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ABSTRACT 

 
Where water is denser on a shallow shelf than in the adjacent deep ocean, it tends to flow 

down the slope from shelf to ocean.  The flow can be in a steady bottom boundary layer for 
moderate combinations of up-slope density gradient -ρx∞ and bottom slope (angle θ to 
horizontal): 
  b  ≡  |ρx∞| g sinθ / (f2 ρ0)  <  1. 
Here g is acceleration due to gravity, ρ0 is a mean density and f is twice the component of earth’s 
rotation normal to the sloping bottom.  For stronger combinations of horizontal density gradient 
and bottom slope, the flow accelerates.  Analysis of an idealised initial-value problem shows that 
when b ≥ 1 there is a bottom boundary layer with down-slope flow, intensifying exponentially at 
a rate fb2(1+b)-1/2/2, and slower-growing flow higher up.  For stronger stratification b > 21/2, i.e. 
relatively weak Coriolis constraint, the idealised problem posed here may not be the most 
apposite but suggests that the whole water column accelerates, at a rate [ρ0

-1|ρx∞| g sinθ]1/2 if f is 
negligible. 
 
1.  Introduction 

Dense-water flows down continental slopes are of interest for their irreversible exchange of 
oceanic and shelf waters and their contents, hence ventilation of intermediate and abyssal 
waters, affecting thermohaline circulation.  In particular, down-slope flows can follow winter 
cooling of shallow shelf seas at mid-to-high latitudes.  The process is reviewed in Shapiro et 
al. (2003); an inventory of documented occurrences is given in Ivanov et al. (2004). 

Such “cascading” in its later stages is reasonably described as a steady frictional bottom 
boundary layer (Shapiro and Hill, 1997).  Here the flow has components (i) along the slope, as 
would be implied by geostrophic balance, and (ii) down the slope, as friction breaks the 
geostrophic constraint and allows the denser water to “seek its own level”.  However, 
preconditioning is needed; density on the shallower shelf increases to the point where such 
down-slope flow accelerates (from zero initially). 

Bottom-boundary layers in the presence of density gradients over a slope were analysed by 
Garrett, McCready and Rhines (1993); layer thickness depends on the density gradient and 
slope.  [Thickness of a mixed bottom boundary layer developed under along-slope flow also 
depends on sense of flow: thinner if the flows are in an upwelling sense, thicker if in a 
downwelling sense (Weatherly and Martin 1978; Trowbridge and Lentz 1991).  Boundary layer 
thickness under polarised oscillatory flow of frequency σ < f scales as [ν/(f±σ)]1/2, i.e. the layer is 
thicker under anticyclonically-polarised flow].  Shapiro and Hill (1997) and Baines (2005) 
studied down-slope flows of denser fluid.  Shapiro and Hill’s (1997) analysis assumed 
homogeneous fluid above and neglected acceleration terms.  Baines (2005) distinguished 
detraining gravity currents on small slopes from entraining plumes on greater slopes (in broad 
terms, without rotation; “slope” here represents a combination of slope and density difference).  
These previous studies focused on cases where the base-state density varied only vertically, 
being horizontally uniform. 

Here, we are concerned with a base-state density varying primarily in the horizontal (figure 
1; an up-slope density increase as heat is removed, e.g. in winter, from shallower shelf waters).  
In fact for horizontal gradients of density, the analysis of Garrett, McCready and Rhines (1993) 
still applies (after subtracting the implied geostrophically-balanced flow along the slope; density 
gradient is resolved as components parallel and normal to the sloping bottom).  Their conclusion 
of layer-thickness dependence on density gradient and slope also applies.  In our case (base-state 
density varying primarily in the horizontal) the bottom boundary layer can be arbitrarily thick as 
the up-slope density gradient -ρx∞ and bottom slope θ (figure 1) increase to 
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   |ρx∞|gsinθ = ρ0 f2
where g is acceleration due to gravity, ρ0 is a uniform mean density, f is the Coriolis parameter.  
Shapiro et al. (2003) suggested that this breakdown of a steady bottom-boundary-layer solution 
may be a threshold for the accelerating phase of a cascade; intuitively as the tendency of denser 
water to “seek its own level” strengthens (with slope and density gradient) to break the steady 
frictional-cum-geostrophic balance. 

Here we pursue this suggestion by analysing time-development from a base state with 
uniform slope and up-slope density gradient, balanced geostrophically by flow initially along the 
slope.  Relative to Baines’ (2005) study, we consider an early and upper-slope stage in the flow 
development, viz. initial acceleration from a steady state; we omit the influence of increased 
oceanic density with depth, but include rotation (absent from Baines, 2005). 

The (idealized) problem is formulated in section 2, and analysed in section 3 according to 
the strength of density gradient and slope relative to the threshold for break-down of the steady 
bottom-boundary-layer.  Section 4 presents confirmatory simpler analysis for exponentially 
growing solutions specifically.  The findings are discussed in section 5.  To help present the 
argument, much detailed analysis is separated to Appendices. 
 
2.  Formulation 

We consider a density gradient across a slope (figure 1, upper panel).  An up-slope density 
increase may occur especially as a gradient of (FQ/H), if FQ is heat removed (e.g. in winter) from 
shelf water of depth H.  [Usually winter convection is limited to a finite depth beyond which this 
cause of density gradient ceases; the figure also depicts this, an along-slope velocity (shear) in 
geostrophic balance with the density gradient and a corresponding surface slope]. 

We focus on the bottom boundary layer over a slope.  Co-ordinates x, z are rotated through 
the bottom slope θ so that x is down-slope (figure 1, lower panel).  A base-state density gradient 
(ρx∞x + ρz∞z) can represent any combination of uniform stratification (density variation in the 
vertical) and lateral density variation across the slope.  The following simplifications are made: 
no along-slope (y) gradients (uy = vy = 0 = py) for the simplest context; no diffusion parallel to 
the bottom (consistent with uniform base-state density gradient); negligible cross-slope 
advection of momentum in the boundary layer (linearization); Boussinesq approximation 
(uniform density in the acceleration and viscous terms).  Equations of motion including all 
Coriolis components and gravity in the θ-rotated coordinates are then 

 ut + fyw – fzv = - px / ρ0 + gρ/ρ0 sinθ + (νuz)z  (1a) 

 vt + fzu – fxw  = (νvz)z         (1b) 

 wt + fxv – fyu = - pz / ρ0 – gρ/ρ0 cosθ       (1c) 

 ρt + uρx + wρz  = (Kρz)z        (1d) 

  ux + wz = 0         (1e) 

Boundary conditions are 

 ρx → ρx∞ , ρz → ρz∞ ,  as z → ∞ 

 u, w → 0, vz → - g ρH / ρ0 fz as z → ∞   (on the boundary-layer scale (ν/fz)1/2) 

 u, v, w, ρz = 0    at z = 0. 

Here (u, v, w) are (x, y, z) components of velocity, p is total pressure, g is gravitational 
acceleration ~ 10 m s-2, ρ (total density) includes uniform constant mean density ρ0 ~ 103 kg m-3, 
ρH is the base-state horizontal density gradient (ρx∞ cosθ + ρz∞ sinθ), the earth’s rotation vector is 
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(fx, fy, fz)/2 (for small slopes fz ~ Coriolis parameter of order 10-4 s-1),  ν is vertical viscosity and 
K is vertical diffusivity ~ 10-2 m2 s-1.  Subscripts x, z, t denote differentiation. 

Given the stated approximations, (1) are standard.  With stratification (vertical gradient of 
density) gρx∞ = ρ0 N2 sinθ, gρz∞ = -ρ0 N2 cosθ, (1) correspond with Garrett, McCready and Rhines 
(1993) except that (1) include all Coriolis components.  The boundary conditions reflect a focus 
on the bottom boundary layer where the flow and normal gradient of density tend to zero on the 
bottom.  Thus the system reduces to bottom Ekman-layer equations if θ, fx, fy, ρx∞, ρz∞ and time-
derivatives are all zero (for example, with some non-zero flow as z → ∞).  Also in the same 
sense as a bottom Ekman layer and Garrett, McCready and Rhines (1993): 

(i) we seek uniformity in x as far as possible (without lateral boundary conditions), i.e. 
behaviour is locally rather than externally determined.  [The character of the bottom layer will 
change at the top of the slope and where the density gradient ceases over deeper water in figure 
1.  Here we expect a transition region over a small distance in x scaling as (νH/f)1/2 (where νH is 
lateral eddy viscosity; e.g. Hill and Johnson, 1974)]. 

(ii) existence of a consistent pressure field is a constraint on imposed flow above the 
boundary layer.   

Without loss of generality we write the solution of (1) in the form: 

  u  =  u1

  v  =  v1  –  g z ρH / (ρ0 fz)   [ρH   ≡ (ρx∞ cosθ + ρz∞ sinθ)] 

  w =  w1

  p = p1 + p0 + gρ0(x sinθ – z cosθ) + gρx∞[x2sinθ + z2cosθ fx/fz]/2 

       + gρz∞ z2 [fx/fz sinθ – cosθ]/2 – gρx∞ xz cosθ 

  ρ = ρ1 + ρ0 + ρx∞x + ρz∞z 

where p0 and ρ0 are uniform constants. 

