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Executive summary

Disasters, natural or otherwise, are often
precipitated by extremes of an environmental
variable such as rainfall or wind speed. In order
to make provision for alleviating the effects of
such events, rehable risk estimation is required.
This is usually obtained by measuring the
relevant variable and analysing the data in an
extreme value context. The data, however,
inevitably contain some form of discretization
(such as averaging over discrete time steps)
which can degrade the risk assessment.

The report examines the effect of data
discretization upon the estimation of period
maxima. A correction model is proposed for
converting fixed maxima, derived from
discretized data, to true maxima as would be
derived from continuous data. The model can
be applied over a range of event durations.

The report takes a particular interest in rainfall
extremes, for which discretization effects can
e marked. The results suggest that previously
reported correction factors are too low. The
analysis of hourly rainfall data from various
locations has enabled correction factors for daily
rainfall to be discerned according to climate
regime, Wind speed and air temperature
extremes are also examined. A relationship
between correction factors and effective fractal
dimension is demonstrated, providing a means
for deriving correction factors for other
environmental variables.

The report concludes by consolidating the
results into practical reconunendations.
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1 Introduction

Extremes of natural processes may present risk
to the public. For example, heavy rainfall can
cause flooding, strong winds may topple trees
or buildings, and extreme air temperatures can
result in the death of the weak and elderly.

Thousands, sometimes millions, of pounds are
invested in preventing or alleviating such
effects. To achieve this effectively and
efficiently, a good quantitative assessment of the
hikelihood of occurrence is imperative; this is
normally obtained by systematically measuring
the environmental variable of interest and
statistically analysing the resulting data in an
extreme value context.

However, the measurement and recording
process inevitably involves some form of
discretization since continuous measurement, if
practicable, is costly to perform and difficult to
record. Instead, it is common to take
instantaneous measurements at reqularly
spaced intervals or infer averages over discrete
fime steps.

In the case of assessing extreme rainfall, it is
common to measure daily rainfall accumulations
and extract the annual maxima. Daily
accurnulations are conventionally collected
between the fixed hours of 0900 each day; if
they were collected between the hours of, say,
2100 each day, a different value for the annual
maximum would result in many years. With
respect to the flooding of a river, the clock
timing of the rainfall is irrelevant — it is the
maximum accumulation that is important. [n the
absence of continuous data, however, the true
24-hour maximum is unavailable, and so the
annual maximum based upon the fixed time
intervals is used; this is, in general, lower and
thus the extremes are under-estimated.

There are two distinct mechanisms which cause
the true and fixed maxima to differ: firstly,
where the fixed maximum results from the same
event as the true maximum but fails to capture it
fully (Figure 1.1a); secondly, where the fixed
maximum results from a separate event which is
better synchronized with the timing of the fixed
intervals (Figure 1.1b). The same problem
arises for any variable measured by averages
or accurmnulations over discrete time intervals.

To correct for this under-estimation of the
extremes, a relationship between the mean
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Figure 1.1 True and fixed maxima as (g) part of the
same event and (b} arising from different events

fixed maximum and the mean true maxirnum is
sought. Given hourly data, the fixed daily
accumulations are easily constructed and the
maxima derived. The true 24-hour maxima still
escape calculation, however, since the data are
still discretized: rather than sliding continuously,
a 24-hour window ‘shunts’ along in increments
of one hour. If 1-minute accumulations were
available then the shunting window would be
more nearly continuous and a better
approximation of the true maximum would be
obtained. The maxima denved from these
shunting windows are referred to as siiding
maxima (as opposed to the fixed and true
maxima). The data resolution pertaining to a
sliding maximum is implied in the notation: for
example, 2-day sliding maxima are of duration
2 days and obtained from daily data, whereas
48-hour sliding maxima are also of duration 2



days but obtained from hourly data. The
problem is generalized to maxima of vanious
durations.

The ratios of the mean sliding to the mean fixed
maxima are calculated and modelled to infer
multipliers or correction factors which convert
one type of maximum to another for a specified
duration. As well as the mean of the maxima,
discretization could affect the higher order
morments which would also require correction.
This is therefore investigated as part of the
study.

A historical overview is presented in Chapter 2.

Chapter 3 details the theoretical aspects of the
problem, the methodology used in the study

and the proposed correction model. A detailed
examination of hourly rainfall data is presented

in Chapter 4 to denve correction factors for
rainfall maxirna of durations one to 32 hours. A
comparison between these and similar
correction factors for wind speed and air
ternperature is given in Chapter 5 where a link
to fractals is suggested. Chapter 6 compares the
results from hourly and non-hourly rainfall data
and Chapter 7 details some incidental
investigations which proved to be of interest
during the course of the study. Chapter 8
consolidates the results of the previous chapters
into recommendations for use. The Appendices
contain some technical expansions of the main
text. In particular, Appendix C contains details
of all the data records used in the study,
including summary statistics, principal results,
climate details and other particulars such as
missing data if applicable.



2 Historical overview

One of the earliest and most commonly cited
references to the discretization problem is that
of Hershfield and Wilson (1958). This wide-
ranging paper on exireme rainfall estimation is
rather concise, devoting just a single paragraph
to discretization which neglects to give clear
details of the data and methods used.
Nevertheless, they report a multiplier of 1.13 for
converting "...observation-day rainfall for a
particular frequency to the maximum 1440-
minute rainfall for the same frequency”. They
find the same multiplier for converting clock-
hour to 60-minute extremes, which they
consider to be coincidental.

Another frequently quoted paper on the topic is
that of Weiss (1964). He approached the
problem theoretically using a simple
probabilistic model to argue that the expected
ratio of true to fixed maxima is 8/7 (1.143).
Whilst this is reassuringly close to Hershfield's
result, the analysis is mathematically flawed:
improper statistical formulation has led to
incorrect heuristic arguments. Correction of
these errors results in an expected multiplier of
4/3 ( 1.33), which is disconcertingly higher than
Hershfield's result. Close examination of the
model assumptions, however, reveals that this
result is inevitably an over-estimate. A full
discussion of Weiss's paper can be found in
Appendix A.

The study of Kerr et al. (1970) used extensive
data to examine rainfall-frequency-duration
relationships in the State of Pennsylvania, USA.
Some 43 stations were used to investigate the
discretization problem, each with 17 or more
years of hourly and daily data (collected
separately). For each station, the sliding 24-hour
and the fixed 1-day annual maxima series were
obtained and Gumbel distributions fitted to
each; the respective mean annual rainfalls (2.33-
year return period) were calculated thereof and
their ratio obtained. The average of the 45 ratios
pertaining to each site came to 1.12, close to
Hershfield’s figure. Sliding 60-minute annual
maxima were available at six sites, enabling a
similar calculation for the average ratio of 60-
minute to clock-hour maxima: this resulted in
1.16 which does not agree so well with
Hershfield's findings. Whilst the extent of the
data used to obtain these results is made clear,
the quality is not.

A similar analysis was done by Harishara and
Tripathi (1973) for 67 sites across India. Ratios
for the T-year 24-hour to 1-day rainfalls were
obtained at each site for T=2, 5, 10, 25 and 50.
Averaging across T resulted in a mean value at
each site; averaging across sites then resulted in
an overall mean correction factor of 1.15.
However, only five stations had 25 or more
years of record, which means that the ratios for
T=25 and T=50 are somewhat unreliable.
Indeed, with some stations having less than ten
years of record, some kind of pooling of the
data would have been beneficial. Nevertheless,
comprehensive reporting of the data and resulits
at each station enabled the 2-year return period
ratios from stations having 15 or more years of
record to be isolated. Averaging the resulting
23 ratios (weighted according to the number of
years of record at each site), gives a mean
correction factor of 1.144.

The Flood Studies Report (Natural Environment
Research Council, 1975, Vol. I, Chapter 3),
concentrates on the 5-year return period (M5)
rainfall. Using data from around the UK, M5
rainfall was estimated for observational-day, 24-
hour, clock-hour and 60-minute durations. A
multiplier of 1.11 was found for converting 1-
day to 24-hour MS5 rainfall, though the quantity
and quality of the data used to obtain this result
are not clearly specified. A higher multiplier of
1.15 is reported for converting clock-hour to 60-
minute M5 rainfall; this figure is based upon 50
stations with both hourly annual maxima data for
estimating the M5 clock-hour values, and annual
frequency data (frequencies of 60-minute
exceedances of 5, 10, 15, and 25 mm) for
estimating the M5 60-minute values.

More recently, van Montfort (1991) examined
the problem of estimating extreme value
distribution parameters for sliding maxima,
given that only fixed maxima are available. A
common method of fitting distributions to data is
the maximum likelihood procedure which
renders those parameter values which
maximize the chance of the observed data
being reproduced by simulation. Denoting, for
year i, the sliding 24-hour maximum by A, and
the fixed 1-day and 2-day maxima by F, and F,
respectively, van Montfort utilizes the inequality
F <A, <F, to estimate GEV parameters for the
sliding maxima using only the fixed maxirna.
This is done by using the maximum likelihood
procedure to maximize the chance of the



differences F,-F, being reproduced in
simulation. The method is demonstrated on 58
years of data from Kelbum, New Zealand. It is
claimed that the resulting parameter values are
as reliable as those obtained directly from the
observed sliding maxima also available at the
site. In terms of correcting maxima, the mean
annual rainfails (2.33 return period) extracted
from the EV1 distributions fitted to the observed
fixed and sliding maxima, result in a correction
factor of 1.15. Van Montfort quotes 1.14 for
correcting the 50-year rainfall, although
estimating this from a single record of 58 years
is somewhat sample-dependent.

The Allowance for Discretization in Hydrologicat
and Environmental Risk Estimation (ADHERE)
project, funded by the Natural Environment
Research Council, was set up as a
comprehensive investigation into the
discretization effect. The work of Coyle et al.
(1991) is a precursor to that reported here.
Correction factors are calculated directly from
maxima using good quality, high resolution
data, the details of which are fully reported. A
range of environmental variables, event
durations, data resolutions and climate regimes
are exarnined. A generalized correction model
is propaosed.



3 Method and theory

3.1 Terminology and conventions

The discussion so far has concentrated upon 24-
hour versus 1-day annual maxima for rainfall.
The study investigates discretization in a more
general context, however, as described below.

Data resolution and event duration
Speaking of a 24-hour rainfall means that a
rainfall time series of hourly resolution has been
used to calculate an accumulation of duration 24
times that resolution. In general, durations of D
times the data resolution are considered. Also,
the data resolution, denoted by 1, may be
something other than 1-hour. Thus, T=1 day and
D=4 refer to 4-day accumulations calculated
from daily data. Note that 1 has dimensions of
time but D is dimensionless.

Length of record

The length of a record is expressed in terms of
the number of data values, n. To ensure
equitable comparison of results, it is fixed at
16384 (2'*) unless stated otherwise. This
pertains to nearly two years of hourly data or 45
years of daily data. The figure has been chosen
to reflect the lengths of record generally
available and constrained to a power of two for
methodological reasons.

Period length

Whilst 45 years of data enable a reasonable
calculation of mean annual maximum values,
two years of (hourly) data do not. Hence, each
record is divided not into years but into m=32
(2°) periods of equal length (about 512 values).
A maximum is extracted for each period, the
average of which is termed the mean period
maximum. Maxima are therefore extracted from
periods of approximately 21 days for hourly
data and 1.4 years for daily data.

Climate variables

Climate variables other than rainfall are also
examined, such as wind speed and air
temperature. For variables where the term
‘accurnulation’ over some duration is
Inappropriate, it is taken to mean the 'average
value’ over the duration.

Thus, the extremes of a climate variable are
examined by reference to a time series
consisting of n data values measured at a
resolution 1. The record is divided into m
periods of equal length and the maximum

accumulation of duration D (fixed or shiding) is
extracted for each. The values for n and m are
fixed at 16384 and 32 respectively; sensitivity of
the results to these choices is investigated.

