges.
confidence interval (pertaining to the regression Rain-water is funnelled into a small drum
fit) and so it appears that the catchment rainfall, containing a float which operates a pen; as the
in this case, does indeed require a higher water level rises, the pen traces a graph on
correction factor than the point rainfall paper attached to a rotating cylinder. When the

water reaches a certain level the drum tilts,
The smoother, less internittent nature of causing a syphon to operate which drains the
catchment rainfall also imphes a lower effective water away. The trace is used to extract
fractal dimension (dE= 1.657 is observed for the accumulations (in units of 0. lmm) for each hour.
catchment rainfall record as compared to
dE= 1.817 for the point rainfall record). If they are Also popular for measuring hourly rainfall is the
considered as separate climate variables then tipping-bucket rain gauge. A double bucket is
the results of Chapter 5 would suggest that counter-balanced by a magnet below to form an
catchment rainfall requires lower correction arrangement resembling that in Figure 7.2. As
factors than point rainfall, which is in the bucket beneath the funnel fills, the balance is
contradiction to the above findings. This tipped, causing the pendulum to swing. The
suggests that, in terms of the fractal analysis of movement of the magnet triggers an electric
Chapter 5, catchment and point rainfall carnot circuit connected to a time-recording device;
be regarded as distinct climate variables the tipping of the bucket causes it to empty
between which dE can discern different while the second bucket takes up the position
correction properties. However, as only a single beneath the funmel until the reverse swing
record has been studied, it is recognized that a occurs, The size of the buckets determines the
more extensive investigation is required before volumetric resolution of the data and the tip-
any firm conclusion can be drawn. times recorded can be converted into rainfall

depths for each hour.

7.2 Instrumentation The sensitivity of the values of R(D) is
investigated with respect to the choice between

There are a number of types of instrument for
measuring rainfall accumulations, The one 1.30-

chosen for a particular site will depend upon

1 25 I
funnel

double C 1X20

bucketA 

1.05

magnet
circuit

1.00-

0 8 I6 24 22

Duration, D

to electronic recorder gs 7.3 R(D) against) Dfor tilting syphon data
(graph l1)andsimnulatedtipping bucket data of
resolutions 2.Omm (graph 2) and 10.0mm (graph 3)

17gre 7.2 Principle of the tippingbucketraingauge forEskdalemuir hourly rainfad record C
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tilting syphon or tipping bucket devices. The concentration in upland streams is of interest
tilting syphon data for one of the Eskdalemuir (Robson, 1993). Maximum H-ion concentration
hourly rainfall records (having a resolution of may be relevant, for example, to the survival of
0. 1 mm) are used to synthesize tipping bucket living organisms in the stream. Typical spot-
data for bucket sizes corresponding to rainfall sampling intervals for the measurement of
depths of 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0 stream chemistry can be as long as one week.
milimetres. This is achieved by calculating a Such infrequent measurement can severely
running total for the original data until the bucket under-appreciate extremes. To investigate the
size is exceeded: the total, rounded down to the extent of under-estimation, one record,
nearest multiple of the bucket size, is assigned containing 2'3 data values of 15-min
to the hour in which the exceedance occurred instantaneous H-ion concentration in the Upper
and the remainder carried over to a restarted Hore is analysed. The stream drains a 1.78km2

running total. As the bucket size is increased, sub-catchment of the Wye basin of Plynlimon in
the rainfall profiles become concentrated into mid-west Wales. Concurrent flow data, again
fewer, higher peaks. ' sampled at 15-minute intervals, are also

examined.
For each bucket size simulated, the graph of
R(D) against D is compared with that for the For each record, the maximum recorded value,
original (tilting syphon) data. Up to a bucket size max(l), is extracted. By discarding every other
of about 2.0 mm, only slight differences are data point, the record can be artificially
observed; larger differences become apparent, degraded to simulate a sampling interval of 30
particularly at small D, for the 5.0 and 10.0 mm minutes. Two such degraded, or thinned,
buckets. This is illustrated in Figure 7.3 which records can be obtained: the first by discarding
compares results for the onginal, the even-numbered data points, the second by
synthesized 2.0 mm and the synthesized discarding odd-numbered data points. Each is
10.0 mm data. Of course, 10.0, 5.0 and even said to have been thinned by a factor f=2 since
2.0 mm buckets are too large for discriminating there are l/f as many data points as in the
hourly rainfall in the UK. Thus, it appears that original record. The maximum of each record is
R(D) is insensitive to the choice between tilting denoted by max,(2) and max2(2). In general,
syphon and tipping bucket devices provided thinning by a factor f results in f records with
the instrument resolution is apt for the purpose. corresponding maxima max,(()MaX2( -f). 
This conclusion is supported by similar results max,(f. Note that one of these maxima wil
for other data records. necessarily coincide with the maximum of the