Formally this is just a transformation from (u, v, w, p, ρ) to (u1, v1, w1, p1, ρ1).  We use it 
because the terms without subscript “1” are nearly a solution for the base state.  These terms 
geostrophically balance the base-state density gradient ρH, satisfying (1) exactly in the interior 
and homogenising all of the boundary conditions for (u1, v1, w1, p1, ρ1) except for ρ1z at z = 0.  
This base-state balance has velocity tending to zero at the bed (and uniform in x); p0 is an 
arbitrary uniform pressure playing no dynamical role.  This state is not unique, but arbitrary only 
in an additional along-slope flow v' and corresponding pressure distribution, as follows.  From 
(1a, c) any additional geostrophic flow (v', p') must satisfy ρ0 fzv' = p'x and ρ0 fxv' = –p'z .  Hence 
directly fzp'z + fxp'x = 0, i.e. in terms of ξ ≡ fzx – fxz and (any) η independent of ξ, p' is a function 
of ξ only.  Cross-differentiating, v' is likewise a function of ξ only.  Then p'ξ = ρ0 v'.  Hence any 
geostrophic flow v' (additional to the base state) is a function only of the coordinate ξ normal to 
the direction (fx, fz) of rotation in the cross-slope plane. 

We choose v' = 0 based on previous studies of flow over a sloping boundary; the bottom 
boundary layer adjusts the density field to form a “slippery boundary layer” (if as here the along-
slope forcing is zero; e.g. Garrett, McCready and Rhines, 1993).  Although these studies 
supposed a vertical base-state density gradient (rather than the horizontal gradient here), our 
base state corresponds with such an adjusted density field, having the associated “interior” 
geostrophic velocity tending to zero at the bed.  Geostrophic flows found in shelf seas around 
“pools” of dense water tend to zero at the bed (Hill et al., 2008; the result of long-term action of 
friction).  One can also argue on grounds of simplicity that this is the first case to solve. 

Expressing (1) in terms of (u1, v1, w1, p1, ρ1), 

  u1t + fyw1 – fzv1  =  - p1x / ρ0 + gρ1/ρ0 sinθ + (νu1z)z (2a) 
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  v1t + fzu1 – fxw1  =  (νv1z)z      (2b) 

  w1t + fxv1 – fyu1  =  - p1z / ρ0 – gρ1/ρ0 cosθ    (2c) 

 ρ1t+ u1(ρ1x+ρx∞) +w1(ρ1z+ρz∞) = (Kρ1z)z      (2d) 

   u1x + w1z  = 0      (2e) 

where terms in νz, Kz have been omitted as inessential complexities.  Boundary conditions are 

   ρ1x → 0,      ρ1z → 0, as z → ∞ 

   u1,  w1,  v1z  → 0 as  z → ∞ 

  u1,  v1,  w1,  ρ1z + ρz∞ =  0 at  z = 0. 

The last condition on z=0 is the only reason for non-zero φ1 (i.e. u1, v1, w1, p1 or ρ1); zero 
normal diffusive flux of density distorts the density contours and drives bottom boundary-layer 
motion, as discussed in Wunsch (1970) but now with a horizontal density gradient.  Hence there 
is no a priori source of motion φ1 far from z=0, or of x-dependence in u1, ρ1.  We take the 
simplest case K = ν, and seek solutions with u1x = 0 = ρ1x, hence w1 = 0 [from (2e) and w=0 at 
z=0].  Thus the non-linear terms in (2d) and the (2a,b) terms in fy, fx are zero.  In (2c), we scale 
the boundary-layer depth in z by (ν/fz)1/2 and p1, ρ1 by ρ0Lxfzv1, u1ρx∞ / fz from (2a,d) respectively. 
Then the (2c) terms in fx, fy are relatively small if (i) fx,y(ν/fz)1/2/(Lxfz) is small, i.e. if the boundary 
layer is thin relative to the x-scale Lx, or if (ii) fx,yfzρ0 /(g ρx∞) is small, i.e. if ρx∞/ρ0 >> 10-9/m or a 
relative density difference >> 10-3 per 103km.  This is assured by small slope θ for the criterion 
gρx∞sinθ/(f2ρ0) = 1 under investigation, except close to the equator. 

Reduced equations for ∂t ≡ 0 (steady state), viz. (2d) and ∫z
∞
[ρx∞(2b)–fz(2d)]dz, give u1 and 

v1z respectively in terms of ρ1; then substitution in (2a) gives 

  {ν2∂z
4 + f2(1-b)} ρ1z  =  0        (2f) 

where we have written f in place of fz.  We define a “gravitational” rate λ and non-dimensional b: 

       λ ≡ [-gρx∞ρ0
-1sinθ]1/2, b ≡  -gρx∞sinθ/(f2ρ0)  =  λ2/f2 > 0 (2g). 

If b < 1, there is a boundary-layer solution satisfying the conditions on z=0: 

  ρ1z = -½ ρz∞ [(1+i) e-(1+i)γ z  + (1-i) e-(1-i)γ z] 

where γ = (2ν/f)-1/2(1-b)1/4, as in Shapiro et al. (2003). 

As b approaches 1, γ decreases in the exponents -(1±i)γ z of this boundary layer form, i.e. the 
boundary layer becomes thicker.   

If b > 1, the complementary functions are exp(±qz), exp(±iqz) where q4 = f2(b-1)/ν2; there is 
only one exponentially-decaying solution.  Hence no steady boundary-layer satisfies conditions 
on both ρ1z and u1 at z=0.  The criterion for this breakdown of the boundary-layer solution is 

b>1, i.e. from (2g)  -ρx∞ g sinθ >  ρ0 f2 or λ > f, 

i.e. the up-slope density gradient -ρx∞ and bottom slope sinθ are sufficiently large.  As in section 
1, the strengthened tendency of denser water to “seek its own level” breaks the steady frictional-
cum-geostrophic boundary layer balance. 
 
3.  Time-dependence 

In the absence of a steady-state boundary layer when b≥1 (strong density gradient and 
slope), we allow for time-dependence and consider evolution from an initial state.  The analysis 
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is by Laplace transformation of the reduced equations (2) for u1x = 0 = ρ1x (hence w1 = 0) and 
neglected terms in fx, fy. 
 
a. Laplace Transform 

Form ∫0
∞
(2)e-αtdt and use φ(ξ,α) to denote the Laplace transform ∫0

∞
φ1 e-αtdt of φ1(z,t).  Thus  

 – fv =  gρ/ρ0 sinθ + αD2u       (3a) 

    fu = αD2v         (3b) 

    pξ = - (ν/α)1/2 gρ cosθ       (3c) 

 uρx∞ = αD2ρ         (3d). 

Here, by (3c), px is a function of x only, hence a constant which is zero in (3a).  We also use 

  ξ ≡ (α/ν)1/2z, D2 ≡ ∂ξ2-1, and (below) μ ≡ f(b-1)1/2     (4). 

(3a, b, d) are homogeneous through an assumption that u1, v1 and ρ1 are initially zero.  Any 
other initial state in this linear problem will “force” a corresponding particular flow, additional 
to the flow that we derive here for the minimal base-state “forcing” (ρz∞ ≠ 0 on z = 0) of φ1.  [As 
shown in section 2, there is no steady-state initial form satisfying all equations and boundary 
conditions; the reason for this analysis]. 

(3c) determines p (which appears nowhere else) in terms of ρ.  

From  ρx∞(3b) – f (3d)  we have D2(v ρx∞ – f ρ) = 0, 

i.e.  ψ  ≡  v ρx∞ – f ρ  =  A(α) e-ξ       (5a). 

From  (3a) + μ(3b)/f  we have   (αD2- μ) (u + μv/f)  =  g sinθ (fρ0)-1 ψ, 

i.e.  χ  ≡  u + μv/f  =  g sinθ (fρ0 μ)-1 A(α) [exp(-q+ξ) – exp(-ξ)]   (5b). 

From (3b) and (5b) [or from (3d), (5a) and (5b)] we have αD2v = f χ – μ v, 

i.e.  v  =  g sinθ (2μ2ρ0)-1 A(α) [exp(-q+ξ) – 2exp(-ξ) + exp(-q-ξ)]   (5c) 

where  q+ = +(1 + μ/α)1/2,   q- = +(1 – μ/α)1/2    (5d). 

     (5c, b, a) in turn give 

  v  =  g sinθ (2 μ2ρ0)-1 A(α) [exp(-q+ξ) – 2exp(-ξ) + exp(-q-ξ)]   (6a) 

  u  =  g sinθ (2f μ ρ0)-1 A(α) [exp(-q+ξ) – exp(-q-ξ)]    (6b) 

  ρ  =  (2 μ2/f)-1 A(α) {2exp(-ξ) – b[exp(-q+ξ) + exp(-q-ξ)]}   (6c) 

 in terms of A(α), which is determined by the Laplace transformed bottom boundary condition 

  ρz∞  =  - √(α3/ν) ρξ  =  √(α3/ν) (2 μ2/f)-1 A(α) [2 – b(q+ + q-)]   (6d). 

If α = 0 our notation (4) is invalid, but the system (3a-d) is the steady-state form of (2a-d), 
leading to (2f) with no valid solution as already noted.  The outcome is a singularity in the 
inverse Laplace Transform (section 3b). 

If b = 1, then μ defined by (4) is zero.  Nevertheless, the procedure that leads to (5a-c) gives 

    ψ  ≡  v ρx∞ – f ρ  =  A(α) e-ξ   

  αD2u =  g sinθ (fρ0)-1 ψ, 

  i.e.  u   =  - g sinθ (2fαρ0)-1 A(α) ξ exp(-ξ)    (7a) 
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  αD2v = fu, 

  i.e.  v  =  g sinθ (8α2ρ0)-1 A(α) (ξ2 + ξ) exp(-ξ)   (7b) 

  hence  ρ  =  - A(α) e-ξ [f-1 + (ξ2 + ξ)f/(8α2)]    (7c). 