3.2 Calculating the fixed and sliding

~ period maxima

Fixed maxima

Let the first period consist of data values x(1),
x(2), x(3), ... etc. The first fixed accumulation of
duration D is obtained by summing (or
averaging) the data values x(1), x(2). ..., x(D).
The second fixed accumulation is obtained from
the values x(D+1), x(D+2), ..., x(2D), and so on.
This is illustrated for D=4 in Fig. 3.1a. The
maximum of all the resulting fixed
accumulations is the fixed maximum for that
period. Fixed maxima for other periods are
calculated similarly.
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Figure 3.1 The construction of (a) the fixed
accurmnulations f, f,, ... and (b} the sliding accumulations
v, V, ... demonstrated for duration D=4




To obtain a whole number of fixed
accurmulations, the period length is required to
be an integer multiple of D. Dividing the whole
record into m equal periods results in a period
length of n/m=2° (512), which is exactly divisible
by D only when D is a power of two. Thus, so
that any duration D may be considered, the
period length, p, is set to the greatest multiple of
D satisfying p<512. When p<512, the
construction of m=32 consecutive periods of
equal length results in some unused data at the
end of the record.

Sliding maxima

Using the notation above for the first period, the
first sliding accumnulation of duration D is
likewise obtained from the data values x(1),
x(2), ..., X(D). The second sliding accumulation,
however, is obtained from x(2}, x(3), ... , x(D+1)
and thus overlaps with the first. The third is
obtained from x(3), x(4), ... , x(D+2) and so on
as illustrated in Fig. 3.1b. The maximum of the
resulting accumulations is the sliding maximum
for the period. The periods used for extracting
sliding maxirma of duration D, are identical to
those used for extracting fixed maxima of
duration D.

When a large storm is split across two periods,
its full significance may go unnoticed if the two
periods are analysed separately. Therefore,
rather than having the last sliding accumulation
coincide with the last fixed accurmulation, the
sliding ‘window' is allowed to straddle across
the two periods. A convention is adopted
whereby an accurnulation which straddles two
periods is neither lost nor ‘counted twice' in the
sense of it contributing to the sliding maximum
for both periods (see Appendix B).

3.3 Calculating sample correction
factors

The above describes how, for each duration D,
fixed and sliding maxima are exiracted from
each of the m periods of a given data record.
Denoting these by F (D) and V(D) (i=1,...,m)
respectively, the fixed and sliding mean period
maxima (of duration D) are then

F(D) = ﬁzm: F(D) 3.1

and !
D) = ifj V(D) 3.2

il

The sample correction factor for duration D is
thus defined by

R(D) = V(D)/F(D) 3.3

1t is the multiplier required for converting the
mean fixed into the mean sliding period
maximum of duration D. For example, if

t=1 hour then R(24) is the multiplier required
for converting the 1-day to the 24-hour mean
period maximum.

In application it may be desirable to convert
individual maxima rather than the mean
maximum, in which case it is tempting to
calculate the sample correction factor not as
above but as the mean (over 1) of the individual
ratios R (D)=V (D)/F (D). It tums out, however,
that this is not a very satisfactory estimator as 1t
can be seriously biased and have large mean
square error, and so R(D) is to be preferred
(see Barnett, 1974). Furthermore, note that

V(D)

&) LF(D)

[V(D).F(DYF(D)]
Y F(D)

T [R(D).F(D)]
YF(D)

where the summations are all from i=1 to m.
That is, R(D) is equivalent to a weighted sum of

" the individual ratios for each period, with

greater weight given to the larger events. This is
especially desirable in the analysis of hourly
data since the period length is only about 21
days and so many of the maxima will not be
particularly extreme.

Dropping the notation D, an estimate s(R) of the
standard error of R(D) is suggested by Barnett
as

s*(R) = E (V;-RF) 35

m(m-1)F

from which confidence intervals can be
calculated using Normal percentage points.

Datum

It should be noted that there is some
arbitrariness in the value of R in that it is relative
to the datum (zero level) of the units of
measurement. For example, the ratio of the air
temperatures 10°C and 5°C is 10/5 = 2, but



expressed in degrees Kelvin the ratio becomes
283/278 = 1.02. Once a datum has been chosen,
however, the ratio is independent of the scale of
the units. Thus, using a datum of 0°C for air
temperature, it makes no difference whether
degrees Celsius or tenths of Celsius are used.

Rainfall and wind speed offer natural datum
levels corresponding to ‘no rain’ and ‘no wind'.
The equivalent for temperature is that of no
energy, namely 0'K (-273'C). This datum, being
far below the level at which air temperatures
are observed, renders very low correction
factors. Later it is desirable to compare
correction factors for different variables,
whereupon a common datum type is required,
which reflects the level at which the variable is
observed. The minimum of the data record
would suffice but is somewhat sample-
dependent. Thus, the lower 1% quantile is used,
which has the desired properties and in practice
still renders datum levels of zero for rainfall and
for wind speed (for daily and sub-daily data at
least).

3.4 Modelling R(D)

The model

Associated with each data record, therefore, are
the sample ratics R(D) for each D. A graph of
R(D) against D can be constructed as in Fig. 3.2
for wind speed data at Eskdalemuir, Scotland.

The behaviour exhibited by this example is

typical in that R(D) is increasing over small D
(though not monotonically) and then levels off to
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Figure 3.2 R(D) against D for Eskdalemuir wind
speed record F (t=1 hour)

fluctuate about a constant value. This can be
explained by considering both the fixed and
sliding maxima (of duration D) as
approximations to the true maximum; the
measured sliding maximum is only an

approximation since it does not slide
continuously but rather in steps of 1/D. As D
increases, the sliding maxirmum becomes more
nearly 'continuous’ relative to the fixed
maximum, and so an increasingly better
approxamation. Thus, as D increases, the ratio
R(D) approaches a limiting value R” which
represents the correction of fixed maxima to
true maxima.

This behaviour is modelled as exponenhally
diminishing growth to a limiting constant, with
the constraint R(1)=1. Denoting the model
function by p(D), this gives

p(D) = 1+a[l-exp{-HD-1)}] 3.6

which can be fitted to the data R(D) by nonlinear
regression, resulting in estimates of the
parameters a and b. For the graph of Fig. 3.2,
the regression renders estimates a=0.089 and
b=0.096, the curve for which is depicted in
Figure 3.3. Parameter a relates to the limiting
value of p(D):

p* = lim p(D) = 1+a 27

whence R’ is modelled by p*. Parameter b
relates to the growth rate of p{D}. its numerical
value is not very enlightening, however, and so
D_ is defined as the duration at which the curve
attains p% of its final growth above 1, that is

= P 38
D) =1+a—"— -
p(D) 2100

giving

sq1-dya
DP = lﬂ—bln(l p{100) 3.9

In particular, D, is used as the duration by
which most (95%) of the growth has occurred.
Thus, for the wind speed example above,
p'=1.089 and D_.=32. The maximum duration

1.20-

1.15-

Ratio, R{D)

"
]
N I

0 ] 16 24 R a0 48 56 84
Duration, D

Figure 3.3 Correction model fitted to Eskdalermur
wind speed record F



used n modeliing R(D) by p(D) is dencted by
D, . it must be large enough for the limiting
valte to be properly estimated but not so large
that is becomes a significant fraction of the
period length. D__ equal to 32 or 64 was found
to be appropnate “for most records.

Regression details

Non-linear least-squares regression is used
which seeks to minimize the sum (over D) of the
squared differences, [p(D) - R(D)]? Standard
subroutines from the NAG computer library
(NAG, 1991) are used which also estimate the
variances of the estimated parameters.
Symmetric 95% confidence intervals for the
estimated parameters are then calculated using
the Student's t 2.5 percentage point. For
example, the confidence interval for parameter
ais given by

s d .
[a-5,t0s , a+sdt_ga5] 3.10

where 4 is the least-squares estimate for a, s, is
the square root of the estimated variance for a
and t* . indicates the Student’s t 2.5 percentage
point at d=D__ -2 degrees of freedom. There is
a 0.95 probability that the true value of
parameter a lies in this interval. The confidence
interval for bis constructed similarly. The end-
points of these intervals are substituted into
equations 3.7 and 3.9 to obtain the 85%
confidence intervals for p* and D, respectively.

It is assumed that the variation about the
regression curve is due to sample error. This is
corroborated by an examination of a number of
the data records which indicates that, for most
D, the regression curve p(D) falls within the
sample 95% confidence interval for R(D) (as
calculated using equation 3.5). This also makes
reasonable the assumption that R(D) converges
for large D.

Higher-order moments

It is possible that discretization affects not just
the mean of the period maxima but also the
variance and higher-order moments. The use of
L-moment ratios (Hosking, 1990} is becoming
popular as a measure of higher-order variation;
they are more robust to outliers and sample
variability than are conventional moment ratios,
and are bounded in [-1,1] (simplifying
comparisons).

For each data record, the L-CV and L-skewness
were calculated for the set of fixed maxima

{F (D) 1=1, ... ,m} and sliding maxima {V.(D):
i=1, ,m} at each duration D. Graphs of the

results help to discern any systematic higher-
order differences between the fixed and sliding
maxima. The graphs obtained show no such
differences, however, as illustrated by some
typical examples contained in Appendix D.
Thus, it is reasonable to analyse the
discretization effect with respect to the mean of
annual maxima alone, without having to make
corrections to the higher-order moments.

3.5 Applying the correction model

The above model can be used in four distinct
ways as detailed below. An example of each is
presented at the end of the section using the
wind speed data pertaining to Figures 3.2 and
3.3.

Converting fixed to sliding maxima

The multiplier p(D) may be used to convert the

mean fixed maximum of duration D to the mean
sliding maximum of duration D as measured at

resolution 7.

Converting fixed to true maxima

The multiplier p* may be used to convert the
mean fixed maximum of duration D. tc the mean
true maximum of duration D. In doing so,
however, it is assumed that fixing t and letting D
tend to infinity produces the same correction
ratio as fixing D and letting 7 tend to zero. That
is, the correction factor for converting fixed to
true maxima is assumed to be independent of
the event duration D and data resolution t. The
latter is reasonable since both fixed and true
maxima are independent of data resolution by
definition. Both assumptions are examined for a
range of durations and resolutions as part of this
mvestigation.

Converting sliding to true maxima
It may occur that the mean sliding maximum of
duration D, as measured at resolution T, is
available but, nevertheless, the mean true
maximum is required. The former can be
converted to the latter using the correction
factor

a(D) = P i an
p(D) |

This can be seen by considering the conversion
in two stages: first, convert the mean sliding
maximurn into the mean fixed maximum by
dividing by p(D); second, convert this mean
fixed maximum into the mean true maximum
using the multiplier p°.




Converting sliding to sliding maxima

The mean sliding maximum of duration D, as
measured at resolution T, may be converted into
the mean sliding maximum of the same duration
but measured at a finer resolution T'=t/A (A>1)
using the multiplier

(AD)

p(D)

This can be seen by considering the conversion
in three stages: first convert the mean sliding
maximum of duration D, measured at resolution
T, into the mean true maximum of the same
duration by multiplying by o(D) (equation 3.11);
second, use the assumnption that p’ is
independent of data resolution to obtain the
mean fixed maximumn for the same duration but
expressed in terms of the resolution ' (namely,
AD) by dividing by p*; lastly, convert this mean
fixed maximum of duration AD into the mean
sliding maximum, as measured at resolution 1/,
using the multiplier p(AD).

B(D) = 3.12

Examples

Examples of the above applications are
presented below, based upon the hourly wind
speed data at Eskdalemuir for which model
parameters of a=0.089 and b=0.096 were
estimated (as detailed earlier).