original record, max(l). The ratios

7.3 Instantaneous data R = mrax1() 7.1

The correction factors discussed so far arise max(
because the data are discretized in the form of
averages (or accumulations) measured over (for i=1.) measure the degree to which the
some time interval. Another form of maximum max(1) is under-estimated due to
measurement discretization is that of "spot thinning by the factor f For positive data,
sampling" whereby instantaneous readings are 0sR(f)<1.
taken at regular (or irregular) time intervals. A
lack of knowledge of the process between This analysis system, of uilizing all the possible
sampling times means that the instantaneous thinned records obtainable for a given thinning
maximum (over some sampling perod) is, in factor f, yields a distribution of ratios which is
general, missed. The maximum of the spot- representative of the range of ratios to be
sample readings is therefore an under-estimate expected. These distibutions are depicted in
of the true instantaneous maximum. This Figure 7.4 for various values of f for the H-ion
problem is quite different from the one and flow records. Each box and whisker symbol
discussed up to now in tenms of both the reason indicates the mean (cross), median (horizontal
for under-estimation and the applications (those bar), lower and upper quartiles (bottom and top
concemed with instantaneous rather than of box) and the maximum and minimum (top
accumulated maxima). Consequently, the and bottom whisker ends); these summarize the
discussion here is brief, recognising that the shape of the ratio distribution for each value of f
problem deserves a full, separate investigation. The maximum value for f of 672 corresponds to

a sampling interval of one week. For flow,
Attention was drawn to the problem from river average ratios decrease rapidly and the
water quality standards in general, and a distributions become more skewed as f
particular application where the Hydrogen ion increases. For H-ion concentration, the average
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ratios decrease more steadily and the inadequate for the purpose of estimating
distributions remain relabively symmetrical. extremes, and that measurement practice

should be revised.
The median values, denoted by R (f), are
examined with respect to their variation with f. The sernt-log plots, fined with least-squares
The median is favoured over the mean since, for regression lines obtained by the regression of
distributions with long thin tai]s -such as those In(R,,) on f, are shown in F4igre 7.5. The
for the flow ratios -it is a more robust measure regression fit for flow is good (rH=0.987, where r
of location. Various plots were used to uncover is the con elation coefficient) and extends to a
an appropriate relationship for both flow and H- thinning factor f=36 (corresponding to a
ion concentration. Linearity in semi-log plots measurement interval of nine hours) before the
suggests the exponential relationship median ratio falls below 0.5. The regression

coefficient, which corresponds to the parameter
a in equation 7.2, is estimated as a=-0.0 179. For

R-lfl = exp[ a((f-l)] 7.2 H-ion concentration the fit is less good
m ~~~~~~~~~(r2 =O.9 18) but extends as far as f=528

where a'0 is a parameter. Only points for (corresponding to a measurement interval of 5.5
which Rm(O)5O.5 are examined; otherwise a days). The regression yields a=-O.00 12. Both
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correction factor greater than 2 would be graphs appear to display a slight cyclic patternn
required, suggesting that the data are simply of residuals about the regression line.
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ratios decrease more steadily and the inadequate for the purpose of estimating
dis_ztibutions remain relatively synimetrical. extremes, and that measurement practice

should be revised.
The median values, denoted by R (f), are
examined with respect to their vannation with f. The senmi-log plots, fitted with least-squares
The median is favoured over the mean since, for regression lines obtained by the regression of
distributions with long thin tails -- such as those ln(R) on f, are shown in Figure 7.5. The
for the flow ratios -- it is a more robust measure regression fit for flow is good (r2=0.987, where r
of location. Various plots were used to uncover is the correlation coefficient) and extends to a
an appropriate relationship for both flow and H- thinning factor f=36 (corresponding to a
ion concentration. Linearity in sermi-log plots measurement interval of rnine hours) before the
suggests the exponential relationship median ratio falls below 0.5. The regression

coefficient, which corresponds to the parameter
oa in equation 7.2, is estimnated as a=-0.0179. For

exp[a(f-1)l ~ 7.2 H-ion concentration the fit is less good
(r2=0.9 18) but extends as far as f=528

where at<0 is a parameter. Ornly points for (corresponding to a measurement interval of 5.5
which Rm(f)kO0.5 are examined; otherwise a days). The regression yields ca=-0.00 12. Both
correction factor greater than 2 would be graphs appear to display a slight cyclic pattern
required, suggesting that the data are simply of residuals about the regression line.
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These results might be applied as follows. of applying a correction factor in this way is not
Given instantaneous data for flow or H-ion to be recommended.
concentration measured at regular intervals of
T> 15 minutes, the maximum, mT, is obtained. The above formulae and method have not been
The maximum as if measured from 15-minute generalized to other catchments or hydrological
data, m]5 , can then be estimated using the variables and the sensitivity of the results to
equation period length, data resolution etc. have not

m __ .been examined. It is therefore suggested that a
m = T -* ~7.3 more comprehensive study of this problem may