Here A(α) is determined by the Laplace transformed bottom boundary condition 

  ρz∞  =  - √(α3/ν) ρξ  =  (f2αν)-1/2 A(α) [f2/8 – α2]     (7d). 

b. Inverse Laplace Transform 
The inverse Laplace transform requires that we evaluate 

  (ρ1, u1, v1) (z, t)  =  (2πi)-1 ∫L (ρ, u, v) eαt dα 

where the integral path L is from a-iT to a+iT as T→ ∞ and a is sufficiently positive for validity. 
 
1) SOLUTION FOR b = 1 

This is evaluated in Appendix A.  For large time, it is the sum of terms decaying at least as 
fast as e-ft/√8 plus: (A.3) terms decaying at least as fast as t-1/2; (A.1) terms (aρ1, av1) showing a 
diffusive-type thickening bottom boundary layer with along-slope flow only, intensifying but 
finite; constant-form (A.2) terms {gρ1, gu1, gv1} with a growth factor exp(αpt) where αp =  f/√8.  
These (A.2) terms (figure 2) represent a bottom boundary layer, including accelerating down-
slope flow, decaying into the interior on the boundary-layer (ξ) scale (8-1/2f/ν)-1/2. 
 
2) SOLUTION FOR b > 1 

This is evaluated in Appendix B.  For large time, it is the sum of terms decaying at least as 
fast as e-ft√(b-1) plus: (B.1) terms which do not grow in time but do not tend to zero outside the 
bottom boundary layer; (B.3) terms growing with a rate close to eft√(b-1) and again not tending to 
zero outside the bottom boundary layer; constant-form (B.2) terms with fastest growth, factor 
exp(αpt) where αp =  f b2 (1+b)-1/2/2.  These (B.2) terms (figure 3 where b = 1.4, close to a 
maximum √2 for validity of this solution) represent a bottom boundary layer with accelerating 
down-slope flow, as for b = 1.  However, the scale for decay into the interior, as exp(–ξ-), is 
(2ν/f)1/2(b+1)1/4(2-b2)-1/2 which becomes large as b approaches √2. 

Note that these solutions for b ≥ 1 do not include a recognisable inertial oscillation (in the 
terms of either Appendix A or Appendix B).  There is no impulse from the initial condition to 
trigger an oscillation.  Moreover, the imbalance forcing the additional flow φ1 is confined to the 
bottom boundary layer where friction and diffusion are as important as inertia.  Nevertheless, 
there are other “transient” motions represented by (A.1,3) (for b = 1) and (B.1,3) (for b > 1) in 
addition to the respective fastest-growing boundary layer forms (A.2), (B.2). 
 
3) LARGE b 

Large b corresponds to a large up-slope density gradient, or equivalently small f.  Let f = 0.  
Then the Laplace-Transformed equations (3a-d) simplify to  

     0 =  gρ/ρ0 sinθ + (ν∂z
2-α)u       (8a) 

     0 = (ν∂z
2-α)v        (8b) 

    pz = - gρ cosθ        (8c) 

 uρx∞ = (ν∂z
2-α)ρ        (8d) 

where again px is a function of x only, hence a constant which is zero in (8a). 
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(8b) has the only occurrence of v which is then zero from the boundary conditions after (2).  
(8c) determines p (which only appears here) in terms of ρ.  -ρx∞(8a) ± λ(8d) gives 

  (ν∂z
2-α) (-ρx∞u±λρ) =    ± (-λ) (-ρx∞u±λρ). 

Thus  (-ρx∞u + λρ)  =  U+(α) exp(-z-),  (-ρx∞u – λρ)  =  U-(α) exp(-z+), 

where         z± =  z[(α ± λ)/υ]1/2, α is complex, λ is real positive by (2g). 

Using the boundary conditions at z = 0, 

  -ρx∞u = U(α)[exp(-z-) – exp(-z+)], λρ = U(α)[exp(-z+) + exp(-z-)],  (9a) 

  ρz∞  =  - α ρz  =  α ν-1/2 U[(α + λ)1/2 + (α – λ)1/2]/λ determining U(α).  (9b) 

The solution in this case is evaluated in Appendix C.  For large time, it is the sum of terms 
(C.2) decaying at least as fast as e-λt, plus: (C.1) terms which do not grow in time but do not tend 
to zero outside the bottom boundary layer; (C.3) terms with a growth rate close to eλt and near-
linear increase with distance from the bottom.  The form of (C.3) is shown (with arbitrary factor) 
in figure 4.  Unlike the cases with b < √2, this is not a boundary-layer form; its continued growth 
into the interior is not consistent with the focus of the analysis on the bottom boundary layer; it 
suggests that the down-slope acceleration is on the scale of full depth of water which should be 
represented in a complete analysis.  [By taking f = 0 we have eliminated any possible inertial 
oscillation.  However, large b implies λ >> f so that the growth rate is rapid relative to any 
inertial time-dependence.] 
 
4. Growing components. 

The solutions to the initial-value problem in b ≥ 1 have various growing components; the 
fastest growths are exponential.  The form and growth rate of these (fastest) exponentially-
growing components can be confirmed (checked) more simply by seeking solutions in the form 
φ1 = eαt φ(ξ).  Here φ represents u, v, w, p or ρ; the growth rate α is to be found.  As before, let 

 αp = f b2(1+b)-1/2/2, b =  - g ρx∞/(ρ0f2) sinθ  = λ2/f2,     ξ = z√(α/ν),    μ = f√(b-1). 

From (2) with ∂x ≡ 0 implying w = 0 from (2e), we have 

  αu – fv =  gρ/ρ0 sinθ + αuξξ       (10a) 

  αv + fu =  + αvξξ       (10b) 

           √(α/ν)pξ = - gρ cosθ        (10c) 

    αρ + u ρx∞ =  + αρξξ       (10d) 

with boundary conditions u, vξ, ρξ → 0  as  ξ → ∞; u = 0, v = 0, ρξ = 0  at  ξ = 0 

(the forcing of ρ1 by ρz∞ is not a growing component). 

Writing  fρ - vρx∞ = ψ, and eliminating u from (10b) and (10d), we have 

        ψξξ  - ψ =  0. 

The growing exponential solution in ξ violates the condition as ξ → ∞, hence 

  fρ - v ρx∞ =    ψ  =  fρ(0)e-ξ       (11). 

Writing χ = u + v√(b-1), (10a) + (10b)√(b-1) using (11) and the definitions of b, μ gives 

  χξξ - χ – α-1μ χ =  -g/(αρ0) sinθ ρ(0) e-ξ      (12). 
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a. “Critical” b = 1 
If b = 1, then u  =  χ =  g/(2αρ0) sinθ ρ(0) ξ e-ξ

from (12), and from (10b) 

  vξξ - v =  fg/(2α2ρ0) sinθ ρ(0) ξ e-ξ,    hence  v  =  -fg/(8α2ρ0) sinθ ρ(0) (ξ2 + ξ) e-ξ. 

For u and v we have again discarded the growing exponential in ξ.  Then from (11) 

  ρ  =  v ρx∞/f + ρ(0) e-ξ  =  ρ(0) (ξ2 + ξ + 1) e-ξ. 

Then (10a) requires that the growth rate α = f/√8; u, v, ρ, and p from (10c), satisfy the boundary 
conditions at ξ = 0, ξ → ∞ and are all determined up to the arbitrary common factor ρ(0). 
 
b. Larger b > 1 

If b > 1, solutions to the homogeneous form of (12) are exp[±ξ+] where ξ± = ξ√(1 ± μ/α) as 
before.  However, only the negative exponent is acceptable as ξ → ∞.  Hence from (12) 

    u + v√(b-1) =    χ =  g/(μρ0) sinθ ρ(0) [exp(-ξ) – exp(-ξ+)]   (13) 

and from (10b)  

  vξξ – v + α-1μv =  gf/(αμρ0) sinθ ρ(0) [exp(-ξ) – exp(-ξ+)]   (14). 

The solution of (14) depends on whether or not α = μ. 

If α ≠ μ, then (using the decaying exponential as ξ → ∞ and v = 0 at ξ = 0)   

  v  =  g/(fρ0(b-1)) sinθ ρ(0) [exp(-ξ) – ½exp(-ξ+) – ½exp(-ξ-)]   (15a). 

Then u, ρ and p follow from (13), (11) and (10c) in turn: 

  u  =  g/(μρ0) sinθ ρ(0)/2 [exp(-ξ-) – exp(-ξ+)]     (15b) 

     (b-1)ρ  =  -ρ(0) {e-ξ – b/2 [exp(-ξ-) + exp(-ξ+)]}     (15c). 

The bottom boundary condition 0 = ρξ|0 gives 0 = 1 – b/2 [√(1+μ/α) + √(1-μ/α)] determining α = 
αp as in (B.2).  [This analysis is closely parallel to the Laplace Transform analysis, section 3.1]. 

If α = μ, then (14) gives 

  v  =  g/(fρ0(b-1)) sinθ ρ(0) [exp(-ξ) – ½exp(-ξ+) – ½ + v′ξ]   (16a) 

where v′ has still to be found.  Then u, ρ and p follow from (13), (11) and (10c) in turn: 

  u  =  g/(μρ0) sinθ ρ(0)/2 [1 – exp(-ξ+) – 2v′ξ]     (16b) 

     (b–1)ρ  =  –ρ(0) {e-ξ – b/2 [1 + exp(-ξ+)] + bv′ξ}      (16c). 