Let the mean fixed 1-day maximum be denoted

by F. The mean sliding 24-hour maxirmum, V, is
obtained from equation 3.6 as

|4

!

p2HF
LO79F

3.13

n

The mean true maximum of duration 24-hours,
T, can be obtained from equation 3.7, namely

T =p'F
(1+a)F
1.089F

3.14

N

If the sliding 24-hour maximum, V, is available,
then T can be obtained from V using equation
3.11 as follows:

T

a(24)V

*

Py 3.15
p(24)

1.089 v
1.079

1.009v

Suppose that the mean sliding 3-hour maximum,
V1, has been calculated from the hourly data.
Although it is sliding, there is still a considerable
discretization effect at such a short duration
(D=3). To calculate the mean sliding 3-hour
maximum as if it were extracted from, say, 15-
minute data, denoted by V2, use equation 3.12
to obtain

V2

B(3)VI

- PGB,
p(3)

. p(12)
P(3)

1.058 1
1.016

1.041V1

3.16



4 Rainfall durations one to 32 hours

4.1 Introduction

This chapter uses rainfall measured at an hourly
resolution to examine the correction of rainfall
maxima of durations one to 32 hours, and in
particular the correction of daily rainfall. This
reflects, historically at least, where most of the
applied hydrological interest lies. The aim is to
compare and contrast the modelled forms, p(D),
for different sites with varying climate regimes.
Six sites have been examined: Table 4.1 shows
the number of standard data records (that is, of
length n=16384) available at each. For example,
eight records were extracted for Eskdalemuir
and labelled A to H accordingly. For the UK sites
the extracted records run consecutively,
whereas data quality requirements prevented
this for the Australian sttes. Summary statistics
and other details for each record can be found
in Appendix C under the appropriate headings.

Table 4.1 The number of hourly rainfall records
available at each site

Site Number of records
Eskdalemuir 8 (A-H)
Leeming 5 (A-E)
Ringway 8 (A-H)
Brisbane 5 (A-E)
Melboume 5 (A-E)
Sydney 6 (A-F)
4.2 Rainfall regime

All the UK sites represent cool temperate
oceanic climates. Eskdalemuir, in the southern
uplands of Scotland and Ringway (Manchester
Airport), being west of the Pennines, are subject
mainly to frontal rainfall carried in from the
Atlantic Ocean. Although it rains all year round,
October to January is the rainiest season. The
high altitude of Eskdalemuir ensures that a
significant amount of precipitation falls as snow
in the winter months. Leeming, in North
Yorkshire, lies east of the Pennines and is
therefore more sheltered from the westerly
fronts; it is subject to a greater number of

convective storms in the summer, however,
which swings the seasonality of heavy rainfall
accordingly. Two of the three Australian sites,
Melbourne and Sydney, represent warm
temperate climates, whereas Brisbane veers
towards the tropical. Melbourne, on the
southemn tip of mainland Australia, experiences
moderate rainfall, evenly distributed throughout
the year. Sydney, situated on the south-east
coast, experiences mainly frontal rainfall,
highest n auturnn (May to June) and lower
during spring {September to November).
Brisbane, halfway down the east coast, is subject
to heavy monsoon rains in its tropical summer
and lighter frontal systems in the winter.

Recall that a storm split (at 0800) between two
observation days is under-recorded by the
fixed interval measurements. If a typical storm at
a site anses from relatively few hours of intense
ramnfall then, by simple probability, there is less
chance of this happening than for a site
experiencing longer duration events,
whereupon correction factors are likely to be
lower. In studying correction factors for daily
ramnfall, it is therefore helpful to compare rainfall
profiles for each site. Figure 4.1 shows average
profiles derived for each site; that is, for any one
site, the rainfall values forming each fixed 24-
hour maximum are obtained and averaged by
calculating the mean first hour value, the mean
second hour value, etc. The result 1s converted
into a percentage profile and plotted as
residuals about the mean percentage, 4.17. This
method of averaging preserves time-of-day
features (the first hour corresponding to 0900 -

1000 hours) and weights each maximum
according to its total volume. It is apparent that
Brisbane has a more concentrated average
profile than the other sites.

In order to compare profiles with correction
factors quantitatively, it is convenient to
construct a simple numerical index of profile
concentration: for each site, the mean number of
wet hours (N__) for the 1-day maxima is used.
Table 4.2 shows the results for each site, with a
‘wet’ hour being one with a depth greater than
0.2mm.

4.3 Correction factors

Figure 4.2 shows examples (one record from
each site) of graphs of R(D) against D complete
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Figure 4.2 Correction model fitted to hourly rainfall: Eskdalemuir record C, Leeming D, Ringway C, Brisbane B,
Melbourne D and Sydney F

12



Table 4.2 The value of Nm for each site

Site N
(hours)
Eskdalemuir 11.7
Sydney 88
Ringway 84
Melbourne 82
Leeming 8.1
Brisbane 7.2

with the fitted model. Together they illustrate the
main features for rainfall (as compared to other
environmental variables): convergence of p(D}
to p'is rapid (rendering low D, values); p is
typically in the range 1.14 to 1.18; there is large

sarmnple variability in R{D) about the fitted model,
resulting in large confidence intervals for the
parameters a and b. The example for
Melbourne shows the case, unusual for rainfall,
where aD_, value of 64 was deemed
necessary to estimate the limiting value p’
satisfactorily. For completeness, Figure 4.3
shows some of the less well-fitted plots: in (a),
the limit p* is reached before the first
observation at D=2 and therefore parameter b
cannot be properly estimated in the regression
and so is effectively undefined; in (b), a great
deal of sample variability leads to particularly
large uncertainty in the regression curve.

No obvious inter-site differences are discernible
from visual examination of the various plots and
80 close inspection of the parameter values, a
and b, is required. Table 4.3 details the
parameter values for each record at each site;

(a 125 (b)  res
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g g
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Figure 4.3 Correction model fitted to hourly rainfall: (a) Melbourne record D. (b) Sydney F
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Figure 4.4 Parameter space (a,b) for the correction model fitted to each hourly

rainfall record
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Ta.bl"le 4.3 Valuesofa, b and a’ for each hourly rainfall record at each site, plus respective site-means
("am" denotes anithmetic mean and "gm" stands for geometrnic mean)

Site Record a b a
Eskdalemuir A 0.169 0.388 0.170
B 0.160 0.563 0159
[ 0.162 0.841 0.163
D 0.180 0.402 0.180
E 0,161 0700 0.161
F 0.177 0.330 0.175
G 0.170 0.343 0.168
H 0.158 1.564 0.158
am: 0,167 gm 0.556 am’ 0167
Leeming A 0.171 0717 0.170
B 0.168 0.796 0.168
C 0.126 0.865 0.126
D 0.155 1.038 0.165
E 0.151 0.387 0.152
am: 0.154 gm: 0.734 am: 0.154
Ringway A 0.159 0.432 0.160
B 0.153 0.643 0.150
c 0.154 0.620 0.156
D 0.148 1.198 0.150
E 0.166 0.631 0.168
F 0.169 0512 0.170
G 0.i62 0.285 0.160
H 0.144 0.269 0.148
am; 0,157 gm: 0.517 am: 0.158
Brisbane A 0.139 0.723 0.138
B 0.151 0.657 0.152
C 0124 - 0.128
D 0.147 - 0,154
E 0.162 0.208 0.162
am: 0.144 gm: 0.462 am: 0.147
Melbourne A 0.175 - 0172
I 0.157 0.510 0.156
C 0.164 0.198 0.162
D 0.135 - 0.135
E 0.150 0973 0.152
am: 0.156 gm 0485 am: -0.156
Sydney A 0.144 0771 0.145
B 0.160 0501 0151
c 0.158 0612 0.158
D 0.176 0.261 T o0
E 0.164 0529 0.164
F 0.169 0479 0.169
am: 0.162 gm: 0.500 am: 0.162
Overall averages am: 0.158 g 0.571 am: 0.158
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site averages, as well as overall averages, are
given (the arithmetic mean is used for the
parameter a whilst the geometric mean, being
less sensitive to outliers, is used for the more
variable parameter b). Figure 4.4 displays these
results for all records except those which have
an undefined value for b. Whilst a slight
negative correlation between a and b is seen,
there is no discernible distinction between the
various sites. Although considerable scatter is
observed, the site averages (denoted by
crosses) are reasonably well grouped. A
separate examination of the b values indicates
that they do not vary systematically with clirate
regime (as indicated by site in Figure 4.5) or
sequentially (as indicated by the letters Ato Hin
Table 4.3). Thus, it seems reasonable to fix the
parameter b to the overall geometric mean
(0.571) and refit p(D), for each record, as a one
parameter model p'(D). A new estimate of &,
denoted by &', is obtained. If, however, this
fixed value of b is inappropriate for a particutar
record, then the regression fit of p'(D) will be
poor at small D and compensated for at higher
D, causing erroneous estimation of a’. However,
the estimation of a depends mostly on those
R({D) for which D>D,. and so the problem can
be circumvented by ﬁttmg p'(D) to R(D) for D>
max{D,,, 6.2}, where D, is estimated from the
original regression of the two parameter model
and 8.2 is the D value corresponding to
b=0.571.

The resulting values of &’ for each record
appear in the right-hand column of Table 4.3.
They are similar to the values of a, with the site
and overall averages differing only slightly.

2.0

15

1.0
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0.5

S )

0.0
Eskdalemuir lL.eeming

Ringway -

Thus, the estimation of a is generally insensitive
to the value of b for hourly rainfall data. The
values of 1+a’ for each record (that is the
correction factors) are represented n Figure
4.6, grouped by site to enable inter-site
comparisons. A first inspection of the results
might suggest that Eskdalemuir and Ringway
have significantly different site means. More
scatter is observed at the other sites, however,
making comparisons more difficult. It is
constructive to compare these results with those
forN_,

4.4 Comparing correction factors
with N__

It has been stated that sites subject to longer
events, which are more likely to be divided
between observational days, are expected to
render higher correction factors. Figure 4.7
shows the mean correction factor for each site
plotted on a linear scale and a similar plot for
N, (from Table 4.2). The latter plot
distinguishes Eskdalemuir as subject to
relatively long events, Brisbane subject to
relatively short events and the other sites as in-
between and similar to one another. It is striking
that the order of the sites in the two plots is
preserved, in keeping with the above
expectation.

The results can be used to construct particular
hypotheses about the required correction
factors for daily rainfall: in particular, that
Eskdalemuir requires a higher correction factor
than other sites, that Brisbane requires a lower

20
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Figure 4.5 Values of parameter b for each hourly rainfall record, grouped by site
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first letter)

correction factor than other sites and that the
rest are not significantly different from one
another. Based on the correction factors found
for each record at each site, paired Student's t
tests can be used to discern differences
between the site means. A test statistic which
assumes unknown but equal variances is used
(Mood et al., 1974). At the 95% significance
level, one-sided tests indicate that Eskdalemuir
has a significantly greater mean correction
factor than all sites except Sydney. Similarly,
Brisbane has a significantly lower mean
correction factor than all sites except Leeming

and Melbourne. Two-sided tests result in no
significant differences between mean correction
factors at the other sites. This is schematically
represented in Figure 4.8 whereby sites circled
together are not significantly different.

Thus, there is evidence to support the
conjecture that Eskdalemuir, being subject
mainly to long-duration frontal events, generally
requires high correction factors for daily rainfall
(with a site mean of 1.167) and Brisbane, being
more prone to relatively short-lived monsoonal
storms, generally requires lower correction

Figure 4.8 Results of tests for significant differences between site-mean correction factors



factors (site mean of 1.147). The other sites, and
in particular Ringway, experiencing more
middling duration events, generally require
more moderate correction factors (overall mean
of 1.158).