5 Rm(t) be required. Nevertheless, the relationships
found are promising in their limrnited context and

where the denominator, Rm( 0 , is calculated from may provide a starting point for a more
equation 7.2 with f=T/l 5 and the appropriate exhaustive investigation. The "data thinning"
value for a(-0.0179 for flow and -0.0012 for H- problem may be amenable to other analytical
ion concentration) . If Rm()<0.5 then the practice techniques.
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8 Recommendations

The measurement of an environmental process B(D) = p(AD) A
often produces data which are discretized. D8
Using such data to analyse extremes will, in p( 8
general, under-appreciate the true extremes of
the process; estimates of extremes based upon
the data therefore require correction. For a full explanation refer to the model

description in Section 3.5 which is
Where applicable, the conclusions of each supplemented by numerical examples.
chapter are consolidated into practical
recommendations for malkng corrections to The special case of daily rainfall
mean period maxima (or minima). Moments of Special guidelines apply when converting fixed
higher order than the mean do not, in general, to true maxima for daily rainfall. As well as the
require correction. correction factor p= I . 16, as suggested above,

correction factors of 1. 15 and 1.17 may also be
employed: the former for sites with rainfall

8.1 Correction factors for point regimes which tend to generate concentrated
rainfall events of short duration (such as tropical

storms), the latter for sites with rainfall regimes
The following advice relates to rainfall time- tending to generate longer events (such as
series data for a single gauge, measured as those produced by large frontal systems).
accumulations over a fixed time interval.

Maxima for longer durations, measured from
Maxima of duration one to 32 hours, daily data
measured from sub-daily data There is no evidence to suggest that the
For data in this category, the full correction parameter a is, on average, any different for
model as described in Section 3.5 may be daily data than for hourly data. The parameter b
applied. Using parameter values of a=0. 16 and does, however, appear to be typically higher for
b=O.57, a number of types of correction can be daily than for hourly data. Thus, for rainfall
performed: durations between 32 hours and 32 days, it is

recommended that the full correction model is
* converting fixed to sliding maxima using the used with parameter values a=0.16 and b=0.36.

multiplier p(D) for 2sD<32;

* converting fixed to true maxima using the 8.2 Correction factors for other
multiplier p' for 1 <D<32; variables

* converting sliding to true maxima using the The correction factor p* was investigated for
multiplier a(D) for 2cD'c32; other environmental variables. It was found that

the roughness (intermittency and erraticness) of
* converting sliding to sliding maxima, from the variable, as measured by the effective

resolution t to resolution t<x, using the fractal dimension dE, bears a relation to the
multiplier P(D) for 2<D<32 and 1 <lt<D . magnitude of p for that variable as indicated by

Figure 5.3. These results can be utilized as
follows:

Where
* For wind speed maxima of duration one to

p(D) = 1 +a[ 1 -expf -b(D-1))] 8.1 64 hours, use the correction factor p*=.10
for converting fixed to true maxima.

p' = lim p(D) = 1+a 8.2 * For air temperature maxima of duration one
D-co to 64 hours, first estimate the lower 1%

quantile, L, for the mean hourly air
p ' temperature at the site (see below). Then

a(D) = - 8.3 calculate the true maximum T from the fixed
p (D) maximum F using
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Regarding other environmental variables at a
T = p'F - (p--1)L 8.5 site,limitedusecanbemadeofFigure5.3to

indicate an approximate value for the correction
where p*= 1.04. factor p*, Some hourly data for the variable are

required to enable an estimate to be made of
* For air temperature minima of duration one the effective fractal dimension dE of the variable

to 64 hours, use the same correction at the hourly resolution; if transferred from
procedure as for air temperature maxima another site, the data used should at least
but replace L by the upper 1% quantile, U. exhibit broadly similar characteristics to those

expected at the subject site. The relationship
Since it is the absence of hourly data that between dE and p* indicated in the figure can
necessitates the above correction procedure, then be assessed by eye to infer a value for p'.
the quantiles L and U cannot be calculated from Finally, an estimate of the 1% quantile for hourly
data directly. However, they may be estimated data should be obtained and used in equation
from air temperature statistics for the site in the 8.5 above to perform the conversion.
following way:

* Find the long-term averages for daily mean, 8.3 Further research
daily maximum and daily minimum air
temperatures. Denoting these by p, M and m Further research is warranted into the
respectively, estimate L and U using correction of extremes observed from "spot

sampled" measurements. The approach
L = p +3.4(m-p) detailed in Section 7.3 could be considered as a

8.6 candidate although other methods might be
U = p +3.4(M-I) appropriate.