The bottom boundary condition 0 = ρξ|0 gives  0 = 1 – b/√2 – bv′  determining v′ = b-1 – 2-1/2. 
If 1 < b < √2, then μ < αp so that the boundary-layer form (15) grows fastest.  If b > √2, then 

μ > αp so that the form (16) grows fastest, including terms that do not tend to zero outside the 
bottom boundary layer.  If b is very large, then from (16) v becomes small; μ ~ λ and 

  {ρ, -ρx∞u/λ} ~ {1 + e-ξ√2 + ξ√2, 1 – e-ξ√2 + ξ√2}   (17). 

The form (17) with time-dependence eμt matches (C.3), apart from the extra time-dependent 
factor t-3/2 in (C.3) which is the partial result of the initial value problem.  As fastest-growing 
asymptotic forms, the two are consistent: the discrepancy is only through the time-derivatives; 
differentiating the factor t-3/2 gives additional terms in t-5/2 eμt which are relatively small for large 
times t and were neglected in (C.3). 
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Thus in each case the form and growth rate of the (fastest) exponentially-growing 
component is confirmed by this simpler derivation. 
 
5.  Discussion 

Intuitively, a strong combination of slope and horizontal density gradient (greater density in 
shallower water) is expected to give dense water acceleration down the slope.  In the absence of 
frictional or diffusive effects, such acceleration by the pressure field is countered by the Coriolis 
force, enabling a geostrophic balance for along-slope flow.  Friction and diffusion tend to release 
the geostrophic constraint and favour waters of different densities “seeking their own level”, e.g. 
Shapiro and Hill (1997) for this context.  Up to the threshold b ≡ λ2/f2 = 1, the release is only to 
the extent of a steady bottom boundary layer; the boundary layer thickness increases indefinitely 
as b → 1.  Then “modified intuition” suggests that a stronger combination of horizontal density 
gradient and bottom slope causes down-slope acceleration.  The initial value problem now 
provides the best evidence that such down-slope acceleration does indeed occur, in a bottom 
boundary layer, for a strong combination of horizontal density gradient and slope (b ≥ 1).  Other 
components of the solution, not confined to a bottom boundary layer, also accelerate less rapidly 
down the slope. 

The initial-value problem was only treated fully for b < √2.  As b → √2, the fastest-
accelerating boundary layer becomes thick (figure 3).   

Whilst the initial-value problem was not treated fully for √2 < b < ∞, the treatment of 
possible forms of exponentially increasing flow (section 4) covered all b ≥ 1.  For b > √2, the 
acceleration of the bottom-boundary-layer form was found to be slower than the acceleration [as 
f√(b-1)] of a form not confined near the bottom boundary.  Absence of the Coriolis constraint 
corresponds to b → ∞; then the intensification rate for the down-slope flow is approximately λ.  
This agrees with the fastest-growing outcome of the initial-value problem with f = 0.  
Approximately, the threshold (b = 1) for acceleration corresponds to λ ~ f; for λ ~ 21/4f the 
gravity-induced acceleration throughout the water column overtakes the Coriolis-regulated 
acceleration in the bottom boundary layer (which in any case has become thick). 

An idealized and therefore limited problem has been analysed here.  Section 4 is particularly 
restricted in its simplifying assumption of exponential time-dependence.  Whilst this confirms 
the fastest-growth forms of the more general initial-value analysis, there was no a priori reason 
that they would be found by the simpler section 4 analysis.  Indeed, this analysis does not find 
other growing components of the initial-value solution.  The initial-value analysis itself has 
idealised aspects: the base-state geostrophically-balanced mean flow; the focus on the bottom 
boundary layer, neglect of the sea surface; the focus on initial instability rather than the form of 
developed flow that emerges and may depend on various contextual factors.  These idealized 
aspects are now discussed in turn.  

The base-state mean flow has a lowest-order geostrophic balance; the only imbalance is in 
the bottom boundary condition for density.  This choice is primarily for simplicity; it emphasises 
that the resulting instability is an inherent outcome of the combination of horizontal density 
gradient and bottom slope.  Given that the imbalance is only in the frictional and diffusive 
bottom boundary layer, the adjustment process is subject to important friction and diffusion.  
This contrasts with geostrophic adjustment or “dam-break” problems where the initial state has 
geostrophic imbalance through the water column and inertial oscillations result (for example).  

The base state with geostrophic shear necessarily has an associated stress νvz = – gνρH/(ρ0 fz) 
which is uniform in z.  At the bed, bringing the base-state flow v to zero corresponds to the 
unforced arrested boundary layer (after evolution) as discussed by Garrett, McCready and 
Rhines (1993).  To bring this stress to zero at a free surface, for a strictly unforced base-state 
mean flow with no surface stress (forcing), a surface Ekman layer can be invoked.  
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The analysis focuses on the bottom boundary layer where the assumptions hold most closely 
(especially, down-slope uniformity, ignoring effects of (i) the sea surface which is not parallel to 
the sloping bottom and (ii) the necessarily finite lateral extent of slope and density gradient).  
Solutions have been chosen to be as limited as possible in their behaviour away from the 
bottom; however, there are contributions not confined near the bottom boundary; their form can 
only be regarded as suggestive.  The slower-growing but spatially unconfined contribution in 1 < 
b < √2, and the main growing solution in b > √2, really require consideration of the whole water 
column.  Analysis for baroclinic instability should also include the whole water column and 
consider instability forms that vary (sinusoidally) along the slope.  Regarding the finite lateral 
extent (ii), we argue that transition to a adjacent regions (where base-state density gradients 
differ) is narrow, O(ν /f)  (the lateral equivalent of an Ekman layer).  Then the analysis 
applies to most of the sloping sector (bottom boundary layer) in the upper panel of Figure 1.

H
1/2

We have considered initial acceleration (from a steady state) rather than the developed flow 
that emerges.  The latter is exemplified (without rotation) in Baines (2005), distinguishing 
detraining gravity currents (on small slopes with small density differences) from entraining 
plumes (larger slopes and density differences), but with vertical stratification.  In realistic 
oceanic contexts, greater density at depth will eventually inhibit accelerating down-slope flow 
and divert it to the interior; thus we effectively consider an upper-slope stage in the flow 
development, above the influence of increased oceanic density with depth, but with rotation as a 
constraint.  In using simply a diffusivity to represent fluid exchange and mixing, we effectively 
have both entrainment to and detrainment from any denser down-slope flow.  Entrainment is 
implied by the continual down-slope adjustment of density towards the ambient value.  
Detrainment is implied by the accompanying uniform down-slope transport in any steady state 
and more generally by the symmetry of the diffusive formulation.  A more sophisticated 
formulation is needed for developed flow. 

Developed flow is likely to limit b (to values less than √2) in the problem as posed.  Down-
slope flow of the denser shelf water tends to reduce the up-slope density gradient (in favour of 
vertical stratification), i.e. dense water flow down the slope tends to reduce the conditions 
driving it.  Assuming continuation of the conditions (e.g. uniform heat loss from shoaling depth) 
causing the density gradient to increase to b ≥ 1, an “equilibrium” with b close to 1 seems likely; 
even if steady down-slope flow in b < 1 fails to counteract the increase of density gradient, any 
increase of b greater than 1 implies ever faster acceleration of down-slope flow tending to 
reduce the density gradient and hence b back towards 1.  In a developed state, the down-slope 
density-anomaly transport should match the rate of dense water formation; the form of the 
down-slope flow may also be affected by any entrainment that counters the tendency to 
accelerate.  

In almost all observed cases, b << 1, i.e. |ρH| g sinθ << ρ0 f2/cosθ (Ivanov et al. 2004; noting 
that if the density gradient is strictly horizontal, ρH, then ρx∞ = ρH cosθ).  This reflects the fact 
that observations are typically during preconditioning (cooling and/or salination by brine 
rejection or evaporation has not built up a sufficient density gradient to initiate cascading) or 
after any accelerating dense-water flow has reduced the up-slope density gradient.  If the 
means of increasing shallower water density is slow, then continual quasi-steady down-slope 
flow of denser water in the bottom boundary layer, as described by Shapiro and Hill (1997), may 
suffice to prevent the up-slope gradient increasing to the critical value for acceleration. 

The predicted intensification rate f/√8 for the accelerating layer is slow, corresponding to an 
e-folding time ~ 6 hours at mid-to-high latitudes. 

Stronger gradients and hence faster intensification may occur locally in gullies or canyons 
indenting the slope.  Side-walls in a down-slope gully or canyon relax the Coriolis constraint 
that inhibits down-slope flow.  Such topography also tends to juxtapose steep slopes and the up-
slope density gradient to give locally-large values of λ (or b) and hence down-slope acceleration.  
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For example, if relative density differences overall are 10-3 and g ~ 10 m s-2, then variations over 
100 km (corresponding slope sinθ ~ 0.01) give λ ~ 3 ×10-5 s-1 < f at mid-latitudes, but variations 
over 10 km with slope 0.1 give λ ~ 3 ×10-4 s-1 > f. 

