nerc.ac.uk

Remote sensing space weather events: Antarctic-Arctic radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network

Clilverd, Mark. A.; Rodger, Craig. J.; Brundell, James. B.; Ulich, Thomas; Lichtenberger, Janos; Cobbett, Neil; Collier, Andrew.B.; Menk, Frederick.W.; Seppala, Annika; Verronen, Pekka.T.; Turunen, Esa. 2009 Remote sensing space weather events: Antarctic-Arctic radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Weather, 7 (4), S04001. 15, pp. 10.1029/2008SW000412

Before downloading, please read NORA policies.
[img]
Preview
Text (An edited version of this paper was published by AGU. Copyright American Geophysical Union.)
swe291.pdf - Published Version

Download (654kB) | Preview

Abstract/Summary

[1] The Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium (AARDDVARK) provides a network of continuous long-range observations of the lower ionosphere in the polar regions. Our ultimate aim is to develop the network of sensors to detect changes in ionization levels from 30--90 km altitude, globally, continuously, and with high time resolution, with the goal of increasing the understanding of energy coupling between the Earth’s atmosphere, the Sun, and space. This science area impacts our knowledge of space weather processes, global atmospheric change, communications, and navigation. The joint New Zealand-United Kingdom AARDDVARK is a new extension of a well-established experimental technique, allowing long-range probing of ionization changes at comparatively low altitudes. Most other instruments which can probe the same altitudes are limited to essentially overhead measurements. At this stage AARDDVARK is essentially unique, as similar systems are only deployed at a regional level. The AARDDVARK network has contributed to the scientific understanding of a growing list of space weather science topics including solar proton events, the descent of NOx into the middle atmosphere, substorms, precipitation of energetic electrons by plasmaspheric hiss and electromagnetic ion cyclotron waves, the impact of coronal mass ejections upon the radiation belts, and relativistic electron microbursts. Future additions to the receiver network will increase the science potential and provide global coverage of space weather event signatures.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/2008SW000412
Programmes: BAS Programmes > Global Science in the Antarctic Context (2005-2009) > Sun Earth Connections
ISSN: 1542-7390
Additional Keywords: Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortium, AARDDVARK
NORA Subject Terms: Atmospheric Sciences
Space Sciences
Date made live: 27 Apr 2009 15:34
URI: http://nora.nerc.ac.uk/id/eprint/6978

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...