The coefficient 3.4 is based upon observation at A more extensive investigation into correction
the study site (Eskdalemuir). The statistics p, M factors for catchment average rainfall, as distinct
and m are available for various sites in the from point rainfall, may also be justified.
World Survey of Climatology series (World
Meteorological Organization, 1970).
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Appendix A: Conmments on Weiss (1964)

A. 1 Weiss's formulation

Weiss's theoretical treatment of the These theoretical arguments are clearly flawed;
discretization effect resembles the following a proper statistical formulation is required.
formulation.

Let the true maximum, T, occur in a time interval A.2 A proper formulation
XY which straddles the two fixed intervals AB
and BC depicted in Figure A. 1. Without loss of Let the random variable X=x, as defined above,
generality, let the interval width be of unit length have the probability density function f(x).
(I XY I = I AB I = F BC I = 1). Denote by x, the Defining the random variable Y as the largest
proportion of the interval XY overlapping BC. proportion of T overlapping one of the fixed

intervals, assumption (a) gives
The following assumptions are made (only (a)
and (b) are alluded to by Weiss): = I1-x for x< 1/2 A.2

(a) on average, the rainfall profile within XY is Y(x) x for x 1/2
uniform;

The expected value of Y is
(b) The interval XY is randomly placed within

AC and so the probability distribution of x is E(Y) = J y(xRx)dx A.3
uniform;

(c) The fixed maximum, F, arises from one of Assumption (I) gives f(x)= 1, whereupon
the intervals AB or BC (whichever contamis
the majority of the rainfall inXY); EoY= f (1-x)dx +J A.4

(d) No rainfall occurs in AC other than that in XY. = 3/4

Given these assumptions, Weiss argues that the Assumptions (c) and (d) then give F=3AT. Thus,
expected value of x for x> 2 is Weiss should have arrived at the correction

factor T/F = 4/3 = 1.33, much higher than
actually suggested.

Ixdx = 3/8 A.1

A.3 Examination of the assumptions
For x<1/2, the larger proportion of XY is in the
fixed interval AB. Since it is only the largest Let the assumptions (a) - (d) be examined in
proportion that is of interest in calculating the turn.
fixed maximum, Weiss forces the expected
value of x for x<A2 to equal l2, concluding that Asswnption (a)
the expected value over the entire range is If a large number of high intensity rainfall
therefore 1/2 + 3/8 = 7/8. This produces an profiles are literally averaged, the result may
average ratio of the true to fixed maximum of well approximate uniformity. However, it is the
8/7 (i.e. 1.143). typical profile that is important in the

determination of the correction factor and this is
unlikely to be uniform. An alternative
assumption is that of a symmetric triangular
distribution which, after a little simple geometry,

____ ____ ____ ____ ____ ____ ____ ____renders

I 1v ~~~~~~~x 1 
A s c i-2x2 fo 1/

Y c y = y( = 1= 2x2 for x21/2 A.5
1 2( -)2far xnl/12

Figure AI Position of true maximum Trelative to the
fixed intervals AB and BC
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Assumption (b) then gives duration of the maxima. This is reasonable for
the UK but not for other locations, such as the

E(Y)= 12(1 -2x2)dx + ('[1 -2(1 -X)2dX tropics, where rainfall experiences strong
fo V2diumal cycles.

= x-Ix3l12 + [x+2(1-x)3l] A.6 Assumption (c)
3Jb L3 112 This assumption ignores the possibility of the

fixed maximum arising from a separate event
= 5/6 which is better synchronized with the fixed

intervals (as iUustrated in the introduction by
Fig. 1.1). This is a likely occurrence when the

Under this altemative model, assumptions (c) true maximum is divided almost equally
and (d) imply F=(5/6)T which renders a between fixed intervals (i.e. for Y close to 1/2).
correction factor of T/F = 6/5 = 1.20. This is still Therefore, less weight should be given to small
higher than Weiss's suggestion but much closer values of Y, whereupon E(Y) is increased and
than 1.33 to empirical results. Other fomis for the theoretical correction factor, T/F, further
the distribution of rainfall within XY will result in reduced.
different correction factors.