There remains scope to explore (probably numerically) instability forms with non-zero wave 
number along the slope, and to carry out numerical and laboratory experiments for comparison. 
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APPENDIX A 

Evaluation of inverse Laplace transform for b = 1 

In the notation of section 3 with ξ ≡ (α/ν)1/2z to make all occurrences of α explicit, we have 

 (ρ1, u1, v1) (z,t) =  (2πi)-1 ∫L (ρ, u, v) eαt dα 

where 

  ρ = ρz∞ (α2 - f2/8)-1 [√(να)  + f2z/(8α) + f2z2/(8√(να))] e-z√(α/ν), 

  u = - ρz∞/ρx∞ (α2 - f2/8)-1 f2 z/2 e-z√(α/ν),  

  v = + ρz∞/ρx∞ (8α2 - f2)-1 f 3[z/α + z2/√(να)] e-z√(α/ν). 

The integrand has poles at α = 0, ± f/√8 and a branch point at α = 0.  The initial integral path 
is shown in figure 5 as A with a > f/√8 for validity. For large (positive or negative) Im(α), the 
integrand scales as |α|-3/2 and the path of integration can be modified.  Contributions in 
deforming the path from A (a-iT to a+iT) to B (over which the integral is arbitrarily small) are 
from the three poles and the two integral pairs  ∫C+D,  ∫E+F, where the lower path of the pair is in 
the positive sense and the upper path in the negative sense, both being close to the real axis. 

The (ρ, v) terms in z/α give the poles at α=0.  Replacing the factor (α2 - f2/8)-1 by -8/f2, these 
approximated terms are evaluated as in Carslaw and Jaeger (1947) page 91, resulting in terms 

 
  (aρ1, av1)  =  – (ρz∞, f ρz∞/ρx∞) z  erfc [z/√(4νt)]     (A.1) 

where     erfc [z/√(4νt)]  ≡  1 – (πνt)-1/2 ∫0
z
 exp [-z'2/(4νt)] dz'  ≡  1 – erf [z/√(4νt)]; 

erf is the error function.   

The remainder of the solution is {ρz∞
-1 rρ1, ρx∞/ρz∞

 (ru1, rv1)} 

=  (2πi)-1 ∫L eαt-z√(α/ν) (α2 - f2/8)-1 {√(να) + zα + f2z2/(8√(να)), - f2z/2,  fzα + z2f3/(8√(να))} dα 

The poles at α = f/√8 result in growing terms 

  {fρz∞
-1  gρ1, ρx∞/ρz∞(gu1, gv1)}  =  √(21/2νf) {1 + ξ + ξ2, - 21/2ξ, ξ + ξ2}eft/√8-ξ  (A.2) 

where  ξ = (8-1/2f/ν)1/2z  [= (α/ν)1/2z as before]. 

The poles at α = -f/√8 and integrals on C, D result in terms decaying at least as fast as e-ft/√8. 

The integrals on E, F are {ρz∞
-1   rρ1,  f -1ρx∞/ρz∞(ru1, rv1)} 

=  (2πi)-1∫0
f/√8

 (s2-f2/8)-1 e-st+zi√(s/ν) {-i√(νs) - zs + if2z2/(8√(νs)), -fz/2, -zs + iz2f2/(8√(νs))} ds 

        + complex conjugate (c.c.). 

Changing variable to x = √(st), tds = 2xdx, 

 {ρz∞
-1  rρ1,  f -1ρx∞/ρz∞(ru1, rv1)} 

=  (πi)-1∫0
√(ft/√8) (x4t-2-f2/8)-1 exp[-(x-iz/√(4νt))2 – z2/(4νt)] 

  × {-ix2√(νt-3) - zx3/t2 + if2z2/(8√(νt)), -fzx/2t, -zx3/t2 + iz2f 2/(8√(νt))}dx    + c.c. 

~  8if-2/π∫0
∞
exp[-(x-iz/√(4νt))2 – z2/(4νt)] 

×{-ix2√(νt-3) -x2z2i/√(4νt5) -zx/t2 +if2z2/(8√(νt)), -fzx/2t, -zx/t2 -iz2x2/√(4νt5) +iz2f2/(8√(νt))}dx 

          + c.c. (for large t) 
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=  8if-2/π∫
∞

-iz/√(4νt)
  exp[-y2-z2/(4νt)] 

     ×{-i[y2+yiz/√(νt)-z2/(4νt)]√(νt-3)(1+z2/(2νt))-zy/t2–iz2/√(4νt5)+if2z2/(8√(νt)), 

       -fzy/2t - ifz2/√(16νt3), 

  z[y+iz/√(4νt)]/t2 - iz2[y2+yiz/√(νt)-z2/(4νt)]/√(4νt5) + iz2f2/(8√(νt))} dy  + c.c. 

We use  ∫
∞

-iz/√(4νt) y2exp(-y2) dy =  [-y/2 exp(-y2)]
∞

-iz/√(4νt)
  +  [∫

0
-iz/√(4νt)

  + ∫0
∞
] exp(-y2) dy/2, 

  ∫
∞

-iz/√(4νt)
  y exp(-y2) dy =  [-1/2 exp(-y2)]

∞
-iz/√(4νt)

   

  ∫0
∞
 exp(-y2) dy  =  √π/2, 

write   ∫
0
-iz/√(4νt)

 exp(-y2)dy =  erf[iz/√(4νt)] (non-standard notation), 

and note that erf[iz/√(4νt)] is imaginary and imaginary terms cancel their complex conjugates.  

Then for large t,  {ρz∞
-1  rρ1,  f -1ρx∞/ρz∞(ru1, rv1)} 

=  4f-2/√π exp[-z2/(4νt)] ×{[1/2-z2/(4νt)]√(νt-3)(1+z2/(2νt))+z2/√(4νt5)-f2z2/(8√(νt)), 

    fz2/√(16νt3),  z2/√(4νt)/t2+z2[1/2-z2/(4νt)]/√(4νt5)-z2f2/(8√(νt))} 

=  4f-2 (νt-3/π) 1/2 exp[-z2/(4νt)] 

           ×{1/2 + (1-f2t2/4)z2/(2νt) – z4/(8ν2t2),  ftz2/(4νt),  z2/(4νt) (3-f2t2/2) - z4/(8ν2t2)}      (A.3). 

The total solution for large time is the sum of terms decaying at least as fast as e-ft/√8 plus the 
combination of (aρ1, av1), {gρ1, gu1, gv1} and {rρ1, ru1, rv1} given by (A.1), (A.2) and (A.3) 
respectively.  In fact all terms of (A.3) decay at least as fast as t -1/2 at large times so that the only 
terms remaining at large times are (aρ1, av1) as in (A.1) and {gρ1, gu1, gv1} as in (A.2). 

 
APPENDIX B 

Evaluation of inverse Laplace transform for b > 1 

In the notation of section 3 we have 

  (ρ1, u1, v1) (z,t)  =  (2πi)-1 ∫L (ρ, u, v) eαt dα 

where from (6) we have [with ξ± ≡ q±ξ,  A(α) = {2 – b[(1+μ/α)1/2 + (1– μ/α)1/2]},  μ = f(b-1)1/2] 

 { ρ,  }     {2exp(-ξ) – b[exp(-ξ+)+exp(-ξ-)], }   

 {fρ0(g sinθ)-1 u,} = ρz∞√(ν/α3) [A(α)]-1 × { μf-1 [exp(-ξ+)–exp(-ξ-)],    } 

 {fρ0(g sinθ)-1 v }     {   exp(-ξ+) + exp(-ξ-) – 2exp(-ξ) }. 

For large (positive or negative) Im(α), the integrand scales as |α|-3/2 and the path of integration 
can be modified as in figure 6. 

There is an obvious pole at α = 0 and branch points at α = 0,  ±μ.  There may also be any 
poles found by rearranging A(α)=0 and squaring twice, which can introduce spurious zeros: at 
most α = ± f b2 (1+b)-1/2/2 ≡  ± αp.  Indeed, α = -αp is not valid because A(α) is complex and non-
zero for α < μ.  Since (i) μ ≤ αp, (ii) A(μ) = 2 – b√2 > 0 if and only if b < √2 and (iii) A(α) → 2-2b 
< 0 as α → ∞, then α = αp is only a pole if b < √2.  [As b tends to 1, αp tends to f/√8 as for b=1]. 

The contributions in deforming the path from A (a-iT to a+iT) to B (over which the integral 
is arbitrarily small) are from the three poles and the five integral pairs ∫C+D, ∫E+F, ∫G+H, ∫J+K, ∫L+M. 
Here the lower path of the pair is in the positive sense and the upper path in the negative sense, 
both being close to the real axis. 
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Near α = 0, let α = μreiφ (-π<φ<π; r<<1), η ≡ z (μ/ν)1/2.  The integrand for 

   ρz∞
-1 {ρ1, fρ0(g sinθ)-1(u1,v1)} 

is 

√(ν/μ) (2πb)-1(-1+i)-1{2 – b(e-η + eiη), √(b-1)(e-η – eiη), e-η + eiη – 2}exp(μtreiφ)dφ  (-π<φ<0) 

+ √(ν/μ) (2πb)-1(-1–i)-1{2 – b(e-η+e-iη), √(b-1)(e-η–e-iη), e-η+e-iη – 2}exp(μtreiφ)dφ   (0<φ<π) 

 + O(r1/2), 

i.e. the integral is 

 –√(ν/μ) b-1 {1 – b(e-η+cosη-sinη)/2, √(b-1)(e-η-cosη+sinη)/2, (e-η+cosη-sinη)/2 – 1} (B.1) 

as r → 0.  For small b-1 and η this reduces further to  

 ρz∞
-1 {ρ1, fρ0(g sinθ)-1 (u1, v1)} ~  z {-1, z√((b-1)μ/ν), 1}. 