Before drawing conclusions and making
recommendations, it is necessary to examine
whether the above results are sensitive to
certain aspects of the methodology.

4.5 Sensitivity of results

Timing of fixed intervals

The rainfall records, to which the above results
pertain, are constructed so as to begin at 0900
on the first day. This is particularly relevant to
the case D=24 because the observation day
(0800 to 0900) then coincides with field
practice. Nevertheless, it is interesting to
examine the effect of starting the records at
some other time.

The data records were reconstructed to begin
at midnight. Very little difference is observed in

the results for N__. Whilst changes are observed

in the correction factors for individual records,
the site means remain stable with no significant
differences occurring. The overall mean
correction factors are 1.158 (for 0900 start) and
1.160 (for midnight start).

It is concluded that, for the climates considered
here, maxima extracted by either convention
would suffice. In more tropical climates, where
heavy rainfall is typically triggered by solar
heating, the timing of the fixed intervals might
be expected to be more influential,

Averaging across sites

Table 4.3 showed site-means for a'. The
calculation of these means, however, does not
take into account the (sometimes large)
confidence intervals for the individual a’. In the
case of UK sites, for which the separate records
run consecutively, an alternative method for
calculating the site-mean is obtained by
concatenating the records for a given site to
form a single large one. By maintaining the
same period length, a greater number of
periods is available from which to estimate the
ratios R(D). In this way a single value of &', as
well as its confidence interval, is obtained for
each site. For Eskdalemuir and Ringway, eight
records are concatenated, whereupon the ratios
R(D) are obtained by averaging across 256
periods; for Leeming, five concatenated records

result in 160 periods. The graphs of R(D) against

D, complete with the model fits, are shown in
Figure 4.9 (only the R(D) which are used to fit
the one-parameter model are shown).

Much less variation about the fitted model is
observed than for the individual records. This
demonstrates that much of the variation is due to
sample variability rather than a poor model, and
provides evidence for convergence to a limit.
Not surprisingly, the new correction factors
obtained show good agreement with those
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Figure 4.9 R(D) against D, with fitted model, for
concatenated hourly rainfall records (a) Eskdalemuir
(b} Leeming and (c) Ringway




Table 4.4 Site-means for 1+a’; values of 1 +a’ for concatenated records
including 95% confidence intervals from the regression fit

—,———,———eeeeeee—eeeeeeee e e e e ——————

Site Mean of individual ~ Concatenated record 95% confidence interval
records for concatenated record

Eskdalemuir  1.167 1.166 1.160 - 1.172

Ringway 1.156 1.156 1.149 - 1.163

Leeming 1.160 1.160 1.152 - 1.167

obtained by averaging across individual
records (see Table 4.4).

Period length

Each maximum was extracted from a period of
about 21 days; these represent less extreme
events than do annual maxima which are more
usually analysed. It is therefore necessary to
investigate the sensitivity of the correction
factors to changes in the period length. This is
achieved by concatenating the individual
records to form one long record for each UK site
as described above. The ratios R(D) are then
obtained for various period lengths. Table 4.5
details the results: four period lengths are
considered and the resulting values of p* (=1+a)
and R(24) shown for each site. The number of
periods pertaining to each period length is also
shown for each site,

No systematic variation with period length is
observed: at Eskdalemuir, p* decreases as the
period lengthens, whilst R(24) increases; at
Leeming, p” also decreases but R(24) merely
fluctuates slightly; and at Ringway, p'increases
while R(24) is seen to decrease. Also, it should
be noted that there is greater sample variability
in the results for the longer period lengths due
to the fewer number of periods available to
estimate the ratios.

In summary, these results provide no evidence
that correction factors vary systernatically with
period length. Visual inspection of the graphs
for R(D) against D for the various period lengths
at each site corroborate this conclusion.

4.6 Summary and conclusions

Hourly rainfall data were studied from three UK
and three Australian sites and divided into
records of fixed length. The discretization effect
was Investigated for each record at each site
according to the methods described in Chapter
3. Thus, values for the model parameters a and
b were obtained for each record and grouped
by site to enable inter-site comparisons.
Although there is a lot of variation in the values
for a and b, the site means are in relative close
proximity.

A separate analysis of the results for parameter
b (which models the initial growth of R(D)) found
no discernible inter-site differences. The value
of b was thus fixed at the overall geometric
mean (0.571) and the model re-fitted for each
record to obtain comparable estimates, &', of the
a parameter.

An analysis of the a’ values showed evidence of
inter-site differences. Site mean values for the

Table 4.5 Values of R(24) and p" for concatenated hourly rainfall records using various period lengths

Period length Eskdalemuir Ringway Leeming
periods R(24) p° periods R(24) p° periods R(24) p’
21 days 256 1.163 1.165 256 1152 1.158 166 1.161 1.148
43 days 128 L154 1.160 128 1.143 1.158 80 1.157 1.144
85 days 64 1171 1152 64 1.154  1.165 40 1.164 1.145
171 days 32 1.182 1.149 32 1171 1.162 20 1.157 l.lfi.i

e e
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correction factor, 1+a’, were found in the
approximate range 1.147 to 1.167 with an
overall mean value of 1.158. Concentrating on
the correction of daily rainfall maxima (D=24),
the results for 1+a’ were compared to the
number of wet hours (N, ) at each site. A
positive correlation between them, as
anticipated by theoretical arguments, was
observed. Values of N__ were then used to
construct hypotheses concerning the correction
factors, 1+a’, at each site: namely, that
Eskdalemuir requires a higher correction factor
than the other sites, Brisbane a lower correction
factor than the other sites, and the others
require broadly similar correction factors.
Student's t tests were used at the 95%
significance level to test differences in the site
means: the resulting groupings lent support to
the hypotheses.

Further analysis showed no evidence that the
correction factors found are dependent upon the

timing of the fixed intervals or the period length.
In particular, for each UK site, it was possible to
obtain a site value for &' by analysing a single
long record (by the concatenation of the
standard records). This resulted in very similar
values for &’ and a much better fit (in terms of
deviation about the rmodel), thus increasing
confidence in the model as well as in the site
means obtained.

In conclusion, the results suggest that the
correction factors cornmonly used are
somewhat low. Instead of 1.13 and 1.14 for
example, a range of 1.15t0 1.17 is indicated.
For the correction of fixed 24-hour (daily)

. maxima, the lower end of this range is

19

suggested for climates prone to short-lived
convective/monsoonal rainfall, the upper end for
climates prone to frontal systems producing
events of longer duration, and 1.16 for middling
climates and as a general guideline.



5 Comparison of variables

5.1 Introduction

This chapter concerns the comparison of
correction factors for different climate variables.
In particular, the temporal variability of a
process is investigated for its influence upon the
magmitude of required correction factors.

Consider the discretization effect by imagining
the time interval, corresponding to a fixed
maximum, being free to slide to and fro in
search of the true maximum. As the interval
slides, so the accumulations found will differ. For
gradually changing processes, such as that of
air temperature, these differences are likely to
be relatively small compared to those for
erratic, mtermittent processes, such as that of
rainfall, for which plenty of opportunity exists for
sudden and sharp changes to occur. More
precisely, the slower the decay in temporal
autocorrelation, the lower the expected
correction factor for the data.

This conjecture is examined by comparing
three climate variables - rainfall, wind speed
and air temperature. The data, all taken from
Eskdalemuir in the southern uplands of
Scotland, are at the hourly resolution and span
the years 1970 to 1989. Thus, there are ten
possible data records for each vanable,
labelled A to ] accordingly, although data quality
requirements prevented analysis of some
records. As a result, eight rainfall, six wind
speed and seven air temperature records are
examined. The rainfall records (A-H)
correspond to those used for Eskdalemuir in the
previous chapter. More details of the data can
be found in Appendix C.

The correction factors, p’, as defined in Chapter
3, are calculated for each record and compared
to the measure of erraticness defined below.

5.2 Variograms and erraticness

Let a data record, of length n=2" values, be
represented by X(1)={x(1), x(2), ... ,x(n)}. The
calculation of autocorrelation assumes not only
stationarity in the mean of X(t) but also constant
and finite variance, ¢°. An alternative is the semi-
vanance, y(h), defined by

Y(h) = V2E[(x(t+h) - x(5))] 5.1
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where E[- ] denotes statistical expectation and h
is known as the (time) /ag. Estimation of y(h),
defined by the sample semi-variance

n-k

Y (xti+h)- x(D)

i=1

sih) = 5.2

2(n h)

is unbiased if X(t) is stationary in the mean and
¥(h) is time-invanant. If the variance is constant
and finite, however, then the autoccorrelation,
C(h), and semi-variance are related by

y(h) = o*(1 ~C(h) 5.3

The graph of y(h) against h is called the
variogram, full discussion of which can be found
in, for example, Webster and Oliver (1990). To
enable comparisons between vanograms for
different data records, a non-dimensionalized
version of semi-variance is defined by

25%(h)

515,

Sth) = 54

where s, and s, are the standard deviations of
the first n-h and last n-h data points,
respectively.

In the context of simply-scaling Gaussian
processes, erraticness can be quantified by the
Hausdorff fractal dimension, d,, which is related
to the gradient, &, of the log-log variogram at
small h, by

dy = 2-af2 3.3

Simple scaling renders the log-log variogram
linear for small h, whereupon the gradient « is
well defined (see examples in Coyle et al,
1891). Whilst rainfall and wind speed are non-
Gaussian, this study follows in the same spirit as
Constantine and Hall (1994) by defining the
effective fractal dimension, d;, as

dy = 2-af2

dg = 5.6

where o 1s the gradient of log(S(h)) with respect
to log(h) for small h in the range over which



linearity appears to hold. Notethat 1 <d, <2. A
more detailed discussion of effective fractal
dirnension, as defined above, can be found in
Dwyer and Reed (1994).

5.3 Results

Some typical graphs are presented and
discussed before the complete set of results is
examined and comparisons made.

Variograms

The log-log dimensionless variogram for rainfall
(Figure 5.1a) reveals a limited range of linearity
over which simple scaling holds. The graph
quickly approaches the sill (S(h)=2) which is
reached when the lag is large enough for the
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Figure 5.1 Log-log variograms with regression lines:
(a) hourly rainfail record B, (b) hourly wind speed
record F and (c) hourly air temperature record G, ali at
Eskdalemuir
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data points to become uncorrelated. For some
records a very rapid approach to the sill makes
linearity at small h difficult to discemn. For
consistency, regression lines are fitted between
h=1 and h=5 for all data records. For rainfall,
these regression lines are of shallow gradient,
whereupon the effective fractal dimensions are
large (d, = 1.77 for the example shown).

Linearity in the log-log variogram is observed
over a wider range of lags for hourly mean wind
speed data {e.g. Figure 5.1b). Nevertheless the
regression line is fitted between h=1 and h=5
(as for rainfall) because increasing this range
only increases the error in estimating
(Constantine and Hall, 1994). The values of d,,
are smaller than for rainfall (d; = 1.49 for the
example), representing less erraticness.
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Figure 5.2 R(D) against D with fitted mode!: (a)
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The air temperature records render the lowest
values of d.,, indicating the relative smoothness
of the variable. The example in Figure 5.1¢ (for
which d,. = 1.32) clearly shows the presence of
the diurnal cycle. For consistency, the
regression line is again fitted between h=1 and
h=5.

Correction factors

An example of a graph of R(D) against D for
rainfall, complete with the fitted model, is shown
in Figure 5.2a. Generally, a rapid increase in
R(D) with D, and a good deal of residual
variation about the fited model were observed
for rainfall. Values of p* were in the range 1.16 to
1.18 for the Eskdalemuir site.