Assunption (d)
Assumption (b) The presence of rainfall in AX or YC will tend to
This demands that no trends or cycles exist in increase the fixed maximum F and thus also
the rainfall over time-scales comparable to the reduce the correction factor.
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Appendix B: Sliding intervals that
straddle borders
To ensure that events occurring across the
border of two periods are not missed, a
convention is adopted whereby a sliding
interval which is split across the border is
assigned to the penod in which it is mostly
contained; if it is equally split between them
then it is assigned to the first period (Fig. B. 1).

variable

period I period 1+1

Figure B. 1 Border intervals for duration D=4. In
searching for the sliding maximum for each penod, the
accumulations 1, and I. are assigned to sample i
wheras I3 is assigned to sample i+l

Equally, a border event must not be 'counted
twice' in the sense of it contributing to the
sliding maximum for both periods. Thus, if the
sliding maximum for the first period straddles
the border then the sliding intervals assigned to
the second period must not include those which
overlap with this maximum (Fig. B.2).

dt8t.~~~~~~~~~~~~~~~~~~~~~~~~~V

prd A-1 _,. i

Figure B.2 if for duration D=4, accumulation lis the
slidingmaximum forperiod i, then the first sliding
accumulation to be assigned to perod i+1 is v, since it
does not overlap with accumulation L.
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Appendix C: Data summary

Each record is found under its appropriate site-name, these being arranged al-
phabetically. The exception is for sites where only daily rainfall records are
detailed - these are grouped together at the end under the title Other daily
rainfall records.

For each site, the records are divided according to resolution and variable-
type; for example, hourly rainfall, daily rainfall, hourly wind-speed etc. Vari-
ous details are given for each record as explained below in the key. Where a
particular detail is not calculated, a period (.) is entered. Each record con-
sists of 16384 (21') data values.

Key

record: where more than one record exists under a particular heading, a distin-
guishing label has been assigned to each (as referred to in the main text).

dateB: the time-period covered by the record. Format: DDMMYY for the case where
YY refers to the 20th Century, and DDMM8YY for the 19th Century.

mean: arithmetic mean of all data values. Rainfall is given in millimetres, wind
speed in knots (1 knot =0.514 m.s5- and air temperature in degrees Celsius.

cv and skew: respectively, the coefficient of variation and skewness of all data
values.

d,(±): effective fractal dimension with error pertaining to the 95% confidence
interval derived from the regression analysis.

a(±): value of parameter a in the correction model with error pertaining to the
95% confidence interval derived from the regression analysis.

b, a', D.: respectively, the values of parameters b, a', and D. in the cor-
rection model.

Ll, L2, L3: L-mean and L-moment ratios (L-cv and L-skewness respectively) of
period maxima/minima for duration D=1. See Hosking (1990). Ll is expressed in
the same units as mean.

Abbrevviations

Alt. - altitude
AAR - average annual rainfall

SAAR - standard period (1941-70) average annual rainfall

Site-nane: Alwen at Druid (catchment 67006)
Location: North Wales
Particulars: catchment area 185km', SAAR 1260m; gauge 59 centrally located , Alt. 350m, SAAR 1250mm
Climate: Cool temperate; mainly frontal rainfall

Record & dates mean cv skew d (l) a(s) b a' D Ll L2 L3
15-minute carchmenr rainfall
. 010772-181272 .028 4.39 7.5 1.850(±0.051) 0.190(±0.017) 0.111 . 64 0.3 .491 .212
l1-minute noint rainfall (gauge 59)

* 010772-181272 .029 4.94 11.7 1.817(±0.074) 0.169(:0.033) . . 32 0.5 .491 .421
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Site-name: Brisbane
Location: East coast of Australia
Particulars: 168 missing values among hourly series; Alt. 42m, AAR 1092mm
Climate: Warm temperate / tropical; susceptible to tropical cyclones in summer season

Record & dates mean cv skew d,() a() b a' D L L2 L3
Hourly rainfall
A 120216-251217 0.12 8.47 19.9 1.883(±0.083) 0.139(±0.016) 0.723 0.138 32 10.1 .517 .365
B 040434-150236 0.11 9.49 22.3 1.924(±0.047) 0.151(0t.009) 0.657 0.152 32 13.8 .452 .331
C 190340-300142 0.08 12.01 42.1 1.915(±0.050) 0.124(t0.016) . 0.128 32 9.2 .585 .503
D 020847-140649 0.13 8.08 15.5 1.862(±0.070) 0.147(±0.015) . 0.154 32 11.6 .411 .144
E 061153-100955 0.16 6.99 15.0 1.853(±0.059) 0.162(±0.022) 0.208 0.162 32 12.3 .427 .335
Daily rainfall
1 0101887-111131 2.98 3.65 11.1 . 0.186(±0.104) 0.251 . 64 120.5 .276 .445
2 011231-091076 3.11 3.69 8.6 0.148(±0.135) 1.157 . 32 133.6 .222 .278

Site-nae: Eskdalemuir
Location: Southern Uplands, Scotland
Particulars: Tilting syphon raingauge, Alt. 250m; AAR 1527mm; cup anemometer
Climate: Cool temperate; frontal rainfall with autumn/winter bias