Near the pole α = αp, where {A(α)} = 0, we have  (α - αp) {A(α)}-1 ~ [∂α{A(α)}]-1 so that the 

component of  ρz∞
-1 {ρ1,  fρ0(g sinθ)-1 (u1, v1)} growing as exp(αpt) is 

– 2√(ν/(b-1)) (bf)-1 (αp
2-μ2)1/2 [(αp+μ)1/2 – (αp–μ)1/2]-1 ×  exp(αpt)  × 

{2exp(-ξ) – b[exp(-ξ+)+exp(-ξ-)],  √(b-1)[exp(-ξ+)-exp(-ξ-)],  exp(-ξ+)+exp(-ξ-)-2exp(-ξ)} (B.2) 

where ξ,  ξ± are as before but evaluated at α = αp.  For small b-1, (B.2) reduces to  

(α - αp) ρz∞
-1 {ρ, fρ0(g sinθ)-1 (u, v)}  ~  √(21/2 ν/f) exp(ft/√8) exp(-ξ) {1+ξ+ξ2, ξ√2, -ξ -ξ2} 

in agreement with (A.2). 

The solution corresponding to α = -αp decays in time t and with distance ξ from the bottom. 

For the integral pairs, the integrand for 

{ ρ1,     }  ρz∞√υ (2πiα)-1 eαt                  × {2e-z√(α/ν)–be-√(α+μ)z/√ν –be-√(α-μ)z/√ν,} 

{ fρ0(g sinθ)-1 u1, } is [2√α – b√(α+μ) – b√(α-μ)] { √(b-1) [e-√(α+μ)z/√ν – e-√(α-μ)z/√ν],   } 

{ fρ0(g sinθ)-1 v1) }       { e-√(α+μ)z/√ν + e-√(α-μ)z/√ν – 2e-z√(α/ν)  }. 

For the pair L, M, there are no branch cuts, the integrand has the same values immediately above 
and below the real axis, but the path M reverses L.  Hence this integral pair contributes zero. 

Next consider GHJK combined.  For the pair JK, 0 < β ≡ α/μ < 1, so √(α-μ) = -i[(1-β)μ]1/2 on 
J and √(α-μ) = i[(1-β)μ]1/2 on K.  For the pair GH, 0 < β ≡ -α/μ < 1, so √(α-μ) = -i[(1+β)μ]1/2 on G 
and √(α-μ) = i[(1+β)μ]1/2 on H.  Also √α = -i[βμ]1/2 on G, √α = i[βμ]1/2 on H, √(α+μ) = [(1-β)μ]1/2 
on G and H.  Then writing η ≡ z (μ/ν)1/2, η± ≡ η(1± β)1/2, the combined integrand over 0 < β < 1 
for   2πi ρz∞

-1 {ρ1, fρ0(g sinθ)-1 (u1, v1)} is 
 

(on J)        √ν β-1 [ 2√(μβ) – b√(μ+μβ) + ib√(μ-μβ)]-1 

 × {2e-η√β – be-η+ – beiη-,  √(b-1) [e-η+ – eiη-], e-η+  + eiη- – 2e-η√β }eμβt dβ 

(on K)  – √ν β-1 [ 2√(μβ) – b√(μ+μβ) – ib√(μ-μβ)]-1 

 × {2e-η√β – be-η+ – be-iη-, √(b-1) [e-η+ – e-iη-], e-η+ + e-iη- – 2e-η√β }eμβt dβ 

(on G)  – √ν β-1 [-2i√(μβ) + ib√(μ+μβ) – b√(μ-μβ)]-1 
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 × {2eiη√β – beiη+ – be-η-, √(b-1) [e-η- – eiη+],  e-η-  + eiη+ – 2eiη√β }e-μβt dβ 

(on H)  + √ν β-1 [ 2i√(μβ) – ib√(μ+μβ) – b√(μ-μβ)]-1 

 × {2e-iη√β – be-iη+ – be-η-, √(b-1) [e-η- – e-iη+], e-η-  + e-iη+ – 2e-iη√β }e-μβt dβ 

 
= √ν (2μβ)-1 dβ [2β – 2b√(β+β2) + b2]-1

×  [ (2√(μβ) – b√(μ+μβ)) eμβt {-b, -√(b-1), 1}2i sinη- 

         –2ib√(μ-μβ) eμβt {2e-η√β - be-η+ - bcosη-, √(b-1) (e-η+- cosη-), e-η+ - 2e-η√β + cosη-} 

 –2i(2√(μβ) – b√(μ+μβ)) e-μβt {2cosη√β – be-η- – bcosη+, √(b-1) (e-η- – cosη+), 

              e-η- – 2cosη√β + cosη+} 

 +2ib√(μ-μβ) e-μβt {2sinη√β – bsinη+, –√(b-1) sinη+, -2sinη√β + sinη+}      ]; 

 

i.e. the combined integrand for  ρz∞
-1 {ρ1, fρ0(g sinθ)-1 (u1, v1)} is 

 √(υ/μ) (2πβ)-1 dβ [2β – 2b√(β+β2) + b2]-1

× [(2√β – b√(1+β)) eμβt {-b, -√(b-1), 1}sinη- 

     – b√(1-β) eμβt {2e-η√β - be-η+ - bcosη-, √(b-1) (e-η+- cosη-), e-η+ - 2e-η√β + cosη-} 

     – (2√β - b√(1+β)) e-μβt {2cosη√β - be-η- - bcosη+, √(b-1) (e-η- - cosη+),  e-η- - 2cosη√β + cosη+} 

     + b√(1-β) e-μβt {2sinη√β – bsinη+, –√(b-1) sinη+, -2sinη√β + sinη+}       ]. 

If b-1 is small and z is not large, then η is O(μ1/2); this combined GHJK integrand in 0<β<1 is 
approximately 

 √(ν/μ) (2πβ)-1 dβ [1 – 2√( β+β2) + 2β]-1 

      ×  [    (2√β – √(1+β)) eμβt {-1, - μ/f, 1}√(1-β) η  
 + √(1-β) eμβt {η(2√β – √(1+β)), ημ/f √(1+β), –η(2√β – √(1+β))} 
 + (2√β – √(1+β)) e-μβt {– η√(1-β), ημ/f √(1-β), η√(1-β)} 
 + √(1-β) e-μβt {η(2√β – √(1+β)), –ημ/f √(1+β), –η(2√β – √(1+β))}] + O(η2μ/f, η3) 

=  2η √(νμ) (πβf)-1 dβ [1–2√( β+β2)+2β]-1 √(1-β) {0, [√(1+β) -√β], 0} sinh(μβt)    + O(η2μ/f, η3) 

which is integrable at any given time, and is small as b-1 → 0. 

If β (> 0) is small (and η√β <<1) then the combined GHJK integrand is approximately 

  √(ν/μ) (2πβb)-1 dβ 

      ×  [ – eμβt {-b, -√(b-1), 1}sinη 

 – eμβt {2e-η√β - be-η - bcosη, √(b-1) (e-η – cosη), e-η - 2e-η√β + cosη} 

 + e-μβt {2cosη√β – be-η – bcosη, √(b-1) (e-η – cosη),  e-η – 2cosη√β + cosη} 

 + e-μβt {2sinη√β – bsinη, – √(b-1) sinη, -2sinη√β + sinη}       ] 

 + integrable terms O(β-1/2) 
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= √(ν/μ) (2πβb)-1 dβ 

× {eμβt[b(sinη + cosη + e-η) - 2e-η√β] – e-μβt[b(sinη + cosη + e-η) – 2cosη√β – 2sinη√β)], 

   (eμβt – e-μβt )√(b-1) (sinη + cosη – e-η), 

          – eμβt[sinη + cosη + e-η - 2e-η√β] + e-μβt[sinη + cosη + e-η – 2cosη√β – 2sinη√β)]} + O(β-1/2) 

= √(ν/μ) (πβb)-1 sinh(μβt) dβ 

  × {b(sinη+cosη+e-η) – 2,  (sinη+cosη–e-η) μ/f,  2 – (sinη+cosη+e-η)}         + O(ηβ-1/2 cosh(μβt)) 

showing that the singularities on the separate paths (G, J, K, H) as β → 0 cancel; the combined 
integrand is integrable; there is no discrete contribution from the apparent pole β = 0. 

For β near 1, let β = 1-δ; the integrand for ρz∞
-1{ρ1, fρ0(g sinθ)-1(u1, v1)} is approximately 

 √(ν/μ) (2π)-1 dβ [(b-√2)2 + δ(3b/√2 – 2)]-1

     ×  [ (2-b√2 – δ(1-2-3/2b)) eμβt {-b, -μ/f, 1}sinη- 

 – b√δ eμβt {2e-η - be-η√2 - bcosη√δ, [e-η√2- cosη-] μ/f, e-η√2 - 2e-η + cosη√δ} 

 – (2-b√2-δ(1-2-3/2b)) e-μβt {2cosη-be-η--bcosη√2, [e-η--cosη√2] μ/f, e-η--2cosη+cosη√2} 

 + b√δ e-μβt {2sinη – bsinη√2,  – (μ/f)sinη√2,  –2sinη + sinη√2}   ]. 