The example graph of R(D) against D for wind
speed (Figure 5.2b) demonstrates less variation
about the regression line, a slower increase in
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Figure 5.3 p against d, for different climate variables

Table 5.1 Means and standard deviations (s.d)ofp

R(D) over D, and a lower limiting value (p* =
1.108). The model p(D) appears particularly
suitable for wind speed data.

The graph of R(D) against D for the air
temperature example (Fiqure 5.2¢) results in a
much lower correction factor {(p* = 1.031). For
air temperature data, the increase in R(D) with D
is not especially well described by the model.
Note that, when analysing air temperature
minima, the upper (rather than the lower) 1%
quantile is used for the datum.

Comparisons

The complete results for d_ and p* are
summarized in Figure 5.3. There is pronounced
segregation of d; between the three variables.
Although more scatter is observed in the values
of p*, there is also clear segregation, with rainfall
requiring the highest correction factors and air
temperature the lowest (with maxima requiring
slightly higher correction than minumna in the
samples studied). Table 5.1 shows the mean
values of p* and d_ for each variable, their
standard deviations and suggested ranges
(given as two standard deviations each side of
the mean). Note that the outlier for wind speed
is due to a poor fit of the model; whilst shown in
Figure 8.3 for completeness, it was not ificluded
when calculating the statistics for Table 5.1.

The relation that emerges between p* and d_ in
terms of the different climate variables affirms
the expected association between erraticness
and correction factors. It should be stressed,
however, that the correction factors are daturn
dependent; here, the lower 1% quantile is used
(upper 1% quantile for air temperature minima)
which corresponds to the natural datums of zero
for hourly rainfall and hourly wind speed.

The relationship between p* and d_ does not
appear to persist within the individual variables,
however. It is interesting to examine this further
using the rainfall data from the various locations
taken from Chapter 4. The effective fractal
dimension, d_, is computed for each record at
each site and plotted against the correction
factors, 1+a’, already calculated. The result is
shown in Figure §.4. Clearly, the relationship

and d, for each climate variable
Variable Mcax.l of sd. of Suggested ange Meanof sd. of Range
p p’ (to 2d.p.) d; dg
Air temperature:
mz_a.xima 1.036 0.004 1.03-1.04 1.26 0032 1.19-1.32
minima 1.041 0.002 1.04 - 1.05 1.26 0032 1.19-1.32
Wind speed 1.099 0.008 1.08 - 1.11 1.50 0.009 148-152
Rainfall 1.167 0.008 1.15- 1.18 1.76 0016 1.73-1.79
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does break down at this intra-variable scate: the
reasons for high or low correction factors cannot
be distinguished by a single index of overall
erraticness. Nevertheless, some grouping by
location is observed, indicating a slight negative
correlation between site average erraticness
and correction factor. It is interesting that the
Eskdalemuir and Brisbane sites stand out as
producing the most extreme values of d., as
they do for the correction factors 1+a’ and the
values of N (see Chapter 4). Rainfall is known
to be multifractal (characterized by multiple
scaling and a spectrum of fractal dimensions)
and explicit recognition of this would be
warranted in a more detailed investigation.

5.4 Summary and conclusions

Using hourly data for Eskdalemuir in southem
Scotland, correction factors for rainfall, wind
speed and air temperature were determined
based upon a lower 1% quantile datum. Air
temperature minima as well as maxuna were
examined, for which the upper 1% quantile was
used as the datum. The results clearly
discriminate between the three climate
variables. Note, however, that these results are
specific to the Eskdalemuir site: thus, for hourly
rainfall, the more comprehensive results of the
previous chapter are to be preferred; for wind
speed and air temperature the results are
necessarily more tentative. Nevertheless, the
results highlight the differences between the
variables and can be used as a guideline.

Investigation of the temporal erraticness and
intermittency of the hourly data, via estimation of
the effective fractal dimension, clearly
discriminates between the three variables.
Furthermore, the dimension is independent of
the datum. This quantity, and similar dimension
estimates, therefore have potential as
meanmgful measures of the ternporal character
of environmental variables. In the case of
rainfall, however, linearity in the log-log
variograms is relatively weak and a muitifractal
formalism may be appropriate (see for example
Rajagopalan and Tarboton, 1993).

In practice, correction factors are required
when finer resolution data are not available to
estimate sliding maxima, whence they are not
available to estimate effective fractal dimension
either. Nevertheless, d so clearly distinguishes
between different variables that it may be
estimated from hourly data collected at a
different tirne and/or location. A broad indication
of the expected correction factors for that
particular variable can then be obtained using
Fig. 5.3.
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The approach is illustrated using a single record
of mean tide residual measured at the hourly
resolution at Walton-on-the-Naze in Essex. The
effective fractal dimension is calculated as d; =
1.371 (Figure 5.5) which, according to Figure
5.3, indicates a correction factor in the region of

a4

—
iy
wn

Ll

e
-y
(o

] I i

1

Ratio, R(D) (minima)

1.00 r-i-nn'|-<-ln.v[ln.;.|i.l.‘ |
0 8 16 24 32

Duration, D

1.06. This compares reasonably well with the
actual correction factors obtained by analysing
the data (p*=1.061 for period maxima and
p'=1.047 for period minima). The relevant
graphs are shown in Figure 5.6.
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6 Rainfall durations two to 32 days

6.1 Introduction

The correction of rainfall maxima of durations
two to 32 days is investigated by reference to
daily rainfall records. The first approach is to
examine evidence for such correetion factors
being any different to those found so far for the
shorter durations. This is done by comparing
the results from hourly and daily data at the
same sites (Section 6.2), and deliberately
coarsening hourly data to observe the effect on
the resulting correction factors (Section 6.3).
Secondly, a number of daily rainfall records are
analysed and mean values for the parameters a
and b obtained (Section 6.4). The effect of data
resolution upon the variogram is also .
investigated.

~

6.2 Comparing results from hourly
and daily data

Six sites were examined in Chapter 4 with
respect to hourly data. The results for
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Figure 6.1 R(D) against D, with fitted model, for daiy
rainfall: (a) Eskdalemuir and (b} Brisbane record 1

Eskdalemuir and Brisbane were at opposite
extremes with the cther sites grouped in-
between. Eskdalemuir, Brisbane and
Melbourne are thus chosen as representative of
the range of results and climate regimes
studied. Daily data for each of the three sites are
subjected to the same analysis as the hourly
data, rendering correction factors, p°, for each
record. Details for the daily data are contained
in Appendix C.

Examples of the graphs of R(D) against D, with
the fitted model, are shown in Figure 6.1. The
complete set of results is detailed in Table 6.1.
Figure 6.2 illustrates that the range of correction
factors for the daily data is similar to that for the
hourly data. At Eskdalemuir, the single result for
daily data is notably lower than those for the
hourly data; this is not repeated at the other two
sites, however, and is thought to be a peculiarity
of the particular daily record.

Hourty

Daily

X
X
3

X

112 114 118 1138 1.20

Figure 6.2 Comparison of correction factors denived
from hourly and daily rainfall data at the same sites

6.3 Coarsening hourly data

The eight consecutive hourly records available
at Eskdalemuir and Ringway enable deliberate
coarsening of the data to obtain four 2-hourly,
two 4-hourly and one 8-hourly record at each
site. Extracting the values of p* for each allows
possible sensitivity of the correction factor to
resolution to be explored.

The results are detailed in Table 6.2 and
illustrated in Fig. 6.3. Details of the 2, 4 and 8-
hourly records can be found in Appendix C. For
Eskdatermnuir, the correction factors appear to
be decreasing up to the 4-hourly resolution,
although the pattern does not extend to the 8-
hourly record. No pattern emerges for the
Ringway data. The two sites considered



together portray the same range of correction
factors at each resolution.

Table 6.1 Values of p* for rainfall records of varying
resolutions

Site Hourly data Daily data
record p record o'
Eskdalemuir: A 1.169 1 1.129
B 1.160
C 1.162
D 1.180
E 1.160
F 1.177
G 1.170
H i.158
Melbourne: A 1.175 i 1.161
B 1.157 2 1.165
C 1.164 3 1.165
D 1.135
E 1.150
Brisbane: A 1.139 1 1.186
B 1.151 2 1.148
C 1.124
D 1.147
E 1.162

6.4 Results for other daily records

Table 6.3 shows the values of parameters a and

b for the 21 daily rainfall records available to the

study (which includes those discussed in
Section-6.2 above). The arithmetic mean for
parameter ais 0.165 as compared to 0.158 for
the set of hourly rainfall records. The geometric
mean for parameter b of 0.357, as compared to
0.571 for the hourly records, represents a
slower growth rate to the limiting value. As with
the hourly data, however, the values for b are
rather variable and so the geometric mean
obtained is used as a broad guideline in the
implementation of the full correction model.
Note that whilst the hourly data are from sites in
the UK and Australia, the daily data also include
some South African sites.
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6.5 Variograms

Clear systematic changes with data resolution
are observed with respect to the variograms
and effective fractal dimension, d., as defined in
Chapter 5. This is illustrated for the Eskdalemuir
site in Figure 6.4 in which log-log variograms at
each resclution are shown. As the resolution
coarsens, the variograms become flatter, giving
rise to higher values for d... At resolutions of one
hour and shorter (not shown), approximate
linearity over small lags enables a reasonable
estimate of the gradient (and thus d.). At coarser
resolutions, however, the sill {S(h)=2) is
reached sooner and the behaviour at small lags
becomes indiscermble; for this reason, no
attempt was made to extract and compare
values for d, in the examples. Analysis of other
data shows the same systematic behaviour.

Table 6.2 Values of p* for rainfall records of varying
resolutions

Resolution  Record Eskdal::mﬁir Ringway
p p
1 hour A 1.169 1.159
B 1.160 1.153
C 1.162 1.154
"D 1.180 1.148
E 1.161 1.166
F 1177 1.169
G 1.170 1.162
H 1.158 1.144
2 hours K 1.165 1.158
L 1.163 1.181
M 1.166 1.172
N 1.158 1.152
4 hours X 1.155 1.162
Y 1.160 1.152
8 hours 2 1172 1.166

In the theory (Constantine and Hall, 1994; Dwyer
and Reed, 1994), the fractal properties are
defined by the behaviour of the variogram as
the lag, h, tends to zero. Since it is not possible
to rmeasure at an infinitesimal resolution, the
estimates of fractal dimension obtained using
finite resolution data assume that the observed
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linearity continues with the same gradient as h
decreases to zero. Hence, the systematic
changes, observed in the rainfall variograms,
merely indicate that the limiting linear behaviour
is poorly estimated at the coarser resolutions.
Indeed, analysis of sub-hourly rainfall data
suggests that a resolution of one hour is not fine
enough to reveal the limiting fractal behaviour,
whereupon the estimates of d_ for rainfall in
Chapter 5 are particular to the one hour
resolution.
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Table 6.3 Values of parameters a and b for varicus

datly rainfall records 6.6 Conclusions

Over the range of scales studied (one hour to 32
Site Record 2 b days), there is no indication of systematic
changes in rainfall correction factors. Thus,

UK: . .
_ correction factors for maxima of several hours
Alwen Reservoir : 0.148 0.648 duration, are, on average, similar to those for
Creech Grange . . 0.179 0.349 maxima of several days duration. The qualifier
Edinburgh ) 0.167 0512 “on average'" should be stressed, however, for
Eskdalermuir _ 0.120 073 correction factors may change systematically
Etton on the Welland with time scale at a particular site if, for
n the Wellan ' 0.174 0.1%0 example, the typical rainfall profile changes
systematically (see Chapter 4). The analysis of
Australia; several daily rainfall records suggested that the
Brisbane I 0.186 0.251 growth rate, as measured by parameter b, is
5 o148 0157 generally lower than for hourly records but still
’ ) rather variable.
Hobart . 1 0.142 0.757
2 0.164 0.159 In contrast, the variograms for rainfall do change
Melbourne 1 0.161 0.404 systematically with time scale: as the resolution
5 0.165 0175 becomes finer, a better appreciation of the
' ' fractal behaviour is obtained.
3 0.165 2.039
Perth l 0.167 0.451
2 0.175 0.315
Sydney 1 0.167 0.456
2 0.166 0.323
South Africa:
Cape Town . 0.185 0.353
Durban . 0.176 0.106
Johannesburg . 0.174 0.292
Richmond . 0.154 0.303
Upington . 0.163 0.527
means: am: 0.165 gm: 0357
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1 Additional investigations