Record & dates mean cv skew d,(t) a(t) b a' Ll L2 L3
Hourly rainfall
A 010170-141171 0.15 3.63 6.6 1.769(±0.043) 0.169(±0.012) 0.388 0.170 32 5.2 .252 .181
B 141171-270973 0.14 3.74 6.6 1.733(±0.056) 0.160(±0.014) 0.563 0.159 32 4.9 .243 .057
C 270973-100875 0.16 3.52 6.5 1.770(±0.062) 0.162(±0.011) 0.841 0.163 32 5.2 .284 .285
D 110875-230677 0.15 3.53 6.0 1.779(±0.058) 0.180(±0.015) 0.402 0.180 32 5.2 .207 .105
E 230677-070579 0.18 3.58 7.3 1.741(±0.102) 0.161(±0.011) 0.700 0.161 32 5.5 .272 .220
F 070579-190381 0.19 3.32 5.9 1.761(±0.043) 0.177(±0.018) 0.330 0.175 32 5.4 .215 .112
G 200381-310183 0.21 3.41 6.0 1.794(t±0.027) 0.177(±0.018) 0.330 0.175 32 6.6 .278 .087
H 310183-141284 0.16 3.73 7.6 1.764(±0.052) 0.158(±0.011) 1.564 0.158 32 5.5 .307 .235
2-hourly rainfall
K 010170-270973 0.29 3.32 6.0 0.165(±0.014) 0.526 . 32 9.7 .190 .032
L 270973-230677 0.32 3.18 5.6 0.163(±0.013) 0.817 . 32 9.0 .179 .074
M 230677-190381 0.37 3.13 6.2 0.166(±0.020) 0.423 32 10.3 .240 .173
N 200381-141284 0.37 3.24 6.1 0.158(±0.012) 1.309 32 10.8 .216 .004
4-hourly rainfall
X 010170-230677 0.61 2.87 5.0 0.155(±0.011) 0.380 . 32 15.6 .155 .033
Y 230677-141284 0.74 2.83 5.2 0.160(±0.013) 0.486 . 32 18.1 .155 .083
8-hourly rainfall

010170-141284 1.35 2.44 4.5 . 0.172(±0.015) 0.233 . 32 28.6 .163 .198
Daily rainfall

010111-101155 4.24 1.70 2.9 . 0.129(±0.007) 0.730 . 32 53.1 .138 .245
Hourly wind sneed
A 010170-141171 8.89 0.75 0.9 1.490(±0.034) 0.105(±0.007) 0.072 . 64 29.1 .126 .002
B 141171-270973 8.69 0.77 0.8 1.514(t0.034) 0.098(±0.007) 0.066 . 64 28.3 .121 -.037
C 270973-100875 9.70 0.74 1.0 1 494(t0.022) 0.138(tO.024) 0.032 . 64 30.6 .139 .187
D 110875-230677 8.77 0.76 1.0 1.504(±0.027) 0.107(±0.008) 0.063 64 29.1 .156 .070
E 230677-070579 9.41 0.74 0.9 1.507(±0.026) 0.094(t±0.006) 0.072 64 30.3 .131 .083
F 070579-190381 8.42 0.74 0.9 1.499(±0.027) 0.089(t±0.005) 0.096 64 27.2 .125 .196
Hourlv air temneraturrp - maxima

- minima
B 141171-270973 7.19 0.74 0.2 1.251(±0.015) 1.042(t0.004) 0.211 . 64 20.5 .160 .104

1.040(±0.003) 0.210 . 64 -23.1 -.104 -.118
E 230677-070579 6.48 0.92 -0.1 1.264(±0.007) 1.032(±0.002) 0.193 64 22.1 .159 .099

1.042(±0.002) 0.200 . 64 -23.5 -.116 -.089
F 070579-190381 6.94 0.76 -0.1 1.243(±0.015) 1.036(±0.003) 0.236 64 20.2 .162 .064

1.044(t0.004) 0.288 . 64 -22.2 -.098 .056
G 200381-310183 7.38 0.78 -0.3 1.320(±0.004) 1.031(±0.002) 0.177 . 64 24.8 .122 .094

1.043(±0.003) 0.178 . 64 -23.6 -.113 -.144
H 310183-141284 7.88 0.74 0.3 1.217(±0.025) 1.041(±0.003) 0.135 64 21.1 .179 .143

1.040(t0.002) 0.197 . 64 -25.1 -.086 -.044
I 141284-261086 6.35 0.89 -0.1 1.253(±0.015) 1.038(±0.003) 0.217 . 64 22.2 .162 .018

1.040(±0.004) 0.321 . 64 -22.6 -.124 -.099
J 271086-080988 6.79 0.79 0.0 1.237(±0.020) 1.034(t±0.002) 0.174 64 20.5 .152 .122

1.041(t0.003) 0.178 . 64 -21.0 -.109 .021
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Site-name: Leeming
Location: North Yorkshire, east of Pennines
Particulars: Alt. 32m; SAAR 611mm; tilting syphon raingauge
Climate: Cool temperate; frontal rainfall predominates in winter, convective in summer