The factors (2 – b√2 – δ(1-2-3/2b)) or √δ ensure integrability, even when b=√2, despite possibly 
large values of [(b-√2)2 + δ(3b/√2 – 2)]-1 as δ → 0 (β → 1) in the integration.  If b ≠ √2, the 
fastest-growing part, determined by the factor eμ(1-δ)t, is approximately 

 √(ν/μ) (2π)-1 eμt (b-√2)-2 ∫0
Δ
 e-μδt [{-b, -μ/f, 1}(2-b√2) sinηδ1/2  

     – b√δ{2e-η - be-η√2 - b, (e-η√2-1)μ/f, e-η√2 - 2e-η + 1}] dδ. 

We use   ∫0
Δ
 δ1/2 e-μδt dδ  =  (μt)-3/2∫0

Y
 2y2 exp(-y2) dy  =  – (μt)-1Δ1/2 exp[-Δμt] + (μt)-3/2π1/2/2 erf(Y)

         ~   (μt)-3/2π1/2/2  as t → ∞, any fixed Δ < 1, [here Y = (Δμt)1/2] 

and ∫0
Δ
 δn+1/2 e-μδt dδ  =  ∫0

d
 δn+1/2 e-μδt dδ  +  ∫d

Δ
 δn+1/2 e-μδt dδ   <    dn+3/2  +  Δn+3/2e-dμt. 

Hence for large t and n ≥ 1 we can choose d = t-α (0.6 < α < 1) so that as t → ∞, any fixed Δ < 1, 

            ∫0
Δ
 δn+1/2 e-μδt dβ   <   dn+3/2  +  Δn+3/2e-dμt    ~   dn+3/2   <<   (μt)-3/2π1/2/2  ~  ∫0

Δ
 δ1/2 e-μδt dβ. 

Thus the fastest-growing part of {ρ1, fρ0(g sinθ)-1(u1, v1)}  is approximately 

ρz∞√[ν/(24μ4t3π)] eμt (b-√2)-2  × 

  [{-b,  -μ/f,  1}(2-b√2)η  –  b{2e-η-be-η√2-b,  (e-η√2-1)μ/f,  e-η√2-2e-η+1}] (B.3). 

The pair JK contributes the terms in eμβt.  The growth rate is slow for small μ = f√(b-1);  much 
slower than the growth rate from the pole at α = αp.  As b increases from 1 to √2, the growth rate 
of (B.3) increases from 0 to f√(√2-1) = αp (at b=√2), the growth rate from the pole. 

For the pairs CD and EF, √(α+μ) = -i[(β-1)μ]1/2 on C, E and √(α+μ) = i[(β-1)μ]1/2 on D, F, 
where β > αp/μ on C,  1 < β ≡ -α/μ < αp/μ on E.  Also √α = -i[βμ]1/2 on C, E and √α = i[βμ]1/2 on 
D, F; √(α-μ) = -i[(β+1)μ]1/2 on C, E and √(α-μ) = i[(β+1)μ]1/2 on D, F.  Writing 

  η ≡ z (μβ/ν)1/2,   η± ≡ z [μ(β±1)/ν]1/2, 

the integrand for 2πi ρz∞
-1 {ρ1, fρ0(g sinθ)-1 (u1, v1)} is 
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(on E: 1 < β < αp/μ) – i √(ν/μ) β-1 dβ exp(-βtμ) [2√β – b√(β+1) – b√(β-1)]-1

    ×  {2eiη – beiη- – beiη+, √(b-1) [eiη- – eiη+], eiη- + eiη+ - 2eiη} 

(on F: 1 < β < αp/μ) – i √(ν/μ) β-1 dβ exp(-βtμ) [2√β – b√(β+1) – b√(β-1)]-1

    ×  {2e-iη – be-iη- – be-iη+, √(b-1) [e-iη- – e-iη+], e-iη- + e-iη+ - 2e-iη} 

(on C: αp/μ < β) – i √(ν/μ) β-1 dβ exp(-βtμ) [2√β – b√(β+1) – b√(β-1)]-1

    ×  {2eiη – beiη- – beiη+, √(b-1) [eiη- – eiη+], eiη- + eiη+ - 2eiη} 

(on D: αp/μ < β) – i √(ν/μ) β-1 dβ exp(-βtμ) [2√β – b√(β+1) – b√(β-1)]-1

    ×  {2e-iη – be-iη- – be-iη+, √(b-1) [e-iη- – e-iη+], e-iη- + e-iη+ - 2e-iη}, 

i.e. the combined integrand for {ρ1, fρ0(g sinθ)-1 (u1, v1)} on 1 < β < αp/μ and αp/μ < β is  

 – ρz∞ √(ν/μ) (πβ)-1 dβ exp(-βtμ) [2√β – b√(β+1) – b√(β-1)]-1

          ×  {2cosη – bcosη- – bcosη+, √(b-1) [cosη- – cosη+], cosη- + cosη+ - 2cosη} 

which is finite and integrable over the respective ranges, except near the pole β = αp/μ > 1.  Here, 
the denominator [2√β – b√(β+1) – b√(β-1)] has a zero but is analytic as are all other factors.  The 
integral close around the pole was found above; the large contributions on CD and EF, outside 
the integral around the pole, cancel owing to the denominator’s sign change.  Hence these 
components of the solution are finite and integrable; the integrand factor exp(-βtμ) implies time-
decay faster than exp(-tμ). 
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APPENDIX C 

Evaluation of inverse Laplace transform for large b (f = 0) 

The Laplace transforms (u, ρ) are given by (9).  In the notation of section 3, if Re(α) is large 
and positive, then so is the real part of z±; the exponentials for (-ρx∞u±λρ) decay for large z as 
required.  The argument of z± is thereby defined in (-π/2, π/2) for all α except the real axis in 
α≤λ.  There are branch points at α = ± λ and a pole at α = 0.  [(α+λ)1/2 + (α–λ)1/2] has no zeros 
and introduces no other irregularities. 

The inverse Laplace transform requires that we evaluate 

  2πi ρz∞
-1 (ρ1, -ρx∞u1/λ) (z,t) 

 =  ν1/2∫L α-1[(α+λ)1/2 + (α–λ)1/2]-1{exp(-z+) + exp(-z–), exp(-z-) – exp(-z+)} eαt dα    

where the integral path L is from a-iT to a+iT as T→ ∞ and a is sufficiently positive for validity.  
A simplified form of figure 6 (Appendix B) applies if we re-interpret μ as λ.  We deform the path 
from A (a-iT to a+iT) to B (over which the integral is arbitrarily small) giving contributions 
from pole and the three integral pairs ∫C+D, ∫G+H, ∫J+K, where the lower path of the pair is in the 
positive sense and the upper path in the negative sense, both being close to the real axis. 

Near the pole α = 0, let α = λreiφ (-π<φ<π; r<<1), η ≡ z (λ/ν)1/2.  The integrand for 

   ρz∞
-1 {ρ1, -ρx∞u1/λ} 

is √(ν/λ) (2π)-1(1–i)-1{eiη + e-η, eiη – e-η}exp(λtreiφ)dφ (-π<φ<0) 

 + √(ν/λ) (2π)-1(1+i)-1{e-iη + e-η, e-iη – e-η}exp(λtreiφ)dφ   (0<φ<π)    + O(r), 

i.e. the integral is 

   √(ν/λ)/2 {e-η + cosη – sinη,  cosη – sinη – e-η}     (C.1). 

For the pair CD, let β ≡ -α/λ > 1; then √(α+λ) = -i[(β-1)λ]1/2 on C and √(α+λ) = i[(β-1)λ]1/2 on 
D; also √(α-λ) = -i[(β+1)λ]1/2 on C and √(α-λ) = i[(β+1)λ]1/2 on D.  The combined integrand over 
β > 1 for the CD contribution to {ρ1, -ρx∞u1/λ} (z,t) is then  

  
 ρz∞ √(ν/λ) (βπ)-1 [√(β+1)+√(β–1)]-1 exp(-βλt) 

   × {– cos√(β+1)η – cos√(β–1)η, cos√(β–1)η – cos√(β+1)η}  (C.2), 

finite and integrable over β > 1.  The factor exp(-βλt) implies time-decay faster than exp(-λt). 
Consider the integration over GHJK combined.  For the pair JK, 0 < β ≡ α/λ < 1, so (α–λ)1/2 

= -i[(1-β)λ]1/2 on J and (α–λ)1/2 = i[(1-β)λ]1/2 on K.  For the pair GH, 0 < β ≡ -α/λ < 1, so (α–λ)1/2 
= -i[(1+β)λ]1/2 on G and (α–λ)1/2 = i[(1+β)λ]1/2 on H.  Also (α+λ)1/2 = [(1-β)λ]1/2 on G and H.  
Then writing η ≡ z (λ/ν)1/2, η± ≡ η(1± β)1/2, the combined integrand over 0 < β < 1 for GHJK is 

 
(on J)     √(ν/λ) β-1 [√(1+β) – i√(1-β)]-1  {e-η+ + eiη-, eiη- – e-η+}eλβt dβ 

(on K)  – √(ν/λ) β-1 [√(1+β) + i√(1-β)]-1  {e-η+ + e-iη-, e-iη- – e-η+}eλβt dβ 

(on G)  – √(ν/λ) β-1 [√(1-β) – i√(1+β)]-1  {e-η- + eiη+, eiη+ – e-η-}e-λβt dβ 

(on H)  + √(ν/λ) β-1 [√(1-β) + i√(1+β)]-1  {e-η- + e-iη+, e-iη+ – e-η-}e-λβt dβ 

 =  i√(ν/λ) [eλβt [√(1+β){1, 1}sinη- + √(1-β){e-η+ + cosη-, cosη- – e-η+}] 

      – e-λβt [√(1-β){1, 1}sinη+ + √(1+β){ e-η- + cosη+, cosη+ – e-η-}]] β-1 dβ. 