1.1 Catchment average rainfall

The rainfall results presented so far relate to
point (single gauge) rainfall data. In order to
mvestigate differences between point and
catchrnent rainfall, the Alwen at Druid catchrnent
was selected for study, covering an area of
185km? in north Wales. Catchment rainfall is
calculated by averaging across 22 gauges, each
weighted according to its estimated long-term
average annual ranfall. A standard record of 15-
minute catchment rainfall is then compared with
a 15-minute poeint rainfall record, covering the
same period, for a gauge centrally located
within the catchment.
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The calculation of catchment rainfall necessarily
has a smocthing effect: catchment rainfall
events tend to start and stop less abruptly and
have more uniform profiles than point rainfall
events. Evidence for this can be found in the
summary statistics for the two records
(Appendix C) and the values for N (with the
catchment value being the larger). Perhaps the
most convincing support, however, is found by
simply companng graphs of the time series
(Figure 7.1). According to the reasonng
outlined in Chapter 4, longer event durations
imply larger correction factors, as do more
uniform hyetographs (Appendix A), whereupon
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Figure 7.1 Time series of 15-minute rainfall accurnulations at Alwen at Druid: (a} point rainfall and (b) catchment

rainfall




catchment rainfall might be expected to require
hugher correction factors than point rainfall.
Subjecting the two records to the usual analysis,
catchment rainfall renders a correction factor
p'=1.190 as compared to p'=1.169 for point
rainfall. The latter is outside the former’s 98%
confidence mterval (pertaimng to the regression
fit) and so it appears that the catchment rainfall,
in this case, does indeed require a higher
correction factor than the point rainfall.

The smoother, less intermiittent nature of
catchment rainfall also implies a lower effective
fractal dimension (d.=1.657 is observed for the
catchment rainfall record as compared to
d.=1.817 for the point rainfall record). If they are
considered as separate climate variables then
the results of Chapter 5 would suggest that
catchment rainfall requires lower correction
factors than point rainfall, which is in
contradiction to the above findings. This
suggests that, in terms of the fractal analysis of
Chapter 8, catchment and point rainfall cannot
be regarded as distinct climate variables
between which d,, can discern different
correction properties. However, as only a single
record has been studied, it is recognized that a
more extensive investigation is required before
any firm conclusion can be drawn.

1.2 Instrumentation

There are a number of types of instrument for
measuring rainfall accumulations. The one
chosen for a particular site will depend upon

funne
double
bucket

magnet
circuit

K y

\ J

to electronic recorder

Figure 7.2 Principle of the tipping bucket raingauge
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Ratio, R(D)

such things as cost, the accuracy and resolution
demanded by the application, and the
climatology of the region.

The hourly rainfall data analysed in Chapter 4
are derived from tilting syphon raingauges.
Rain-water is funnelled into a small drum
containing a float which operates a pen; as the
water level rises, the pen traces a graph on
paper attached to a rotating cylinder. When the
water reaches a certain level the drum tilts,
causing a syphon to operate which drains the
water away. The trace 1$ used to exiract
accurnulations (in units of 0.1mm) for each hour.

Alsc popular for measuring hourly rainfall is the
tipping-bucket rain gauge. A double bucket is
counter-balanced by a magnet below to form an
arrangement resembling that in Figure 7.2. As
the bucket beneath the funnel fills, the balance is
tipped, causing the pendulum to swing. The
movement of the magnet triggers an electric
circuit connected to a time-recording device;
the tipping of the bucket causes it to empty
while the second bucket takes up the position
beneath the funnel untll the reverse swing
occurs. The size of the buckets determines the
volumetric resolution of the data and the tip-
times recorded can be converted into rainfall
depths for each hour.

The sensitivity of the values of R(D) is
investigated with respect to the choice between

1.30+
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Figure 7.3 R(D) against D for tilting syphon data
(graph 1) and simulated tipping bucket data of
resolutions 2.0 mm (graph 2) and 10.0 mm (graph 3)
for Eskdalemuir hourly rainfall record C



tilting syphon or tipping bucket devices. The
tilting syphon data for one of the Eskdalemuir
hourly rainfall records (having a resolution of
0.1mm) are used to synthesize tipping bucket
data for bucket sizes corresponding to rainfall
depths of 0.2, 0.5, 1.0, 2.0, 5.0 and 10.0
millimetres. This is achieved by calculating a
running total for the original data until the bucket
size is exceeded: the total, rounded down to the
nearest multiple of the bucket size, is assigned
to the hour in which the exceedance occuwrred
and the remainder carried over to a restarted
running total. As the bucket size is increased,
the rainfall profiles become concentrated into
fewer, higher peaks. -~

For each bucket size simulated, the graph of
R(D) against D is compared with that for the
original (tilting syphon} data. Up to a bucket size
of about 2.0 mm, only slight differences are
observed; larger differences become apparent,
particularly at small D, for the 5.0 and 10.0 mm
buckets. This is illustrated in Figure 7.3 which
compares results for the ongmal, the
synthesized 2.0 mm and the synthesized

10.0 mm data. Of course, 10.0, 5.0 and even

2.0 mm buckets are too large for discriminating
hourly rainfall in the UK. Thus, it appears that
R(D) is insensitive to the choice between tilting
syphon and tipping bucket devices provided
the instrument resolution is apt for the purpose.
This conclusion is supported by similar results
for other data records.

1.3 Instantaneous data

The correction factors discussed so far arise
because the data are discretized in the form of
averages (or accumulations) measured over
some time interval. Another form of
measurement discretization is that of "spot
sampling” whereby instantaneous readings are
taken at reqular (or itegular) time intervals. A
lack of knowledge of the process between
sampling times means that the instantaneous
maximurn (over some sampling period) is, in
general, missed. The maximum of the spot-
sample readings is therefore an under-estimate
of the true instantaneous maximum. This
problem is quite different from the one
discussed up to now in terms of both the reason
for under-estimation and the applications (those
concerned with instantaneous rather than
accumulated maxima). Consequently, the
discussion here is brief, recognising that the
problem deserves a full, separate investigation.

Attention was drawn to the problem from river
water quality standards in general, and a
particular application where the Hydrogen ion

concentration in upland streams is of interest
(Robson, 1993). Maximum H-ion concentration
may be relevart, for example, to the survival of
living organisms in the stream. Typical spot-
sampling intervals for the measurement of
stream chemistry can be as long as cne week.
Such infrequent measurement can severely
under-appreciate extremes. To investigate the
extent of under-estimation, one record,
containing 2" data values of 15-min
instantaneous H-ion concentration in the Upper
Hore is analysed. The stream drains a 1.78km?
sub-catchment of the Wye basin of Plynlimon in
mid-west Wales. Concurrent flow data, again
sampled at 15-minute intervals, are also
examined.

For each record, the maximurn recorded value,
max(1), is extracted. By discarding every other
data point, the record can be artificially
degraded to simulate a sampling interval of 30
minutes. Two such degraded, or thinned,
records can be obtained: the first by discarding
even-numbered data peints, the second by
discarding odd-numbered data points. Each is
said to have been thinned by a factor {=2 since
there are 1/f as many data points as in the
original record. The maximum of each record is
denoted by max (2) and max,(2). In general,
thinning by a factor f results in f records with
corresponding maxima max (f), maxz(f)

max(f). Note that one of these maxima wﬂl
necessanly coincide with the maxirnum of the
original record, max(1). The ratios

) 7.1

R() =

max(1)

(for i=1,....f) measure the degree to which the
maximum max(1) is under-estimated due to
thinning by the factor f. For positive data,

O<R (D=l

This analysis system, of utilizing all the possible
thinned records obtainable for a given thinning
factor f, yields a distribution of ratios which is
representative of the range of ratios to be
expected. These distributions are depicted in
Figure 7.4 for various values of f for the H-ion
and flow records. Each box and whisker symbol
indicates the mean (cross), median (horizontal
bar), lower and upper quartiles (bottom and top
of box) and the maximum and minimum (top
and bottom whisker ends); these summarize the
shape of the ratio distribution for each value of {.
The maxirmum value for f of 672 corresponds to
a sampling interval of one week. For flow,
average ratios decrease rapidly and the
distributions become more skewed as f
increases. For H-ion concentration, the average
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Figure 7.4 Box and whisker plots illustrating distribution for ratios R(D for (a) flow and (b) H-ion concentration

ratios decrease more steadily and the
distributions remain relatively symmetrical.

The median values, denoted by R_(f), are
examined with respect to their vanation with f.
The median is favoured over the mean since, for
distributions with long thin tails — such as those
for the flow ratios — it is a more robust measure
of location. Various plots were used to uncover
an appropriate relationship for both flow and H-
lon concentration. Linearity in semi-log plots
suggests the exponential relationship

R.(N = expla(f-1)] 7.2
where o<0 is a parameter. Only points for
which R_(£)>0.5 are examined; otherwise a
correction factor greater than 2 would be
required, suggesting that the data are simply
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inadequate for the purpose of estimating
extremes, and that measurement practice
should be revised.

The semi-log plots, fitted with least-squares
regression lines obtained by the regression of
In(R ) on{, are shown in Figure 7.5. The
regression fit for flow is good (r?=0.987, where r
1s the correlation coefficient) and extends to a
thinning factor =36 (corresponding to a
measurement interval of nine hours) before the
median ratio falls below 0.5. The regression
coefficient, which corresponds to the parameter
o in equation 7.2, is estimated as o=-0.0179. For
H-ion concentration the fit is less good
(r?=0.918) but extends as far as {=528
(corresponding to a measurement intervat of 5.5
days). The regression yields a=-0.0012. Both
graphs appear to display a slight cyclic pattern
of residuals about the regression line.



These results might be applied as follows.
Given instantaneous data for flow or H-ion
concentration measured at regular intervals of
T>15 minutes, the maximum, m.. is obtained.
The maximum as if measured from 15-minute

data, m;, can then be estimated using the
equation
m
mg = T 7.3
R_(f)

where the denomunator, R _(f), is calculated from
equation 7.2 with {=T/15 and the appropriate
value for a(-0.0179 for flow and -0.0012 for H-
ion concentration) . If R_(f)<0.5 then the practice

@

of applying a correction factor in this way is not
to be recommended.

The above formulae and method have not been
generalized to other catchments or hydrological
variables and the sensitivity of the results to
period length, data resolution etc. have not
been examined. It is therefore suggested that a
more comprehensive study of this problem may
be required. Nevertheless, the relationships
found are promising in their limited context and
may provide a starting point for a more
exhaustive investigation. The “data thinning"”
problem may be amenable to other analytical
techniques.

Thinning factor,
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Figare 7.5 In(R (§)) against f with regression lines,
for (a) flow and (b) H-ion concentration
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8 Recommendations

The measurement of an environmental process
often produces data which are discretized.
Using such data to analyse extremes will, in
general, under-appreciate the true extremes of
the process; estimates of extremes based upon
the data therefore require correction.

Where applicable, the conclusions of each
chapter are consolidated into practical
recommendations for making corrections to
mean period maxima (or minima). Moments of
higher order than the mean do not, in general,
require correction.

8.1 Correction factors for point
rainfall

The following advice relates to rainfall time-
series data for a single gauge, measured as
accurnulations over a fixed time interval.