Record & dates mean cv skew d,(l) a(t) b a' D L1 L2 L3

Hourly rainfall
A 010178-141179 0.07 4.65 8.7 1.772(±0.044) 0.171(t0.018) 0.717 0.170 32 3.6 .276 .221
B 141179-260981 0.08 5.08 10.8 1.812(±0.067) 0.168(±0.015) 0.796 0.168 32 4.0 .361 .356

C 270981-100883 0.07 4.69 8.2 1.783(t0.061) 0.126(±0.018) 0.865 0.126 32 3.2 .282 .185

D 110883-230685 0.07 5.31 12.4 1.766(±0.068) 0.155(±0.014) 1.038 0.156 32 3.8 .346 .298

E 230685-060587 0.07 5.14 10.7 1.766(±0.068) 0.151(±0.016) 0.387 0.152 32 3.8 .311 .290

Site-na.-: Melbourne
Location: South east tip of Australia
Particulars: 24 missing values in record B; Alt. 35m, AAR 691mm
Climate: Warm temperate; exposed to cyclonic fronts all year with only slight seasonal variation

Record & dates mean cv skew d,(±) a(r) b a' D_ Li L2 L3

Hourly rainfall
A 211253-031155 0.09 7.35 17.9 1.834(t0.077) 0.175(±0.016) 0.567 0.172 32 7.3 .431 .371

B 241162-061064 0.08 6.14 12.5 1.793(±0.089) 0.157(±0.014) 0.510 0.156 64 5.0 .368 .220

C 070544-200346 0.07 6.57 17.6 1.797(±0.044) 0.164(±0.018) 1.198 0.162 32 4.5 .370 .446

D 090952-230754 0.08 6.38 13.5 1.785(±0.060) 0.135(±0.016) . 0.135 32 5.5 .346 .324

E 100757-230559 0.08 5.83 13.7 1.857(±0.040) 0.150(±0.010) 0.973 0.152 32 5.5 .381 .305

Daily rainfall
1 0104855-080200 1.75 2.75 5.7 . 0.161(±0.083) 0.404 . 64 48.2 .183 .126
2 010300-080145 1.76 2.82 6.2 0.165(±0.098) 0.175 . 64 50.4 .185 .119

3 010245-111289 1.79 2.85 6.5 0.165(±0.074) 2.039 64 54.8 .212 .235

Bite-n-am: Ringway
Location: Manchester airport, North-West England
Particulars: Alt. 75m; SAAR 819mm; tilting syphon raingauge
Climate: Cool:temperate; frontal rainfall with autumn/winter bias

Record & dates mean cv skew d(') a(x) b a' D L1 L2 L3

Hourly rainfall
A 010176-131177 0.09 4.49 8.5 1.818(±0.062) 0.159(±0.019) 0.432 0.160 32 4.1 .234 .212

B 131177-260979 0.08 4.41 10.7 1.838(0t.040) 0.153(±0.011) 0.643 0.154 32 3.7 .325 .322

C 270979-090881 0.10 5.49 41.0 1.828(±0.062) 0.154 (0.013) 0.619 0.156 32 5.7 .453 .534

D 100881-230683 0.10 4.45 8.6 1.842(±0.070) 0.148(±0.012) 1.198 0.150 32 4.9 .294 .140

E 230683-050585 0.09 4.84 14.2 1.854(±0.052) 0.166(±0.013) 0.631 0.168 32 4.2 .349 .336

F 060585-190387 0.09 4.66 9.0 1.831(±0.056) 0.169(±0.013) 0.512 0.170 32 4.1 .313 .146

G 200387-300189 0.11 4.45 9.4 1.801(±0.062) 0.162(±0.014) 0.285 0.160 32 5.2 .257 .291

H 300189-131290 0.09 4.67 10.2 1.827(±0.062) 0.162(±0.014) 0.285 0.160 32 4.6 .279 .272

2-hourlv rainfall
K 010170-270973 0.17 3.85 7.1 0.158(10.015) 0.758 32 6.7 .207 .329

L 270973-230677 0.21 4.31 23.5 0.181(±0.012) 0.527 32 9.2 .347 .547

M 230677-190381 0.17 4.08 7.9 0.172(±0.016) 0.267 32 7.1 .235 -.272

N 200381-141284 0.19 3.97 8.6 0.152(±0.012) 0.402 32 8.1 .250 .379
4-hourlv rainfall
X 010170-230677 0.38 3.50 14.8 0.162(+0.029) 0.540 32 12.7 .299 .464