We divide the integral in β over (0, 1) into contributions from (0, Б) and (Б, 1). 
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For small β > 0 (and η√β <<1) the integrand for 2πρz∞
-1(ρ1, -ρx∞u1/λ) (z,t) is approximately 

√(ν/λ) β-1dβ eλβt [(1+β/2-β2/8){1, 1}sin(1-β/2-β2/8)η   

 + (1-β/2-β2/8){exp(-1-β/2+β2/8)η + cos(1-β/2-β2/8)η,  cos(1-β/2-β2/8)η –exp(-1-β/2+β2/8)η}] 

–√(ν/λ) β-1dβ e-λβt [(1-β/2-β2/8){1,1}sin(1+β/2-β2/8)η   

 + (1+β/2-β2/8){exp(-1+β/2+β2/8)η +cos(1+β/2-β2/8)η, cos(1+β/2-β2/8)η –exp(-1+β/2+β2/8)η}] 

=  2√(ν/λ) sinh(λβt) β-1 dβ  [{1,1}[(1- β2/8)cosβη/2 - β/2 sinβη/2] (sinη* + cosη*) 

    + {1, -1}[(1- β2/8)coshβη/2 + β/2 sinhβη/2] e-η* ] 

 + 2√(ν/λ) cosh(λβt) β-1 dβ  [{1,1}[(1- β2/8)sinβη/2 + β/2 cosβη/2] (sinη* – cosη*) 

    + {-1, 1}[(1- β2/8)sinhβη/2 + β/2 coshβη/2] e-η* ] 

where η* = (1- β2/8)η, showing that the singularities on the separate paths (G, J, K, H) as β → 0 
cancel to give a combined integrand that is integrable and that there is no discrete contribution 
from the apparent pole β = 0. 
 
We use  ∫0

Б
 cosh(λβt)dβ       =      (λt)-1 sinh(λБt) 

  ∫0
Б
 cosh(λβt) β2 dβ  =  Б2(λt)-1 sinh(λБt) - Б(λt)-2 cosh(λБt) + (λt)-3 sinh(λБt) 

etc. and 

∫0
Б
 sinh(λβt) β-1dβ  <  ∫0

b
sinh(λβt) β-1dβ + ∫b

Б
 sinh(λβt) b-1dβ 

   =  λbt + (λbt)3/(3×3!) + (λbt)5/(5×5!) + (λbt)-1[cosh(λБt) - cosh(λbt)]  +  ..  

∫0
Б
 sinh(λβt) β dβ   =  Б(λt)-1 cosh(λБt) - (λt)-2 sinh(λБt) 

∫0
Б
 sinh(λβt) β3 dβ  =  Б3(λt)-1cosh(λБt) – 3Б2(λt)-2sinh(λБt) + 6Б(λt)-3cosh(λБt) - 6(λt)-4sinh(λБt) 

etc.  Hence the approximate integral over (0, Б) for 

  ρz∞
-1 (ρ1, -ρx∞u1/λ) (z,t) 

is 

 (πλБt)-1√(ν/λ) cosh(λБt) [{1,1}[(1- Б2/8)cosБη/2 - Б/2 sinБη/2] (sinη* + cosη*) 

      + {1,-1}[(1- Б2/8)coshБη/2 + Б/2 sinhБη/2] e-η*  ] 

 + √(ν/λ) [{1,1}(sinη+cosη) + {1,-1}e-η] 

   × [λbt/π + .. + (πλbt)-1(coshλБt – coshλbt) + .. – (πλБt)-1cosh(λБt)] 

 + (πλБt)-1√(ν/λ) sinh(λБt) [{1,1}[(1- Б2/8)sinБη/2 + Б/2 cosБη/2] (sinη* – cosη*) 

        + {-1, 1}[(1- Б2/8)sinhБη/2 + Б/2 coshБη/2] e-η*     ] 

 + terms in higher powers of (λБt)-1

where now η* = (1- Б2/8)η.  For large t the growth is bounded by (πλbt)-1coshλБt and by 

λbt + (λbt)3/(3×3!) + (λbt)5/(5×5!) < 2(λbt)-1coshλbt, i.e. (πλbt)-1coshλБt bounds the growth. 

For β near 1, let β = 1-δ; the integrand for 2π ρz∞
-1 (ρ1, -ρx∞u1/λ) (z,t) is approximately 
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√(ν/λ) [eλ(1-δ)t [√(2-δ){1, 1}sinη√δ + √δ {e-η√(2-δ) + cosη√δ, cosη√δ – e-η√(2-δ)}] 

 – e-λ(1-δ)t [√δ{1,1}sinη√(2-δ) + √(2-δ){e-η√δ + cosη√(2-δ), cosη√(2-δ) – e-η√δ}]] (1-δ)-1 dβ 

~√(ν/λ) eλt e-λδt [√2(1-δ/4){1,1}η(1-η2δ/6) + {e-η√2(1-δ/4) +1-η2δ/2, 1-η2δ/2 – e-η√2(1-δ/4)}](1+δ)√δ dβ 

                     + O(e-λ(1-δ)t). 

We use  ∫Б
1
 δ1/2 e-λδt dβ =     ∫0

1-Б
 δ1/2 e-λδt dδ = (λt)-3/2∫0

Y
 2y2 exp(-y2) dy 

  =   - (λt)-1(1-Б)1/2 exp[-(1-Б)λt] + (λt)-3/2π1/2/2 erf(Y)      where Y = [(1-Б)λt]1/2

  ~   (λt)-3/2π1/2/2  as t → ∞, any fixed Б < 1, 

and ∫Б
1
 δn+1/2 e-λδt dβ   =  ∫0

d
 δn+1/2 e-λδt dδ  +  ∫d

1-Б
 δn+1/2 e-λδt dδ    <     dn+3/2  +  (1-Б)n+3/2e-dλt. 

Hence for large t and n ≥ 1 we can choose d = t-α (0.6 < α < 1) so that as t → ∞, any fixed Б < 1, 

 ∫Б
1
 δn+1/2 e-λδt dβ  <  dn+3/2 + (1-Б)n+3/2e-dλt   ~  dn+3/2  <<  (λt)-3/2π1/2/2  ~  ∫Б

1
 δ1/2 e-λδt dβ. 

To summarise, at large times the integral in β over (0, Б) + (Б, 1) is dominated by terms of 
lowest order in δ = 1-β close to β=1, and 

 
 ρz∞

-1 (ρ1, -ρx∞u1/λ) (z,t)  ~  [νπ/(4λ2t3)]1/2 eλt [√2{1,1}η + {e-η√2 +1, 1 – e-η√2}]  (C.3) 

where we retain the notations from (2g) and η ≡ z (λ/ν)1/2. 
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Figure captions 

 
Figure 1.  Definition sketch for context of analysis.  An overall context is sketched above, 
wherein the sloping rectangle is the focus of analysis as expanded in the bottom panel.  
Vertical lines depict contours of base-state density ρ∞ (dashed at the bottom where the 
boundary condition requires at least an adjustment in a bottom boundary layer).  The down-
slope coordinate is x but the analysis is for base-state density increasing towards shallower 
water; ρx∞ < 0.  The slope angle is θ. 
 
Figure 2.  Form of exponentially-growing bottom layer at threshold b = 1.  ξ is the non-
dimensional scaled bottom boundary-layer coordinate.  Relative to u and v, ρ is non-
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Figure 4.  Form of fastest-growing part of solution neglecting Coriolis constraint.  η is the 
non-dimensional scaled bottom boundary-layer coordinate.  Relative to u, v is small, ρ is non-
dimensionalised by ρx∞/λ as in (C.3).  There is an overall arbitrary factor. 
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Figure 1.  Definition sketch for context of analysis.  An overall context is sketched above, 
wherein the sloping rectangle is the focus of analysis as expanded in the bottom panel.  
Vertical lines depict contours of base-state density ρ∞ (dashed at the bottom where the 
boundary condition requires at least an adjustment in a bottom boundary layer).  The down-
slope coordinate is x but the analysis is for base-state density increasing towards shallower 
water; ρx∞ < 0.  The slope angle is θ. 
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Figure 2.  Form of exponentially-growing bottom layer at threshold b = 1.  ξ is the non-
dimensional scaled bottom boundary-layer coordinate.  Relative to u and v, ρ is non-
dimensionalised by ρx∞/f as in (A.2).  There is an overall arbitrary factor.  
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Figure 3.  Form of exponentially-growing bottom layer near limit b = 21/2 of analysis validity.  
ξ is the non-dimensional scaled bottom boundary-layer coordinate.  Relative to u and v, ρ is 
non-dimensionalised by fρ0(g sinθ)-1 as in (B.2).  There is an overall arbitrary factor. 
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Figure 4.  Form of fastest-growing part of solution, as exp(λt), neglecting Coriolis constraint.  
η is the non-dimensional scaled bottom boundary-layer coordinate.  Relative to u, v is small, 
ρ is non-dimensionalised by ρx∞/λ as in (C.3).  There is an overall arbitrary factor. 
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Figure 5.  Inverse Laplace Transform integral paths when b = 1 
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Figure 6.  Inverse Laplace Transform integral paths when 1 < b < 21/2
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