Maxima of duration one to 32 hours,
measured from sub-daily data

For data in this category, the full correction
model as described in Section 3.5 may be
applied. Using parameter values of a=0.16 and
b=0.57, a number of types of correction can be
performed:

® converting fixed to sliding maxima using the
multiplier p(D) for 2<D<32 ;

converting fixed to true maxima using the
multiplier p” for 1<D<32 ;

converting sliding to true maxima using the
multiplier a(D) for 2<D<32 ;

converting sliding to sliding maxima, from
resolution 7 to resolution t'<t, using the
multiplier B(D) for 2<D<32 and 1<1t<D .

Where

p(D) = 1+a[l-exp{-b(D-1)}] 8.1

p' =lim p(D) = 1+a 82

D

L

p

Dy =
“D =20

83
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_ p(AD)

B(D
) D)

s A=t/ 8.4

For a full explanation refer to the model
description in Section 3.5 which is
supplemented by numerical examples.

The special case of daily rainfall

Special guidelines apply when converting fixed
to true maxima for daily rainfall. As well as the
correction factor p'=1.186, as suggested above,
correction factors of 1.15 and 1.17 may also be
employed: the former for sites with rainfall
regimes which tend to generate concentrated
events of short duration (such as tropical
storms), the latter for sites with rainfall regimes
tending to generate longer events (such as
those produced by large frontal systems).

Maxima for longer durations, measured from
daily data

There is no evidence to suggest that the
parameter a is, on average, any different for
daily data than for hourly data. The parameter b
does, however, appear to be typically higher for
daily than for hourly data. Thus, for rainfall
durations between 32 hours and 32 days, itis
recommended that the full correction model is
used with parameter values a=0.16 and b=0.36.

8.2 Correction factors for other
variables

The correction factor p* was investigated for
other environmental vanables. It was found that
the roughness (intermittency and erraticness) of
the variable, as measured by the effective
fractal dimension d,, bears a relation to the
magnitude of p* for that variable as indicated by
Figure 5.3. These results can be utilized as
follows:

® For wind speed maxima of duration one to
64 hours, use the correction factor p'=1.10
for converting fixed to true maxima.

For air temperature maxima of duration one
to 64 hours, first estimate the lower 1%
quantile, L, for the mean hourly air
temperature at the site (see below). Then
calculate the true maximum T from the fixed
maximum F using



T=p'F - (p*-1)L 8.5

where p*=1.04,
® For air temperature minima of duration one
to 64 hours, use the same correction

procedure as for air temperature maxima
but replace L by the upper 1% quantile, U.

Since it is the absence of hourly data that
necessitates the above comrection procedure,
the quantiles L and U cannot be calculated from
data directly. However, they may be estimated
from air temperature statistics for the site in the
following way:

@ Find the long-term averages for daily mean,
daily maximum and daily minimum air
temperatures. Denoting these by p, M and m
respectively, estimate L and U using

L
U

p+3.4(m-p)
k+3.4(M-p)

8.6

The coefficient 3.4 is based upon observation at
the study site (Eskdalemuir). The statistics p, M
and m are available for various sites in the
World Survey of Climatology series (World
Meteorological Organization, 1970).
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Regarding other environmental variables at a
site, limited use can be made of Figure 5.3 to
indicate an approximate value for the correction
factor p*. Some hourly data for the variable are
required to enable an estimate to be made of
the effective fractal dimension d, of the variable
at the hourly resolution; if transferred from
another site, the data used should at least
exhibit broadly similar characteristics to those
expected at the subject site. The relationship
between d,. and p” indicated in the figure can
then be assessed by eye to infer a value for p”.
Finally, an estimate of the 1% quantile for hourly
data should be obtained and used in equation
8.5 above to perform the conversion.

8.3 Further research

Further research is warranted into the
correction of extrernes observed from “spot
sampled' measurements. The approach
detailed in Section 7.3 could be considered as a
candidate although other methods might be
appropriate.

A more extensive investigation into correction
factors for catchment average rainfall, as distinct
from point rainfall, may also be justified.
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Appendix A: Comments on Weiss (1964)

A.1 Weiss’s formulation

Weiss's theoretical treatment of the
discretization effect resembles the following
formulation.

Let the true maximum, T, occur in a time interval
XY which straddies the two fixed intervals AB
and BC depicted in Figure A.1. Without loss of
generality, let the interval width be of unit length
(|XY|=|AB|=|BC|=1). Denote by x, the
proportion of the interval XY overlapping BC.

The following assumptions are made (only (a)
and (b) are alluded to by Weiss):

(a) on average, the rainfall profile within XY is
uniform;

(b) The interval XY is randomly placed within
AC and so the probability distribution of x is
uniform,;

{c) The fixed maximum, F, arises from one of
the intervals AB or BC (whichever contains
the majority of the rainfall in XY);

(d) No rainfall occurs in AC other than that in XY.

Given these assumptions, Weiss argues that the
expected value of x for x> is

) :xdx = 38 Al

For x<¥%, the larger proportion of XY is in the
fixed interval AB. Since it is only the largest
proportion that is of interest in calculating the
fixed maximum, Weiss forces the expected
value of x for x<!z to equal ¥, concluding that
the expected value over the entire range is
therefore 1/2 + 3/8 = 7/8. This produces an
average ratio of the true to fixed maximum of
8/1 (i.e. 1.143).

Figure A.1 Position of true maximum T relative to the
fixed intervals AB and BC
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These theoretical arguments are clearly flawed,
a proper statistical formulation is required.

K.2 A proper formulation

Let the random variable X=x, as defined above,
have the probability density function {(x).
Defining the random variable Y as the largest
proportion of T overlapping one of the fixed
intervals, assurnption (a) gives

- _ f1-x for x<12 A2
Y=y {x for x21/2
The expected value of Y is
1
E(Y) - fo Yx)dx A3
Assumption (b) gives f(x)=1, whereupon
- (2 !
E(Y)= fo (1-x)dx + fmxdx a

= 3/4
Assumptions (c) and (d) then give F=%T. Thus,
Weiss should have arrived at the correction
factor T/F = 4/3 = 1.33, much higher than
actually suggested.

A.3 Examination of the assumptions

Let the assumptions (a) - (d) be examined in
turn.,

Assumption (a)

If a large number of high intensity rainfall
profiles are literally averaged, the result may
well approximate uniformity. However, it is the
typical profile that is important in the
determination of the correction factor and this is
unlikely to be uniform. An alternative
assumption is that of a symmetric triangular
distribution which, after a little simple geometry,
renders

1-2x2 for x<l1f2

1-2(1-xp for =x212 A®

Y=y(x)={



Assumption (b) then gives

E(Y)= fom(l-sz)dx + f1 ;2[1—2(1—x)2]dx
[x—jxi*]:" [x+ 21 x)3]

= 5/6

Ab
12

Under this alternative model, assumptions {c)
and (d) imply F=(5/6)T which renders a
correction factor of T/F = 6/5 = 1.20. This is still
higher than Weiss's suggestion but much closer
than 1.33 to empirical results. Other forms for
the distribution of rainfall within XY will result in
different correction factors.

Assumption (b)
This demands that no trends or cycles exist in
the rainfall over time-scales comparable to the
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duration of the maxima. This is reasonable for
the UK but not for other locations, such as the
tropics, where rainfall experiences strong
diurnal cycles.

Assumption (c)

This assumption ignores the possibility of the
fixed maximum arising from a separate event
which is better synchronized with the fixed
intervals (as illustrated in the introduction by
Fig. 1.1). This is a likely occurrence when the
true maximurmn is divided almost equally
between fixed intervals (i.e. for Y close to '2).
Therefore, less weight should be given to small
values of Y, whereupon E(Y) is increased and
the theoretical correction factor, T/F, further
reduced.

Assumption (d)

The presence of rainfall in AX or YC will tend to
increase the fixed maximum F and thus also
reduce the correction factor.



Appendix B: Sliding intervals that
straddle borders

To ensure that events occurring across the
border of two periods are not missed, a
convention is adopted whereby a sliding
interval which is split across the border is
assigned to the period in which it is mostly
contained; if it is equally split between them
then it is assigned to the first period (Fig. B.1).

Chate
vanabla

F 3

pencd | period 1+1

Figure B.1 Border intervals for duration D=4. In
searching for the sliding maximum for each period, the
accumulations I, and 1, are assigned to sample i
wheras I,is assigned to sample i+]

Equally, a border event must not be 'counted
twice' in the sense of it contributing to the
sliding maximum for both periods. Thus, if the
sliding maximum for the first period straddles
the border then the sliding intervals assigned to
the second period must not include those which
overlap with this maximum (Fig. B.2).

cmate
vanabla

period « penod i+1

Figure B.2 If, for duration D=4, accumulation I is the
sliding maximum for period i, then the first sliding
accumulation to be assigned to period i+1 is v, since it
does not overlap with accumuiation I,
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Appendix C: Data summary

Each record is found under its appropriate site-name, these being arranged al-
phabetically. The exception is for sites where only daily rainfall records are
detailed - these are grouped together at the end under the title Other daily
rainfall records.

For each site, the records are divided according to resolution and variable-
type; for example, hourly rainfall, daily rainfall, hourly wind-speed etc. Vari-
ous details are given for each record as explained below in the key. Where a
particular detail is not calculated, a period (.} is entered. Each receord con-
sists of 16384 (2') data values.

Key

record: where more than one record exists under a particular heading, a distin-
guishing label has been assigned to each (as referred to in the main text).

dates: the time-period covered by the record. Format: DDMMYY for the case where
YY refers to the 20th Century, and DDMMBYY for the 19th Century.

mean: arithmetic mean of all data values. Rainfall is given in millimetres, wind
speed in knots (1 knot =0.514 m.s™? and air temperature in degrees Celsius.

cv and skew: respectively, the coefficient of variation and skewness of all data
values.

d,(x): effective fractal dimension with error pertaining to the 95% confidence
interval derived from the regression analysis.

a{z): value of parameter a in the correction model with error pertaining to the
95% confidence interval derived from the regression analysis.

b, a’, D : respectively, the values of parameters b, a‘, and D__in the cor-
rection model.

L1, L2, L3: L-mean and L-moment ratiocs (L-cv and L-skewness respectively)} of
period maxima/minima for duration D=1. See Hosking (1990). Ll is expressed in
the same units as mean.

Abbreviations

Alt. - altitude
AAR - average annual rainfall

SAAR - standard period (1941-70) average annual rainfall

Blte-name: Alwen at Druid (carchment 67006}

Location: North wales

Particulare: Catchment area 185km?, SAAR 1260mm; gauge 59 centrally located , Alt. 350m, SAAR 1250mm
Climate: Cool temperate; mainly frontal rainfall

. Record & dates _ mean __cv  skew dp(2) afz) : b a’ D, L1 L2 L3
-m3i * raj o T N
. 010772-181272 .028 4.39 7.5 1.850(+0.051) 0.190(:0.017) 0.111 . b4 0.3 .491 .212
iS-minute point rainfall (gauge 59)
010772-181272 .029 4.94 11.7 1.817(+0.074) 0.169{=0.033) . .32 0.5 .491 .421




8ite-name: Brisbane

Location: East coast of Australia
Particulars: 168 missing values among hourly series; Alt. 42m, AAR 1092mm

Climate: Warm temperate / tropical; susceptible to tropical cyclones in summer season

Record & dates

Hourly rainfall
120216-251217
040434-150236
190340-300142
020B47-140649
061153-100855

Mmoo o

E

1 0101887-111131
2 011231-091076

mean

.12
.11
.08
.13
.16

L= = R o T B

2.98
3.11

cv

.47
.49
.01
.08
.99

.65
.69

skew

15.
22.
42.
15,
i5.

oK WY

o =

e

a.(t)

.883(z0.
.924(20.
.915(20.
.070}

.862(10

.853(x0.