Y 230677-141284 0.37 3.48 7.4 0.153(±0.020) 0.587 32 13.0 .238 .347

8-hourlv rainfall
010170-141284 0.74 2.85 7.7 0.166(±0.012) 0.691 32 21.3 .233 .432
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Site-name: Sydney
Location: South-east coast of Australia
Particulars: 133 missing values among hourly records; Alt. 42m, AAR 1205mm
Climate: Warm temperate; predominantly frontal rainfall, slightly higher in autumn

Record & dates mean cv skew dE,() a(s) b a' D- L1 L2 L3
Hourly rainfall
A 200643-020545 0.12 8.35 28.0 1.847(±0.078) 0.144(±0.018) 0.771 0.145 32 11.3 .452 .417
B 020947-150749 0.14 6.40 16.8 1.828(±0.058) 0.160(t±0.012) 0.501 0.161 64 9.4 .436 .269
C 300552-120454 0.14 6.55 13.1 1.807(±0.076) 0.158(±0.014) 0.612 0.158 32 9.6 .451 .267
D 030561-160363 0.16 7.13 22.3 1.830(±0.113) 0.176(±0.019) 0.261 0.178 32 10.3 .483 .417
E 110663-230465 0.12 7,29 15.5 1.863(±0.112) 0.164(z0.019) 0.529 0.164 32 8.9 .426 .302
F 250465-080367 0.14 6.44 12.4 1.803(±0.028) 0.169(±0.021) 0.479 0.169 32 8.7 .413 .176
Daily rainfall
1 0107858-110503 3.36 3.32 7.1 . 0.167(±0.082) 0.456 . 64 125.8 .188 .193
2 010603-090448 2.95 3,30 7.7 0.166(±0.081) 0.323 . 64 114.2 .206 .306

Site--nam: Walton-on-the-Naze
Location: Essex coast, UK
Particulars: Data supplied by Proudman Oceanographic Laboratory, Bidston
Climate: Cool temperate

Record & dates mean cv skew d,(±) a(s) b a' D Li L2 L3
Hourly tide residual (metres) - maxima

- minima
010169-141170 -0.73 -9.43 0.5 1.371(±0.100) 0.061(t0.008) 0.172 . 32 40.4 .154 .172

0.047(t0.005) 0.172 32 -39.9 -.106 -.227

Other daily rainfall records

Record & dates mean cv skew d_( ) a(s) b a' D L L2 L3
Alwen Reservoir, Dee, Wales: Alt. 362m, SAAR 1282mm

010125-101169 3.60 1.64 2.9 . 0.148(±0.008) 0.648 . 32 42.8 .120 .275
Cape Town, South Africa: Alt. 40m, AAR 626mm

011004-100849 1.61 2.93 5.6 . 0.185(±0.014) 0.353 . 32 44.9 .224 .328
Creech Grange, Dorset, UK: Alt. 69m, SAAR 947mm
. 010130-101174 2.57 2.09 3.8 . 0.179(±0.011) 0.349 . 32 45.2 .172 .209
Durban, South Africa: Alt. 91m, AAR 1020mm

010632-100477 2.80 3.46 8.0 . 0.176(t0.011) 0.106 . 64 111.1 .238 .260
Edinburgh, Scotland: Alt. 134m, SAAR 673mm

010108-091152 1.86 2.26 5.2 . 0.167(±0.013) 0.512 . 32 40.3 .211 .156
Etton on the Welland, UK: Alt. llm, SAAR 536mm

010108-091152 1.38 2.41 4.7 . 0.174(±0.010) 0.190 . 48 29.5 .196 .294
Hobart, Tasmania: Alt. 54m, AAR 668mm
1 0101895-111139 1.68 2.87 7.1 . 0.142(±0.010) 0.757 . 32 54.0 .204 .227
2 011239-091084 1.71 3.09 8.8 0.164(±0.008) 0.159 64 61.8 .250 .362
Johannesburg, South Africa: Alt. 1737m, AAR 844mm
. 0109893-120738 2.31 3.19 7.7 . 0.174(±0.013) 0.292 . 32 75.2 .250 .425
Perth, Australia: Alt. 60m, AAR 889mm
1 0101880-101124 2.34 2.65 4.4 . 0.167(±0.009) 0.451 . 32 61.8 .250 .362
2 011224-101069 2.44 2.66 4.4 0.175(t±0.012) 0.315 32 56.2 .160 .098
Richmond, South Africa: Alt. 1417m, AAR 323mm

010540-100385 0.85 4.56 7.4 . 0.154(±0.012) 0.442 . 32 45.1 .195 .244
Upington, South Africa: Alt. 794m, AAR 151mm

011139-090984 0.41 6.72 11.2 . 0.163(s0.015) 0.527 . 32 29.9 .383 .058
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Appendix D: L-moment ratio diagrams
for R(D)
Graphs showing I-CV and L-skew for fixed maxima (solid lines) and sliding maxima (dotted lines)
for various data records.
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