083)
047)
050}

059}

[= R o B B o }

afzt)

.139(£0,016)
,151(x0.009)
.124(+0.016)
.147(x0.015)
.162120.022)

.186(£0.104)

.14B(£0.135)

b
0.723
0.657
0.208

0.251
1.157

o oo o

a’

.138
.152
.128
.154
.is2

DM x
32
32
32
32
32

64
32

L1

10.
13.

g.
11.
12.

120.
133.

W o bW

Lz

.517
.452
.585
.411
.427

.276
.222

L3

L3656
.331
.503
.144
.335

.445
.278

Site-name: Eskdalemuir
Locatlion: Scuthern Uplands,
Particulars: Tilting syphon raingauge, Alt. 250m; AAR 1527mm; cup anemometer
Climate: Cool temperate;

Record & dates
Hourly rainfall
010170-141171
141171-270973
270973-100875
110875-230677
230677-070579
070579-190381
200381-310183
310183-141284
2-hourly rainfall

T O MmO nNo

K 010170-270973 0.29
L 270973-230677 0.32
M 230677-190381 G.37
N 200381-141284 0.37
4-hourly rainfall
X 010170-230677 0.61
Y 230677-14128B4 0.74
8-hourly rajinfall
010170-141284 1,35
] infall
. 010111-101155 4.24
Hourly wind gpeed
A 010170-141171 B8.8%
B 141171-270973 B8.6%
C 270973-100875 9.70
D 110875-230677 8.77
E 230677-070579 9.41
F 070579-190381 B8.42
Hourly air temperature
B 141171-270973 7.19
E 230677-070579 6.48
F 070579-19038% 6.94
G 20038B1-310183 7.38
H 310183-141284 7.88
I 141284-261086 6.35
J 271086-0B0988 6.79

mean

.15
.14
.16
.15
.18
.19
.21
.16

(=T =R o B N = o R = B o ]

LOVI U U U FE R PUR W W)

[FS I FERRFE RN

[ %]

CoOoODoOoO

0.

0.

cv skew
.63 6.6
.74 6.6
.52 6.5
.53 6.0
.58 7.3
.32 5.9
.41 6.0
.73 7.6
.32 6.0
.18 5.6
.13 6.2
.24 6.1
.87 5.0
.83 5.2
.44 4.5
.70 2.9
.75 0.%
.77 0.8
.74 1.0
.76 1.0
.74 0.9
.74 0.9
- maxima
- minima
74 0.2
92 -0.1
.76 -0.1
.78 -0.3
.74 0.3
.89 -0.1
.79 0.0

Sceotland

o R e e

HOH O R e

1

1

1

dg(+}

.769{z0C.
L733(10
.770(£0
L779(10
L741{x0.
.761{z0C.
.794 (10,
.764 (0

.490(z0

514 (0.
494 (10,
.504 (0.
507 (20,
.027})

.499(£0

.251 (20,
.264 {0
.243 (0.

.320(20

.217 (20

.253(=20.

.237(0

043)

.056)
.062)
.058)

102)
043)
027)

.052)

.034}

034)
022)
027)
026}

015}

L0071

015}

.004}

.025)

015)

.020)

COoOCOoOQ OO0

o 0O o O

o

frontal rainfall with autumn/winter bias

alt)

.169(x0.,012)
.160(£0.014)
.162(+0.011)
.180(10.015}
L161¢£0.011)
L177(20.018)
.177(10.018)
.158(+0.011)

.165(x0.014)

L163(x0.011)
.166 (£0.020)

.158(20.012)

.155(£0.011)
.160{20.013)

.172(+0.015}
.129(£0.007)

.105(£0.007)
.098(x0.007)
.138(£0.024)
L107(£0.008)
.094(x0.006}
.08%(+0.005)

.042(£0.004}
.040(£0.003)
.032(20.002)

.042(20.002)

.036(£0.003}
.044(£0.004}
.031(%0,002)

.043¢20.003)

.041(20.003)
.040(20.002)
.038(£0.003)
.040(£0.004)
.034(20.002)
.041(10.003)

.388
563
.B41
.402
.700
L3330
.330
.564

H O OO0 oOo

.526
.B17
.423
.309

H O OO

(=]

.3BO
0.486

0.233
0.730

0.072
0.066
0.032
0.063
0.072
0.096

COoO0 00000

L1790
.159
.163
.180
L161
.175
.175
.158

BAK

32
32
32
32
32
32
32
32

32
32
32
32

32
32

32

32

64
64
64
64
64
64

10.
10.

15.
18.

28.

53.

29.
28.
30.
29.
30.
27.

Wiy Lnon Uoun o in
oy 0 DB W

o0 w o -

[
o

i

[ RPN - R

O U N ANU - D

Lz

.252
.243
.2B4
. 207
.272
. 215
.278
. 307

L1990
.179
.2490
.216

.155
.155

.163

.138

.126
.121
.139
.156
.131
.125

L3

.181
.057
.285%
.105
.220
.112
.087
.235

.032
.074
.173
.004

.033
.083

.198

. 245

.0c2
.037
.187
070
.083
.196



8ite-pame: Leeming

Location: North Yorkshire,
Particulare: Alt. 32m; SAAR 61lmm; tilting syphon raingauge

Climate: Cool temperate; frontal rainfall predominates in winter, convective in summer

Record & dates

Hourly raipfaill
010178-141179
141179-260981
270981-100883
110883-230685
230685-060587

mo oo

mean

0.07
0.08
0.07
0.07

east of Pennines

cv

skew

d.(z)

L772(20.044)
.B12(+0.067)
.783(£0.0861)
.766{20.068)
L7661(20.068)

R b e

afs)

0.171(20
0.168(x0
0.126(20
0.155(%0
0.151(%0

.018)
.015}
.018}
.014)
.0186)

b

LTE7
.796
.B65
.038
.387

o0 o000

.170
.168
2126
.156
-152

10

S

32
32
32
32

L2

.276
.361
.282
.346
.311

Site-nams: Melbourne
Location: South east tip of Australia
Particularse: 24 missing values in record B:; Alt. 35m, AAR 69%1mm

Climate: Warm temperate;

Record & dates

Hourlv rainfall
211253-031155
241162-061064
070544-200346
0%0932-230754
100757~-230559

mogntwi»

E

1 0104855-080200
2 (010300-080145
3 010245-111289

mean

.09
.08
.07
.08
.08

[= N = B o B )

1.75
1.76
1.79

oy dh o~

cv

.35
.14
.57
L38
.83

.75
.82
.85

skew

17.
i2.
17.
13.
13.

~ W h oo

dy i)

1.834(£0.077)
1.793(x0.089)
1.797(10.044)
1.785(£0.060)
1.857(+0.040)
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S8ite-name: Ringway

Location: Manchester airport, North-West England

Particularse: Alt.
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Site-name: Sydney

Location: South-east coast of Australia

Particulars: 133 missing values among hourly records; Alt. 42m, AAR 1205mm
Climata: Warm temperate; predominantly frontal rainfall, slightly higher in autumn

Record & dates mean cv skew d.(+) afz) b a’ D, L1 L2 L3
Hourly rainfall
A 200643-020545 0.12 8,35 28.0 1.847(:0.078) 0.144(x0.018) 0.771 0.145 32 11.3 .452 .417
B 020947-150749 0.14 6.40 16.8 1.828{+0.058) 0.160{+0.012) 0.501 0.161 &4 9.4 .436 .269
C 300552-120454 0.14 6.5% 13.1 1.807(+0.076) 0.158(+0.014) 0.612 0.158 32 9.6 .451 .267
D 030561-160363 0.16 7.13 22.3 1.830(+0.113) ©0.176(20.019} 0.261 0.178 32 10.3 .483 .417
E 110663-230465 0.12 7.29 15.5 1.863(x0.112) 0.164(:0.015}y 0.529 0.164 32 8.9 .426 .302
F 250465-080367 0.14 6.44 12.4 1.803(:0.028) 0.169(:0.021) 0.479 0.169 32 8.7 .413 .176
] infal
1 0107858-110503 3.36 3.32 7.1 . 0.167{+0.082) 0.456 . 64 125.8 .188 .193
2 010603-090448 2.95 3,30 7.7 . 0.166(x0.081) 0.323 . 64 114.2 .206 .306
8ite-name: Walton-on-the-Naze
Location: Essex coast, UK
Particulars: Data supplied by Proudman Oceanographic Laboratory, Bidston
Climate: Cool temperate
Record & dates mean cv  skew d.izt} aft) b a’ D,,. L1 L2 L3
Bourly tide residual (metres) - maxima
- minima
010169-141170 -0.73 -9.43 0.5 1.371(x0.100) 0.062(x0.008) 0.172 . 32 40.4 .154 .172
0.047(£0.005} 0.172 . 32 -39.9 -.106 -.227
Other daily rainfall records
Record & dates mean cv  skew dgiz) afzt) b a* D, Ll L2 L3
Alwen Reservoir, Dee, Wales: aAlt. 362m, SAAR 1282mm
010125-10116% 3.60 1.64 2.9 . 0.14B{x0.008) 0.648 . 32 42.8 .120 .275
Cape Town, South Africa: aAlt. 40m, AAR 626mm
011004-100849 1.61 2.93 5.6 . 0.1i85(x0.014) 0.353 . 32 44.9 .224 .328
Creech Grange, Dorset, UK: Alt. 69m, SAAR 947mm
. 010130-101174 2.57 2.09 3.8 . 0.179(£0.011} 0.349 . 32 45.2 .172 .209
Durban, South Africa: Alt. 91lm, AAR 1020mm
010632-100477 2.80 3.46 B.0 . 0.176{+0.011) 0.106 . 64 111.1 .238 .260
Edinburgh, Scotland: Alt. 134m, SAAR 673mm
010108-091152 1.86 2.26 5.2 . 0.167(£0.013) G.512 . 32 40.3 .211 .156
Etton on the Welland, UK: Alt. 1lm, SAAR S536mm
010108-091152 1.38 2.41 4.7 . 0.174(£0.010) 0.190 . 48 29.5 .1%6 .29%4
Hobart, Tasmania: Alt. 54m, AAR 668mm
1 0101695-111139 1.68 2.87 7.1 . 0.142(£0.010) 0.757 . 32 54.0 .204 .227
2 011239-0%1084 1.71 3.09 B.8B . 0.164(£0.008) 0.159 . B4 1.8 .250 .362
Johannesburg, South Africa: Alt. 1737m, AAR 844mm
0109863-120738 2.31 3.1% 7.7 . 0.174(20.013) ©.2%2 . 32 75.2 .250 .425%
Perth, Australia: Alt. 60m., AAR B89mm
1 0101880-101124 2.34 2.65 4.4 . 0.167(£0.009) 0.451 . 32 61.8 .250 .362
2 011224-101069 2.44 2.66 4.4 B 0.175(z0.012) 0.315 . 32 56.2 .i60 .098
Richmond, South Africa: Alt. 1417m, AAR 323mm
010540-100385 0.B% 4.56 7.4 . 0.154(20.012) 0.442 . 32 45.1 .195 .244
Upington, South Africa: Alt. 794m, AAR 151lmm
011139-090984 0.41 6.72 11.2 . 0.1631(£0.015) 0.527 . 32 29.9 .,383 .058
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Appendix D: L-moment ratio diagrams

for R(D)

Graphs showing L-CV and L-skew for fixed maxima (solid lines) and sliding maxima (dotted lines)

for various data records.
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Figure D.1 Eskdalemuir hourly air temperature record G

Duration, D

Figure D.2 ECskdalemuir hourly wind speed record F
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Figure D.3 Melbourne hourly rainfall record B
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Figure D.4 Durban daily rainfall record
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